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Abstract
Gravity is fundamental to formulate the standard cosmological model and understand

smaller-scale astrophysical processes. This thesis studies different problems involving weak

and strong gravitational effects in astrophysics and cosmology.

In the strong gravity regime, we use a neural network to reconstruct the parameters of a

binary black hole merger from its gravitational wave signal. Effective one-body numerical

relativity simulations are used to generate a template bank of gravitational waves spectro-

grams. This dataset is then used to train a neural network to estimate the masses of the

black holes.

In the weak gravity regime, we study static spherically symmetric (SSS) metrics as gener-

alizations of the de Sitter metric and find their form as perturbations of the FRW Universe

using gauge-invariant variables. We then apply these results to compute the turnaround

radius (TAR) and the gravitational stability mass (GSM) to constrain scalar-tensor gravity

theories with observational data.

In the last part, we investigate the problem of reconstructing the density field from its weak

lensing effects on the luminosity distance. First, we simulate many random configurations of

cosmic structure, compute their effects on the luminosity distance using perturbation theory,

and finally develop a neural network to reconstruct the density and velocity fields from the

luminosity distance.

Keywords: Cosmological Perturbation Theory, Turn Around Radius, Gravitational

Waves, Luminosity Distance, Artificial Intelligence, Deep Learning.
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1 Introduction

1.1 Gravitational Waves

General relativity has been one of the most important discoveries in the last century. Unifying

gravity with special relativity was able to explain and predict many phenomena, for example,

Mercury’s perihelion precession [1], gravitational lenses or the recently detected gravitational

waves [2]. Signals from compact binary objects open a new window into multimessenger

astrophysics, thanks to different collaborations’ detection of gravitational waves and their

electromagnetic counterpart. Their high sensitivity allows measurements of far-away binary

systems thanks to the fact that the amplitude of gravitational waves scales linearly with the

inverse of the distance instead of its square [3].

According to general relativity, gravitational waves propagate at the speed of light and

in the linear perturbative regime are produced by the second-order time derivative of the

quadrupole moment. The primary sources of gravitational waves detected at the Laser

Interferometer Gravitational Wave Observatory (LIGO), and Virgo collaborations are the

mergers of compact binary systems composed of black holes or neutron stars.

Due to the no-hair theorem, the merger of two black holes has no electromagnetic coun-

terpart [4] but binary star mergers can have electromagnetic signals, opening a new window

into multimessenger astronomy. These systems are known as standard sirens because the

gravitational wave signal provides information of the distance to the objects independent

of the cosmic distance ladder, and their electromagnetic counterparts provide information

about their speed. Therefore, they can be used to measure the Hubble parameter [5, 4] or

to constrain alternative gravity theories with superluminal or subluminal GW speeds [6].

To achieve this goal, the detectors must have a strain sensitivity of the order of 10´21{
?
Hz

[7] and the standard data analysis approach consists of using matched filtering to compare

the detector signal to a bank of gravitational wave templates to determine the merger pa-

rameters. This data-driven approach has several drawbacks compared to kernel models,

such as computational complexity and lack of interpolation. Neural networks can be used

to denoise the raw signal [8, 9] as a preprocessing step before matched filtering. This data

analysis process must be repeated for every signal, which can be very time-consuming and

computationally expensive depending on the size of the template bank.

Another approach has been developed [10, 11, 12, 13, 14, 15, 16, 17, 18] in which the

time domain detector data is processed by a convolutional neural network to predict the

merger masses. Convolutional neural networks were used to capture the temporal and spatial
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dependence of the data. These deep neural networks methods capture the local structure

by using multiple matrix convolutions with kernels that specialize in identifying complex

features in the data.

Even though deep learning methods also require a template bank for training, the resulting

model can perform inference much faster and even work on data that it was not trained on.

To achieve this, we follow a procedure similar to the one in [10], predicting the mass of

the original black holes based on the spectrogram of the gravitational wave signals. We

achieve state-of-the-art results on a separate held-out dataset even for signals with a low

signal-to-noise ratio [19].

1.2 Turn around radius

The only evidence of dark matter has been provided by gravitational observations such as

flat rotational curves and the matter density from the current cosmological model. However,

there has been no conclusive evidence of direct dark matter particle detection (considering

that [20] has ruled out DAMA/LIBRA). Even if general relativity is consistent with the

observations, there is a discrepancy between the total matter content in the universe and

visible matter. Instead of adding additional particles, an alternative approach to account for

this discrepancy is to modify general relativity or even to consider it an effective theory of

another higher energy scale or unified theory [21, 22, 23]. If this is the case, this modified

gravity theory must comply with the tests that general relativity has passed in both the

weak and strong gravity regimes.

On a cosmological scale, the Turn Around Radius (TAR), or equivalent Gravitational

Stability Mass (GSM), establishes a limit of the maximum size or mass for gravitationally

bound structures. This limit occurs because there are two opposing effects in an expanding

universe: on the one hand, there is an attractive force due to gravitational collapse, and

on the other, there is a repulsive force due to dark energy. This limit depends on the

cosmological constant and can be used to determine its value [24].

The Turn Around Radius was computed for different modifications of general relativity

such as Brans-Dicke theory [25] and a perturbed FLRW universe [26]. This thesis aims to

study static spherically symmetric (SSS) metrics as perturbations of the de Sitter Universe.

This perturbative form allows to compute the TAR and GSM for modified gravity theories

(MGT) and test them by comparing them to observations. Using this approach, we have con-

strained the parameters of different modified gravity theories such as fpRq or Quintessence

[27].

1.3 Luminosity Distance

Supernovae are among the brightest astrophysical objects which can be observed in our uni-

verse, and this has allowed us to test the standard cosmological model at a redshift where
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no other observation is available, providing the first evidence of dark energy. Both gravita-

tional lensing and gravitational redshift can affect the propagation of photons through an

inhomogeneous medium, and consequently, the luminosity distance, so that besides allow-

ing to determine the background cosmological model parameters, they can also be used to

reconstruct the density and peculiar velocity fields [28], providing a unique tool to probe

large scale structure at scales where other astrophysical objects are too dim to be observed.

The inversion problem, consisting in reconstructing large scale structure from its weak field

effects on the luminosity distance, has been solved only under certain simplifying symmetry

assumptions [29, 30], and the solution is obtained by solving complicated systems of dif-

ferential equations. This approach requires smooth functions as inputs, but observational

data is rarely in a smooth form. To overcome these limitations in this thesis, we develop

a novel numerical approach to the inverse problem solution based on artificial intelligence,

specifically on the use of deep learning.

The inversion problem is a very general subject of research studied in many different

fields such as medical physics [31] or seismic inversion [32], and recently deep learning has

shown to be a promising approach for its solution [33, 34, 35, 36], taking advantage of

the computational advances made possible by the availability of graphical processing units

(GPU). We adopt a method based on creating a database of simulated luminosity distance

data obtained by solving the direct problem for a large set of random density configurations.

The simulated data is then used to train a convolutional neural network (CNN) to solve

the inversion problem, i.e., reconstructing the density and velocity fields from the luminosity

distance. Since the physics of the direct problem is well-understood [37], there is virtually no

limit in the amount of simulated data that can be created to train the CNN. Allowing good

results in the learning process since supervised machine learning and, more specifically, deep

learning performs well if there is a significant and high-quality labeled dataset. The model’s

performance is then tested with a separate held-out set which shows the reconstructed profiles

match closely with the expected ones [38].
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Artificial intelligence comprises any system that acts in any way that simulates human

intelligence. However, this field is split into two different approaches. The first one, expert

programming, relies on an expert to code the different rules that mimic human behavior.

The second approach, machine learning, relies on historical data, which can train different

algorithms to reproduce the expected behavior. In broad terms, most machine learning

models have a set of trainable parameters wj that produce a prediction ŷ when they are fed

with some features xi:

ŷ “ fpxi, wjq. (2-1)

This is repeated for each instance n in our data set:

ŷn “ fpxni, wjq. (2-2)

In the case of supervised machine learning, these predictions can be compared to the

correct values yn using a loss function L and the parameters of the model can be optimized

to minimize the cost function:

w˚
j “ argmin

wj

Lpyn, ŷnq. (2-3)

The most used minimization method is the iterative process of gradient descent, where

the gradient of the cost function is computed, and repeated steps are taken in the oppo-

site direction, which corresponds to the direction of steepest descent [39]. These steps are

modulated by the learning rate α, and each iteration corresponds to:

wj Ñ wj ´ α
BL
Bwj

. (2-4)

This training process is repeated until the model achieves a desired accuracy measured on

a separate validation data set not used during training. This work will focus exclusively on

neural networks such as Multilayer Perceptrons (MLP) and Convolutional Neural Networks

(CNNs).

2.1 Deep Learning

Deep learning uses deep artificial neural networks as the machine learning model. Deep

neural networks are made up of many subsequent layers of parameters trained by gradient
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descent. Thanks to the internet and social networks, deep learning has recently received

much attention thanks to the latest advancements in software, GPU hardware, and data

availability. For a comprehensive review, [40],[41] and [42] are recommended.

Before talking about neural networks, it’s convenient to define a single artificial neuron

[43] which produces prediction or output by applying a nonlinear function ϕ on a weighted

sum of m input variables or features:

ŷn “ ϕ

˜

m
ÿ

i

wixni ` b

¸

, (2-5)

where b is known as the bias term. The most commonly used nonlinear functions are the

sigmoid or logistic function and the rectified linear unit (ReLU) function:

Sigmoidpzq “
1

1 ` e´z
(2-6)

ReLUpzq “ maxp0, zq (2-7)

This can be extended to an arbitrary amount of layers l and of neurons j per layer if we

consider the input features as the neurons in the first layer (xni Ñ x
r0s

ni ) and the prediction

ŷn of the neural network as the output of the last layer L

x
rls
nj “ ϕrls

˜

ml
ÿ

i

w
rls
ji x

rl´1s

ni ` b
rls
j

¸

, (2-8)

ŷn “ xrLs
n , (2-9)

where we have introduced ml as the number of neurons in layer l and assumed the last layer

L has only one feature (i.e. mL “ 1). It’s important to note that each neuron j in layer

l has an independent set of weights w
rls
ji and bias b

rls
j term which are initialized randomly

but trained using gradient descent (2-4). However, the gradient must be computed for every

layer in the network using the chain rule which is commonly known as backpropagation [44].

A new type of neural network architecture has been created to deal with high dimensional

data such as images using matrix cross correlation between images and filters [45][46]. These

networks train convolutional kernels or filters that transform images or extract features

through a sliding inner product. Therefore, some neurons will have the same weights given by

the convolutional kernels. Compared to the network described by (2-8) Convolutional Neural

Networks (CNNs) have a higher degree of sparsity which, coupled to pooling operations that

reduce the image size, allow training on current hardware even with high-resolution images.
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This chapter is by no means an exhaustive recount of general relativity, for a full summary

[47], [48] and [49] are recommended. Only the main results needed for this work are pre-

sented, and previous knowledge of the theory is assumed. Every computation is taken under

the metric formalism, where the metric connection and curvature tensors are determined

completely by the metric. Additionally, Einstein’s notation of summation under repeated

indices and natural units is used all along, where c “ G “ 1.

The metric (gµν) determines the space-time interval between two events in a coordinate

system xµ:

ds2 “ gµνdx
µdxν , (3-1)

where dxµ represents the coordinate differentials. Additionally, the inverse of the metric can

be defined such that gµσgσν “ δµν . This interval can take positive, negative, or even null

values depending on the speed needed to go from one event to another. If this speed is less

than the speed of light, the interval is positive and is said to be time-like; this is the type

of trajectories described by massive particles. If, on the other hand, the required speed is

the speed of light, the space-time interval is zero, and it is known as lightlike. Lastly, if the

required speed is greater than the speed of light, the interval is negative, called space-like.

These signs depend on the metric signature; in this work, it is considered p`,´,´,´q. For a

theory to be invariant under coordinate changes, it must be implemented in tensor notation.

The components of an arbitrary tensor transform in the following way under the coordinate

transformation (xµ Ñ x1µ)

T 1ν¨¨¨
σ¨¨¨ “

ˆ

Bx1ν

Bxα
¨ ¨ ¨

˙

˜

Bxσ
Bx1

β

¨ ¨ ¨

¸

Tα¨¨¨
β¨¨¨, (3-2)

it is important to take into account that scalars remain invariant. On the other hand, the

tensor derivatives don’t necessarily obey these rules. To have derivatives that transform as

a tensor, the metric connection coefficients are needed. Under the metric formalism, the

Christoffel symbols of the second kind can be used to build an affine metric connection:

Γµ
νρ “

1

2
gµσ pBνgσρ ` Bρgσν ´ Bσgνρq , (3-3)

where Bµ “ B{Bxµ. Due to the symmetry of the metric tensor, this connection is torsionless

because it is symmetric by definition:

Γα
µν “ Γα

νµ, (3-4)
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which can ease the computation of non-null components. These coefficients establish how

tensor quantities change under parallel transport and allow a derivative in curved space,

called covariant derivative which obeys the transformation law (3-2). The covariant deriva-

tive of an arbitrary tensor is obtained by contracting the indices of the connection with each

index in the tensor respectively

∇µT
ν¨¨¨

σ¨¨¨ “ BµT
ν¨¨¨

σ¨¨¨ ` Γν
ρµT

ρ¨¨¨
σ¨¨¨ ` ¨ ¨ ¨ ´ Γρ

σµT
ν¨¨¨

ρ¨¨¨ ´ ¨ ¨ ¨ (3-5)

This connection, in particular, is a metric connection because the covariant derivative of the

metric tensor is zero:

∇ρgµν “ 0. (3-6)

The connection also defines the Riemann curvature tensor, which describes the change in a

vector after parallel transport through 2 different paths:

Rµ
νρσ “ BρΓ

µ
νσ ´ BσΓ

µ
νρ ` Γµ

ρλΓ
λ
νσ ´ Γµ

σλΓ
λ
νρ. (3-7)

Due to the shape of the tensor, only 20 of the 256 components are independent due to the

following symmetries:

Rµνρσ “ ´Rνµρσ “ ´Rµνσρ, (3-8)

Rµνρσ “ Rρσµν , (3-9)

Rµνρσ ` Rµρσν ` Rµσνρ “ 0, (3-10)

where this last one is known as the first Bianchi identity.

