
Robust Automatic Speech Recognition

Luis Felipe Parra Gallego
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Abstract

In contact center organizations, customer satisfaction (CS) analysis is an

important issue since the organization’s reputation is strongly impacted by

the customer’s perception of the quality of service (QoS) provided. Service

agents must provide exceptional service for the continual growth of the orga-

nization in today’s dynamic market. In order to improve the service, these

companies have human experts to evaluate the QoS. This practice is com-

monly based on the customer’s opinion of the service after the conversation

with the agent. However, such practice has two main disadvantages: 1) dou-

ble cost and effort, i.e., human experts are needed to answer the calls as

well as to evaluate them; and 2) only a small sample of the total number of

calls is rated due to human limitations. Given these difficulties, these orga-

nizations have promoted research into the development of different systems

based on acoustic and linguistic analyses that help to automatically evalu-

ate CS. The acoustic-based system detects abnormal changes on the speech

signal such as: poorly-articulated speech, increase in speech rate, increase in

voice volume, and others. The linguistic-based system searches for keywords

that reflect satisfaction/dissatisfaction. This approach requires an Automatic

Speech Recognition (ASR) system to convert the speech signal into a text

transcriptions. The ASR system must be designed in such a way that its

performance is minimally dependent of the acoustic conditions. This thesis

proposes a methodology to robustly recognize speech in non-controlled acous-

tic conditions using recordings collected by a call center. It also proposes a

methodology to recognize emotion from speech & to evaluate CS based on

acoustic and linguistic analysis. The acoustic features include articulation,

prosody and phonation features. The linguistic features consist of word em-

beddings extracted from the transcriptions generated by the proposed ASR

system. Deep learning approaches are considered for both speech recognition

and CS evaluation and they are compared with traditional techniques.
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Chapter 1

Introduction

This section first explains the motivation of this research work. Then, it

describes the state-of-the-art and it explains the general and specific objec-

tives of this study. Finally, it states the research problem and it presents the

contribution of this thesis.

1.1 Motivation

Each day millions of calls that are answered in call centers are recorded and

stored in storage centrals due to several regulations. The recordings are used

for different purposes like processing and analysis, in order to improve the

quality of the service. A common practice consists of listening to and evalua-

ting interactions between business advisors and customers. This procedure is

usually done by a human being who evaluates the service by randomly taking

samples from the total calls. During the quality of service (QoS) evaluation,

it is rated whether the business advisor resolved the customer’s problem or

need, whether s(he) performed it efficiently and timely, whether s(he) did not

raise her/his voice tone and volume, and additionally s(he) answered calmly,

whether customer got angry, etc [1]. However, this procedure has 2 main

disadvantages: (1) There is an increased cost for rating the calls; answering

the calls and evaluating them. (2) Only a few samples over the total calls

are evaluated, so it is not possible to pick up all critical calls that could help

in improving the QoS [1].

Several automatic systems designed to rate QoS in call centers have been

released. Generally these systems are based on acoustic and/or linguistic

analyses. On the one hand, the acoustic-based system detects abnormal

6



7 1.1. Motivation

changes on the speech signal such as: poorly-articulated speech, increase in

speech rate, increase in voice volume, and others. It has been shown that

these systems are suitable to assist call center managers in monitoring and

optimizing the service provided by the agent. They can potentially detect the

emotional state of agents and/or customers and hence provide a QoS index.

However, this analysis is quite complex because it must deal with acoustic

conditions of recording, environmental noise, acoustic differences between

speakers, among others. On the other hand, the linguistic-based system is

based on the textual content of the conversation between agents and cus-

tomers as well as customers’ opinions after the conversations (i.e., analysis in

voicemails). Nonetheless, this other approach requires the text transcription

of the spoken conversation in order to assign an accurate and efficient rate to

the conversation. Some of the features that are computed upon the text and

are related to QoS include keywords, key sentences, number and types of hes-

itations, and others. Thus a system of this nature consists of a speech to text

converter to transcribe the calls and a text analyzer to compute the feature

previously mentioned. From experience, textual analysis performs better CS

estimation than acoustic analysis since there are words in voicemails that

directly reflect the satisfaction/dissatisfaction of the service provided. That

is, even with some perturbation in the text transcription (such as stop word

deletions), the linguistic-based system can still evaluate CS by searching for

keywords. In contrast, the acoustic-based systems are sensitive to changes

in the acoustic conditions of the recordings. Regardless of the approach used

(i.e. acoustic, linguistic or a combination of them), they allow to automati-

cally analyze the 100% answered calls. Additionally, all interactions can be

discriminated between good and bad service.

ASR systems are the natural alternative to address the problem of au-

tomatic QoS evaluation based on text analysis. The goal of an ASR is to

efficiently and accurately convert a speech signal into its corresponding text

transcription. An ASR system should be designed such that its performance

does not depend on different conditions like the microphone, the accent of the

speaker, acoustic conditions, and others [2]. Also, an appropriate technique

is essential for achieving high performance; typical ASR is basically devel-

oped following 2 approaches: (1) Techniques based on traditional machine

learning (ML) using Gaussian Mixture Models (GMM) and Hidden Markov

Models (HMM), or (2) Techniques based on Deep Neural Networks (DNN).

The first approach is a standard tool for ASR systems. These systems are
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simpler and their computational complexity is low [3], [4]. On the other

hand, the second approach plays an important role in current ASR systems.

Recent advances have shown this technique to be promising [4]. Addition-

ally, an ASR based on DNN has many advantages compared to traditional

approaches. For instance, DNN can model the acoustic features of speech

signal using less parameters than some ML-based approaches. Additionally,

a DNN only needs one model for representing all sounds to be recognized,

while ML models need as many individual models as sounds to be recognized

[5].

The performance of a textual-based system to automatically rate QoS

depends on the accuracy in transcription. This means transcriptions with

errors could produce bad interpretations for the QoS evaluation system. For

instance, if a customer claims disagreement by saying “I did not have a good

service” and the recognizer omits the word “not”, it would completely change

the rating result. Although ASR systems have high performance under ideal

conditions, there are many factors that reduce the ASR performance, such as

speaker’s acoustic trait (health condition and emotional state), communica-

tion channel (microphone and sound card), environmental noise, and others.

Many works in ASR systems have been carried out for reducing harmful ef-

fects produced by noise. Improving robustness over this phenomenon in ASR

systems would lead to raise their performance. Comparisons among different

engines based on different techniques have been shown that those based on

DNN are more robust against non-controlled acoustic environments. Using

this technique, relative improvements of up to 7.5% word error rate (WER)

have been reported [4].

Thus, in the last decade, the most important technique in speech recog-

nition has been HMM-DNN hybrid models. The DNN-based acoustic model

has shown significant improvements through the investigation of several net-

work topologies [6]. Besides, end-to-end ASR systems are becoming popular

due to their capability to be totally optimized (acoustic and language model

at the same time). However, these systems suffer from the problem in which

redundant generators repeat and importance symbols vanish [6]. Although

an HMM-DNN-based ASR can not be totally optimized, it has the advantage

of stable processing to estimate phoneme states on a frame basis and each

component can be intervened separately [6]. For this reason, hybrid models

are used to carry out this research work.

This master thesis also proposes a methodology to robustly recognize
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emotion and to estimate the CS based on acoustic and linguistic analyses.

The first step consists of a exhaustive search of acoustic features to find

the most effective ones to detect emotional states from speech. Then, the

best acoustic features are combined with textual features to improve the CS

estimation.

1.2 State-of-the-art

This section describes related work on speech recognition and emotion recog-

nition from speech & automatic customer satisfaction estimation.

1.2.1 Automatic speech recognition

Several techniques have been proposed to model acoustic features in an ASR

system. The two most common approaches used nowadays are those based

on Hidden Markov Models - Gaussian Mixture Models (HMM-GMM), which

means HMM models where the states are modeled by GMMs and Deep

Learning which are HMM models where each state is modeled with DNN

[4]. HMM-GMM have played an important role in designing conventional

recognizers because they are easy to train and have low computational cost

[4]. On the other hand, the deep learning approach was firstly used for speech

recognition in the late eighties and early nineties. However, that attempt had

great limitations. For instance, a network with more than two hidden layers

was rarely used due to its computational cost and it neither showed great

improvements with respect to GMMs [4]

Thanks to the advances in computational power, DNN re-started in the

recent years and have shown very good results in different applications. In

[7] and [8], results using different acoustic models in ASR systems with dif-

ferent acoustic conditions are reported. Both works show that DNN-based

models outperform classical systems based on GMMs. Different topologies of

networks have been proposed in order to improve the ASR performance. In

[9] three topologies are compared: (1) Recurrent Neural Network, (2) Long

Short Term Memory (LSTM) and (3) Gated Recurrent Unit (GRU). The

authors used a total of 378 audio recordings from the TED talks in English.

The dataset contains files for training, validation and test. Spectrograms

were used to train the acoustic model. The best WER was achieved using

LSTM (65.04%). GRU showed similar results (67,42% WER) in a lower
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training time; GRU only ran for 5 days and 5 hours while LSTM required

slightly more than 7 days.

More complex architectures based on end-to-end systems were recently

proposed. In [10], the authors compared different “very deep models”. Con-

volutional LSTM with a residual connection (reConvLSTM) were also intro-

duced in the same work. Convolutional LSTM layers basically replace mul-

tiplication operations among parameters and inputs by convolutions. Their

architecture consists of 2 convolutional layers, followed by 4 ResConvLSTM,

and finally an LSTM Network in Network block. A total of 80 filterbanks

with their deltas were used as feature set. The Wall Street Journal (WSJ)

English corpus [11] was used to train and test the network. This database

contains 73 hours for training and 8 hours for test. The model proposed by

Zhang et al. showed a WER of 10,53%, while previous studies were around

18% using the same corpus.

In the same line, the authors in [12] proposed an end-to-end system

where its input is the raw speech signal. To do that, they used a convo-

lutional filter learning based on rectangular bandpass filters. This technique

is called SincNet. The authors proposed to connect SincNet to a recurrent

encoder-decoder structure trained in an end-to-end manner using joint CTC-

attention procedure. In this work, it was used WSJ [11] and TIMIT corpus

[13] for training and testing their model. The authors compared their sys-

tem with traditional end-to-end models operating on Mel-filter-banks. For

TIMIT database, their technique did not have improvements in compari-

son to traditional hybrid DNN-HMM due to the small amount of available

training data (less than 5 hours). On the other hand, when using WSJ,

the proposed technique obtained a top-of-line WER of 4.5%, outperforming

all the baselines. The previous best score was 5.9% WER, which means an

absolute improvement of 1.2%.

Other kinds of techniques as speech enhancement, domain adaptation,

and data augmentation have also been studied with DNNs. The authors

in [14] proposed the problem-agnostic speech encoder (PASE), a novel archi-

tecture that combines a convolutional encoder followed by multiple neural

networks, called workers, tasked to solve self-supervised problems. The aim

of each worker is to generate features extracted from the original speech sig-

nal as MFCCs, log power spectrum, gammatone features, waveform speech

signal, among others. The needed consensus across different tasks naturally

imposed meaningful constraints to the encoder, contributing to discover gen-
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eral representations and to minimize the risk of learning superficial features.

Self-supervised training was performed with a portion of 50 hours of the Lib-

riSpeech dataset [7]; TIMIT [13], DIRHA [15] and CHiME-5 [16] were used

for training and testing the ASR systems. In order to validate this tech-

nique, the authors trained a hybrid DNN-HMM speech recognizer using dif-

ferent acoustic features such as MFCC, filter bank, Gammatone, and MFCC

Gammatone filter bank. The features extracted from PASE architecture

significantly outperform the other feature sets, with a relative improvement

of 9.5% in the clean scenario and of 17.7% in noisy conditions using TIMIT.

Data augmentation is another useful procedure in order to gain addi-

tional improvements. The authors in [17] introduced SpecAugment, a simple

data augmentation method for speech recognition. The augmentation policy

consists in warping the features, masking blocks of frequency channels, and

masking blocks of time steps. Listening, Attention and Spell (LAS) network

was trained and tested with this strategy using Librispeech [7] and Switch-

board [18] corpus. An 80-dimensional filter bank with delta and delta-delta

acceleration was used as input. The authors were able to obtain state-of-

the-art results on the both in LibriSpeech 960h and Switchboard 300h tasks

using an end-to-end LAS networks by augmenting the training, surpassing

the performance of hybrid systems even without the aid of a language model.

An adaptation technique was proposed in [19]. The aim was to simul-

taneously model narrowband (sampled at 8kHz) and wideband (sampled at

16kHz) speech data in an ASR system using a domain mapping based on

Generative Adversarial Network (GAN). The authors used a variation of

GAN called cycleGAN. The advantage of this technique is that the aligned

data is not required. CycleGANs based on LSTM, CNN and ResNet archi-

tecture were compared. The authors used a 50hr subset of Broadcast News

data which is provided at 16kHz sampling rate (Wideband - WB) [20]. The

WB subset was then downsampled at 8kHz (Narrowband - NB) and again

upsampled at 16kHz to create corresponding upsampled narrowband (UNB).