From the Riemann tensor, it is possible to build the Ricci tensor, which describes the

volumetric change of a geodesic sphere in contrast to flat space-time. With respect to the

Riemann tensor, the Ricci tensor is just an index contraction:

Rµν “ Rσ
µσν , (3-11)

where, due to the Riemann tensor’s symmetries, the Ricci tensor is symmetric in its two

indices Rµν “ Rνµ. The Ricci scalar is the simplest scalar that can be computed with only

one Riemann tensor and, being a scalar; it is invariant under coordinate transformations

R “ Rµ
µ “ Rµν

µν . (3-12)

On the other hand, the Kretschmann scalar is a quadratic quantity because it is defined as

a contraction of two Riemann tensors, and it is an important scalar when analyzing metric

singularities:

K “ RµνσρRµνσρ. (3-13)

Finally, both the Riemann and Ricci tensors can be used to compute the Einstein tensor

Gµν “ Rµν ´
1

2
gµνR, (3-14)

that will be useful when writing the field equations in a compact form, presented in the next

section.
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3.1 Einstein-Hilbert Action

In order to obtain equations invariant under general coordinate transformations, the action

of general relativity must be a scalar. One possibility is to use the Ricci scalar R, from

which the Einstein-Hilbert action with lagrangian matter density LM can be written as

S “

ż

d4x
?

´g

ˆ

1

16π
R ` LM

˙

, (3-15)

where gµν is the metric and g is its determinant. The lagrangian density LM describes the

dynamic of matter inside a given space-time. The equations of motion can be derived using

variational principles minimizing the action, taking into account that the variation of the

action with respect to the metric must be zero δS “ 0:

δS “

ż

d4x

„

1

16π

δ p
?

´gRq

δgµν
`
δ p

?
´gLMq

δgµν

ȷ

δgµν

“

ż

d4x

„

1

16π

1
?

´g

δ p
?

´gRq

δgµν
`

1
?

´g

δ p
?

´gLMq

δgµν

ȷ

δgµν
?

´g

“ 0,

(3-16)

where δgµν is the variation of the metric’s inverse. This variation must cancel itself under

any arbitrary variation δgµν , which implies that the quantity inside the square brackets must

be zero:

1

16π

1
?

´g

δ p
?

´gRq

δgµν
“ ´

1
?

´g

δ p
?

´gLMq

δgµν
,

1

16π

„

δR
δgµν

`
R

?
´g

δ p
?

´gq

δgµν

ȷ

“ ´
δLM

δgµν
´

LM
?

´g

δ p
?

´gq

δgµν
,

1

8π

„

δR
δgµν

`
R
2g

δg

δgµν

ȷ

“ ´2
δLM

δgµν
´

LM

g

δg

δgµν
,

(3-17)

where the right-hand side of the equation defines the energy-momentum tensor Tµν .

To get the variations to the contravariant components of the metric gµν , the variations

with respect to the covariant components gµν must be computed first. With this in mind,

the Jacobi formula allows to derive the variation of the determinant of a matrix with respect

to one of its components:

δg “ δdetpgµνq “ Tr pg gµνδgνρq “ g gµνδgνµ. (3-18)

This same procedure must be taken with the inverse of the metric considering that the de-

terminant of the inverse is related to the determinant of the metric by detpgµνq “ detpgµνq´1:

δ

ˆ

1

g

˙

“ δdetpgµνq “ Tr

„

gµν
g
δgνρ

ȷ

“
gµν

g
δgνµ,

δ

ˆ

1

g

˙

“ ´
δg

g2
,

δg “ ´g gµνδg
µν .

(3-19)
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With the previous result, the variation of the determinant with respect to the metric gµν can

now be computed. To obtain the variation of the Ricci scalar with respect to the metric, the

variation of the Riemann tensor must be computed first:

δRρ
σµν “ BµδΓ

ρ
νσ ´ BνδΓ

ρ
µσ ` δΓρ

µλΓ
λ
νσ ` Γρ

µλδΓ
λ
νσ ´ δΓρ

νλΓ
λ
µσ ´ Γρ

νλδΓ
λ
µσ

“ ∇µpδΓρ
νσq ´ ∇νpδΓρ

µσq,
(3-20)

where the last step considered that δΓ is a tensor quantity, even if the individual connec-

tion coefficients are not tensor quantities because it’s the difference between two connection

coefficients. With this previous result at hand, the variation of the Ricci tensor is:

δRµν “ δRρ
µρν “ ∇ρpδΓρ

νµq ´ ∇νpδΓρ
ρµq. (3-21)

Finally, using the previous results, it is possible to compute the variation of the Ricci scalar

considering a metric connection (∇σg
µν “ 0):

δR “ Rµνδg
µν

` ∇σ

`

gµνδΓσ
νµ ´ gµσδΓρ

ρµ

˘

, (3-22)

The last term turns into a total derivative and gives rise to the York-Gibbons-Hawking

boundary term [50],[51]. If the variation of the metric tends to zero at infinity, this term can

be ignored due to Stokes theorem, and the variation of the Ricci scalar with respect to the

variation of the metric is:
δR
δgµν

“ Rµν , (3-23)

the Einstein field equations are obtained by substituting this into (3-17):

Rµν ´
1

2
gµνR “ 8πTµν ,

Gµν “ 8πTµν ,
(3-24)

where the last step involves the definition of the Einstein tensor (3-14). These are second-

order equations in the metric and determine which metrics are compatible with different

matter fields. Therefore, matter establishes the curvature of space-time. This result can be

extended considering a constant Λ in the Einstein-Hilbert action:

S “

ż

d4x
?

´g

„

1

16π
pR ´ 2Λq ` LM

ȷ

, (3-25)

which modifies the Einstein field equations accordingly:

Rµν ´
1

2
gµνR ´ gµνΛ “ 8πTµν ,

Gµν ´ gµνΛ “ 8πTµν .
(3-26)

Einstein introduced this constant, known as the cosmological constant, to have a static uni-

verse. However, due to Georges Lemaitre and Edwin Hubble’s observations of an expanding
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universe, Einstein abandoned the cosmological constant and called it his biggest blunder.

Recently, the use of Type IA supernova catalogs has determined that the universe is cur-

rently in a stage of accelerated expansion with a positive but close to zero cosmological

constant [52, 53].

If the value of the cosmological constant is taken to the right-hand side of the equation,

it can be interpreted as the vacuum’s energy-momentum tensor:

TΛ
µν “

Λ

8π
gµν , (3-27)

which corresponds to a perfect fluid with negative pressure. The value of Λ obtained from

analyzing observational data disagrees with the one predicted by particle physics by several

orders of magnitude [54], a circumstance which has been defined as the worst prediction in

the history of theoretical physics [55].

In 1971 David Lovelock [56] proved that in four dimensions, the most general divergence-

less tensor which can be constructed from the first two derivatives of the metric is

Eµν
“ α

ˆ

Rµν
´

1

2
gµνR

˙

` λgµν (3-28)

where α and λ are arbitrary constants, which is exactly the geometric part of the Einstein’s

equations eq.(3-26). This implies that in order to modify General Relativity we need violate

some of the hypotheses of the Lovelock’s theorems by introducing :

• field equations depending on derivatives higher than 2, obtainable from actions involv-

ing higher derivatives of the metric

• additional fields

• higher dimensional spaces

• non-divergenceless field equations

As noted by Lovelock [57], it can be shown that Einstein-Hilbert’s action is not the most

general action that gives rise to Einstein’s field equations.

The geodesic equations for a given space-time will be derived in the next section. This

shows how space-time affects the trajectory of a test particle.

3.2 Geodesics in General Relativity

Geodesic equations describe a free particle’s path in a given space-time. Such trajectories

are known as the particles world line. The principle of least action must be used to find the



12 3 General Relativity

curve the particles describe. The space-time distance travelled by a particle from point p1
to point p2 is given by:

I “

ż p2

p1

ds “

ż p2

p1

Ldu, (3-29)

where u is an affine parameter along the geodesic, in the case of massive particles, proper

time can be used. The term under the integral is L “
a

gµνBuxµBuxν . It is also possible to

work with the square of this term to avoid square roots:

I2 “

ż p2

p1

L2du, (3-30)

however, this integral no longer represents the physical distances traveled by the particle.

The curves that minimize this integral, known as geodesics, can be found thanks to the

principle of least action. According to the Euler-Lagrange equations, the geodesic trajectory

must follow
BL2

Bxσ
´

d

du

ˆ

BL2

B 9xσ

˙

“ 0, (3-31)

where the dot (9) corresponds to a derivative in the affine parameter. Replacing L2 in the

previous equation:

BL2

Bxσ
´

d

du

ˆ

BL2

B 9xσ

˙

“
Bpgµν 9xµ 9xνq

Bxσ
´

d

du

ˆ

Bpgµν 9xµ 9xνq

B 9xσ

˙

“ Bσgµν 9xµ 9xν ´ 2
d

du
pgµσ 9xµq

“ Bσgµν 9xµ 9xν ´ 2gµσ:xµ ´ 2Bνgµσ 9xµ 9xν

“ Bσgµν 9xµ 9xν ´ 2gµσ:xµ ´ Bνgµσ 9xµ 9xν ´ Bµgνσ 9xν 9xµ

“ ´2gµσ:xµ ´ pBνgµσ ` Bµgνσ ´ Bσgµνq 9xµ 9xν .

(3-32)

The geodesic equations are obtained by rearranging these equations, contracting the σ index,

and taking into account the definition of the Christoffel symbols:

:xλ `
1

2
gλσ pBνgµσ ` Bµgνσ ´ Bσgµνq 9xµ 9xν “ 0

:xλ ` Γλ
µν

dxµ

dτ

dxν

dτ
“ 0.

(3-33)

Besides, it is important to note that the space-time interval is positive (time-like ds2 ą 0)

for massive particles and zero for massless particles (lightlike ds2 “ 0). In the weak-field

regime, this expression matches Newton’s law of universal gravitation. In that limit, a linear

order perturbative metric must be considered such that:

ds2 “ p1 ` 2Ψqdt2 ´ p1 ´ 2Φq
“

dr2 ` r2dΩ2
‰

, (3-34)

where Φ and Ψ are the gravitational potentials and with low velocities, such that

dxµ

dτ
« p1, 0, 0, 0q, (3-35)
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where the proper time was taken as the affine parameter and is approximately the temporal

coordinate in this limit. According to these approximations, the geodesics correspond to

:xi ` Γi
00 “ 0,

:xi “ ´Γi
00,

:⃗x “ ∇Ψ.

(3-36)

In a following chapter, a spherically symmetric metric in general relativity has the gravita-

tional potentials Ψ “ Φ “ ´m
r
and Newton’s gravitational law of universal gravitation is

recovered:
:⃗x “ ´

mx̂

r2
. (3-37)

It is also possible to state these equations in terms of the time coordinate, considering that
d
dτ

“ dt
dτ

d
dt
, and the goedesic becomes:

d2t

dτ 2
“ ´Γ0

µν

dxµ

dτ

dxν

dτ
. (3-38)

Finally, the geodesic equations in the time coordinate can be computed by replacing the

previous equation in (3-33):

dt

dτ

d

dt

ˆ

dt

dτ

dxλ

dt

˙

` Γλ
µν

ˆ

dt

dτ

˙2
dxµ

dt

dxν

dt
“ 0,

d2t

dτ 2
dxλ

dt
`

ˆ

dt

dτ

˙2
d2xλ

dt2
` Γλ

µν

ˆ

dt

dτ

˙2
dxµ

dt

dxν

dt
“ 0,

´Γ0
µν

dxµ

dτ

dxν

dτ

dxλ

dt
`

ˆ

dt

dτ

˙2
d2xλ

dt2
` Γλ

µν

ˆ

dt

dτ

˙2
dxµ

dt

dxν

dt
“ 0,

´Γ0
µν

ˆ

dt

dτ

˙2
dxµ

dt

dxν

dt

dxλ

dt
`

ˆ

dt

dτ

˙2
d2xλ

dt2
` Γλ

µν

ˆ

dt

dτ

˙2
dxµ

dt

dxν

dt
“ 0,

d2xλ

dt2
`

ˆ

Γλ
µν ´ Γ0

µν

dxλ

dt

˙

dxµ

dt

dxν

dt
“ 0.

(3-39)

The geodesics can now be computed in coordinate time, without the need of introducing

an affine parameter. This eases the comparison with the Newtonian limit directly in the

low-speed regime dxi

dt
« 0:

d2xλ

dt2
`

ˆ

Γλ
µν ´ Γ0

µν

dxλ

dt

˙

dxµ

dt

dxν

dt
“ 0,

d2xi

dt2
“ ´Γi

00,

d2xi

dt2
“ ´

m

r3
xi,

(3-40)

reproducing the Newtonian limit completely consistent with the previous result, which used

the affine parameter.
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3.3 Friedmann Equations

The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric describes a homogenous and

isotropic universe. In this case, the spatial part of the metric can depend only on the time

coordinate through the scale factor aptq, which describes the size of the universe. In spherical

coordinates, the FLRW metric is:

ds2 “ dt2 ´ aptq2
„

dr2

1 ´ kr2
` r2

`

dθ2 ` sin2 θdϕ2
˘

ȷ

, (3-41)

where the curvature parameter k can be `1, 0,´1 if the universe is closed (positive curva-

ture), flat (zero curvature) or open (negative curvature) respectively. The first components

of the Einstein tensor (3-14) for this metric are given by:

G00 “
3pk ` 9a2q

a2
,

G11 “
k ` 9a2 ` 2a:a

kr2 ´ 1
,

(3-42)

and due to the isotropy and homogeneity of the universe, the energy-momentum tensor Tµν
corresponds to a perfect fluid with density ρ and isotropic pressure:

T µ
ν “ pρ ` pquµuν ´ pδµν (3-43)

where uµ is it’s four-velocity. In comoving coordinates the four-velocity is uµ “ p1, 0, 0, 0q

and the energy-momentum tensor can be written as

T µ
ν “

¨

˚

˚

˚

˝

ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

˛

‹

‹

‹

‚

. (3-44)

From here, Einstein’s field equations are:

3pk ` 9a2q

a2
“ 8πρ,

k ` 9a2 ` 2a:a

a2
“ 8πp.

(3-45)

Differenciating the first equation with respect to time and adding the second equation mul-

tiplied by ´3 9a{a

8π 9ρ ` 24πp
9a

a
“

6 9a:aa ´ 6 9apk ` 9a2q

a3
´ 3

9a

a

k ` 9a2 ` 2a:a

a2
,

“ ´3
9a

a

3k ` 3 9a2

a2
,

“ ´24πρ
9a

a
,

(3-46)
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which can be rewritten as
d

dt
pρa3q ` p

d

dt
pa3q “ 0, (3-47)

dρ

dt
` 3

9a

a
pρ ` pq “ 0. (3-48)

This can be interpreted as the energy conservation equation taking into account that the

volume V9a3 and the energy E “ ρV . Given the equation of state p “ wρ, the continuity

equation becomes
dlnρ

dlna
“ ´3p1 ` wq, (3-49)

where w “ 1{3, 0,´1 for a radation, matter or cosmological constant dominated universe

respectively. This equation can be solved to yield

ρa3p1`wq
“ constant. (3-50)

Friedmann’s equations can be derived from Einstein’s field equations (3-45)

H2
“

ˆ

9a

a

˙2

“
8π

3
ρ ´

k

a2
, (3-51)

:a

a
“ ´

4π

3
pρ ` 3pq, (3-52)

where the Hubble parameter can be identified as H “ 9a{a. Under the assumption that

different fluids have the same four-velocity, the total density and pressure are the sum of the

individual species (denoted by the subindex i)

ρ “
ÿ

i

ρi (3-53)

p “
ÿ

i

pi (3-54)

The first Friedmann’s equation (3-51) can be rewritten in terms the critical density ρc “
3H2

0

8π

as

H2
“

8π

3H2
0

H2
0ρ ´

k

a2
“ H2

0

ρ

ρc
´
k

a2
“ H2

0

ÿ

i

ρi
ρc

´
k

a2
, (3-55)

where the subindex 0 refers to a quantity measured at present time. Without loss of gen-

erality, the present time scale factor can be normalized as apt0q “ 1 and after defining the

density parameters Ωi “ ρi,0{ρc we get:

ˆ

H

H0

˙2

“
ÿ

i

Ωia
´3p1`ωiq ` Ωka

´2,

“ Ωra
´4

` Ωma
´3

` ΩΛ ` Ωka
´2,

(3-56)

with Ωk “ ´k{a20H
2
0 . Evaluating the above equation at present time t “ t0 gives the

important relation
ÿ

i

Ωi “ 1. (3-57)
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3.3.1 Flat Universe Solutions

In a flat universe the scale factor can be obtained for a single fluid, with equation of state

p “ ωρ, by substituting equation (3-50) in (3-51)

aptq9

#

t2{3p1`wq if w ‰ ´1,

eHt if w “ ´1.
(3-58)

This implies that for a matter dominated universe (w “ 0)

aptq 9 t2{3, (3-59)

for a radiation dominated universe (w “ 1{3)

aptq 9 t1{2, (3-60)

and a universe dominated by cosmological constant (ω “ ´1)

aptq 9 eHt. (3-61)

According to cosmic microwave background and large scale structure observations, the uni-

verse is approximately flat, and the matter and cosmological constant density parameters

correspond roughly to Ωm “ 0.27 and ΩΛ “ 0.72, as seen in figure 3-1 [58].
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Figure 3-1: WMAP 9 year results constraining curvature and density parameters.



4 Cosmological Perturbation Theory

Newtonian gravity is a good approximation at local scales and low speeds, but it does

not successfully explain several observational measurements, such as Mercury’s perihelion’s

precession. On the other hand, General Relativity explains these phenomena, and in the

weak field regime, it should match Newtonian Gravity. With cosmological perturbation

theory, results from general relativity can be analyzed in the weak field limit and compared

directly with Newtonian gravity results. For a full review of cosmological perturbation

theory, [59], [60] and [61] are recommended. This work only considers vacuum solutions;

therefore, only the metric perturbations contribute, not the perturbations coming from the

energy-momentum tensor:

gµν “ g̃µν ` δgµν , (4-1)

where the background solution g̃ is the flat FLRW metric (3-41) which describes an home-

ogenous universe

ds2 “ dt2 ´ aptq2pdx2 ` dy2 ` dz2q. (4-2)

The de Sitter metric is equivalent to a flat FLRW metric with an exponential scale factor and

can also be used as a background solution. The spatial coordinates in (4-2) are comoving

and are related to the physical coordinates by:

xipphysicalq “ aptqxipcomovingq,

R “ aptqr,
(4-3)

where the physical radius R has been defined in terms of the comoving radius r. Depending

on the sign of 9a, this metric describes an expanding, static, or contracting universe. To

describe the current accelerated expansion rate of the universe, a ą 0 is assumed. In this

case, the comoving distances can be thought of as a grid of points that expands with the

universe; therefore, the comoving distance between two points in the grid remains constant

while the physical distance increases. It is convenient to redefine the temporal coordinate

according to

dτ “
dt

aptq
, (4-4)

which results in the metric

ds2 “ apτq
2

“

dτ 2 ´ dx2 ´ dy2 ´ dz2
‰

, (4-5)

where the new time coordinate is known as the conformal time and should not be confused

with a particle’s proper time from previous chapters. It receives this name because the
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resulting metric is conformally equivalent to Minkowski’s metric, with conformal factor apτq.

Due to symmetry, spherical coordinates are preferred. The flat FLRW metric in spherical

coordinates and conformal time takes the following form:

ds2 “ apτq
2

“

dτ 2 ´ dr2 ´ r2dΩ2
‰

. (4-6)

where dΩ2 “ dθ2 ` sin2 θdϕ2 is the metric of a sphere.

4.1 Scalar-Vector-Tensor Decomposition

The cosmological perturbation metric can be written in conformal time as:

ds2 “ a2pτq
“

p1 ` 2Aqdτ 2 ´ 2Bidτdx
i

´ pδij ` hijqdx
idxj

‰

, (4-7)

where, in general, A,Bi, hij can depend on both space and time. In this case, the ten

independent coordinates of the symmetric tensor δg can be decomposed into a scalar A, a

spatial vector Bi and a spatial symmetric tensor hij. Under this decomposition, the original

10 degrees of freedom are decomposed into 1`3`6 degrees of freedom, respectively. Spatial

indices can be lowered and raised with a Kronecker delta because only linear perturbation

equations are considered

hi j “ δikhkj. (4-8)

The advantage of cosmological perturbation theory is that it can decompose perturbations

into Scalars, Vectors, and Tensors (SVT). Einstein field equations do not mix scalar, vector,

or tensor perturbations at the linear level, and each one can be treated separately. According

to the Helmholtz decomposition theorem, a vector can be split into the gradient of a scalar

function and a solenoidal (divergence-free) vector

Bi “ BiB ` B̂i, (4-9)

where the hat (̂ ) denotes divergenceless quantities (BiB̂i “ 0). The first term is the scalar

component of the vector, and the second is its vectorial part, in such a way that the 3 degrees

of freedom are split into a scalar (1 degree of freedom) and a solenoidal vector (2 degrees of

freedom). Likewise, a tensor can be decomposed into its scalar, vector, and tensor parts:

hij “ 2Cδij ` 2BxiBjyE ` 2BpiÊjq ` 2Êij, (4-10)

where the first two terms are its scalar parts, the third is the vector part and the last term

is the traceless solenoidal tensor part (Êi
i “ 0). The following operators have been defined

BxiBjyE “

ˆ

BiBj ´
1

3
δij∇2

˙

E, (4-11)

BpiÊjq “
1

2

´

BiÊj ` BjÊi

¯

, (4-12)
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this decomposition splits the 6 degrees of freedom of the symmetric matrix hij into 2 scalar

degrees of freedom C,E, 2 vectorial degrees of freedom corresponding to the solenoidal vector

Êi and 2 tensorial degrees of freedom given by the traceless and divergenceless tensor Êij.

In total, the metric perturbations had 10 degrees of freedom due to a symmetric 4x4 matrix.

Now there are 4 scalar degrees of freedom due to the scalar components A,B,C,E, 4 vecto-

rial degrees of freedom from the solenoidal vectors Êi, B̂i and 2 degrees of freedom from the

traceless and divergenceless tensor Êij. Under this decomposition the metric becomes:

ds2 “ a2pτq

”

p1 ` 2Aqdτ 2 ´ 2
´

BiB ` B̂i

¯

dτdxi

´ pδij ` 2Cδij ` 2BxiBjyE ` 2BpiÊjq ` 2Êijqdx
idxj

ı

.
(4-13)

However, these perturbations are not unique and are related by coordinate transformations.

In the next section, this gauge freedom is addressed, and a convenient gauge fixing method

is discussed, which will ease the turnaround radius computation.

4.2 Gauge Transformations

It is possible that, under a coordinate transformation, metric perturbations change or even

new perturbations can appear. However, these perturbations are due only to a coordinate

system choice and could not even be physical. Therefore, there is a gauge freedom to choose

the coordinate system. For example, doing a coordinate change in a flat unperturbed FLRW

metric x̃i “ xi ` ζ i the differentials transform as

dxi “ dx̃i ´ Bτζ
idτ ´ Bkζ

idx̃k, (4-14)

and the metric in the new coordinates takes the form

ds2 “ apτq
2

“

dτ 2 ´ 2Bτζidx̃
idτ ´ pδij ` 2Bpiζjqqdx̃

idx̃j
‰

, (4-15)

where it seems as the perturbations Bi “ Bτζi and Êi “ ζi are present. However, as this

is equivalent to a flat unperturbed FLRW metric, these perturbations would disappear by

reverting to the original coordinates. To get gauge-invariant perturbations, it’s necessary

to analyze how perturbations transform under both time and space translations known as

gauge transformations.

Under a space or time translation like x̃u “ xµ ` ζµ with ζ0 “ T and ζ i “ Li “ BiL ` L̂i

the metric transforms as a rank 2 tensor:

gµν “
Bx̃α

Bxµ
Bx̃β

Bxν
g̃αβ. (4-16)
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Specifically, the perturbations transform as:

A Ñ A ´ T 1
´ HT,

B Ñ B ` T ´ L1,

C Ñ C ´ HT ´
1

3
∇2L,

E Ñ E ´ L,

B̂i Ñ B̂i ´ L̂1
i,

Êi Ñ Êi ´ L̂i,

Êij Ñ Êij,

(4-17)

where H “ a1

a
and the prime (1) denotes derivative with respect to conformal time. It is inter-

esting to see that the perturbation Êij remains invariant under gauge transformations. The

metric can be rewritten in terms of gauge-invariant potentials. The following perturbations,

known as Bardeen potentials [62], are invariant under gauge transformations:

Ψ “ A ` HpB ´ E 1
q ` pB ´ E 1

q
1,

Φ “ ´C ´ HpB ´ E 1
q `

1

3
∇2E,

Φ̂i “ Ê 1
i ´ B̂i,

Êij.

(4-18)

The Bardeen potentials consist of 2 scalars, one divergenceless spatial vector, and traceless

and divergenceless tensor, which implies that the other degrees of freedom are not physical.

In other words, from the four scalar degrees of freedom A,B,C,E, only two are physical.

The same is true for B̂i and Êi. It must be noted that the Bardeen potential Φ has a relative

sign with respect to the one originally defined in [62].

Not depending on the choice of the coordinate system, these perturbations can be inter-

preted as physical perturbations. The invariance under gauge transformations (4-17) of the

Bardeen potential Ψ is proved below:

Ψ Ñ A ´ T 1
´ HT ` HrB ` T ´ L1

´ pE ´ Lq
1
s ` rB ` T ´ L1

´ pE ´ Lq
1
s

1

Ψ Ñ A ´ T 1
´ HT ` HrB ` T ´ E 1

s ` rB ` T ´ E 1
s

1

Ψ Ñ A ´ T 1
´ HT ` HT ` T 1

` HrB ` T ´ E 1
s ` rB ´ E 1

s
1

Ψ Ñ A ` HpB ´ E 1
q ` pB ´ E 1

q
1

Ψ Ñ Ψ.