The authors trained one recognizer for each data set (WB, NB, and UNB)

and each one was validated in all domains. The results show a degradation

in WER when there is a mismatch among the domains. When the UNB

subset is mapped to WB using ResNet GAN and validated on the WB-based

recognizer, the system achieved an improvement on performance by 1.8%

absolute WER.
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1.2.2 Emotion recognition from speech & automatic customer sa-

tisfaction estimation

Many techniques have been studied to develop SER systems. In [21], the

authors proposed to recognize different emotions included in the German

database EMODB (happiness, boredom, neural, sadness, anger, and anx-

iety). The recordings were modelled with a set of 120 harmonic features

along with their ∆ and ∆∆. Their minimum, maximum, mean, median, and

standard deviation were also computed at an utterance level, producing 1800-

dimensional feature vectors per sample. Speaker-independent (SI) multi-class

classification was performed using SVMs and the authors reported average

recall values of 92.00%, 71.48%, 87.46%, 91.42%, 98,29%, and 91.92% for

the aforementioned emotions, respectively. For the multi-class classification

scenario, the authors reported an average accuracy of 79.51%, which is a rel-

atively high and optimistic accuracy because the validation strategy reported

by the authors was a k-fold cross-validation, which does not guarantee unbi-

ased results. The authors in [22] worked also with the EMODB corpus and

modeled the emotions with temporal, spectral and cepstral features. Statis-

tical functionals were computed per feature vector at an utterance level. The

authors reported a maximum accuracy of 80% in the multi-class classification

of the different emotions included in the dataset. Note that all of the exper-

iments were speaker-dependent (SD), which leads to optimistic and biased

results. Another relevant work in the topic of automatic emotion recogni-

tion was presented in [23]. The authors proposed a feature set that included

frequency, energy/amplitude, and spectral parameters to model the speech

signals. Mean, standard deviation, 20th, 50th and 80th percentiles, range

between 20th and 80th percentile were the functionals computed per feature

vector. The authors used a wide variate of datasets (TUM AVIC, GEMEP,

EMODB, SING, FAU AIBO, and Vera-am-Mittag) to map information from

the affective speech domain to the two-dimensional arousal and valence rep-

resentation. An SVM classifier was trained following a leave-one-speaker-out

cross-validation strategy to classify between high vs. low arousal and between

positive vs. negative valence. The accuracy reported in the first scenario was

79.71% and 66.44% for the second one. Other approaches typically used to

create SER systems are based on speaker representation models. For in-

stance, the authors in [24] used i-vectors to classify emotions in two different

datasets: (1) USC AudioVisual data [25] and (2) IEMOCAP [26], which are
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acted and spontaneous, respectively. The authors trained an SVM for the

classification experiments and compared their approach w.r.t. the feature set

proposed in the Interspeech 2010 Paralinguistics Challenge (I2010PC) [27].

According to their results, the system based on i-vectors yielded better per-

formance (91.1% for USC and 71.3% for IEMOCAP) than I2010PC. It is

important to highlight that these results were achieved on SD experiments

and the hyper-parameter optimization procedure was not explained in detail,

so it is not possible to know whether these results are optimistic and possibly

biased.

More robust SER systems have been developed using deep learning tech-

niques in the recent years. In [28], the authors compared 3 different net-

work architectures: (1) Convolutional Neural Network (CNN); (2) Artifi-

cial Neural Network (ANN); and (3) Long Short Term Memory (LSTM).

The IEMOCAP dataset was used to evaluate the approaches following an

eight-fold-leave-two-speakers-out cross-validation scheme in all experiments.

Log-Fourier transform -based filter-bank with coefficients distributed on the

Mel scale were extracted. Because the authors performed a multi-class clas-

sification at a frame level, they assumed that frames belonging to a given

utterance convey the same emotion as the parent utterance. Silence class

was added using the labels generated by a voice activity detection system.

The method was compared with prior works in the literature related to multi-

class emotion classification that used the same database. Given that most

works reported results at an utterance level, the posterior class probabilities

computed for each frame in an utterance were averaged across all frames and

an utterance-based label was selected based on the maximum average class

probabilities. The authors reported that their system outperformed all the

other methods in up to 2% of accuracy. In 2020, the authors in [29] explored

possible dependencies between speaker recognition and emotion recognition

topics. They first applied the transfer learning technique to transfer infor-

mation from a ResNet-based pre-trained speaker-identity-based model to an

emotion classification task. They also explored how the performance of a

speaker recognition model is affected by different emotions. The authors

evaluated their experiments on three different datasets: IEMOCAP, MSP-

Podcast, and Crema-D. Two approaches were explored: x-vectors extraction

and replacement of the speaker-discriminative output layer with an emotion

classification layer and then fine-tune the hyper-parameters. A total of 23

MFCCs with 25ms frame-size and 10ms frame-shift were extracted. The
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model was validated on SI scenario. The best results were obtained with the

transfer learning approach with accuracies of up to 70.3%, 58.46%, and 81.84

for IEMOCAP, MSP-Podcast, and Crema-D, respectively. In the same year,

the authors in [30] proposed a one-dimensional CNN architecture to model

emotions from speech. The input to the architecture was based on MFCCs,

chromagram, Mel-scale spectrogram, Tonnetz representation, and spectral

contrast features extracted from the audio files. The authors performed CS

experiments with 4 classes of the IEMOCAP corpus and reported accuracies

of 64.3%. The experiments with RAVDESS and EMODB were SD and the re-

ported accuracies were 71.61% and 81.1%, respectively. Also in 2020, a novel

technique was introduced in [31]. The authors proposed a method where

key segments are selected based on a radial basis function network (RBFN)

similarity measurement. The segments were grouped following the k-means

algorithm as follows: The audios were divided into multiple chunks of 500ms

and the RBFN similarity was computed. If consecutive segments did not

exceed a given threshold, the number of clusters was increased by one. Thus,

the number of clusters k dynamically changed. Once the segments were clus-

tered, the nearest segment with respect to the centroid was selected for each

cluster to generate a new sequence, which was then converted into a spec-

trogram. The spectrogram was passed through a CNN network (pre-trained

ResNet101) to extract high-level features. These features were normalized

and used as inputs to a deep bi-directional long short term memory (BiL-

STM), which made the final decision about which emotions were present in

a given recording. The authors considered the three “standard” databases

IEMOCAP, EMODB, and RAVDESS and reported SI accuracies of 72.25%,

85,57%, and 77.02% for IEMOCAP, EMODB, and RAVDESS, respectively.

On the other hand, there are studies that investigated potential benefits

of emotion analysis for estimating or modelling CS. The authors in [32] found

a qualitative evidence that emotions identified from customers act as a prox-

ies to estimate CS. They designed a system that interactively provides views

of ongoing dialogues at different granularity to improve the quality assurance

and CS evaluations. The authors considered 8 different emotions: happiness,

assurance, agreement, courteousness, apology, unhappiness, disagreement,

and no-emotions. These emotions are grouped into positive, negative and

neutral sentiments. Real-life chat dialogues were collected forming a total of

188 conversations about mobile phone service providers. The conversations

were manually annotated according to the aforementioned emotions. Each
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conversation was automatically split into turns (for customers and agents).

To represent each emotion, the authors extracted simple NLP parameters

like word dictionary-based counts, and also meta-content like the delay be-

tween two consecutive turns. To predict the emotions in each turn, they

applied Conditional Random Fields (CRF). The model yielded accuracies of

62.4% for the 8-class emotion classification problem and 69.5% for the clas-

sification of the three different groups of emotions (positive, negative and

neutral). The experiments only used the costumers’ turns. The authors

demonstrated the superiority of using their system over the use of manual

quality assurance. A similar approach was proposed in [33]. Unlike the pre-

vious work, CS estimation was performed upon calls. The authors considered

both acted and spontaneous call-center databases. The calls were annotated

based on three emotion classes: positive, negative, and neutral. CS was pre-

dicted at a turn and call level. The CS estimation was performed following

three steps. Firstly, the calls were split into turns by using a Voice Activ-

ity Detector (VAD). Secondly, emotions were predicted in each turn using a

BiLSTM with prosody, lexical (using an ASR), and interactive features as

input. Thirdly, CS was estimated by integrating turn-level emotion recog-

nition through an unidirectional LSTM. The authors reported accuracies of

80.1% and 78.0% at the turn and call level, respectively. A less sophisticated

approach is proposed in [34], where the authors released the Davero corpus,

which contains phone-calls of a German call-center. The topics of the calls

range from simple informative ones to complaint calls. The database con-

tains about 93h of 1447 dialogues with 46610 turns. A total of 1,587 turns

were annotated by psychology students, who considered a total of six emo-

tions. The labels were clustered in terms of high and low dominance as well

as positive vs. negative valence. To recognize the turn-level emotions, the

authors extracted different acoustic features by using the Emotion and Affect

Recognition toolkit (openEAR), and the classification was performed with an

SVM. The most promising experiment presented by the authors was based

on speaker-specific groups (i.e., speaker-group dependent) in which male and

female speakers were considered separately. According to the results, the

classification of positive vs. negative valence is about 82% of accuracy for

male and about 70% for female.
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1.3 Objectives

1.3.1 General Objective

To design, implement and evaluate an ASR system robust against non-

controlled acoustic conditions and useful to automatically evaluate customer

satisfaction.

1.3.2 Specific Objectives

1. To define at least two HMM-DNN-based architectures for ASR systems

robust against non-controlled acoustic conditions.

2. To define at least two feature preprocessing techniques derived from

domain adaptation, speech enhancement, and data augmentation to

improve the noise robustness.

3. To implement and compare the previously defined techniques in order

to select the most robust one against non-controlled acoustic conditions.

4. To evaluate the performance of the selected system according to the

obtained WER and the automatic QoS evaluation.

1.4 Research Problem

The aim of this research work is to develop an efficient ASR system in non-

controlled acoustic environments trying to maintain its performance in con-

trolled conditions using a database collected at the Konecta Company. This

research work defines, implements and evaluates different topologies and net-

work architectures in controlled and non-controlled acoustic conditions in or-

der to find the most accurate model. In addition, preprocessing techniques

derived from data augmentation, speech enhancement, and domain adapta-

tion are implemented to improve the ASR performance. Finally, in order to

evaluate the utility of a DL-based ASR in a real application, automatic QoS

evaluation performance is also analyzed by using the selected techniques on

a QoS database provided by Konecta.
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1.5 Contribution of the research work

In order to fulfill the objectives proposed in Section 1.3, this study is di-

vided into 3 steps: (1) implementation of a speech recognizer robust against

noise, (2) emotion classification & CS estimation from speech, and (3) multi-

modal CS analysis using speech and text features. The following subsections

describe the contribution of each step.

1.5.1 Implementation of a speech recognizer robust against noise

With the aim of developing a hybrid ASR system robust against noise for call

center application, a Complex Linear Coding (CLC) technique is considered

to enhance the speech signals. This technique consists of applying a linear

combination of complex coefficients to the complex spectrum of a speech sig-

nal. This master’s thesis also compares different state-of-the-art hybrid ASR

architectures based on TDNN, GRU, and LSTM. Finally, the performance

of the selected system is evaluated in automatic QoS evaluation.

1.5.2 Emotion classification and customer satisfaction analysis

from speech

With the aim to address the problem of automatic speech emotion classi-

fication and also the problem of modeling CS from speech recordings co-

llected under non-controlled conditions, this research study introduces the

use of phonation, articulation and prosody features extracted with the Dis-

Voice framework [35]. The feature sets are also used in different emotional

speech corpora widely used in the related literature. The results obtained

with the introduced feature sets are compared with respect to three differ-

ent approaches: two speaker models namely, i-vectors and x-vectors, and

the I2010PC1 feature set [27]. The results show that the proposed approach

is competitive when considering the “standard” emotional speech databases

and it is the better one when considering the recordings with the opinions

of customers of the call center, which were collected under non-controlled

acoustic conditions. In addition, the following reasons support the fact that

the proposed feature set may be more suitable for industrial applications:

1I2010PC and openSMILE are used indifferently to refer to the same feature set
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1. It considers a smaller number of features (i.e., 488 for articulation) vs.

1582 from openSMILE.

2. There are no restrictions for its commercial use.

3. It was the best feature set along the experiments about CS analysis.

4. This feature set shows more balanced results in terms of sensitivity and

specificity compared to the openSMILE feature set.

5. The introduced feature set can be used in real-world applications where

the CS needs to be evaluated solely based on acoustic information.

1.5.3 Multimodal CS analysis using speech and text features

With the aim of improving the automatic estimation of CS, this research

work performes a multimodal analysis based on four different feature sets:

(1) speaker embeddings based on x-vectors, (2) acoustic features based on

openSMILE, (3) articulation features based on onset/offset transitions, and

(4) text features based on word2vec using text transcriptions generated by

an ASR system. Two different fusion schemes are explored in order to robust

recognize CS: Early Fusion (EF) and Gated Multimodal Unit (GMU). It is

hypothesized that GMU is more suitable to combine the features sets, since it

can control the importance of each set according to its degree of contribution

to encode the internal pattern (i.e, CS in this study). The fusion schemes are

evaluated through SVM and DNN classifiers on real-world database collected

from a call center.

1.6 Structure of the research work

This master’s thesis is divided into six chapters:

Chapter 1: includes the motivation, the state-of-the-art, the objectives,

the problem statement and the contributions of this master’s thesis.

Chapter 2: introduces the basic concepts of an ASR system, which

constitutes the main topic of this research work. In addition, the most com-

monly used architectures in hybrid recognizers are discussed.

Chapter 3: describes the databases considered in this work. This

chapter is divided into two sections: data for ASR implementation and data
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for emotion & CS evaluation. The sections describe in detail the datasets

used for each system.

Chapter 4: explains the methodology followed for each system. The

first section describes the process for developing an ASR system robust to

noise. The second section details the methodology designed for emotion

classification and CS evaluation from speech. The third section describes the

implementation of multimodal analysis for CS evaluation.

Chapter 5: presents the results obtained for each experiment and some

discussion of such results.

Chapter 6: contains the conclusions and future work potentially de-

rived from each experiment.



Chapter 2

Theoretical background

This chapter introduces the basic concepts of an ASR system. It then dis-

cusses some architectures of the acoustic model in more detail. Finally, it

briefly describes how speech recognition systems can be integrated for CS

analysis in call centers.