(4-19)

The invariance of the other Bardeen potentials can also be proved, specifically for the other
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scalar Φ

Φ Ñ ´pC ´ HT ´
1

3
∇2Lq ´ HrB ` T ´ L1

´ pE ´ Lq
1
s `

1

3
∇2

pE ´ Lq

Φ Ñ ´C ` HT `
1

3
∇2L ´ HT ´ HrB ´ E 1

s `
1

3
∇2E ´

1

3
∇2L

Φ Ñ ´C ´ HrB ´ E 1
s `

1

3
∇2E

Φ Ñ Φ,

(4-20)

finally, for Φ̂i given that Êij is trivially invariant

Φ̂i Ñ pÊi ´ L̂iq
1
´ pB̂i ´ L̂1

iq

Φ̂i Ñ Ê 1
i ´ B̂i

Φ̂i Ñ Φ̂i.

(4-21)

In order to verify that these are indeed the physical perturbations, the Bardeen potentials

are computed for the transformed FLRW metric (4-15) with non-physical perturbations

Bi “ Bτζi and Êi “ ζi

Ψ “ A ` HpB ´ E 1
q ` pB ´ E 1

q
1

“ 0,

Φ “ ´C ´ HpB ´ E 1
q `

1

3
∇2E “ 0,

Φ̂i “ Ê 1
i ´ B̂i “ Bτζi ´ Bτζi “ 0,

Êij “ 0.

(4-22)

All the Bardeen potentials are effectively zero since it was initially an unperturbed metric.

Bardeen potentials will be valuable in calculating the turnaround radius because they can

be computed in any gauge, as long as the Bardeen potentials are obtained.

Only spherical symmetric metrics are considered in this work, and due to this symmetry

consideration, only the scalar perturbations are relevant. The previous expressions can be

simplified even more, and it is going to be revisited in the following section.

4.3 Spherical Coordinates

A spherical symmetric metric can be used as a first and simple approximation to cosmological

structures. In this case, there is no privileged direction, that’s why only the scalar perturba-

tions A,B,C,E contribute to the metric [63]. Therefore, the metric can be simplified much

more:

ds2 “ a2pτq
“

p1 ` 2Aqdτ 2 ´ 2BiBdτdx
i

´ pδij ` 2Cδij ` 2BxiBjyEqdxidxj
‰

, (4-23)

Given the symmetry, it’s more natural to use spherical coordinates where perturbations

are only a function of the temporal and radial coordinates. Taking into account that the



4.3 Spherical Coordinates 23

cartesian derivative in spherical coordinates takes the following form

Bi “
B

Bxi
“

Br

Bxi
B

Br
“
xi
r

B

Br
, (4-24)

the differential operator (4-11) transforms as

BxiBjyE dxidxj “

„

Bi

´xj
r

Br

¯

´
1

3
δij

1

r2
Br

`

r2Br
˘

ȷ

E dxidxj

“

„

δij
r

Br `
xixj
r2

BrBr ´
xixj
r3

Br ´
δij
3

BrBr ´
2δij
3r

Br

ȷ

E dxidxj

“

„

1

r2
BrBr ´

1

r3
Br

ȷ

Exixjdx
idxj `

1

3

„

1

r
Br ´ BrBr

ȷ

Eδijdx
idxj

“

„

BrBr ´
1

r
Br

ȷ

Edr2 ´
1

3

„

BrBr ´
1

r
Br

ȷ

E
`

dr2 ` r2dΩ2
˘

“
2

3

„

BrBr ´
1

r
Br

ȷ

Edr2 ´
1

3

„

BrBr ´
1

r
Br

ȷ

Er2dΩ2,

(4-25)

where both δijdx
idxj “ dr2`r2dΩ2 and xixjdx

idxj “ r2dr2 were considered. This coordinate

choice corresponds to the following metric:

ds2 “ a2
„

p1 ` 2Aqdτ 2 ´ 2BrBdτdr ´

ˆ

1 ´ 2C `
2

3
E

˙

dr2 ´

ˆ

1 ´ 2C ´
1

3
E

˙

r2dΩ2

ȷ

,

(4-26)

where the scalar perturbation E has been defined:

E “ 2BrBrE ´ 2
BrE

r
, (4-27)

and Br denotes a derivative with respect to the radial coordinate r. Which is completely

equivalent to the one present in [63] with A “ ψ, C “ ϕ, B “ ω and 2E “ χ:

ds2 “ a2
”

p1 ` 2ψqdτ 2 ´

ˆ

1 ´ 2ϕ `
2

3
E

˙

dr2 ´ 2ω1dτdr ´

ˆ

1 ´ 2ϕ ´
1

3
E

˙

r2dΩ2
ı

,(4-28)

where

E “ χ2
´
χ1

r
, (4-29)

and the prime
1

denotes derivative respect to r.

It is important to remember that this radial coordinate is comoving and it is related to

the physical radius by (4-3).

In the next section, the Newton Gauge will be fixed. This gauge will allow a direct comparison

between general relativity and Newtonian gravity. Additionally, the potentials in the Newton

gauge will be equivalent to the Bardeen potentials, which will allow the turnaround radius

computation in an arbitrary gauge.
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4.4 Newton Gauge

To fix the gauge in spherical coordinates, fixing 2 of the 4 scalar potentials is enough. In the

Newton gauge the fixed potentials are B “ E “ 0 which results in the following isotropic

metric:

ds2 “ a2pτq
“

p1 ` 2Aqdτ 2 ´ p1 ` 2Cq
`

dr2 ` r2dΩ2
˘‰

. (4-30)

According to (4-17), it is possible to achieve E Ñ 0 and B Ñ 0 with the following transla-

tions:

L “ E, (4-31)

T “ E 1
´ B. (4-32)

Under this gauge transformation, the other two scalar potentials take a particular form:

A Ñ A ´ pE 1
´ Bq

1
´ HpE 1

´ Bq

A “ Ψ,

C Ñ C ´ HpE 1
´ Bq ´

1

3
∇2E

C “ ´Φ.

(4-33)

The previous perturbations in the Newton gauge, are equivalent to the Bardeen potentials.

Therefore, the metric in the Newton gauge can be rewritten using gauge-invariant potentials:

ds2 “ a2pτq
“

p1 ` 2Ψqdτ 2 ´ p1 ´ 2Φq
`

dr2 ` r2dΩ2
˘‰

. (4-34)

In general, these two potentials are different but in the absence of any anisotropy, they will

be equal Φ “ Ψ [64]. Under the Newton Gauge, considering that the Bardeen potentials
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depend on both time and radius, the non-null Christoffel symbols are:

Γ0
00 “

a1

a
` Ψ1,

Γ0
01 “ Γ0

10 “ BrΨ,

Γ0
11 “

a1

a
p1 ´ 2Φ ´ 2Ψq ´ Φ1,

Γ0
22 “ ´

a1r2

a
p1 ´ 2Φ ´ 2Ψq ´ Φ1,

Γ0
33 “ Γ0

22 sin
2 θ,

Γ1
00 “ BrΨ,

Γ1
01 “ Γ1

10 “
a1

a
´ Φ1,

Γ1
11 “ ´BrΦ,

Γ1
22 “ ´r ` r2BrΦ,

Γ1
33 “ Γ1

22 sin
2 θ,

Γ2
02 “ Γ2

20 “
a1

a
´ Φ1,

Γ2
12 “ Γ2

21 “
1

r
´ BrΦ,

Γ2
33 “ ´ cos θ sin θ,

Γ3
03 “ Γ3

30 “
a1

a
´ Φ1,

Γ3
13 “ Γ3

31 “
1

r
´ BrΨ,

Γ3
23 “ Γ3

32 “ cot θ,

(4-35)

where, once again, the prime (1) denotes a derivative with respect to conformal time and Br a

derivative with respect to the comoving radius r. These connection coefficients will be used

to obtain the radial geodesics for the perturbed metric to compute the turnaround radius.
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estimation from gravitational waves

signals in the frequency domain

We present the results of applying Convolutional Neural Networks (CNN) to the frequency

domain data of a Gravitational Wave merger signal (GW), i.e., the Fourier transform of the

time domain strain data. We call this neural network FCNN to distinguish it from the CNN

applied to time domain data, denoted as TCNN.

The FCNN relies on the short-time Fourier transform to extract the frequency domain

features needed to train the network. This approach reduces the input’s dimensionality,

and the FCNN has around 50.000 parameters, compared with almost 550.000 of the TCNN.

Consequently, FCNN has better out-of-sample performance than TCNN and tends to also

have a lower over-fit due to the significantly lower model complexity.

In this section, we consider different sources of gravitational waves. Current observations

from the LIGO and Virgo collaborations confirm the luminal propagation of gravitational

waves. These new results can be used to constrain modified gravity theories such as Horn-

deski gravity [65].

5.1 Gravitational Waves

In order to understand the physics of gravitational waves it is useful to write the Einstein’s

equations in the weak field limit. All the calculations which follow are at first order in

perturbations. The metric tensor can be written as

gµν “ ηµν ` ϵhµν , (5-1)

where ηµν is the Minkowski metric. The metric connection coefficients and the Riemann

tensor are therfore

Γσ
µν “

1

2
ϵ

`

hσµ,ν ` hσν,µ ´ h σ
µν,

˘

, (5-2)

Rµνσρ “
1

2
ϵ phµρ,νσ ` hνσ,µρ ´ hµσ,νρ ´ hνρ,µσq . (5-3)

The Ricci scalar and the Einstein tensor are respectively

R “ ϵphµν,µν ´ lhq (5-4)
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Gµν “
1

2
ϵphρµ,νρ ` hρν,µρ ´ lhµν ´ h,µν ´ ηµνh

ρσ
ρσ ` ηµνlhq, (5-5)

where l “ ηµνBµBν is the d’Alambertian operator. In the Einstein’s gauge, defined by

hµν,µ ´ h,ν{2 “ 0, using eq.(5-5), the vacuum Einstein’s equations become a wave equation

for the metric perturbation

lhµν “ 0. (5-6)

The solution in presence of a source can be written in the transverse-traceless gauge as [66]

hjk “
2

r
:Qjkpt ´ rq. (5-7)

whereQ is the mass quadrupole moment. Possible sources are systems with a large quadrupole

moment such as coalescing black holes or neutron stars, asymmetric spinning bodies, or su-

pernovae.

We will focus on gravitational waves generated by binary mergers, which were first de-

tected by the LIGO collaboration [2]. Binary black hole mergers lose energy in the form of

gravitational waves as they orbit each other, which causes their inspiral. The gravitational

wave emission peaks during the merger phase, while the remaining black hole, with a null

quadrupole mass moment, no longer generates gravitational wave radiation.

Without an analytical solution to the general relativity two-body problem, the evolution

of the binary system must be modeled and approximated using a combination of methods.

The post-Newtonian theory applies during the initial inspiral phase when both black holes

are sufficiently apart. The merger phase, which involves the strong gravity regime, starts

once the black holes cross the innermost stable circular orbit. In this phase the quadrupole

formula (5-7) is not an accurate approximation and the full Einstein’s equations must be

solved numerically. In the ringdown phase after the merger the Einstein’s equations can be

solved numerically or an approximate analytical solution can be obtained by perturbing the

Kerr’s solution.

The waveforms in this thesis are computed using the package PyCBC [67], which uses the

effective one-body formalism. A waveform example is shown in figure 5-1.

5.2 Training Data generation

The training data is generated using the PyCBC package, developed by the PyCBC Develop-

ment Team and the LIGO / Virgo Collaborations, whose purpose is the study of gravitational

waves.

This library contains a method to generate the waveform corresponding to a GW event and

accepts as inputs several different parameters. In the waveform generation, we assumed for

simplicity the spins and orbital eccentricities to be zero, as in [10]. Data with π{2 polarization

was also generated to evaluate the robustness of the neural network to signals with different

parameters. The networks were trained to predict the two masses of the merger, while other

parameters were kept fixed in the data generation.



28
5 Deep learning merger masses estimation from gravitational waves signals in the

frequency domain

We kept the default values for the other parameters of the waveform generator function

except for The approximant is chosen to be the fourth version of Spin Effective One Body

Numerical Relativity (SEOBNR) due to its efficiency. An example of a merger GW simulated

signal is shown in fig.(5-1).
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Figure 5-1: Simulated strain of a black hole merger with 57 and 33 solar masses at a distance

of 2000 MPc, sampled at 8192 Hz.

We add noise to the simulated signal to train the networks with realistic data. Similarly to

[10], to account for translations in the signal, the data was augmented by applying a random

temporal shift in the interval [0,0.2]. We generated data with different signal-to-noise ratios

(SNR), and colored noise was added according to LIGO’s power spectral density (PSD).

The matched-filter SNR between a template h and a signal s is defined by [68]:

SNR “
| xs|hy ptq|2

xh|hy
, (5-8)

the bracket notation involves the following correlation:

xs|hy ptq “ 4

ż 8

0

ŝpfqĥpfq

Snpfq
e2πiftdf, (5-9)

where ŝ and ĥ are the Fourier transforms of the signal and template, respectively, and Sn is

the PSD of the detector. An example of the signal and the corresponding noised signal is

shown in fig.(5-2).

We train the FCNN using spectrograms, which are two-dimensional matrices whose columns

are related to the frequency power spectra of the strain ST at different times, according to

SPω “ 10 ˚ log10p|STω|
2
q , (5-10)
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Figure 5-2: Simulated strain superimposed with noise sampled from LIGO’s aLIGOZeroDe-

tHighPower PSD, with a SNR of 18.5.

where SPω is the spectrogram, and STω is the Fourier transform of ST over different time

intervals.

The spectrograms are obtained by performing a Fast Fourier Transform (FFT) using

equally spaced time intervals, with a sampling frequency of 4096 Hz, windows of 128 elements,

a zero-padding of 896 elements, and overlap between windows of 64 elements.