2.1 Automatic Speech Recognition System

The performance of an ASR should be independent of certain conditions

such as microphone, speaker accent, and acoustic environment. The gen-

eral procedures of an ASR system are shown in Figure 2.1. The system

essentially consists of an acoustic processor called “Feature Analysis” and a

decoder called “Pattern Classification”. The acoustic processor converts the

speech signal s(t) into a feature set ot, which is a compact representation

of s(t). The pattern classifier decodes the sequence of features, ot, into a

word sequence, Ŵ, which is the most likely sequence given ot. The decoder

uses an Acoustic Model (AM). The AM is represented by the posteriors ob-

tained from a Hidden Markov Model (HMM). Finally, a dictionary is used

to compute the matched probability between the sequence of features and

the most likely word sequences. Additionally, an N -gram Language Model

(LM) is used to compute the word sequence probability according to a given

grammatical context.

20
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Acoustic Model
(HMM)

Pattern Classification
(Decoding process)

Language Model Dictionary
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Figure 2.1. General structure of an ASR system. Figure adapted

from [2].

2.2 Feature analysis

Features are a set of numbers that represent a speech signal. This set is

named feature vector. There is no standard feature set, however, the most

popular in ASR is Mel Frequency Cepstal Coefficients (MFCC) [36]. Before

the feature extraction, it is needed to preprocess the speech signal. Thus the

first procedure is to convert it into a digital signal applying Nyquist sam-

pling theorem and then quantized according to the desired quality. Then,

MFCCs are computed as shown in Figure 2.2. Given that the speech sig-

nal’s characteristics change slowly (varying every 50-100ms), when analyzing

them into short segments, it is possible to assume a stationary behavior and

model them with a linear and time-invariant system. Therefore, the signal

is divided into frames of N samples which are spaced M samples apart. N

and M typically correspond to frames of duration 15-40ms and frameshifts

of 10ms [2]. The border of these segments has discontinui-ties which do not

correspond to a real-wold signal properties. The speech segments are thus

windowed using smooth functions (Hamming, Gaussian, Blackman, others)

to reduce the segmentation effects. The windowed signal is then transformed

to the frequency domain using Fast Fourier Transform (FFT) and filtered

on the mel-scale using triangular filters. These filters aim to model the non-

linear human ear perception with better discrimination at lower frequencies.

The log() function is applied for each power spectrum resulting in each filter

bank. Finally, a Discrete Cosine Transform (DCT) is computed to obtain

the MFCCs.

In addition, the recognition performance can improve when the dynamic
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Preprocessing Windowing FFT

Mel-filter bankLog()Discrete Cosine
Transform

Figure 2.2. Procedure for extracting MFCCs.

of the power spectrum is added to the feature space, i.e, delta (differential)

and delta-delta (acceleration). This is important in pronunciation, since

articulations, like stop closures and releases, can be recognized by the formant

transitions [37]. The first derivative is thus computed as:

dt =
ot+1 − ot−1

2
(2.1)

where ot+1 is the feature vector observed at time t+1 and ot+1 is the feature

vector observed at time t − 1. The second derivative is then computed also

using the Equation 2.1 but replacing ot by the first derivative dt.

2.3 Language Model (LM)

This is used to find words. It defines which word could be the following given

the previous words (context). The LM has the task of assigning a probability

for a sequence of words, W , to be seen on a given context:

P (W ) = P (w1, w2, ..., wM) (2.2)

where wn corresponds to the n−th word of the sequence W .

The majority of the LMs are N -gram models which contain statistics of

N -word sequences. If it is assumed that a likelihood of a word only depends

on the N − 1 last occurrences of words, the base of an N−gram language

model is obtained. Thus, Equation 2.2 can be rewritten as:

P (W ) =
M∏
n=1

P (wn|wn−1, wn−2, ..., wn−N+1) (2.3)
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2.4 Dictionary

It contains all linguistic units that should be recognized. For the case of a

phonetic dictionary, every word is mapped to its corresponding phone se-

quence. For instance, if a Spanish ASR system is being designed and it is

desired to recognize the word “camisa”, one entry of the dictionary would

be: “camisa: \k \a \m \i \s \a”, where each character corresponds to a

phoneme.

2.5 Acoustic Model

An AM essentially represents the relationship between the speech signal and

the phones or units that build the speech communication. Due to afore-

mentioned advantages in Section 1.1, the models based on DNN are playing

an important role on current speech recognizers. However, these models are

static, thus they are not useful to model random time domain sequences. On

the other hand, HMMs are able to model random sequence in time domain,

but they are not useful to represent acoustic distribution of speech signals

by themselves. Therefore, combining DNN and HMM, it is possible to ob-

tain an appropriate speech signal representation. This combination is called

HMM-DNN.

2.5.1 Deep Neural Networks

There is a number of architectures based on deep learning, each having its

advantages and disadvantages depending on the application. Many architec-

tures of the acoustic model of a hybrid speech recognizer have been explored,

including: feed-forward Neural Network (DNN), (2) Convolutional Neural

Network (CNN), Recurrent Networks (RNN, LSMT and GRUs), Time-delay

Neural Network (TDNN), and others. On the one hand, although DNN-based

models have already fallen behind in the state-of-the-art, it was considered

in this work in order to compare the evolution of performance with respect

to the other models. On the other hand, CNN-based models are shown high

performance in speech recognition applications, they were not considered in

this work since these architectures take advantage of the spatio-temporal cor-

relation of the features. However, this work uses MFCCs, which are poorly

correlated features.
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DNN: It is a conventional MLP [38] that includes at least 2 hidden layers

[4]. Figure 2.3 shows an example of DNN which consists of an input layer (the

first one), three hidden layers and an output layer (the last one). Each circle

at the hidden and output layers represents a neuron. This unit (neuron)

is basically formed with weights associated to each input (interconnection

line), a bias (represented by the circles with the number 1 inside) and an

activation function. The role of each element in a neuron is: (1) The weights

measure the degree of correlation between the activity level of the neuron

(output) and the inputs that they connect [39]. It gives information about

how much influence an input has in the outcome of the neuron. (2) The

bias is a constant value independent of the previous neurons and produces

an offset in the activation function. (3) The activation function controls the

outcome of the neuron. It determines whether the neuron should be activated

or not depending on its inputs, its weights and its bias. In some cases, this

function also helps to normalize the output of the neuron between -1 and 1

or between 0 and 1. A neuron representation is depicted in Figure 2.4.

A neuron activation can be therefore calculated as:

v = f(z) = f(w1x1 + w2x2 + ...+ wNxN + b) (2.4)

where wi is the weight associated to the input xi, b is the bias and N is the

number of inputs of the neuron.

Since, a DNN is formed by several layers and each layer is composed of

many neurons, the Equation 2.4 can be extended to a DNN as a matrix

representation such as:

vl = f(zl) = f(Wlvl−1 + bl), for 0 < l < L (2.5)

where zl = Wlvl−1+bl ∈ RNl×1, vl ∈ RNl×1, Wl ∈ RNl×Nl−1 , bl ∈ RNl×1 and

Nl ∈ R are, respectively, excitation vector, activation vector, weight matrix,

bias vector and the number of neurons in each layer l. In this case, each row

of the matrix Wl accordingly contains the weights of each neuron belonging

to the layer l. In the same way, the bias vector bl includes in each element

the bias of each neuron in layer l. Due to the layer 0 represents the input

layer, then v0 = o ∈ RN0×1; being o the N0-dimensional feature vector. The

output vector vL contains the posterior probabilities that the feature vector

o belongs to each of the linguistic units (like a phoneme, or part of it).

RNN: The basic concept of an RNN was introduced in [40]. This model
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Figure 2.3. DNN structure. Figure adapted from [4].
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Figure 2.4. Graphical representation of a neuron.

operates based on the inputs and also on internal states (hidden state) that

encode past information in a temporal sequence [4]. While GMM and DNN
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are static systems, RNN is dynamic. The hidden state in the RNN allows to

learn representation of dependencies over a time span. For an one-layer RNN

and each time step t, the mathematical formulation of an RNN is similar to a

one-layer DNN but including the contribution of the internal state, as follows:

ht = f(Wxhxt + Whhht−1 + bh) (2.6)

where xt is the K-dimensional input vector, Wxh is the N × K matrix of

weights connecting the K inputs to the N hidden units, Whh is the N ×N
matrix of weights connecting the N hidden units from the time t− 1 to time

t, and bh is the N -dimensional bias vector. The internal state ht is then used

as input to the fully-connected layer (vt) to compute the posterior probability

of the linguistic units as follows:

vt = f(Whvht + bv) (2.7)

where Whv is the S × N matrix of weights connecting the N hidden units

to the S emission probabilities of the linguistic units, ht is the hidden state

at the time t and bv is the bias vector.

Figure 2.5 shows the structure of an RNN containing multiple recurrent

layers (hl) and a feed forward neural network (vL) as the output. In this case,

the recurrent layer hl is fed by the hidden state of the previous recurrent layer

hL−1. The output layer vL computes the posterior probabilities per linguistic

unit.

UNFOLD

Figure 2.5. Unfold structure of an RNN.
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LSTM: As mentioned above, the main advantage of the RNNs is their

ability to encode past information in a temporal sequence. However, these

architectures have the disadvantage of rather limited contextual range. That

is, the influence of an input on the network decays exponentially over time

as new inputs are fed into the network. This problem is also known in the

literature as vanishing gradients. Thus, the authors in [41] the Long Short-

Term Memory (LSTM) to solve this problem.

This architecture consists of a set of special units recurrently connected,

called memory blocks. The LSTM blocks contain memory cells that store

temporal state of the network as well as multiplicative gates to control the

flow of information over time. Each memory block includes an input gate,

a forget gate and an output gate. The input gate controls the flow of in-

formation from the input into the cell memory. The forget gate weights the

amount of information allowed from the cell’s internal state before feeding

it into the cell. The output gate controls the flow of information from the

block into the rest of the network. For an one-layer LSTM and each time

point t, the mathematical formulation is as follows:

it = σ(Wxixt + Whiht−1 + bi) (2.8)

ft = σ(Wxfxt + Whfht−1 + bf ) (2.9)

gt = tanh(Wxgxt + Whght−1 + bg) (2.10)

ot = σ(Wxoxt + Whoht−1 + bo) (2.11)

ct = ft � ct−1 + it � gt−1 (2.12)

ht = ot � tanh(ct) (2.13)

where xt is the K−dimensional input vector, ht is the N -dimensional hidden

state, and ct is the N -dimensional cell state. it, ft, gt, and ot are the input,

forget, cell, and output gates, respectively. The weight matrices (W) and

the bias vectors (b) connect the input-vector/hidden-units to their respective

gates/cells. σ is the sigmoid function, tanh is the hyperbolic tangent function,
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Figure 2.6. Structure of an LSTM unit.

and � is the Hadamard product. Figure 2.6 shows the structure of an LSTM

cell.

GRU: This model is also based on gating mechanism, and introduced

in [42] using a machine translation task. Similar to the LSTM, the GRU has

multiplicative gates that control the flow of information with the difference

that it does not have memory cells. The flow of information is controlled

through two gates: the update gate and the reset gate. On the one hand, the

update gate controls how much new information updates its internal state

based on a linear interpolation between the previous state and the candidate

state. On the other hand, the reset gate decides whether the previous state

is important or not. Thus, the mathematical formulation of a one-layer GRU

unit is as follows:

rt = σ(Wxrxt + Whrht−1 + br) (2.14)

zt = σ(Wxzxt + Whzht−1 + bz) (2.15)

nt = tanh(Wxnxt + rt � (Whnht−1) + bn) (2.16)

ht = (1− zt)� nt + zt � ht−1 (2.17)

where xt is the K-dimensional input vector and ht is the N -dimensional



29 2.5. Acoustic Model

hidden state. rt, zt, and nt are the reset, update,, and new candidate

gates. The weight matrices (W) and the bias vectors (b) connect the input-

vector/hidden-units to their respective gates. σ is the sigmoid function, tanh

is the hyperbolic tangent function, and � is the Hadamard product. Fig-

ure 2.7 shows the structure of a GRU cell.

1-

Figure 2.7. Structure of a GRU unit.

TDNN: Although recurrence-based models have been shown to model

temporal dependencies effectively, their training time is higher than, for in-

stance, DNNs due to the sequential nature of the training algorithm [43].

Waibel in [44] designed the TDNN, an alternative for modeling long term

temporal dependencies with training times comparable to a standard DNN.

The main difference between a DNN and a TDNN is the way in which the

time dependency is transformed. On the one hand, when modeling long tem-

poral context in a standard DNN, the initial layer performs a linear transfor-

mation to the entire context. On the other hand, the initial layer of a TDNN

transforms the input from a narrow temporal context and the deeper layers

process the hidden activations from a wider temporal context. In addition to

the hyperparameters defined in the DNN network, the TDNN requires defin-

ing the input context for each of its layers in order to compute the activation

function at each time instant. Figure 2.8 shows an example of the temporal

dependencies of each layer for different time steps in a TDNN. The figure

shows two possible TDNN configurations: without sub-sampling (black lines)

and with sub-sampling (red lines). In the fist case, the hidden activations
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are computed at all time steps. In the second case, gaps between frames

are allowed, i.e., instead of splicing contiguous windows, the network splices

frames separated by at least one time step. The model takes advantage of

possible correlations between contiguous windows. In this way, it is possible

to omit some frames in the context in order to reduce the computational

cost.

-2 +2

-1 +2

-3 +3

-7 +2

Layer 1

Layer 2


Layer 3


Layer 4


Figure 2.8. Computation in TNN with sub-sampling (red) and without

sub-sampling (black). Figure adapted from [43]

2.5.2 Markov chain

Before explaining what a Markov sequence is, it is necessary to first explain

the Markov chain. It is a special case of a Markov sequence where the

likelihood of a given event only depends on the immediately previous state [4].