The spectrogram of a merger GW signal is shown in fig.(5-3), and the spectrogram of the

corresponding noised signal is shown in fig.(5-4), where it can be seen that the merger signal

is mainly noticeable at low frequency. Consequently, to train the FCNN, the spectrograms

were cropped at 120 Hz.

5.3 CNN architectures

The TCNN described in [10], summarized in Table 5-1, was implemented as a benchmark

to compare the performance of the FCNN.

The FCNN, whose architecture is shown in Table 5-2, consists of three convolutional layers

that perform 2D convolutions on the zero-padded signal, followed by a max-pooling layer.

The resulting output of the pooling layer is then flattened into a one-dimensional vector of

1024 entries, which is fed into a two-layer fully connected net that predicts the two masses

of the merger.

The FCNN has about 50.000 parameters, compared with almost 550.000 of the TCNN.

The smaller number of parameters has a regularization effect by reducing the variance of

the model, making it less prone to over-fitting as the number of degrees of freedom is signifi-

cantly reduced. This is achieved because the spectrogram reduces the total number of input
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Figure 5-3: Spectrogram of the GW signal of a binary black hole merger with 33 and 57

solar masses.

components, the number of convolutions is less than the TCNN, and the two-dimensional

pooling operation reduces the number of components more than the one-dimensional pool-

ing. The latter significantly reduces the number of input components before the flatten layer

and the number of parameters in the subsequent dense layers.

To improve the performance of the models, the input data was normalized before training.

The normalization that gave the best results was the min-max scaling defined by

SPω norm “
SPω ´ minpSPωq

maxpSPωq ´ minpSPωq
(5-11)

5.4 Over-fit

When the training set error is very low, there is a risk of over-fitting due to a high number of

parameters, which manifests in a significant difference between the training and validation

errors. Even if the model’s error on the training set reaches low values, it does not necessarily

imply that its predictive ability, when applied on data different from the training set, will

be as good. To quantify the difference between the training and the validation errors, we

define the following over-fitting estimator.

O “

ˇ

ˇ

ˇ

ˇ

train error ´ test error

test error

ˇ

ˇ

ˇ

ˇ

. (5-12)
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Figure 5-4: Spectrogram of the noised GW signal of a binary black hole merger of 57 and

33 solar masses and SNR=18.5.

Low values of the over-fitting estimator correspond to a slight relative difference between

the training and validation errors, implying the model will have a performance on out-of-

sample data similar to the one on training data.

5.5 Training Metric

This model aims to predict the masses of the merger from the spectrogram of the gravita-

tional wave’s strain signal. We train the model by iteratively minimizing the mean absolute

percentage error (MAPE) each epoch, defined as

MAPE “
1

n

n
ÿ

i“1

2
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

M̂ij ´ Mij

Mij

ˇ

ˇ

ˇ

ˇ

ˇ

(5-13)

where n is the number of samples in each epoch, M̂i1 and M̂i2 are the masses of the merger

predicted by the model, while Mi1 and Mi2 are the masses from the training set used in the

simulation for the i-th sample.

5.6 Comparing FCNN to TCNN performance

The merger GW data was simulated with a sampling rate of 8192 Hz, generated for mass

values from 10Md to 75Md, with a mass ratio less than ten and a distance of 2000 MPc,
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Layer Size

Input vector (8192)

1 Convolution (ReLu) matrix (8192 ˆ 16)

2 Pooling matrix (2048 ˆ 16)

3 Convolution(ReLu) matrix (2048 ˆ 32)

4 Pooling matrix (512 ˆ 32)

5 Convolution (ReLu) matrix (512 ˆ 64)

6 Pooling matrix (128 ˆ 64)

7 Flatten vector(8192)

8 Dense layer (ReLu) vector (64)

Output vector (2)

Table 5-1: Architecture of the TCNN used in [10].

Layer Size

Input matrix (32 ˆ 127 ˆ 1)

1 Convolution (ReLu) matrix (32 ˆ 127 ˆ 16)

2 Convolution (ReLu) matrix (32 ˆ 127 ˆ 8)

3 Convolution (ReLu) matrix (32 ˆ 127 ˆ 4)

4 Pooling matrix (8 ˆ 32 ˆ 4)

5 Flatten vector(1024)

6 Dense layer (ReLu) vector (32)

7 Dense layer (ReLu) vector (16)

Output vector (2)

Table 5-2: Architecture of the FCNN.

resulting in a total of 9346 mergers with SNRs in the 5 to 25 range. The data was split

evenly between modeling and validation sets as shown in fig.(5-5). The modeling set was

further split with a 70/30 ratio into training and development sets. The training set was used

to optimize the model parameters, and the development set was used for hyperparameter

tuning, specifically to find better performance performing network architectures. The same

procedure was applied to the two data sets simulated with polarization equal to 0 and π{2.

The error of FCNN and TCNN models on the validation data over the range of SNRs is

shown in fig.(5-6) for data with polarization equal to 0.

In fig.(5-7), the over-fit of the two models over the range of SNRs is shown, as defined in

eq.(5-12). As mentioned earlier, the FCNN has much fewer parameters than TCNN, and it

is expected to have a lower over-fit than TCNN.

To test the robustness of the models under the change of other merger parameters, we

also created another set of training and validation data using a different polarization angle.

Gravitational-wave signals with a polarization angle of π{2 were simulated, keeping all other
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Figure 5-5: Scatter plot of the mass pairs used to simulate the data. The modelling and

validation data sets are chosen as in [10].

parameters fixed. We used the same number of simulated samples, and the masses of the

mergers ranged from 10Md to 75Md with a mass ratio less than or equal to 10.

The error of the TCNN and FCNN models on the validation set for data with polarization

equal to π{2 is shown in fig.(5-9). Likewise, the over-fit of TCNN models for this data is

shown in fig.(5-10). The FCNN over-fit was lower than for TCNN, suggesting that FCNN

generalizes better than TCNN on signals from gravitational waves with different parameters.

As can be seen in fig.(5-6) and fig.(5-9), the performance of TCNN and FCNN is approx-

imately the same, but for low SNRs, the FCNN is slightly better. Nonetheless, from the

over-fit plots, it can be seen that thanks to the reduced number of parameters, FCNN has a

better out-of-sample performance. A comparison of the MAPE of the mass predictions for

out-of-sample data is shown in fig.(5-8).

The execution time of the FCNN is, in general, much lower than the TCNN because the

FCNNs have much fewer parameters. If we add to this execution time the time necessary to

compute the spectrogram using scipy.signal.spectrogram, we obtain a total computational

time which is on average only about 6% greater than that of a CNN working on the time

domain data, but with a better MAPE and less over-fit due to the smaller number of pa-

rameters. Using more efficient implementations of the FFT to compute the spectrogram and

parallelizing it could reduce the FCNN pipeline execution time.
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Figure 5-6: The MAPE of the TCNN and FCNN models, evaluated on the validation data

set with a polarization equal to 0, is plotted as a function of the SNR.
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Figure 5-7: The over-fit estimator, as defined in eq.(5-12), is plotted for TCNN and FCNN

models as a function of the SNR, for data with polarization equal to 0.
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Figure 5-8: The MAPE of the prediction for out sample data with SNR=10 is plotted for

different mass pairs.
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Figure 5-9: The MAPE of the TCNN and FCNN models, evaluated on the validation data

set with a polarization equal to π{2, is plotted as a function of the SNR.
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Figure 5-10: The over-fit estimator, as defined in eq.(5-12), is plotted for TCNN and FCNN

models as a function of the SNR, for data with polarization equal to π{2.



6 Schwarzschild-de Sitter (SDS) Metric

The Schwarzschild-de Sitter’s metric describes a spherically symmetric space-time in an ex-

panding universe. It is pretty helpful to study Schwarzschild and de Sitter metrics separately

before diving into the Schwarzschild-de Sitter metric, which has a lot of common properties

with both. The Schwarzschild metric will be analyzed first, along with its singularity and

event horizon; a coordinate transformation will be used to show that the event horizon is

not a space-time singularity. On the other hand, the de Sitter metric, being the simplest

solution to Einstein’s field equations with a cosmological constant, will be analyzed along

with its cosmological horizon. Another coordinate transformation will be used to prove the

equivalence with a flat FLRW metric, which allows the de Sitter metric to be used as a

background solution under Cosmological perturbation theory. All of the relevant quantities

will be computed for both metrics, such as the Riemann, Ricci, and Einstein tensors; the

Christoffel symbols, and the Ricci scalar.

Finally, the Schwarzschild-de Sitter metric will be derived in static coordinates and trans-

formed to isotropic coordinates and a perturbative regime with linear approximations. For

an in-depth study of black holes, [69] is recommended.

6.1 Schwarzschild Metric

The Schwarzschild metric was the first exact, non-trivial solution to Einstein’s field equations

[70]. Karl Schwarzschild obtained this solution through symmetry considerations in 1915

and was published in 1916. According to Birkhoff’s theorem, the spherical limit in general

relativity implies a static metric, and under these static coordinates, the metric takes the

following form:

ds2 “

ˆ

1 ´
2m

R

˙

dT 2
´

ˆ

1 ´
2m

R

˙´1

dR2
´ R2

`

dθ2 ` sin2 θdϕ2
˘

. (6-1)

At first sight, this metric appears to have singularities at both R “ 0 and R “ 2m, but

the singularity at R “ 2m, known as the Schwarzschild radius, is not physical and it is due

only to the coordinate system chosen by Schwarzschild. This singularity disappears by using

Eddington-Finkelstein coordinates:

R̃ “ R ` 2m log

ˆ

R

2m
´ 1

˙

, (6-2)



38 6 Schwarzschild-de Sitter (SDS) Metric

T̃ “ T ˘ R̃, (6-3)

where the sign ˘ depends on the sign of T̃ for incoming or outgoing null geodesics, which

correspond to advanced or retarded coordinates respectively. Under these coordinates, the

metric is written as

ds2 “

ˆ

1 ´
2m

R

˙

dT̃ 2
´ 2dT̃dR̃ ´ R̃2

`

dθ2 ` sin2 θdϕ2
˘

. (6-4)

There is no longer a singularity at R “ 2m but the sign of the g00 component changes

when R ă 2m. If the radial geodesics are plotted, it is possible to see that when a particle

or light ray crosses this horizon, it cannot go back under advanced Eddington-Finkelstein

coordinates. Under these coordinates, the metric also has a singularity in the origin, such as

(6-1). This singularity is a space-time singularity according to the Kretschmann scalar:

K “
48m2

R6
. (6-5)

The connection coefficients in spherical coordinates for the metric (6-1) are

Γ0
01 “ Γ0

10 “ ´
m

2mR ´ R2
,

Γ1
00 “

mpR ´ 2mq

R3
,

Γ1
11 “ ´

m

2mR ´ R2
,

Γ1
33 “ sin2 θΓ1

22 “ p2m ´ Rq sin2 θ,

Γ2
12 “ Γ2

21 “
1

R
,

Γ2
33 “ ´ cos θ sin θ,

Γ3
13 “ Γ3

31 “
1

R
,

Γ3
23 “ Γ3

32 “ cot θ,

(6-6)

which shows that under the weak field limit Γi
00 “ m

R
in accordance to (3-40). With these

coefficients, it is possible to compute the non-null components of the Riemann tensor:

R0101 “
2m

R3
,

R0202 “
mp2m ´ Rq

R2
,

R0303 “ R0202 sin
2 θ,

R1212 “ ´
m

2m ´ R
,

R1313 “ R1212 sin
2 θ,

R2323 “ 2mR sin2 θ,

(6-7)
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where the other coordinates are either zero or determined by the tensor’s symmetry proper-

ties. It is important to note that, even if this metric describes a spherically symmetric mass

distribution, Schwarzschild’s metric is an exterior solution to Einstein’s field equations in a

vacuum. Therefore, the Einstein tensor, Ricci tensor, and Ricci scalar are zero.

6.2 de Sitter Universe

If a cosmological constant is included in Einstein’s equations, the simplest solution is de

Sitter’s metric. This metric describes an expanding universe, which is useful to model dark

energy. In static coordinates it is described by the following line interval:

ds2 “

ˆ

1 ´
Λ

3
R2

˙

dT 2
´

ˆ

1 ´
Λ

3
R2

˙´1

dR2
´ R2

`

dθ2 ` sin2 θdϕ2
˘

, (6-8)

in this case, there is an event horizon at r “
a

3{Λ, known as the cosmological horizon. As

in the Schwarzschild horizon, it is possible to do a coordinate transformation to remove the

singularity at r “
a

3{Λ. The de-Sitter metric can also be written in isotropic coordinates

according to the following coordinate transformation

R “ aptqr , (6-9)

T “ t ´
1

2H
logpr2a2ptq ´ H´2

q , (6-10)

ds2 “ dt2 ´ a2ptqpdr2 ` r2dΩ2
q, (6-11)

where aptq “ eHt “ et{l is the scale factor and l2 “ 3
Λ
. This metric is equivalent to a

flat FLRW metric with a scale factor aptq “ et{l. In this work, the de Sitter metric will be

chosen as the background solution for cosmological perturbation theory. Additionally, under

conformal time the metric is

ds2 “ a2pτq
“

dτ 2 ´
`

dr2 ` r2dΩ2
˘‰

, (6-12)

or in cartesian coordinates

ds2 “ a2pτq
“

dτ 2 ´ δijdx
idxj

‰

. (6-13)

This last expression is similar to the metric of cosmological perturbations in conformal time

and comoving coordinates.



40 6 Schwarzschild-de Sitter (SDS) Metric

The non-null connection coefficients for the static metric (6-8) are

Γ0
01 “ Γ0

10 “
RΛ

r2Λ ´ 3
,

Γ1
00 “

1

9
RΛpR2Λ ´ 3q,

Γ1
11 “

RΛ

R2Λ ´ 3
,

Γ1
33 “ sin2 θΓ1

22 “
1

3
RpR2Λ ´ 3q sin2 θ,

Γ2
12 “ Γ2

21 “
1

R
,

Γ2
33 “ ´ cos θ sin θ,

Γ3
13 “ Γ3

31 “
1

R
,

Γ3
23 “ Γ3

32 “ cot θ.

(6-14)

The non-null and independent components of the Riemann tensor are:

R0101 “
Λ

3
,

R0202 “ ´
R2Λ

9
pR2Λ ´ 3q,

R0303 “ R0202 sin
2 θ,

R1212 “
R2Λ

R2Λ ´ 3
,

R1313 “ R1212 sin
2 θ,

R2323 “ ´
R4Λ sin2 θ

3
.

(6-15)

In this case, this is not a vacuum solution due to the cosmological constant. Therefore, the

Ricci tensor is diagonal but not null:

R00 “
Λ

3
pR2Λ ´ 3q,

R11 “
3Λ

3 ´ R2Λ
,

R22 “ R2Λ,

R33 “ R22 sin
2 θ,

(6-16)

which implies that the Ricci scalar is constant R “ ´4Λ. The Kretschmann scalar is also

constant K “ 8Λ2

3
and, as expected, there is no singularity at the cosmological horizon.
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Finally, the non-null components of the Einstein tensor are

G00 “ ´
Λ

3
pR2Λ ´ 3q,

G11 “ ´
3Λ

3 ´ R2Λ
,

G22 “ ´R2Λ,

G33 “ ´G22 sin
2 θ,

(6-17)

In the following section, a Dirac delta will be used to derive the Schwarzschild-de Sitter

metric and fix integration constants, without the need to use the weak field limit or to find a

correspondence between an inner and outer solution. Schwarzschild coordinates will be used

to derive this metric, but it will also be written in isotropic coordinates.

6.3 Schwarzschild-de Sitter Metric in Static Coordinates

The most general spherically symmetric metric is:

ds2 “ AdT 2
´ 2BdTdR ´ CdR2

´ DdΩ2, (6-18)

where dΩ2 “ dθ2 ` sin2pθqdϕ2 is the line element of the 2-dimensional sphere and A,B,C,D

are functions of both T and T to be determined. Through the redefinition of the radial

coordinate R̃ “ R
?
D, the metric becomes:

ds2 “ ÃdT 2
´ 2B̃dTdR̃ ´ C̃dR̃2

´ R̃2dΩ2. (6-19)

Considering the following expression:

ÃdT ´ B̃dR̃, (6-20)

according to differential equations theory, it is possible to build an exact differential multi-

plying by an integration function. With this result, a new time coordinate can be built:

dT̃ “ IpÃdT ´ B̃dR̃q, (6-21)

dT̃ 2
“ I2pÃdT ´ B̃dR̃q

2
“ I2pÃ2dT 2

´ 2ÃB̃dTdR̃ ` B̃2dR̃2
q. (6-22)

It is possible to reorder the following terms in the metric:

ÃdT 2
´ 2B̃dTdR̃ “

dT̃ 2

ÃI2
´
B̃2dT̃ 2

Ã
, (6-23)

in order to rewrite the metric without a crossed term dTdR̃:

ds2 “
dT̃ 2

ÃI2
´
B̃2dR̃2

Ã
´ C̃dR̃2

´ R̃2dΩ2

“ AdT̃ 2
´ BdR̃2

´ R̃2dΩ2,

(6-24)
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where the following definition was used in the last step:

ApT,Rq “
1

ÃI2
,

BpT,Rq “ C̃ `
B̃

Ã2
.

(6-25)

The only non-null components of the Einstein tensor corresponding to the metric (6-24) are:

G00 “
A pRB1 ` pB ´ 1qBq

R2B2
, (6-26)

G01 “
9B

RB
, (6-27)

G11 “

RA1

A
´ B ` 1

R2
, (6-28)

G33 “

AR
”

R
´

9B2 ´ BRABRB
¯

` 2B
´

BRA ` RBRBRA ´ R :B
¯ı

` R2B
”

9A 9B ´ pBRAq2
ı

´ 2A2RBRB

4A2B2
,

(6-29)

G33 “ sin2
pθqG22, (6-30)

where BR is a derivative with respect to the radial coordinate and the dot (9) is a time

derivative. Given that the only non-null component of the energy-momentum tensor Tµν will

be the one corresponding to the density T00, Einstein field equations yield G01 “ 0, which

results in 9B “ 0 and the dependence of B will be only radial. Additionally, considering a

cosmological constant:

G00 ´ Λg00 “
A pRBRB ` pB ´ 1qBq

R2B2
´ ΛA

“

„

RBRB ` pB ´ 1qB

R2B2
´ Λ

ȷ

A

“

„

1 ´ BR

ˆ

R

B

˙

´ ΛR2

ȷ

A

R2
.

(6-31)

The only matter content to be considered is a point mass in the origin, which has the

following mass density ρ “
mδpRq

4πR2 , where δpRq is the Dirac delta function. Therefore, as in

[71] the energy-momentum tensor is:

T µ
ν “

¨

˚

˚

˚

˝

ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

. (6-32)
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According to Einstein field equations, G00 ´ Λg00 “ 8πT00 which can be integrated to find

B:

8πg00ρ “

„

1 ´ BR

ˆ

R

B

˙

´ ΛR2

ȷ

A

R2
,

2m
A

R2
δpRq “

„

1 ´ BR

ˆ

R

B

˙

´ ΛR2

ȷ

A

R2
,

BR

ˆ

R

B

˙

“ 1 ´ ΛR2
´ 2mδpRq,

R

B
“ R ´

Λ

3
R3

´ 2m,

1

B
“ 1 ´

Λ

3
R2

´
2m

R
,

B “

ˆ

1 ´
Λ

3
R2

´
2m

R

˙´1

.

(6-33)

Substituting B into the G11 equation

G11 ´ Λg11 “

RBRA
A

´ 3ΛR3`3R
´6m`ΛR3`3R

` 1

R2
,

0 “
RBRA

A
´

´3ΛR3 ` 3R

´6m ` ΛR3 ` 3R
`

´6m ` ΛR3 ` 3R

´6m ` ΛR3 ` 3R
,

RBRA

A
“

3ΛR3 ´ 6m

´6m ` ΛR3 ` 3R
,

BRplogAq “
3ΛR3 ´ 6m

´6mR ` ΛR4 ` 3R2
,

(6-34)

it can be integrated to find A:

A “ 3

ˆ

1 ´
Λ

3
R2

´
2m

R

˙

DpT q, (6-35)

where Dptq is an integration constant. The resulting metric is:

ds2 “ 3DpT q

ˆ

1 ´
2m

R
´

Λ

3
R2

˙

dT 2
´

ˆ

1 ´
2m

R
´

Λ

3
R2

˙´1

dR2
´ R2dΩ2. (6-36)

Finally, it is possible to reabsorb the function D with a time coordinate redefinition such

that

3DpT qdT Ñ dT. (6-37)

After this coordinate transformation, the Schwarzschild-de Sitter metric in static coordinates

is obtained:

ds2 “

ˆ

1 ´
2m

R
´

Λ

3
R2

˙

dT 2
´

ˆ

1 ´
2m

R
´

Λ

3
R2

˙´1

dR2
´ R2dΩ2. (6-38)
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This metric has the same terms as the Schwarzschild (6-1) and de Sitter (6-8) metrics.

Therefore, it will have the singularity at the origin and both the Schwarzschild and cosmo-

logical horizons. However, the region between both horizons (2m ! R !
a

3{Λ) will be

approximately flat.

6.3.1 Christoffel Symbols and Curvature Tensors

The connection coefficients are useful when computing the geodesics and curvature tensors;

with that in mind, a list of the non-null Christoffel symbols is presented in this section along

with the Ricci scalar and Riemann, Ricci, and Einstein tensors. These quantities must match

the ones corresponding to the Schwarzschild metric in the Λ Ñ 0 limit and the de Sitter

ones in the m Ñ 0 limit.

Γ0
01 “ Γ0

10 “
´3m ` ΛR3

6mR ´ 3R2 ` ΛR4
,

Γ1
00 “

pΛR3 ´ 3mq p6m ´ 3R ` ΛR3q

9R3
,

Γ1
11 “

3m ´ ΛR3

6mr ´ 3R2 ` ΛR4
,

Γ1
22 “ 2m ´ R `

Λ

3
R3,

Γ1
33 “ Γ1

22 sin
2 θ,

Γ2
12 “ Γ2

21 “
1

R
,

Γ2
33 “ ´ cos θ sin θ,

Γ3
13 “ Γ3

31 “
1

R
,

Γ3
23 “ Γ3

32 “ cot θ.

(6-39)

Effectively, all of the components match (6-6) when Λ Ñ 0 and (6-14) when m Ñ 0. With

these connection coefficients, the non-null components of the Riemann tensor are computed

R0101 “
Λ

3
,

R0202 “ ´
p3m ´ R3Λqp6m ´ 3R ` R3Λq

R2
,

R0303 “ R0202 sin
2 θ,

R1212 “
R3Λ ´ 3m

6m ´ 3R ` R3Λ
,

R1313 “ R1212 sin
2 θ,

R2323 “ ´
R

3
p6m ` R3Λq sin2 θ,

(6-40)
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which once again match (6-7) and (6-15) on the respective limits. According to this, the

Ricci tensor is

R00 “
ΛpR3Λ ´ 3R ` 6mq

3R
,

R11 “ ´
3RΛ

R3Λ ´ 3R ` 6m
,

R22 “ R2Λ,

R33 “ R22 sin
2 θ.

(6-41)

Even though there are mass terms in the Ricci tensor, all components are zero when Λ Ñ

0, which matches the Schwarzschild case. From here, the Ricci curvature scalar can be

computed, and it matches completely with the de Sitter case, with no mass terms

R “ ´4Λ, (6-42)

which implies that the mass has no asymptotic effects and is only a local perturbation. The

Einstein tensor also has mass terms, but for Λ Ñ 0 and m Ñ 0, it matches the Schwarzschild

and de Sitter metrics, respectively

G00 “ ´
Λ

3
pR2Λ ´ 3q ´

2mΛ

R
,

G11 “ ´
3RΛ

3 ´ R2Λ ´ 6m
,

G22 “ ´R2Λ,

G33 “ ´G22 sin
2 θ.

(6-43)

Lastly, the Kretschmann scalar is consistent with the previous metrics

K “
48m2

R6
`

8Λ2

3
, (6-44)

where the singularity at the center is still present.

6.4 Schwarzschild-de Sitter Metric in Isotropic Coordinates

According to [72] it is possible to write the Schwarzschild-de Sitter metric in isotropic coor-

dinates. However, in these coordinates, the metric will no longer be static, but the spatial

component of the metric will be equivalent to flat space in spherical coordinates. This metric

is useful in the Newtonian limit, given that in this regime, time and space decouple by con-

sidering an absolute time separate from three-dimensional space. From the metric in static

coordinates:

ds2 “

ˆ

1 ´
2m

R
´

Λ

3
R2

˙

dT 2
´

dR2

`

1 ´ 2m
R

´ Λ
3
R2

˘ ´ R2dΩ2, (6-45)
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the following coordinate transformation is done:

T “ t ` fpRq, (6-46)

R “ et{lr ` m `
m2

4et{lr
, (6-47)

where the function f is defined by:

df

dR
“ ´

R2

l
?
R ´ mp1 ´ m

R
´ R2

l2
q
. (6-48)

In this coordinate system, the Schwarzschild-de Sitter metric is equivalent to the McVittie

metric [73],[74]:

ds2 “

˜

1 ´ m
2aptqr

1 ` m
2aptqr

¸2

dt2 ´ aptq2
ˆ

1 `
m

2aptqr

˙4
“

dr2 ` r2dΩ2
‰

, (6-49)

where the scale factor is aptq “ exppt{lq and l2 “ 3{Λ. This metric can be written exactly

in terms of conformal time through transformation given in (4-4)

ds2 “ apτq
2

»

–

˜

1 ´ m
2apτqr

1 ` m
2apτqr

¸2

dτ 2 ´

ˆ

1 `
m

2apτqr

˙4
`

dr2 ` ρ2dΩ2
˘

fi

fl , (6-50)

Under the weak field limit, the metric is similar to the cosmological perturbation metric in

the Newton gauge with Φ “ Ψ “ ´m
ar
:

ds2 “ apτq
2

„ˆ

1 ´
2m

apτqr

˙

dτ 2 ´

ˆ

1 `
2m

apτqr

˙

`

dr2 ` r2dΩ2
˘

ȷ

. (6-51)
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cosmological perturbation of an

expanding Universe

The Schwarzschild-de Sitter metric can be interpreted as a cosmological perturbation metric

in the region between both horizons and far from them 2m ! r !
a

3{Λ. The SDS metric

in static coordinates is:

ds2 “

ˆ

1 ´
2m

R
´ H2R2

˙

dT 2
´

ˆ

1 ´
2m

R
´ H2R2

˙´1

dR2
´ R2dΩ2. (7-1)

Our goal is to re-write it as a perturbation of the FRW metric, and we will achieve this

by performing the coordinate transformation from static to comoving coordinates given in

eq.(6-9) and eq.(6-10).