This chain, qT
1 = q1, q2, ..., qT , can be defined by its transition probabilities

aij:

P (qt = s(j)|qt−1 = s(i)) = aij(t), where aij ≥ 0 ∀i, j; y
N∑
j=i

aij = 1 (2.18)

and by its initial state-distribution probabilities π̂(s(i)) = P (q0 = s(i)). Thus,

the possible values that a random variable qt of a Markov chain can get are:

qt ∈ {s(j), j = 1, 2, ..., N}. Additionally, if the transition probabilities are
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time independent, it is obtained a homogeneous Markov chain. Figure 2.9

depicts a 3-state homogeneous Markov chain being aij the transition proba-

bilities from the state s(i) to the state s(j).

Figure 2.9. Markov Chain.

Therefore, the state-occupation probability, pi = P (qt = s(i)), can be

recursively computed as:

pi(t+ 1) =
N∑
j=1

ajipj(t), ∀j. (2.19)

where pi(0) = π̂(s(i)).

2.5.3 Hidden Markov sequence

As shown in the previous definition, a Markov chain has a one-to-one corre-

spondence between the state and the output of the sequence. Therefore, a
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Markov chain is an observable Markov sequence because there is no random-

ness in the output in a given state. For instance, if the output of each state

of a Markov chain is defined as follows:

s1 = 2, s2 = 3, s3 = 6

and an output sequence is observed as: q51 = {2, 6, 3, 2, 2}, it can be claimed

that the state sequence follows by the model was {s1, s3, s2, s1, s1}. This

characteristic makes the Markov chain restrictive to model many real-world

information sources, such as speech feature sequences. If the speech com-

munication is considered as a sequence of phonemes, this process is not pos-

sible to model with a Markov chain because the acoustic waveform of each

phoneme (state) is a random variable and not a discrete value. When the

discrete state value is replaced by a random variable, the Markov chain is

then generalized to Markov sequence [4]. If the random variable distribution

is overlapped among the states, the new sequence is called a hidden Markov

sequence.

The hidden Markov sequence then is defined by:

• Transition probabilities, aij of an homogeneous Markov chain and the

initial state-occupation probabilities π̂i.

• Observation probabilities, bi = P (ot|s(i)) being ot a random vector

observed at time t and s(i) the state i which embeds the probability

distribution function (PDF) bi.

The most common PDF for representing speech features are GMM and

DNN. Thus, when the hidden Markov model embeds GMMs in its states,

the model is called HMM-GMM (Figure 2.10) but when it uses a DNN for

modeling the speech features, it is called HMM-DNN (Figure 2.11). As

shown in the figures, both of them use an HMM to represent transition

probabilities ai,j in the time series (acoustic feature sequence). However, the

only difference is that the first one computes the emission probability bi(ot)

using a GMM and the second one uses a DNN. Note that the DNN can

also be replaced by more complex deep learning architectures such as those

mentioned above: RNN, GRU, LSTM, and TDNN.

Each state of the HMM describes a simple unit of a speech signal (a

complete phoneme or part of it). As shown in the Figure 2.11, when joining

those units like a sequence, more complex models are produced such as words
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1 2 3

Figure 2.10. Basic structure of an HMM-GMM with 3 states.

or even sentences. Consequently, when performing whatever combination of

states, it is possible to generate all words belonging to the language to be

recognized.

2.5.4 Deep Neural Network embedded into a Hidden Markov

Model

As explained in the last section, an HMM-DNN is a Marchov chain that

embeds in each state a random variable whose PDF is represented by a DNN.

In addition, it is possible to represent complex models like words just building

an HMM-DNN with several states, depending on how many linguistic units

(as phonemes) a word has. For instance, the Spanish word “casa” would have

fewer states than the word “camisa”, because the first one has four phonemes

while the other one has 6 phonemes. In the same way, it is possible to build

even more complex models like sentences, joining word models based on

HMM-DNN.

The conditional likelihood P (oT
1 |w) that the observation sequence oT

1 is

generated by the word w is defined as:
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Figure 2.11. Basic structure of an HMM-DNN with s states. Image

taken from Yu 2015.

P (oT
1 |w) = P (oT

1 |qT
1 , w)P (qT

1 |w)

≈ max{π̂(q0)
T∏
t=1

aqt−1qt

T∏
t=1

p(qt|ot)/p(qt)}

where qT
1 represents the all possible state sequence with T frames in the

model of the word w, aqt−1qt represents the transition probabilities from the

state qt−1 seen at time t−1 to the state qt seen at time t, π̂(q0) represents the
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initial-occupation probability in the state q0 seen at time 0, p(qt|ot) is the

posterior probability that is computed from the DNN, and p(qt) represents

prior probability of each state seen at time t. This procedure is computed

over all words (or sentences) in order to search the most probable one. Since,

a sentence w is a word sequence (which is finally a large HMM), this formula-

tion can be generalized to a sentence by evaluating the conditional likelihood

P (oT
1 |w) over whole sentence w instead of an isolated word w.

2.6 Automatic Speech Recognition system for emotion

recognition and customer satisfaction evaluation

Automatic emotion recognition systems were introduced several years ago

and have evolved a lot since then. It has been shown that those systems

are suitable to help call-center managers in monitoring and optimizing the

QoS provided by their agents [45]. These systems can potentially detect the

emotional state of agents and/or customers and hence provide a QoS index.

The automatic QoS analysis can be rated by evaluating the customers sat-

isfaction (CS). There are two main approaches to evaluate it: acoustic analy-

sis and text analysis. In the fist case, the system detects abnormal changes on

speech signals such as: poorly-articulated speech, increase in speech rate, in-

crease in voice volume and others. In the second case, the evaluation is based

on the linguistic content of the speech. For instance, the system searches for

keywords and sentences reflecting satisfaction/dissatisfaction. However, the

text-based approach requires including an ASR system that can convert the

speech signal into a text transcription efficiently. The recognizer must be

designed in such a way that its dependency to the acoustic conditions is

minimal. If the recognizer performs poorly, the automatic satisfaction eval-

uation system will also perform poorly.

A more appropriate approach consists of fusing both the acoustic anal-

ysis and text analysis because both representations provide complementary

information. This technique is also known as multimodal analysis due to the

fusion of different modes (i.e., acoustic and text modes). The two most basic

schemes of combination of characteristics are early fusion (EF) and late fu-

sion (LF). On the one hand, EF has the disadvantage of combining features

of different nature. In addition, it assumes that each modality has the same

importance (weight) for classification purposes. One the other hand, disad-

vantage of LF is the high training cost due to the need to train one model for
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each modality. Additionally, it requires an additional training stage to opti-

mize the classifier that makes the final decision. For this reason, the Gated

Multimodal Units (GMU) were proposed in [46] to more adequately fuse fea-

tures. A GMU is DL-based model that combines ideas from both EF and LF.

A GMU learns to decide how much each modality influences the activation

of the unit using multiplicative gates. Since information sources (modali-

ties) usually do not share statistical properties, the GMU-based approach is

suitable because it learns intermediate representations through linear com-

binations of the different modalities.



Chapter 3

Databases

This chapter describes the databases used for ASR implementation and emo-

tion & CS evaluations respectively.

3.1 Data for ASR system implementation

To evaluate the ASR systems, call recordings of the Konecta company are

used. Two data augmentation schemes are also considered: (1) using additive

noise taken from the Demand Noise Dataset (DND); and (2) using signal

speed perturbation.

3.1.1 Konecta calls

This corpus contains recordings of conversations between customers and

agents of a contact-center of the Konecta Group (Medelĺın, Colombia). The

customers were informed that their speech was going to be recorded. Due to

the nature of the service, it is assumed that the speakers in these recordings

are all of legal age. The database consists of 478, 6 hours of audio with a

sampling frequency of 8kHz and a 16 bits resolution. Experts in QoS anno-

tated the recordings in the contact center. Each audio has its transliteration,

the customer’s gender, and its level of noise, which was perceptually labeled

by the experts as low, medium and high. Since the recordings were captured

in non-controlled acoustic environments, this database is useful to evaluate

the robustness of ASR systems against noisy conditions. Table 3.1 shows the

demographic information of this database.
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Table 3.1. Demographic description of the Konecta calls database. LN:

Low level of noise. MN: Medium level of noise. HN: High level of noise.

Male: Number of male recordings. Female: Number of female recordings

.

Label of noise # of speakers
Gender distribution Hours

Male Female Training Test

LN 18938 19459 27313 321,0 30,3

MN 6615 7180 8191 101,4 15,9

HN 633 636 666 8,7 1,2

3.1.2 Demand Noise Dataset (DND)

The DND corpus [47] contains a variety of noise signals collected in real-

world acoustic environments. The database considers two scenarios, namely

“inside” environments and “open-air” environments. The inside recordings

are divided into Domestic, Office, Public, and Transportation; while the

open-air recordings are classified as Street and Nature. All recordings are

captured with a 16-channel array of microphones at a sampling frequency of

48kHz. Thus, each environment noise recording is actually a set of 16 mono

sound files.

3.1.3 Data augmentation based on additive noise

Clean recordings (LN) of the Konecta calls corpus are augmented by adding

noise signals of the DND corpus. The noisy samples are created by randomly

taking two different noises from the DND corpus associated with different

Signal-to-Noise Ratio (SNR) levels: −5, 0, 5, 10, 20, and 40 dB. To achieve

the selected SNR level, the noise is scaled by a factor α, which is expressed

as:

α =

√
Ps(t)

SNR · Pn(t)

(3.1)

where Ps(t), Pn(t), and SNR are speech signal power, noise signal power, and

SNR computed in linear scale, respectively.
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Training and test sets are augmented separately and used to train and

evaluate the denoiser described in Section 4.1.1. The data augmentation

algorithm is depicted in Figure 3.1.

Clean Speech

Random noise
selection

Noise scaling

DND

Figure 3.1. Data augmentation process.

3.1.4 Data augmentation based on speed perturbation

This perturbation applies a time warping by a factor β. Given a speech

signal x(t), the time-warped signal is x(βt). The speed perturbation alters

the signal duration as well as the number of frames in the utterance. The

training sets (LN, MN, and HN) of the Konecta calls corpus are augmented

with speed factors of 0.9, 1.0 and 1.1. Thus, three versions of the original

recording are generated by applying the speed perturbation. This scheme

is implemented using the speed function of the Sox toolkit1. Details of this

data augmentation technique can be found in [48].

3.2 Data for emotion recognition & customer satisfac-

tion evaluation

This master’s thesis considers three speech emotional databases commonly

used in the literature of speech emotion recognition (SER): (1) IEMOCAP,

(2) RAVDESS, and (3) EMODB. Each corpus contains audio recordings with

emotional content. They constitute the standard databases for the training

and evaluation of SER models. Besides these well-known corpora, here the

Konecta voicemails database was introduced. This dataset was created with

1The toolkit is available on: http://sox.sourceforge.net

http://sox.sourceforge.net
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audio recordings of a Konecta Group. Unlike Konecta calls, this corpus

is based on voicemails, which means that it is formed with recordings of

messages that customers leave after receiving assistance from a call center

agent. It is used to evaluate the proposed approach in real-world acoustic

conditions. All datasets are down-sampled to 8kHz. Further details of each

corpus are presented below.

3.2.1 IEMOCAP

This is an audio-visual database that consists of approximately 12 hours

of recordings including video, speech, motion capture of the face, and the

transliterations corresponding to a total of 10039 recordings [26]. The audios

were originally sampled at 16kHz with 16-bit resolution. The database is

divided into five recording sessions. Two actors (one male and one female)

performed scripted and improvised scenes. The database was annotated by

multiple annotators with five emotional labels: anger, happiness, sadness,

neutral, and frustration. There are about 10000 samples per class and the

annotations are based on the average of the labels assigned by the four la-

belers.

3.2.2 RAVDESS

This is a multimodal database with emotional speech and songs [49]. Speech

recordings of 24 actors (12 male and 12 female) are included. Each ac-

tor produced two lexically-matched statements in neutral north American

English accent. Seven expressions with different emotional content were pro-

duced by the actors: calm, happy, sad, angry, fearful, surprise, and disgust.

Besides one expression produced with neutral emotional content, the other

expressions were produced twice, with normal and strong level of emotional

intensity. There is a total of 1440 recordings sampled at 16kHz with 16-bit

resolution. Each class contains 192 samples except the neutral one with only

96 samples.

3.2.3 EMODB

This database contains recordings of 10 German actors (5 male and 5 fe-

male) who produced 10 utterances [50]. Seven emotions are labeled in the

recordings: anger, boredom, disgust, anxiety, happiness, sadness, and neu-
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tral. The recording process was performed in ideal acoustic conditions and

using a professional audio setting. The distribution of samples among the

emotions is not even, i.e., there are emotions with much less recordings than

others.

3.2.4 Konecta voicemails

This database contains voicemails which were recorded at the end of

phone-calls between customers and service-agents. In those voicemails

the customers give spontaneous evaluations of the service provided by

the agent. The customers were informed that their speech was going to

be recorded. Due to the nature of the service, it is assumed that the

speakers in these recordings are all adults. The audios were recorded at a

sampling frequency of 8 kHz and 16-bit resolution. The corpus contains

2364 recordings annotated by experts in QoS (i.e., the labelers listened

to each audio file and evaluated whether the customer was satisfied or

not). The experts labeled the audios as satisfied, dissatisfied, or neutral

based on the linguistic content of the voice-mail given by the customer.

That is, when the annotators could conclude that the customer did not

receive the expected service, such voice-mail was labeled as dissatisfied.