Far away from the Schwarzschild horizon (m ! R) we get:

ds2 “

„

1 ´
2m pH2r2a2 ` 1q

ar pH2r2a2 ´ 1q
2

ȷ

dt2 ´ a2
„

1 `
2m pH2r2a2 ` 1q

ra pH2r2a2 ´ 1q
2

ȷ

dr2

´

„

8Hma

pH2r2a2 ´ 1q
2

ȷ

dtdr ´ r2a2dΩ2,

(7-2)

and after introducing conformal time dτ “ dt{aptq

ds2 “ a2
"„

1 ´
2m pH2r2a2 ` 1q

ra pH2r2a2 ´ 1q
2

ȷ

dτ 2 ´

„

1 `
2m pH2r2a2 ` 1q

ra pH2r2a2 ´ 1q
2

ȷ

dr2

´

„

8Hm

pH2r2a2 ´ 1q
2

ȷ

dτdr ´ r2dΩ2

*

.

(7-3)

Comparing with equation (4-28) we obtain

ψ “ ´
m pH2r2a2 ` 1q

ra pH2r2a2 ´ 1q
2 , (7-4)

ϕ “ ´
H2mr2a2 ` m

3ra pH2r2a2 ´ 1q
2 , (7-5)

ω1
“

4Hm

pH2r2a2 ´ 1q
2 , (7-6)

E “
2 pH2mr2a2 ` mq

ra pH2r2a2 ´ 1q
2 . (7-7)
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After integrating eq.(4-29) and eq.(7-6) we finally get the scalar cosmological perturbations

variables as defined in eq.(4-28)

ω “
2m tanh´1

pHraq

a
´

2Hmr

H2r2a2 ´ 1
, (7-8)

χ “
2mr

`

Hra tanh´1
pHraq ´ 1

˘

a
`

1

2
r2Cpτq ` Dpτq , (7-9)

where C and D are functional constants of integration. Since we are only interested in per-

turbations that should vanish in a limit in which the mass vanishes, the physically interesting

solutions correspond to C “ D “ 0.

Using CPT we can derive explicitly the gauge transformation between the static coordi-

nates and the Newton gauge. Under an infinitesimal space-time translation of the form

x̃0 “ x0 ` ζ, (7-10)

x̃i “ xi ` B
iβ, (7-11)

the gauge transformations are [63]

ϕ̃ “ ϕ ´
1

3
∇2β `

aτ
a
ζ, (7-12)

ω̃ “ ω ` ζ ` βτ , (7-13)

ψ̃ “ ψ ´ ζτ ´
aτ
a
ζ, (7-14)

χ̃ “ χ ` 2β , (7-15)

where we are denoting with a subscript the derivative respect to conformal time, i.e. for

example aτ “ da
dτ
. Imposing the Newton gauge condition

ωN “ χN “ 0, (7-16)

after solving the differential equations (7-13) and (7-15) we get

βN “ mr

„

1

a
´ Hr tanh´1

pHraq

ȷ

, (7-17)

ζN “
m

“

´raτ ´ 2H2r2a3 tanh´1
pHraq ` 2Hra2 ` 2a tanh´1

pHraq
‰

a2 pH2r2a2 ´ 1q
. (7-18)

After substituting eq.(7-4,7-5) and eq.(7-17,7-18) in the gauge transformations in eq.(7-12)

and eq.(7-14) we finally obtain the perturbations in the Newton gauge

ΨN “ ψ ´ BτζN ´
aτ
a
ζN “ ´

m

ar
, (7-19)

ΦN “ ϕ ´
1

3
∇2βN `

aτ
a
ζN “ ´

m

ar
. (7-20)
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Instead of finding the transformation taking to the Newton gauge given in eq.(7-17,7-18) we

could have also computed the Bardeen’s potentials [62] directly from eqs.(7-4-7-7)

ΨB “ ψ ´
1

a

”

a
´χτ

2
´ ω

¯ı

τ
“ ´m

ar
, (7-21)

ΦB “ ϕ `
1

6
∇2χ ´

aτ
a

´

ω ´
χτ

2

¯

“ ´m
ar
. (7-22)

As expected the Bardeen’s potentials reduce to the Newton gauge potentials obtained in

eq.(7-20) and eq.(7-19), and the metric takes the form

ds2 “ a2
„ˆ

1 ´
2m

ar

˙

dτ 2 ´

ˆ

1 `
2m

ar

˙

`

dr2 ` r2dΩ2
˘

ȷ

. (7-23)

The metric above is the weak field limit of the McVittie solutions, and an exact coordinate

transformation from the SDS metric in static coordinates to the McVittie solution is known.

We can deduce that the combination of the radial coordinate transformation R “ a r and the

gauge transformation given in eq.(7-17,7-18) is the weak field limit of such an exact coordi-

nate transformation. This confirms that our method is correct since we have independently

obtained the relation between the two metrics.

For solutions where an exact coordinate transformation is unknown, the method we de-

veloped has the advantage of allowing to write an SSS metric as a perturbed FRW solution

even in the absence of an exact coordinate transformation.
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perturbations of FLRW

In a modified gravity theory (MGT), the spherically symmetric vacuum solution associated

with a point mass may differ from the SDS metric, and we could make an ansatz with a de

Sitter background of this type

ds2 “
`

1 ´ mhtpRq ´ H2R2
˘

dT 2
´

`

1 ´ mhrpRq ´ H2R2
˘´1

dR2
´ R2dΩ2 , (8-1)

where we are not assuming anymore that gtt “ g´1
rr because in an MGT, the field equations

may not imply this relation under the assumption of spherical symmetry. In a generic MGT,

spherical symmetry may also not imply that, as in GR, Btgtt “ Btgrr “ 0, but here we will

only consider solutions that can be written in static coordinates. We will not assume any

specific MGT and adopt a purely phenomenological approach to obtain the Newtonian gauge

form of these SSS metrics. These can then be used to test them with observational data,

and only after the metrics compatible with observations have been identified could we try

to find which MGT they are solutions of.

After applying to eq.(8-1) the coordinate transformations given in eq.(6-9) and eq.(6-10),

far from the Schwarzschild horizon, i.e. assuming m ! R, we get

ds2 “ a2
"

H6r6a6 ´ H4r4a4rmhrpraq ` 3s ´ 1 ` mhtpraq

pH2r2a2 ´ 1q
3 dτ 2

`
H2r2a2 rm2hrpraq2 ` mhrpraq ´ mhtpraqs ` 3H2r2a2

pH2r2a2 ´ 1q
3 dτ 2

´

„

1 `
mhrpraq pH2r2a2 ´ mhrpraq ´ 1q ` H2mr2a2 pH2r2a2 ´ 1qhtpraq

pH2r2a2 ´ 1q
3

ȷ

dr2

´
2Hmra rhrpraq pH2r2a2 ´ mhrpraq ´ 1q ` pH2r2a2 ´ 1qhtpraqs

pH2r2a2 ´ 1q
3 dτdr ´ r2dΩ2

*

.

(8-2)

Comparing the metrics in eq.(8-2) and eq.(4-28) we can identify the perturbation variables
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in the case of spherical symmetry as

ψ “
H2r2a2m rhrpraq p´H2r2a2 ` mhrpraq ` 1q ´ htpraqs ` mhtpraq

2 pH2r2a2 ´ 1q
3 , (8-3)

ϕ “
m2hrpraq2 ´ m pH2r2a2 ´ 1q rH2r2a2htpraq ` hrpraqs

6 pH2r2a2 ´ 1q
3 , (8-4)

E “
m pH2r2a2 ´ 1q rH2r2a2htpraq ` hrpraqs ´ m2hrpraq2

pH2r2a2 ´ 1q
3 , (8-5)

ω1
“

Hmra pH2r2a2 ´ 1q rhrpraq ` htpraqs ´ Hm2rahrpraq2

pH2r2a2 ´ 1q
3 . (8-6)

Solving equation (4-29) and integrating eq.(8-6) we can finally find the perturbations in the

general form

ω “ Hma

ż

rrhrpraq ` htpraqs

pH2r2a2 ´ 1q
2 dr, (8-7)

χ “ m

ż

k1

ż

H2k22a
2htpk2aq ` hrpk2aq

k2 pH2k22a
2 ´ 1q

2 dk2 dk1 (8-8)

`
1

2
r2C ` D, (8-9)

where C and D are integration constants. Well behaved perturbations require C “ D “ 0.

These can be replaced in eq.(7-21) and eq.(7-22) to obtain the Bardeen’s potentials.

For applications such as the study of gravitationally bounded objects, we are interested

in regions of space-time far from the cosmological horizon, i.e., a r ! 1{H. Under this

assumption, the perturbations can be written as

ψ “
1

2
mhtpraq , (8-10)

ϕ “ ´
1

6
mhrpraqrmhrpraq ` 1s , (8-11)

ω “ Hma

ż

rrhrpraq ` htpraqs dr , (8-12)

χ “ m

ż

k1

ż

hrpk2aq

k2
dk2 dk1. (8-13)

In this limit, the Bardeen’s potentials take the form

ΦB “
m

2

ż

hrparqdr

r
, (8-14)

ΨB “ ´
m

2
htparq. (8-15)

It is easy to check that for htpRq “ hrpRq “ 2{R the Bardeen’s potentials in eq.(8-14) and

eq.(8-15) reduce to the SDS Newton gauge perturbations obtained in eqs.(7-20) and (7-19).
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As shown above, contrary to the case of general relativity, the two potentials ΦB and ΨB

can be different, which is a consequence of the fact that, for a general SSS metric, htpRq

and hrpRq can be different. Bardeen’s potentials can be used to test these SSS metrics using

physical observables, which are more conveniently computed in the framework of cosmological

perturbation theory. Once the SSS metrics in agreement with observational data have been

identified using both their static coordinates and cosmological perturbations form, it will be

possible to search for the modified gravity theories they are solutions to. The advantage

of this approach is that it is independent of the modified gravity theory and narrows the

search of modified gravity theories to the ones that admit the SSS metric compatible with

observational data as solutions.



9 Turn Around Radius in Static

Spherically Symmetric Metric

The turnaround radius is the distance from the center of the coordinate system where the

gravitational attraction cancels with the universe’s expansion and the radial acceleration is

zero. If a test particle is placed inside this radius, it will fall inwards due to gravitational

collapse, and if it is placed outside, it will drift away due to the universe’s accelerated ex-

pansion. Therefore, both the radial velocity and acceleration of a test mass must cancel at

this radius. This result agrees with the maximum radius of spherical collapse.

In this chapter, the turnaround radius is computed for a general static metric through

the formalism of spherical collapse and radial geodesics. This result is applied to the

Schwarzschild-de Sitter metric in static coordinates (6-38) and is extended to include non-

static metrics. Afterward, the same computation is taken for a perturbed metric in the

Newton gauge, but, thanks to the Bardeen potentials, this result is entirely general and

gauge independent. Similarly, it is also applied to the Schwarzschild-de Sitter metric match-

ing the result obtained in static coordinates.

9.1 Maximum Spherical Collapse Radius

The turnaround radius is computed under the spherical collapse formalism according to

the procedure presented in [75], and [76]. Under this formalism, a spherical overdensity is

considered inside a homogeneous and isotropic expanding universe. The gravitational pull

created by the overdensity may halt the expansion in a spherical region, collapsing to a point

of infinite density. It will not collapse into a singularity; it will stop when all particles have

virialized according to:

Ek “ ´
Ep

2
, (9-1)

where Ek and Ep are the kinetic and potential energies, respectively. Both mass and vacuum

energy density are present in the spherical region due to the overdensity and the cosmological

constant. Due to this, it must follow the Friedmann equation (3-56) with Ω “ Ωm `ΩΛ and

the density parameter corresponding to dark energy satisfies the equation ΩΛ “ ωΩm with
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ω “ 2πρ{Λ:

ˆ

9a

a

˙2

“ H2
0 pΩm ` ΩΛq ´

k

a2

“ H2
0Ωm,0a

´3
`

a3ω ´ κa ` 1
˘

,

(9-2)

where Ωm,0H
2
0κ “ k has been defined. The turnaround radius occurs where 9a is zero:

a3ω ´ κa ` 1 “ 0. (9-3)

the minimum value of κ to have a positive real solution for (9-3) must be [77]

κmin “ 3 3

c

ω

4
. (9-4)

According to this value, the solution of (9-3) is a maximum scale factor:

amax “
3

?
2ω “

3
a

4πρ{Λ. (9-5)

Finally, the maximum size of the spherical region corresponding to this scale factor can be

computed taking into account the overdensity ρ “ m{V “ 3m
4πr3

, where r is the comoving

radius, while the physical radius is:

RTA “ amaxr “ amax
3

c

3m

4πρ
“

3
a

4πρ{Λ 3

c

3m

4πρ
“

3

c

3m

Λ
. (9-6)

This limit represents the maximum size a structure can reach before collapsing gravitation-

ally. A similar method to obtain this limit is approached in the following sections.

9.2 Turn Around Radius in Static Coordinates

In general relativity, Birkhoff’s theorem guarantees that a spherical symmetric metric will

be static [23] and can be written according to (6-24):

ds2 “ F pRqdT 2
´

dR2

HpRq
` R2dΩ2, (9-7)

where F y H, are different functions in general. The geodesic equations (3-33) describe

the motion of a matter particle inside this metric and, due to its symmetry, it’s enough to

consider only the radial geodesic

d2R

ds2
“

1

2
HpRq

BF pRq

BR

ˆ

dT

ds

˙2

´
1

2HpRq

BHpRq

BR

ˆ

dR

ds

˙2

, (9-8)

this equation determines if the particle falls inward or drifts outwards. According to this, the

turnaround radius is the point where the acceleration is zero. However, the radial velocity
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must also be zero to have the particle fixed at the turnaround radius. This means that
dR
ds

“ 0, and the geodesic equation becomes:

d2R

ds2
“

1

2
HpRq

BF pRq

BR

ˆ

dT

ds

˙2

. (9-9)

This implies that to have no radial acceleration, the turn around radius rTA must follow

BF

BR

ˇ

ˇ

ˇ

ˇ

RTA

“ 0, (9-10)

according to this, given a metric, the turnaround radius can be computed by deriving the

g00 component and solving (9-10) as long as the metric has the same form as (6-24).