This way of labeling not only takes into account the linguistic content,

but also the expert-knowledge about customer service. Only satisfied and

dissatisfied categories are considered in this study. There is a significant

difference in the length of satisfied and dissatisfied recordings (t-test [51]

with p � 0.05). This is shown in Figure 3.2, where longer recordings

for dissatisfied customers can be observed. Although it seems like this

information is valuable for some applications, it is important to clarify that,

in general, in speech analysis the recordings have to be normalized w.r.t

time to avoid biases. For instance, time duration could be very different due

to cultural and language differences or could differ among kinds of provided

services. Besides, gender-balance is validated through a chi-square test [51]

(p ≈ 1).
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0 50 100 150 200 250 300
Recording duration (seconds)

Dissatisfied
Satisfied

Figure 3.2. Duration distribution for satisfied and dissatisfied classes in

the KONECTADB.



Chapter 4

Methods

This chapter describes the methodology followed in this study. The descrip-

tion is divided into three sections: ASR system implementation, emotion

classification & CS estimation from speech, and multimodal CS analysis.

The first section describes the process to develop an ASR system robust

against noise. The second section explains a methodology to find suitable

features to robustly recognize emotions and estimate CS from speech in real

acoustic scenarios. The third section evaluates different multimodal analysis

based on text and acoustic modalities in order to estimate CS.

4.1 ASR system implementation

Figure 4.3 illustrates the overall process to train and test an ASR system.

At the top, it is described the training stage, and at the bottom the test one.

4.1.1 Training stage

This stage encompasses feature extraction, Language Model (LM), Acoustic

Model (AM), and the Dictionary.

Feature extraction

This study considered a total of 40-MFCCs extracted from 40 triangular

Mel-frequency bins with a window size of 25ms and a step size of 10ms. The

spectrogram is unit-normalized.
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Figure 4.1. General methodology for ASR system implementation.

Language model

The transliteration of the training set was used to train a 3-gram language

model. The probabilities of a language model can be computed by counting

relative frequencies of the 3−tuples of words that belong to the training set.

To estimate the probabilities of the 3−gram model, the following equation is

used:

P (wn|wn−1, wn−2) =
C(wn−2, wn−1, wn)

C(wn−2, wn−1)
(4.1)
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where wn represents a word located in position n, and C represents a function

that counts the number of occurrences of the word sequence defined in its

argument.

Acoustic model

This study considers a 3-state HMM for modeling temporal dependencies.

Four different models are trained and evaluated to represent the acoustic

distribution of each acoustic unit (HMM state).

• GMM: This acoustic model is based on GMM models. A total of 100

thousand of Gaussian components and a decision tree of 4016 leaves

were considered in this work. The GMMs were trained using a Max-

imum Likelihood estimation. This model was also used to force-align

the training data and it is regarded as the baseline in this study.

• TDNN: This architecture consists of six TDNN layers with 1536 units

and a bottleneck dimension of 256. Each layer contains a frame context

of three and a skip connection coming from the previous layer’s input.

The last TDNN layer’s output is fed into a fully connected layer with

a softmax activation function. Details of this method can be found

in [52].

• LSTM: This architecture consists of four bidirectional LSTM layers

with a tanh activation function. Each layer contains 550 units and a

dropout regularization of 0.2. The last LSTM layer’s output is fed into

a fully connected layer with a softmax activation function.

• GRU: This architecture consists of five bidirectional GRU layers with

a relu activation function. Each layer contains 550 units and a dropout

regularization of 0.2. The last GRU layer’s output is fed into a fully

connected layer with a softmax activation function.

The forced-aligned data generated by the GMMs are used to train the

DL-based models. On the one hand, the Kaldi toolkit [53] is used to train

the TDNN model using Stochastic Gradient Decent (SGD) with an initial

learning rate of 0.00015 and batch size of 64. On the other hand, ADAM

optimizer with an initial learning rate of 0.0002 and batch size of 64 is used to
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train the LSTM- and GRU- based architectures using Pytorch-Kaldi frame-

work [54]. Only considered five epochs are considered due to computational

constraints.

Dictionary

The dictionary contains the phone pronunciation of each word to be recog-

nized in our model. The phone composition is performed using pronunciation

rules of the Spanish language from Colombia. To build the dictionary, the

most frequent words seen in the training set were selected. This study con-

sidered 20 thousand different words.

4.1.2 Test stage

This involves the same processes as the training stage and also includes de-

noising and performance evaluation. To avoid any possible bias and to guar-

antee the generalization capability of the model, this process only considers

recordings of the test set.

Denoising model

The denoiser is thought to enhance the speech signals. Thesis used a simi-

lar approach as the one presented in [55]. A Short-Time Fourier transform

(STFT) was computed using a 25ms Hanning window with a step size of

10ms. The model architecture consists of a fully connected layer followed

by two GRU layers and finally, two fully connected layers. The input to the

model is the unit-normalized complex spectrogram. The last layer predicts

the masking coefficient to denoise the complex spectrogram. The mask aims

to reduce noise effects by multiplying weights closer to zero with those fre-

quency bands that contain noise energy. The masked complex spectrogram

is then transformed into the time-domain using the inverse STFT function.

The complete filter process is illustrated in Figure 4.2.

The augmented training dataset of Konecta calls described in Sec-

tion 3.1.1 is used to train the system. The original signals are used as the

ground truth during the training process of the GRU. The GRU-based de-

noiser is trained with Pytorch using the Adam optimization strategy with an

initial learning rate of 0.0001 and a batch size of 10. Only five epochs are

considered due to computational constraints.
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Figure 4.2. Denoising process [55]. F is the number of frequency bins

and
⊗

is the Hadamard product.

Performance evaluation

Once the ASR system is trained, this is used to convert the recordings into

text transcriptions of the test set. The Word Error Rate (WER) was com-

puted to evaluate the model. This is the a well known performance measure

typically used to evaluate ASR systems [56]. It is defined as follows:

WER =
S +D + I

S +D + C
(4.2)

where,

X S: # of substitutions.

X D: # of deletions.

X I: # of insertions.

X C: # of correctly recognized words.

WER compares two text chains. This metric counts the number of oper-

ations needed to convert one text into another one. WER is computed upon

the original transcription and the predicted transcription in the case of an

ASR system.
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4.2 Emotion classification and customer satisfaction

estimation from speech

Figure 4.3 illustrates the overall methodology followed for CS estimation,

which includes pre-processing, feature extraction, and classification.

Satisfied

Dissatisfied

Feature
extraction

Classification
& evaluation

CS ratingPre-processing

Voicemails TDNN-based
VAD

Acoustic
openSMILE

DisVoice

Speaker models

SVM

Dataset

Figure 4.3. General methodology for customer satisfaction estimation

from speech.

4.2.1 Preprocessing

VAD is applied to the recordings of the Konecta voicemails to remove long

silence segments. The VAD algorithm is a pre-trained model based on time-

delay neural networks. The architecture consists of seven time-delay neural

layers, a fully-connected layer and an output layer with softmax as the ac-

tivation function. A total of 20 MFCCs are used as input. To prepare

the training and test sets, the Fisher corpus [57] is word-aligned by using

a GMM-based ASR system and then the word segments were annotated as

speech while the rest segments as silence. Thus, the targets are speech and

silence classes. The model1 was trained using the Kaldi toolkit [58].

4.2.2 Feature extraction

Three different approaches are considered in this study: two speaker models,

the openSMILE feature set and the feature sets extracted with DisVoice,

1It can be downloaded from: https://kaldi-asr.org/models/m4

https://kaldi-asr.org/models/m4


49
4.2. Emotion classification and customer satisfaction estimation from

speech

which include phonation, articulation, and prosody measures. Each feature

set is described below.

i-vectors

Earlier studies on speaker recognition methods to model speaker traits

through high-dimensional super-vectors were based on Gaussian Mixture

Models (GMMs) adapted from a Universal Background Model (UBM) [59]–

[61]. That approach produces a big set of parameters, which requires a large

dataset to be trained. To solve this problem, the authors in [62] proposed a

low-dimensional vector representation called identity vector (i-vector). The

low-dimensional space is defined by a matrix called the total variability ma-

trix T , which models both speaker and channel variability. The new model

is represented as follows:

M = m+ Tw (4.3)

where M is the GMM super-vector of a speaker, m is the speaker- and

channel-independent super-vector (taken from an UBM super-vector), T is

a rectangular matrix of low rank (the total variability matrix) and w is

the i-vector, which is a random vector with a standard normal distribution

N (0, I). The concept behind this is that a low-dimensional latent vector (w)

exists and represents the characteristics of the speaker. Equation 4.3 can be

resolved through joint factor analysis, where w represents the factor of the

total variability matrix (T ).

This master’s thesis considers a total of 1000 recordings with an average

duration of 22 seconds per recording to train the UBM and the T matrix.

These recording were provided by Konecta Group S.A.S.®. The recordings

were randomly selected and do not come from the same speakers of the

Konecta voicemails. The implementation of this approach was performed

with the Kaldi toolkit [58].

x-vectors

These are Deep Neural Network (DNN) embedding features, which were

trained for speaker recognition and verification [63]. Table 4.1 shows details

of the architecture of the DNN to extract the x-vectors.

The input features are MFCCs extracted from 24-dimensional filter banks

with a frame-length of 25ms and a step-size of 10ms. The spectrogram is
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Table 4.1. Embedding DNN architecture [63]. x-vectors are extracted in

segment6. N : Number of training speakers.

Layer Layer Context Total Context Input x output

Frame1 [t− 2, t+ 2] 5 120x512

Frame2 {t− 2, t, t+ 2} 9 1536x512

Frame3 {t− 3, t, t+ 3} 15 1536x512

Frame4 {t} 15 512x512

Frame5 {t} 15 512x1500

Stats pooling [0, T ) T 1500Tx3000

Segment6 {0} T 3000x512

Segment7 {0} T 512x512

Softmax {0} T 512xN

mean-normalized over a sliding window of up to 3 seconds. The first five lay-

ers operate at a frame level and build their context according to the previous

layer. The stats pooling computes the mean and standard deviation from the

output of the Frame5 layer using all T frames of the signal. The mean and

standard deviation are concatenated and propagated through the segment-

level layers. Finally, the softmax layer predicts the speaker. The output of

the segment6 layer is extracted to create the x-vector. The implementation

of this approach was also performed with the Kaldi toolkit [58].

The openSMILE feature set

The openSMILE feature set is extracted by following three steps: (1) The

38 low-level descriptors shown in Table 4.2 are computed with a step-size

of 10ms and a Hanning window with 25ms of length (except pitch related

features, which are extracted from Gaussian windows of 60ms); all instances

are smoothed using a moving average filter of 3 frames. (2) Besides the

low-level descriptors, 38 first-order regression coefficients are included. (3) A

total of 21 statistical functionals shown in Table 4.2 are computed per feature
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vector. More information and details about how to extract these features can

be found in [27].

Table 4.2. The low-level descriptors and the functionals.

Descriptors Functionals

PCM loudness Position max./min.

MFCC [0-14] arith. mean, std. deviation

log Mel Freq. Band [0-7] skewness, kurtosis

LSP Frequency [0-7] lin. regression coeff. 1/2

F0 lin. regression error Q/A

F0 Envelope quartile 1/2/3

Voicing Prob. quartile range 2-1/3-2/3-1

Jitter local percentile 1/99

Jitter consec. frame pairs percentile range 99-1

Shimmer local up-level time 75/90

Phonation, articulation and prosody features

These features are extracted with the DisVoice framework [35], which was

originally developed to model neurological disorders and now this study eval-

uates its suitability to model emotional speech signals and CS. The source

code to extract the features presented in this subsection can be found in [35].

Phonation: The phonatory characteristics of a speaker have been typ-

ically analyzed in terms of features related to perturbation measures such

as jitter (temporal changes in the fundamental frequency), shimmer (ampli-

tude changes in the signal), amplitude perturbation quotient (APQ), and

pitch perturbation quotient (PPQ). APQ and PPQ are long-term perturba-

tion measures of the amplitude and the fundamental frequency of the signal,

respectively. Fuller et al. found that perturbation measures like jitter are a

reliable indicator of stressor-provoked anxiety [64]. Additionally, the results
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reported in [65] show that jitter and shimmer are useful to model emotion

and stress patterns in speech. The phonation features considered in this work

include the first and second derivative of the fundamental frequency, jitter,

shimmer, APQ, PPQ, and logarithmic energy. These measures are computed

upon voiced segments. The global representation per speaker consists of the

mean, standard deviation, skewness, and kurtosis of the resulting feature

vector.

Articulation: This feature set is inspired in the fact that the transition

between voiced and unvoiced segments encodes relevant information about

the capability of the speaker to produce well-articulated utterances. Previ-

ous studies have shown that this approach is valid for neurological disorders

where speech production is affected [35], [66]. Now this study evaluates its

suitability to model emotional speech and CS. The main hypothesis is that

people under stress due to a bad quality of service are prone to produce more

hesitations while speaking. This phenomenon could be associated to abnor-

mal energy patterns in the vicinity of the border between voiced and unvoiced

sounds, i.e., around the time when vocal fold vibration starts and/or finishes.

Besides the aforementioned hypothesis, the use of the Teager Energy Op-

erator is introduced. The authors in [67] show that the source of speech

production is not actually a laminar airflow. Instead, it consists of vortex-

flow interactions with the vocal tract boundaries. There is evidence that

shows these air vortices to be generated during the early opening phase and

the latter closing phase of the vocal fold, as occurred during the transitions

between voiced and unvoiced segments [68]. In addition, it is believed that

changes in vocal system physiology induced by stressful and/or fearful con-

ditions such as muscle tension affect the vortex-flow interaction patterns in

the vocal tract [69]. These changes directly affect the spectrum of the speech

signal. Thus, features sensitive to the presence of these additional vortices be-

tween the transitions could help to detect the emotional state of the speaker.

In this case the main assumption is that if the speaker’s speech is altered due

to changes in the emotional state, then such changes will produce abnormal

articulation patterns during speech production.

The complete articulation feature set includes the first two formants with

their first and second derivatives extracted from the voiced segments. The

energy in the transitions between voiced and unvoiced segments which is

computed and distributed according to the Bark bands, and MFCCs with

their first and second derivatives are also measured in the aforementioned
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transitions.

Prosody: Two types of prosodic features can be found in the literature:

basic and compound. Basic prosody attributes include loudness, pitch, voice

quality, duration, speaking rate, and pauses. Variations of these measures

over time constitute the compound prosodic attributes, which are intonation,

accentuation, prosodic phrases, rhythm, and hesitation [70]. Human beings

typically use prosody features to identify emotions present in daily conversa-

tions [71]. For instance, in active emotions like anger, pitch and energy are

high while they are relatively low in passive emotions like sadness. This paper

considers prosodic features based on duration, fundamental frequency, and

energy to model emotional patterns in speech. Several statistical functionals

are computed per feature vector including mean value, standard deviation,

skewness, kurtosis, maximum, and minimum. Details of the methods and

algorithms to extract these features can be found in [35].

Although openSMILE and the introduced features with DisVoice share

several similarities, there are relevant differences that deserve to be men-

tioned:

1. Unlike openSMILE, the articulation features are only extracted at the

onset/offset transitions, which makes it potentially more generalizable

to different languages.

2. The articulation does not include log Mel Frequency Band and LSP

Frequency.

3. openSMILE does not include Bark band energy.

4. The prosody features based on duration and energy are not included

in openSMILE.

5. Phonation features like APQ, PPQ and the pitch dynamic are not

included in openSMILE.

6. Some descriptors of our proposed feature set are related to information

about dynamics (first and second derivatives) which are not included

in openSMILE.

7. The DisVoice framework has no restrictions for its commercial use while

the openSMILE framework does.
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In summary, on the one hand, our feature set considers a larger number

of descriptors (i.e., 154 features) vs. 38 included in openSMILE. On the

other hand, openSMILE considers 21 functionals while our feature set only

includes six.

4.2.3 Classification and Evaluation

The classification process is performed with a soft-margin SVM with a Gaus-

sian kernel [72], [73]. This classifier has two parameters, complexity C and

the kernel bandwidth γ. These two parameters are optimized in a grid-

search up to powers of ten where C ∈ [10−3, . . . , 104] and γ ∈ [10−6, . . . , 103].

To avoid biased or optimistic results, a nested cross-validation strategy is

followed [74]. Five folds for outer and also for inner cross-validation are con-

sidered. Both scenarios, SI and SD, are considered in the experiments about

emotion classification. The performance of the two-dimensional classifier is

measured in terms of recall on the positive class also known as Sensitivity

(SEN), recall on the negative class also known as Specificity (SPE), Weighted

Average Recall (ACC), Unweighted Average Recall (UAR), and the Receiver

Operating Characteristic (ROC) curve. SEN is the ratio of the correctly pre-

dicted positive samples to the total number of positive samples. SPE is the

ratio of the correctly predicted negative samples to the total number of neg-

ative samples. ACC is the weighted arithmetic mean of the recalls. UAR

is the arithmetic mean of the recalls. And ROC is a graph that illustrates

trade-offs between true positive rate (SEN) and false positive rate when the

decision threshold of the classifier changes its position [75].

4.3 Multimodal analysis of customer satisfaction

Figure 4.4 illustrates the overall methodology followed for multimodal ana-

lysis of CS, which includes feature extraction, multimodal fusion, and classi-

fication.

4.3.1 Feature extraction

Acoustic and text modalities are used. The acoustic modality considers

three different feature sets: x-vector, openSMILE, and articulation. The

text modality considers the word2vec representation of the text transcrip-

tions generated by an ASR system. Given that the acoustic representations
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Figure 4.4. General methodology for multimodal analysis of customer

satisfaction.

are explained in detail in Section 4.3.1, only text representation is described

in this section.

Word2vec

This model takes a large text corpus as input and produces a vector space,

typically of several hundred dimensions. Word vectors are positioned in the

vector space such that words sharing common context in the corpus are

geometrically close to each other [76]. There is a unique vector to represent

each word in the corpus. For this reason it is known as a context-independent

embedding because the word representation is the same regardless of its

context.

This algorithm is based on deep learning to model word relations. The

one-hot representations of the words are used as inputs. The word em-

beddings based on Word2Vec can be calculated by means of two strategies:

Continuous Bag Of Words (CBOW) or Skip-Gram. However, this study only

considers Skip-Gram. This strategy takes a word as input and the model pre-

dicts the context corresponding to such a word. Figure 4.5 shows the neural

network structure for the Skip-gram strategy. The input layer consists of the

V -dimensional one-hot encoded word vectors. The hidden layer contains N

neurons and the output is a V -dimensional vector that corresponds to the

target context of the word.
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Figure 4.5. Skip-gram model. Figure adapted from [77].

These type of representations have gained popularity not only because

each word-embedding keeps the semantic properties of the word, but also

because it is a model trained in an unsupervised manner, i.e., the texts that

are analyzed do not require prior labeling. This makes it possible to train

models with a large amount of data from freely accessible text resources

without spending money on expensive hand-labeled databases.

This work uses a pre-trained Word2Vec with 300 dimensions. The

model was trained with the Spanish WikiCorpus, which contains 120 mil-

lion words [78]. The embedding representation is performed with Skip-Gram

strategy and 8 context words.

4.3.2 Multimodal fusion

Two types of fusion schemes are evaluated: EF and GMU. All possible com-

binations of the feature sets described in Section 4.3.1 are performed.

Early Fusion: In this scheme, features are extracted from each informa-

tion source yielding an unimodal representation. The extracted features are

then combined into a single representation. After combination of unimodal

representation, the fused features are fed into a classifier that learns concepts.

As depicted in Figure 4.6a, EF integrates the features from the beginning.

Gated Multimodal Unit: This model is intended to be used as an

internal unit in a neural network architecture whose purpose is to find an
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intermediate representations based on the combination of information from

different modalities [46]. This model learns how each modality contributes

to a particular sample. GMU is based on multiplicative gates and is inspired

by the flow control in recurrent neural networks. Figure 4.6b illustrates the

structure of a GMU cell for multiple modalities. Each input xi is a feature

vector associated with a modality i. Each vector feeds a hidden layer with

a tanh activation, which models an internal pattern based on the particular

modality. For each input modality, xi, there is a gate layer with σ activation,

which controls the contribution of each modality to the activation of the

GMU, h.

The specific mathematical form of the GMU is thus expressed as followed:

hi = tanh (Whi · xi) (4.4)

zi = σ(Wzi · [x1, x2, ..., xk]) (4.5)

h = z1 ∗ h1 + z2 ∗ h2 + ...+ zk ∗ hk (4.6)

where xi is the feature vector, Whi is the internal encoding matrix, and Wzi

is the gate matrix for modality i. Additionally, [·, ·] represents the concate-

nation operator.

4.3.3 Classification and Evaluation

This work considers two classifiers, namely an SVM and a fully-connected

DNN. The EF approach is evaluated using both classifiers while the GMU

approach only considers the DNN. Given that this experiment requires

more computation resources due to the feature combination, nested cross-

validation is not considered. To reduce the expensiveness of training stage,

the data is divided into train (75%), validation (10%), and test (15%) sets.

This process is repeated 10 times.

SVM: the same hyperparameters of the SVM, explained in Section 4.2.3,

are used. Instead of using nested cross-validation, the data are split in train-

ing (75%), validation (10%) and test (15%).

DNN classifier: In general, the architecture of the DNN classifier con-

sists of a fusion (input) layer, a hidden layer (256 units), and an output layer

with a softmax activation function for classification. In the case of gated
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Figure 4.6. Illustration of multimodal fusion approaches. a) Early Fusion

approach using three modalities. b) Gated Multimodal Unit [46] approach

using k modalities. [·, ·] represents the concatenation operator

units, the fusion layer is the output of the GMU model. A ReLU activation

function is used in both the fusion layer (for the EF approach) and hidden

layer. A batch normalization and dropout are applied after the fusion layer.

The DNN is trained using PyTorch [54] with 10 epochs, an initial learning

rate of 0.0001, and a batch size of 64. For optimization, Adam optimizer

without weight decay is used. As a loss function, a binary cross-entropy with

logits is applied for numerical stability. This model is evaluated using the

same data split of the SVM. The process is also repeated 10 times.



Chapter 5

Experiments and Results

This chapter presents the results obtained for the three steps: results of ASR,

results of speech emotion classification and & CS estimation, and results of

multimodal analysis of CS.

5.1 Results of ASR systems

With the aim to develop a robust ASR system, four different acoustic model

architectures are trained and evaluated in non-controlled acoustic scena-rios.

The following are the models: (1) GMM-based model, (2) TDNN-based

model, (3) LSTM-based model, and (4) GRU-based model. Finally, a DL-

based denoiser is implemented to improve the recognition performance.

5.1.1 Results of acoustic model

The call center database described in Section 3.1.1 is used to train each ASR

system. The speed-perturbed training sets (LN, MN, and HM) described in

Section 3.1.4 are mixed during the training. The models are evaluated in each

real acoustic scenario. Table 5.1 shows the performance of the different ASR

systems for each scenario. Note that all DL-based models outperform the

baseline (based on GMMs). The LSTM model yields the best performance in

non-controlled acoustic conditions with WER values of 22, 55% and 27, 99%

for MN and HN scenarios, respectively. Note that all models except the

GMM-based one, obtain similar WER values in the LN condition, that is:

21, 73% for TDNN, 21, 31% for LSTM, and 21, 30 for GRU.

59
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Table 5.1. Performance of the ASR systems in terms of the WER in each

real acoustic conditions. LN: Low level of noise. MN: Medium level of

noise. HN: High level of noise.

Architecture
Acoustic scenario

LN MN HN

GMM 32,10 35,54 52,47

TDNN 21,73 23,48 30,94

LSTM 21,31 22,55 27,99

GRU 21,30 22,67 28,77

5.1.2 Results of denoising process

The denoiser described in Section 4.1.1 is trained to enhance noisy speech

signals. The training set augmented with additive noise is used to train the

model. Two test sets are considered to evaluate the capability of the filter to

suppress/remove the noise: (1) The artificially created noisy recordings (the

scenario described in Section 3.1.3), and (2) The noisy recordings of the HN

test set (real scenario). WER values of the ASR systems are computed for the

noisy and enhanced speech signals for comparison purposes. Table 5.2 shows

the performance obtained for the DL-based ASR systems in the simulated

and real scenarios. The TDNN model shows improvements in both scenarios

when the denoiser is applied. In the simulated conditions, the WER goes

down from 40,41% to 35,70%, and in the real noisy conditions it changes

from 30,94% to 26,83% which is actually the best performance obtained for

noisy conditions. For the case of the LSTM-based model in the simulated

scenario, without denoising it yields the worst WER for noisy conditions

(44,39%), but it improves to 38,88% after applying the denoiser. Although

the improvement is relatively high (5,51 absolute percentage points), the

result is still the worst among the rest obtained in that scenario. Regarding

its results in the real conditions, without any denoising procedure, the LSTM

yields the best WER (27,99%), however, when the denoiser is applied the

WER value increases to 29,63%. A similar behavior can be observed for

the GRU model, where the WER value obtained in the simulated conditions
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prior to the denoiser is 40,41% and it gets better to 37,27% when the denoiser

is applied; however, in the real noisy conditions, its WER value gets worst in

1 absolute percentage when the denoiser is applied (from 28,77% to 29,77%).

Table 5.2. Performance of the ASR systems in terms of the WER before

and after applying the denoiser. Simulated: The augmented test set.

Real: The HN test set of Konecta calls. Values in %.

Model
Simulated conditions Real conditions

Noisy Enhanced Noisy Enhanced

TDNN 40,41 35,70 30,94 26,83

LSTM 44,39 38,88 27,99 29,63

GRU 40,41 37,27 28,77 29,77

5.1.3 Discussion

Regarding the results obtained by the LSTM in the acoustic models’ evalua-

tion, this architecture seem to be the best in different acoustic environments.

However, once the denosier is implemented and the noisy recordings pass

through it, the LSTM performance decreases. Additionally, this model is the

most affected after the recordings are contaminated with out-of-domain addi-

tive noise. Its WER is 44.49%, being 4% above the TDNN. GRU has similar

behavior but to a lesser degree. The case is different for TDNN, having a

significant improvement after applying the denoising process. This leads us

to conclude that the initial results of the recurrence-based models respond to

a bias towards the acoustic training conditions, which explains why they are

slightly better than the TDNN in the high noise scenario. Since TDNN is the

least affected by the out-of-domain additive noise and it achieves significant

improvement with the denoiser, it is possible to say that this model is more

robust under different acoustic environments than the other architectures.

For this reason, this model is chosen to generate the text transcriptions for

the text modality in the multimodal CS analysis experiment.
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5.2 Results of speech emotion classification and cus-

tomer satisfaction estimation

Different experiments are performed with the different datasets considered

in this study. Experiments with IEMOCAP, EMODB, and RAVDESS are

all multi-class, i.e., all emotions included in these corpora are considered.

The experiments with the Konecta voicemails corpus are bi-class, where the

aim is to discriminate between satisfied vs. dissatisfied customers. The

results are reported in terms of UAR and ACC. Optimal hyper-parameters

found for each classification experiment are also reported to allow direct

comparisons in future studies. Experiments using individual features and also

their combinations are included. The symbol + in the feature representation

means fusion with other feature sets, while art, pro, and pho are articulation,

prosody, and phonation, respectively. Due to the fair performance of the i-

vectors, they are not included in the fusion experiments. Besides, a reduced

version of the openSMILE is considered by applying Principal Component

Analysis (PCA) over the original feature set. This experiment is denoted as

openSMILEPCA.

5.2.1 Experiments with IEMOCAP

Table 5.3 shows the performance of the classifier on the IEMOCAP database.

The best results considering individual sets of features are obtained with

openSMILE and openSMILEPCA (see Table 5.3). The second best approach

is based on x-vectors, with UARs of 57.6% and 65.4%, for SI and SD, respec-

tively. The third best model is the articulation which achieved 54.0% and

59.5% of UAR in the SI and SD scenarios, respectively.

On the other hand, when openSMILE and x-vector are combined, the

performance improves 1.0% absolute UAR w.r.t the result obtained with

openSMILEPCA for SI. Nevertheless, the number of features increases from

297 to 2094.

5.2.2 Experiments with EMODB

The results obtained with the EMODB corpus are shown in Table 5.4.

Among the individual feature sets, openSMILE yields the best result in

the SI scenario, while x-vectors are the best for SD experiments, which is

expected considering the well-known capability of them to model specific
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Table 5.3. Results of multi-class classification of emotions of the

IEMOCAP database. ACC: Accuracy. UAR: Unweighted Average Recall.

The performance metrics are given in [%]

Feature set # Features
Speaker independent Speaker dependent

C γ UAR ACC C γ UAR ACC

openSMILE 1582 10 0.001 58.9 57.4 1 0.001 68.1 67.2

openSMILEPCA 297 1 0.001 59.8 57.4 1 0.001 68.6 67.0

i-vector 128 1 0.01 53.5 51.1 1 0.01 60.2 57.5

x-vector 512 1 0.001 57.6 55.9 1 0.001 65.4 63.9

articulation 488 1 0.001 54.0 51.9 1 0.001 59.5 57.2

prosody 103 1 0.0001 44.5 41.2 100 0.0001 48.1 45.2

phonation 28 1 0.001 46.0 43.0 100 0.001 48.5 45.4

art+pro 591 1 0.001 56.1 54.2 1 0.001 60.7 58.5

art+pho 516 1 0.001 56.0 53.6 1 0.001 59.9 57.6

pro+pho 131 1 1e-5 47.5 44.9 10 0.0001 50.4 47.6

art+pro-pho 619 1 0.001 57.0 54.7 1 0.001 61.3 59.3

x-vector+art+pro+pho 1131 1 0.001 59.9 58.4 1 0.001 66.6 65.5

openSMILE+art+pro+pho 2201 10 0.001 58.4 57.7 10 0.001 66.5 66.0

openSMILE+x-vector 2094 10 0.0001 60.8 58.9 1 0.001 68.5 67.5

openSMILE+x-vector+art+pro-pho 2713 1 0.0001 60.6 58.3 10 0.0001 68.0 67.1

Note that since there are four classes, the chance level is 25%

characteristics of a given speaker [79]. When features are combined, the best

models are those that include openSMILE. The UAR values obtained with

openSMILE+x-vector+art+pro+pho are about 5.3% above those obtained

with openSMILE individually, in both SI and SD scenarios. It can also be

observed that combining either x-vector or art+pro+pho with openSMILE,

it helps in improving the classification performance.

Some studies reviewed in Section 1.2.2 reported results on EMODB, but

such results were optimistic because they considered the same set to train

and test the classifier. For example, the authors in [21], [23] used an SVM to

do the classification and reported accuracies above 79% on the SI scenario

(similar to our 79.9% ACC). However, these results were achieved on the same

set that was used to optimize the classifier. Instead, this study followed a
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nested cross-validation strategy, where the test set is unseen by the optimal

parameters, leading to more realistic and unbiased results.

Table 5.4. Results of multi-class classification of emotions of the EMODB

database. ACC: Accuracy. UAR: Unweighted Average Recall. The

performance metrics are given in [%]

Feature set # Features
Speaker independent Speaker dependent

C γ UAR ACC C γ UAR ACC

openSMILE 1582 10 0.0001 74.0 73.3 10 0.001 84.6 85.6

openSMILEPCA 157 1 1e-5 57.2 56.0 10 0.0001 82.7 83.1

i-vector 128 10 0.01 59.6 60.7 10 0.01 73.6 74.2

x-vector 512 10 0.0001 60.9 61.4 10 0.0001 86.0 86.0

articulation 488 1 0.001 58.9 62.7 10 0.001 69.3 71.2

prosody 103 10 0.01 56.4 58.8 10 0.01 54.7 56.9

phonation 28 1000 0.001 50.3 52.2 10 0.01 52.5 53.9

art+pro 591 10 0.001 64.0 67.6 1 0.001 59.3 61.2

art+pho 516 10 0.0001 61.5 65.0 1 0.001 60.7 63.5

pro+pho 131 1 0.001 53.9 55.1 1 0.01 58.9 62.7

art+pro+pho 619 10 0.0001 55.1 57.7 1 0.001 50.5 50.7

x-vector+art+pro+pho 1131 10 1e-4 70.5 73.0 10 1e-4 84.2 84.5

openSMILE+art+pro+pho 2201 10 1e-4 73.3 75.1 10 1e.4 87.2 88.4

openSMILE+x-vector 2094 10 1e-4 78.2 78.8 10 1e-5 87.0 87.5

openSMILE+x-vector+art+pro+pho 2713 10 1e-4 79.9 80.7 10 1e-4 90.7 91.4

Note that since there are seven classes, the chance level is 14.3%

5.2.3 Experiments with RAVDESS

Table 5.5 shows the results obtained with the RAVDESS database. The

best models of individual features in the SI scenario are obtained with

openSMILE, x-vectors, and openSMILEPCA, with UARs of 58.7%, 58.6%,

and 57.8%, respectively. In the SD scenario the best model is the one

with on x-vectors with an UAR of 83.4%. Regarding the experiments

with combined features, the highest UAR is achieved with openSMILE+x-

vector+art+pro+pho, which improved from 58.7% (openSMILE) to 63.7% in

the SI scenario. In the SD scenario this combination also yields the highest
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UAR.

There are several works, most of them based on deep learning, that

achieve accuracies of up to 70.0% in the SI scenario using the RAVDESS

database [30], [31], [80]. However, it is not possible to know whether those

results are based on unseen data. In the SD scenario, x-vector achieved bet-

ter performance (83.4% ACC) than those obtained by the authors in [31]

(82.41% ACC), where a more complex model was proposed.

Table 5.5. Results of multi-class classification of emotions of the

RAVDESS database. ACC: Accuracy. UAR: Unweighted Average Recall.

The performance metrics are given in [%]

Feature set # Features
Speaker independent Speaker dependent

C γ UAR ACC C γ UAR ACC

openSMILE 1582 10 1e-5 58.7 57.6 10 1e-4 70.9 70.5

openSMILEPCA 240 10 1e-5 57.8 57.2 10 1e-4 77.7 77.6

i-vector 128 1 0.01 44.7 45.3 10 0.01 64.6 64.1

x-vector 512 10 0.001 58.6 58.7 10 0.001 83.4 83.5

articulation 488 10 0.001 43.6 44.4 1 0.001 46.4 46.6

prosody 103 1 0.01 37.0 36.5 10 0.01 39.1 38.8

phonation 28 1e5 1e-4 34.1 33.5 100 0.001 37.8 36.8

art+pro 591 10 0.001 46.9 48.1 10 0.001 53.8 54.5

art+pho 516 1 0.001 46.9 47.2 10 0.001 46.9 47.4

pro+pho 131 10 0.01 39.0 39.0 10 0.001 40.0 39.9

art+pro+pho 619 10 0.001 47.1 47.8 10 0.001 53.9 54.4

x-vector+art+pro+pho 1131 10 0.001 54.9 55.6 10 0.0001 73.1 73.9

openSMILE+art+pro+pho 2201 10 1e-4 60.7 61.2 10 1e-4 76.2 76.2

openSMILE+x-vector 2094 10 1e-4 61.9 62.7 10 1e-4 82.6 83.1

openSMILE+x-vector+art+pro+pho 2713 10 1e-4 63.7 63.8 10 1e-4 82.9 82.8

Note that since there are eight classes, the chance level is 12.5%

5.2.4 Experiments with Konecta voicemails

All recordings in the Konecta voicemails corpus were collected from different

customers and only the SI scenario is addressed. Table 5.6 shows the results

obtained when classifying between satisfied and dissatisfied customers.
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The experiments with individual feature sets show that articulation

achieves the best performance, with 74.2% UAR, and the second best UAR is

obtained with the openSMILEPCA model. Note that the articulation feature

set has the additional advantage of providing balanced results in terms of

SPE and SEN. For the openSMILE model, the difference between SEN and

SPE is 20.1%, while for articulation the difference is only 3.6%. This likely

indicates that there is a bias in the openSMILE model towards the detection

of dissatisfied customers.

When considering the fusion of features, openSMILE+x-vector yields the

best result with an UAR of 75.3%. This is because in the new representation

space both feature sets complement the CS analysis. Note that this per-

formance is similar to the one obtained with only the articulation features.

Similarly to what is observed in the experiments with individual features,

the difference between SEN and SPE is higher with openSMILE than with

articulation.

Besides numerical results, ROC curves are included in Figure 5.1 with

the aim to show the results more compactly. Only the best two models are

considered for comparison purposes. Note that the overall performance is

similar in both cases.

Discussion

According to the results obtained in the standard databases, it can be noted

that the introduced feature sets do not yield satisfactory results when more

than four categories are considered. Although the articulation features per-

form similarly to openSMILE in IEMOCAP, they are up to 10% of accu-

racy below in RAVDESS and EMODB. Regarding the description of the

databases, both RAVDESS and EMODB contain more speakers and emo-

tional categories than IEMOCAP. It is well known that emotions share acous-

tic patterns that make their differentiation difficult. We believe that our

feature set performs poorly considering these two databases due to the vari-

ability of speakers and emotions. That is, it is not discriminative enough

to deal with such variabilities. In addition, by combining our feature set

with other representations, improvements in classification performance are

achieved. Although our feature set perform poorly when used independently,

its combination with other features complements emotion modeling by gen-

erating a new representation space.
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5.2. Results of speech emotion classification and customer satisfaction

estimation

Table 5.6. Results of the CS classification (satisfied vs. dissatisfied) in

the Konecta voicemails database. ACC: Accuracy. UAR: Unweighted

Average Recall. SEN: Sensitivity. SPE: specificity. The performance

metrics are given in [%]

Feature set # Features C γ UAR ACC SEN SPE

openSMILE 1582 10 1e-4 72.8 73.6 82.9 62.8

openSMILEPCA 218 1 1e-4 73.1 73.8 81.9 66.4

i-vector 128 100 0.001 59.6 61.2 62.8 60.8

x-vector 512 10 1e-4 67.3 67.6 72.5 62.0

prosody 488 1 1e-4 66.0 66.4 71.2 60.7

articulation 103 0.1 0.001 74.2 74.3 76.0 72.4

phonation 28 100 0.001 67.0 67.4 73.4 60.6

art+pro 591 0.1 0.001 68.9 69.7 80.1 57.7

art+pho 516 0.1 0.001 68.8 69.0 71.4 66.2

pro+pho 131 2000 1e-5 64.1 63.2 51.3 77.0

art+pro+pho 619 1 0.01 73.6 73.8 77.3 69.9

x-vector+art+pro+pho 1131 1 1e-6 69.3 68.8 61.9 76.7

openSMILE+art+pro+pho 2201 10 1e-4 74.6 74.8 77.4 71.7

openSMILE+x-vector 2094 10 1e-6 75.3 75.7 80.8 69.9

openSMILE+x-vector+art+pro+pho 2713 100 1e-5 74.6 74.9 78.7 70.6

The aforementioned results obtained with the Konecta voicemails sup-

ports the fact that articulation is the best alternative to evaluate CS in real-

world environments. This is because customers under stress are more prone

to produce hesitations and muscle tension within the vocal tract, which in

turn produces abnormal articulation patterns that are reflected in the spec-

trum of the speech signal. Furthermore, this method is the most appropriate

in industrial applications not only for its performance but also because it can

be used with any licensing for its commercial use.

The results indicate that the introduced approach is more robust against

non-controlled acoustic conditions, which are realistic and may include chan-

nel distortions, microphone imperfections, and highly variable acoustic con-

ditions.
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Figure 5.1. ROC curves obtained with articulation feature sets in the

classification of satisfied vs. dissatisfied customers.

5.3 Results of multimodal analysis of customer satis-

faction

The Konecta voicemails corpus is split in three subsets: train, validation,

and test. The splits are stratified so that train, validation and test subsets

contain 75%, 15%, and 10% samples of each class respectively. Based on the

feature sets described in Section 4.3.1, the multimodal analysis is performed
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by combining the features using two strategies: EF and GMU. Unimodal

analysis is also considered as the baseline. To rate CS, SVM and DNN

classifiers are used. Since gated units are based on neural networks, GMU

approach is only considered in the DNN classifier. The setup described in

Section 4.3.3 is performed to train both classifiers. In the training process, the

training subset is used to optimize the model parameters while the validation

subset is used to find hyper-parameters and select the best model in terms

of accuracy. The optimized model is then evaluated on the test subset.

Since each sample belongs to a different speaker, the experiments are speaker

independent. The text transcriptions are generated by the best ASR system

(i.e., HMM-LSTM). In this section, w2v means word2vec representation.

5.3.1 Results of Unimodal Analysis

Table 5.7 shows the performance of the SVM and DNN classifiers for each

unimodal representation. As shown, the best performance is 88.5% accu-

racy, which is obtained by using the DNN classifier with word2vec, followed

by SVM (87.9%) using the same feature set. When considering acoustic

features (articulation and openSMILE), the performance is comparable for

both classifiers. Similar to the results obtained previously, using articulation

features as input resulted in more balanced detections in terms of SEN and

SPE. The x-vector feature set reflects the worst performance for both classi-

fiers. In general terms, the DNN-based classifier is slightly better than SVM

and requires less computational cost for training due to its simplicity.

5.3.2 Results of Multimodal Analysis

For this case, the EF strategy is applied along with the SVM and DNN, while

the GMU technique is only considered in the DNN. The results obtained with

the multimodal analysis are shown in Table 5.8. According to the results, all

possible combinations of acoustic features (articulation, openSMILE, and x-

vectors) improve classification performance over unimodal classification. For

example, open+x-vector yields a performance of 76.2%, 75.5%, and 75.9%

for EF-SVM, EF-DNN, and GMU, respectively; while openSMILE achieves

74.1% with DNN. As expected, the best results are achieved considering

combinations with word2vec as it is the most representative feature according

to the unimodal results. The best performance is achieved by w2v+x-vector

in both EF-DNN and GMU (88.2% and 88.0%, respectively). However, the
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Table 5.7. Results of the CS classification (satisfied vs. dissatisfied) in

the Konecta voicemails database for unimodal analysis. ACC: Accuracy.

SEN: Sensitivity. SPE: specificity. The results are given in [%]

Feature set
SVM DNN

ACC SEN SPE ACC SEN SPE

articulation 73.5 75.9 70.8 74.0 75.4 72.5

x-vector 66.3 70.6 61.3 67.0 73.7 59.3

openSMILE 74.2 79.5 68.1 74.1 77.3 70.5

word2vec 87.9 88.9 86.8 88.5 89.8 87.0

multimodal results do not yield an improvement over the unimodal case.

(88.5% for w2v).

What makes it the multimodal analysis powerful is that the modes con-

tain complementary information, so that if one of the modes fails or does

not contain pattern information, it is possible to perform the classification

with the other remaining modes. Conversely, if the only representation in

unimodal analysis is absent, the only possible alternative is the classification

by chance. These absences of modalities may occur in real-world applica-

tions. For example, if CS is analyzed in chat-based customer opinions, the

classification would only be subject to textual analysis (i.e., absence of the

acoustic modality). Or for example, if the organization, for some reason, has

trouble performing text transcription of the voicemails, the CS classification

would only be subject to acoustic analysis (i.e., absence of the textual moda-

lity). To demonstrate the multimodal analysis powerful, the absence of one

of the modes is simulated in the bimodal analysis. The experiment consists

of turning off one of the modalities (i.e, converting it to a vector of zeros) and

performing the classification with the remaining representation. In this way,

the aforementioned scenarios are being simulated. Only DL-based models

are considered since they obtained better results than SVM. It is impor-

tant to clarify that the models are not retrained, they are only reevaluated

with the absence of one of the modes using the test set. Since the models are

originally trained with both modalities, they require both modalities for clas-



71 5.3. Results of multimodal analysis of customer satisfaction

Table 5.8. Results of the CS classification (satisfied vs. dissatisfied) in

the Konecta voicemails database for multimodal analysis. ACC: Accuracy.

SEN: Sensitivity. SPE: specificity. The results are given in [%]

Feature set
EF-SVM EF-DNN GMU

ACC SEN SPE ACC SEN SPE ACC SEN SPE

art+open 75.0 79.4 69.9 75.6 79.5 71.0 74.9 78.6 70.6

art+x-vector 75.5 76.0 74.9 75.2 74.0 76.7 75.3 76.2 74.3

open+x-vector 76.2 80.2 71.6 75.5 78.6 71.9 75.9 77.9 73.6

w2v+art 87.8 88.9 86.6 87.5 89.5 85.1 87.5 89.5 85.1

w2v+x-vector 87.5 89.2 85.5 88.2 90.5 85.5 88.0 89.5 86.2

w2v+open 87.2 89.4 84.8 87.5 89.7 85.0 87.5 89.7 85.0

art+open+x-vector 76.4 79.5 72.8 76.5 78.3 74.5 76.8 78.6 74.7

art+open+w2v 86.6 89.4 83.3 85.7 87.9 83.1 86.4 86.7 86.1

open+x-vector+w2v 87.0 89.4 84.2 87.1 88.9 85.1 87.9 88.6 87.2

x-vector+open+art+w2v 86.9 89.4 84.0 86.9 88.9 84.6 86.5 87.5 85.3

sification. For this reason, to represent the absent modality, a vector having

the same dimensionality as the original vector is required. This study rep-

resents the absent modality with a vector of zeros, which is entered into the

model along with the other modality. Figure 5.2 shows the ROC curves for

open+w2v combination. Other bi-modal fusions were not included because

they did not yield satisfactory results in this experiment. off means that

the modality is absent (i.e, it is a vector of zeros). So, GMU(open off+w2v)

means that the classification is performed through the GMU-based model u-

sing the feature fusion between openSMILE and word2vec, with openSMILE

being absent. Note that when one of the modalities is absent, the model

can still classify better than the change level. For instance, the absence of

the w2v representation produced a 62.7% and 60.2% accuracy for GMU and

EF-DNN respectively. As expected, the performance of the model is good

even when openSMILE is absent, because the remaining features (w2v) is the

most representative according to previous experiments. These experiments

demonstrate that the modes complement each other in order to perform more

robust classification.
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Figure 5.2. ROC curves obtained with open+w2v combination by

turning off one of the modes. off means that the mode is absent.

Discussion

The good performance obtained in the unimodal analysis by the text repre-

sentation is due to the keywords found in each category. From experience,

we know that satisfied customers usually pronounce positive words such as

“thanks”, “nice” or “good”. In addition, their message tends to be short and

limited in vocabulary. On the contrary, a dissatisfied customer tends to give

details about how bad the service was. The vocabulary is broader and re-
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lated to service or business concepts. In addition, there are words that reflect

dissatisfaction such as “problem”, “inconvenient” or “bad”. These particular

characteristics of each class make classification by text more accurate than

by acoustic.

Regarding the multimodal analysis, all the combinations that consider

word2vec representation achieve the best performance as expected. No com-

bination generates better results than those obtain by unimodal analysis.

Although multimodal analysis is more complex, it is also more robust due to

the complementary information from each sources. If one of the modes fails,

the model can continue the analysis with the remaining modes. This capa-

bility can be seen in the ROC curve shown in Figure 5.2, where the feature

sets are turned off before entering the classifier. All experiments produce

better results than chance classification. This indicates that each mode is

contributing to representing the emotional pattern. In addition, it is impor-

tant to mention that GMU achieves better performance than EF-DNN in

this experiment, indicating that this architecture better prioritizes one mode

or the other to model the pattern properly.



Chapter 6

Conclusions and future work

This chapter contains the conclusions and future work potentially derived

from each experiment.

6.1 Conclusions about ASR system

This experiement presented a methodology to improve the recognition perfor-

mance of ASR systems. Four different acoustic models are trained and eval-

uated in non-controlled acoustic conditions: (1) GMM-based model (Base-

line), (2) TDNN-based model, (3) LSTM-based model, and (4) GRU-based

model. The models were trained with recordings of a call center database,

called Konecta calls. This database contains customer service telephone calls.

Each recording was captured in real acoustic conditions and it was labeled in

terms of its level of noise: low, medium and high. These acoustic conditions

allowed to evaluate the models in real noisy acoustic conditions. The hybrid-

LSTM model achieved the best performance for medium and high levels of

noise. However, this was true when acoustic evaluation conditions were the

same as the training ones.

With the aim to improve the recognition performance, a DL-based filter

was developed to clean the speech signals. The portion of Konecta calls with

low level of noise was artificially contaminated with noise signals taken from

Demand Noise Dataset. The denoiser was trained using the noisy recordings.

Once the denoiser was trained, the ASR models were again evaluated in two

scenarios: (1) Simulated (The artificially contaminated test set), and (2)

the real test set with the recordings originally labeled as high level of noise.

The WER was computed before and after passing the recordings through

74
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the denoiser. In real conditions, the LSTM and GRU did not improve their

performance after passing the noisy recordings through the denoiser. In the

simulated conditions, both models were the most affected when the clean

recordings were contaminated with out-of-domain additive noise. There-

fore, these recurrence-based models were over-fitted to the original channel

conditions since they obtained the worst performance after such conditions

changed. This is why they were better than TDNN in the first experiment.

On the other hand, the TDNN model achieved the best results when the

denoiser was applied in both simulated and real acoustic scenarios. There

was an absolute improvement of 4.11% in the real scenario. This result

indicated that the denoiser could enhance the speech signal even in noisy

conditions never seen during training. In addition, TDNN was more robust

to channel changes imposed by the out-of-domain additive noise or the nat-

ural denoiser perturbations, indicating that this model generalizes better to

different acoustic conditions. For future work, more complex architectures

will be explored in the denoising process to see whether the performance can

be further improved.

6.2 Conclusions about CS evaluation

This experiment evaluates different “standard” feature sets typically used to

classify emotions in speech, and also presents a novel approach based on mod-

eling phonation, articulation and prosody aspects that may vary when the

emotional state of the speaker is changed. The methods are also evaluated

in the problem of classifying customer satisfaction based on speech record-

ings where customers give their opinion about the received service. The

databases with emotional speech recordings are those typically used in the

literature, which consider acted emotions, limited number of speakers, and

relatively controlled acoustic conditions. Conversely, the database recorded

in the call-center was collected without any control over the communication

channel or microphone, and considers recordings of real opinions (i.e., non-

acted) of the customers about the received service. The results show that

openSMILE features achieved the best results when classifying emotional

speech. Regarding the speaker models, x-vectors outperformed the rest of

approaches in two of the three databases where the SD scenario was con-

sidered. This was expected since this method has shown excellent results in

modeling speaker-specific information.
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The features included in our proposed approach were in the top-three of

the best feature sets in IEMOCAP, but did not yield satisfactory results in the

EMODB and RAVDESS datasets in which openSMILE was 10.6% and 13.2%

accuracy higher, respectively. According to the description of the databases,

the latter two databases contain a higher variability of speakers and consider

more emotional classes than IEMOCAP, being more challenging scenarios to

classify emotions. In addition, emotions share acoustic characteristics that

make their discrimination more difficult. For these reasons, we believe that

our feature sets are not sufficiently discriminatory to deal with the speaker

and emotion variabilities contained in these databases.

For the case of CS evaluation, our approach based on articulation features

yielded the best results with a good balance between sensitivity (76.0%) and

specificity (72.4%). Although openSMILE was as accurate as articulation,

its imbalance between SEN (82.9%) and SPE (62.8%) indicated a bias to

recognize the dissatisfied class. The good performance of our feature set is

based on the fact that customers under stress are prone to produce more

hesitation and tense the muscles responsible for speech production. This, in

turn, produces abnormal articulation patterns while they speak. Moreover,

unlike the experiments with the emotional databases, the CS task was a

binary classification task.

It is believed that the proposed approach is highly competitive considering

for instance, the reduced number of features extracted with the articulation

approach (488) compared to the 1584-dimensional feature vector extracted

with the openSMILE toolkit. Additionally, the results when considering

non-controlled acoustic conditions and non-acted opinions about a received

service make us to think that the proposed approach is more convenient

for industrial applications. Further work will explore the usability of the

proposed method to estimate CS at call level.

6.3 Conclusion about multimodal analysis of customer

satisfaction

This experiment addresses the automatic analysis of customer satisfaction

using speech and text features extracted from the voicemails recordings of

Konecta voicemails. Speech features were modeled by considering speaker

embeddings, acoustic features, articulation features based on onset/offset

transitions. Text features was modeled by word2vec representation of the
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text transcriptions generated by the hybrid-TDNN recognizer. Two types of

fusion schemes were used: EF and GMU. The classification was performed

using a SVM and a simple fully-connected DNN.

Unimodal analysis was also considered to set the baseline. The best per-

formance was obtained by the word2vec representation with both classifiers.

This result was expected since, from experience, there are keywords that well-

represent each category. The satisfied customer frequently pronounced words

related to gratitude and its vocabulary is small. There are even recordings

where only “thanks” or “good service” are uttered. The unsatisfied customers

tend to talk in detail about service- or business-related problems. This cate-

gory commonly contains a vocabulary larger than the satisfied class. There

are also keywords that reflect dissatisfaction such as “inconvenient”, “bad”,

or “problem”.

The initial hypothesis in multimodal analysis was that the CS classifi-

cation could improve the performance when considering GMU to fuse the

feature sets, since GMU can control the importance of each feature to model

inner patterns (i.e, CS in this case). Overall, the EF-DNN and GMU ap-

proaches performed best when word2vec representation was presented. Al-

though SVM was as accurate as the deep learning approaches, its training

cost was higher due to its complex optimization process. When comparing

the results between the unimodal and multimodal analyses, no significant

differences were observed. However, it is believed that multimodal analysis

is more robust than unimodal analysis, as each modality provides comple-

mentary information to better represent the pattern. This capability could

be demonstrated after turning off one of the modalities. Since one of the

information sources was lost, the classifier had to decide only based on the

remaining mode. The experiment was performed using the open+w2v combi-

nation. The performance of the classifiers reached higher values in the ROC

curve than the chance level (i.e., 50.0%) even when the most representative

feature (w2v) was absent. This means that the classifier was able to model

the pattern based on each of the modalities, with the combination being the

best representation due to the complementary information from each source.

On contrary, if the only modality in a unimodal approach was absent, the

result is a decision by chance. This experiment also showed that GMU was

superior to EF-DNN, supporting the initial hypothesis that GMU can better

control the degree of importance of each model according to the operating

conditions. Further work will explore the usability of the proposed method
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to estimate CS at call level. Future work will explore more complex textual

representations such as BERT.
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