In modified gravity theories, spherical symmetry no longer guarantees a static metric.

With this in mind, the same computation is carried out for a non-static metric. The ansatz

(6-24) is completely general and independent of the gravity theory, but it is no longer static

ds2 “ F pT,RqdT 2
´

dR2

HpT,Rq
` R2dΩ2, (9-11)

where the functions F and H now depend on both T and R. In this case, the radial geodesic

is

d2R

ds2
“

1

2
HpT,Rq

BF pT,Rq

BR

ˆ

dT

ds

˙2

´
1

2HpT,Rq

BHpT,Rq

BR

ˆ

dR

ds

˙2

´
1

HpT,Rq

BHpT,Rq

BT

ˆ

dT

ds

˙ ˆ

dR

ds

˙

,

(9-12)

as in the static case, null radial velocity is required dR
ds

“ 0 and a similar result is obtained

d2R

ds2
“

1

2
HpT,Rq

BF pT,Rq

BR

ˆ

dT

ds

˙2

, (9-13)

it is expected as both metrics have a similar Γ1
00 connection coefficient which, according

to (3-36), is related to the Newtonian gravitational potential. This result arises from the

definition of the Christoffel symbols (3-3), as spherical symmetry allows the metric to be

expressed diagonally. From here, the same condition is achieved for the turnaround radius

RTA

BF

BR

ˇ

ˇ

ˇ

ˇ

RTA

“ 0, (9-14)

As an example, this result will be applied to the Schwarzschild-de Sitter metric.

9.2.1 SDS Turn Around Radius

The static Schwarzschild-de Sitter metric (6-38) is given by

F pRq “ HpRq “

ˆ

1 ´
2m

R
´

ΛR2

3

˙

. (9-15)
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Deriving with respect to the radial coordinate

BRF pRq “

ˆ

2m

R2
´ 2

ΛR

3

˙

. (9-16)

According to (9-10) the turnaround radius RTA must be a solution to the equation:

2m

R2
TA

´
2Λ

3
RTA “ 0. (9-17)

Therefore, the turnaround radius for the static Schwarzschild-de Sitter metric is

RTA “
3

c

3m

Λ
. (9-18)

This result agrees with what is expected intuitively due to both opposing effects. A higher

mass increases the gravitational pull, which allows even bigger structures. On the other

hand, a greater gravitational constant accelerates the universe’s expansion, reducing the

turnaround radius. The previous computation is completely general and agrees with the one

found in [75]. However, it is not always possible to take the metric to the form given by

(6-24) required to use the result in (9-10). The turnaround radius will be computed under

the theory of cosmological perturbations as a function of the gauge-invariant potentials to

generalize this result. However, to compare the results, the Bardeen potentials of the static

metric will first be obtained in the following section.

9.3 Gauge Independent Turn Around Radius

To obtain the turnaround radius, a condition similar to the one in (9-10) will be computed

using cosmological perturbation theory. In this section, the procedure from [26] is extended to

consider time-dependent perturbations. However, the same turnaround radius expression is

achieved. Additionally, it is gauge-independent by using the Bardeen potentials. In Newton’s

gauge, the Bardeen potentials are A “ Ψ and C “ ´Φ, which will ease the computation. To

apply this result, the cosmological perturbation Schwarzschild-de Sitter metric (7-23) will

be used. In the Newton gauge, the metric can be written as:

ds2 “ a2
“

p1 ` 2Ψqdτ 2 ´ p1 ´ 2Φq
`

dr2 ` r2dΩ2
˘‰

, (9-19)

which is completely general considering the Bardeen potentials. The non-null Christoffel

symbols for this metric are given by (4-35), taking into account that the perturbations can

be a function of both the radius and time. Therefore, the geodesic equations are

dvµ

ds
` Γµ

00pv
0
q
2

` 2Γµ
01v

0v1 ` Γµ
11pv1q2 “ 0. (9-20)

For a radially moving particle, the four-velocity is:

vµ “ pv0, v1, 0, 0q. (9-21)
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However, only the first two geodesic equations are needed:

dv0

ds
`

ˆ

a1

a
` Ψ1

˙

pv0q2 ` 2BrΨv
0v1 `

„

a1

a
p1 ` 2Φ ´ 2Ψq ` Φ1

ȷ

pv1q2 “ 0, (9-22)

dv1

ds
` BrΨpv0q2 ` 2

ˆ

a1

a
` Φ1

˙

v0v1 ` BrΦpv1q2 “ 0, (9-23)

where the prime (1) is a derivative with respect to conformal time τ . On the other hand,

the physical radius is defined as R “ ar, and its derivatives with respect to the cosmological

time in terms of the comoving radius r are:

dR

dt
“ 9ar ` a 9r, (9-24)

d2R

dt2
“ :ar ` 2 9a 9r ` a:r, (9-25)

where the dot (9) corresponds to a derivative with respect to cosmological time t. These

derivatives can be simplified considering the following relations:

9r “
dr

dt
“
dr

dτ

dτ

dt
“

1

a

dr

ds

ds

dτ
“

v1

av0
, (9-26)

:r “
d

dt

ˆ

v1

av0

˙

“ ´
9a

a2
v1

v0
`

1

a2v0
d

ds

ˆ

v1

v0

˙

. (9-27)

Substituting in (9-25):

d2R

dt2
“ :ar ` 2 9a

v1

av0
` a

„

´
9a

a2
v1

v0
`

1

a2v0
d

ds

ˆ

v1

v0

˙ȷ

“ :ar ` 9a
v1

av0
`

1

av0

„

1

v0
dv1

ds
´

v1

pv0q2

dv0

ds

ȷ

.

(9-28)

Similar to the computation in static coordinates, the turnaround radius is the distance where

both the radial velocity and acceleration are zero:

d2R

dt2
“ 0. (9-29)

dR

dt
“ 0, (9-30)

Additionally, the four-velocity can be expressed perturbatively such that it can be considered

at rest at zeroth order:

vµ “ vµ0 ` δvµ “ p1{a, 0, 0, 0q ` δvµ, (9-31)

this velocity is replaced in both the turnaround condition (9-29) and the geodesic equation

(9-23) up to linear order

:ar ` 2 9aδv1 ` a
dδv1

ds
“ 0, (9-32)
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dδv1

ds
`

BrΨ

a2
` 2

ˆ

a1

a
` Φ1

˙

δv1

a
“ 0. (9-33)

Finally, considering that 9a “ da
dt

“ da
dτ

dτ
dt

“ a1

a
, it is substituted in (9-33) and (9-32):

:ar ` 2 9aδv1 ` a

„

´
BrΨ

a2
´ 2

ˆ

a1

a
` Φ1

˙

δv1

a

ȷ

“ 0,

:ar ` 2 9aδv1 ´
BrΨ

a
´ 2

a1

a
δv1 ´ 2Φ1δv1 “ 0,

:ar ` 2 9aδv1 ´
BrΨ

a
´ 2 9aδv1 ´ 2Φ1δv1 “ 0,

:ar ´
BrΨ

a
´ 2Φ1δv1 “ 0.

(9-34)

Considering a null radial velocity, the turnaround radius must follow the condition

:ar ´
BrΨ

a
“ 0, (9-35)

where once again the dot (9) denotes a cosmological time (t) derivative. This is the same

result found in [26] but for non-static metrics. The result is again independent of the static

nature of the metric, which is probably due to the spherical symmetry. However, this method

does not rely on having a metric of the form (6-24) which makes this result much more gen-

eral than the previously computed. Knowing the Bardeen potentials, specifically Ψ, the

turnaround radius can be computed using equation (9-35). This can be achieved in any

gauge according to (4-18).
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9.3.1 SDS Turn Around Radius

The cosmological perturbation Schwarzschild-de Sitter metric (7-23) has Bardeen potentials

Ψ “ Φ “ ´m
ar
, where the integration constant D has been ignored. The turnaround radius

can be computed by deriving Ψ with respect to r

BrΨ “
m

ar2
(9-36)

The turnaround radius is a solution to (9-35):

:ar ´
BrΨ

a
“ :ar ´

m

r2a2
“ 0. (9-37)

In this case, the following turnaround radius is obtained:

rTA “ 3

c

m

:aa2
, (9-38)

where a “ et{l is the de Sitter scale factor. Therefore, the comoving turn around radius is

rTA “ e´t{l 3
?
ml2. (9-39)

Going back to the physical coordinates according to (4-3) the physical turnaround radius is

RTA “ et{lrTA “
3

?
ml2 “

3
a

3m{Λ. (9-40)

This result matches exactly the one obtained in a similar way for static coordinates (9-18).

However, this formalism can be applied to any cosmological perturbation metric by comput-

ing the Bardeen potentials.

In this chapter, the turnaround radius was computed under three different methods: spher-

ical collapse, radial geodesics of the static metric, and the cosmological perturbation metric.

All of the results are consistent for the Schwarzschild-de Sitter metric, with a turnaround

radius of RTA “ 3

b

3m
Λ
.

9.4 Gauge invariant computation of the turnaround radius

for SSS metrics

The advantage of the gauge-invariant definition given in eq.(9-35) is that we can obtain the

turnaround radius from the metric of cosmological perturbations in any gauge. For example,

starting from the SDS metric written in a gauge different from the Newton gauge, such as in

eq.(7-3), we could compute the Bardeen’s potentials defined in eq.(7-22) and eq.(7-21), and

then solve eq.(9-35).
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The equivalence between eq.(9-10) and eq.(9-35) can be shown for example for the class

of SSS metric in eq.(8-1) for which

F pRq “ 1 ´ mhtpRq ´ H2R2 , (9-41)

and for which the corresponding Bardeen’s potential ΨB is given eq.(8-15).

Combining eq.(8-15) and eq.(9-35) we get the general gauge invariant condition for the

turn around radius

2H2R ` mh1
tpRq “ 0 (9-42)

which is in agreement with eq.(9-10).

We can apply this method for example to the SDS metric, corresponding to ht “ 2{R, for

which eq.(9-42) takes the form

2H2R ´ 2
m

R2
“ 0, (9-43)

which gives the solution

RTA “ 3

c

m

H2
(9-44)

in agreement with the result obtained in static coordinates.

9.5 Newton gauge form for different SSS metrics

9.5.1 Brans-Dicke Theory

In Brans-Dicke (BD) theory, the Jebsen-Birkhoff theorem [78] is valid if the scalar field is

time-independent. Consequently, under the assumption of a static scalar field, the static

ansatz for the metric adopted in [25] should also give the most general spherically symmetric

solution. Applying a perturbative approach the solution of the field equations for the Brans-

Dicke theory can be written as [79]

ds2 “

„

1 ´ p1 ` ϵq
2m

R
´ p1 ´ 2ϵqH2R2

ȷ

dt2´

„

1 ´ p1 ´ ϵq
2m

R
´ p1 ´ 4ϵqH2R2

ȷ

dR2
´R2dΩ2 ,

(9-45)

where ϵ “ 1
2ωBD`3

and ωBD is the Brans-Dicke scalar field’s coupling constant [80]. This

solution reduces to SDS assuming the observer is far from the cosmological horizon (R !

1{H) in the limit ϵ Ñ 0, which is also the limit in which the BD theory reduces to GR.

Applying the coordinate transformation given in eq.(6-9) and eq.(6-10) and using confor-

mal time dt “ a dτ the metric in eq.(9-45) takes the form

ds2 “ a2
„ˆ

1 ´
2mp1 ` ϵq

ar
` 2ϵH2r2a2

˙

τ 2 ´

ˆ

1 ´
2mp1 ` ϵq

ar
´ 4ϵH2r2a2

˙

dr2

´8Hmdτdr ´ r2dΩ2
‰

.

(9-46)
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Comparing with equation (4-28) and integrating eq.(4-29) we get

ψ “
ϵH2a3r3 ´ mp1 ` ϵq

ar
, (9-47)

ϕ “
2ϵH2a3r3 ´ mp1 ´ ϵq

3ar
, (9-48)

ω “ 4Hmr, (9-49)

χ “ ´
2mrp1 ´ ϵq

a
´
ϵ

2
Ha2r4. (9-50)

From eq.(7-16) we can find the transformation to go to the Newton Gauge gauge, defined by

βN “ ´
mrp1 ´ ϵq

a
´
ϵ

4
Ha2r4, (9-51)

ζN “ ´Hmrp3 ` ϵq ´
ϵ

2
H3r4a3. (9-52)

After substituting eqs.(9-47-9-48) and eqs.(9-51-9-52) in the gauge transformations in eq.(7-12)

and eq.(7-14) we finally obtain the perturbations in the Newton gauge

ΨN “ ψ ´ BτζN ´
aτ
a
ζN “ H2R2ϵ ´

mp1 ` ϵq

R
, (9-53)

ΦN “ ϕ ´
1

3
∇2βN `

aτ
a
ζN “ ´H2R2ϵ ´

mp1 ´ ϵq

R
, (9-54)

where R “ a r. Alternatively, we can obtain the same result without computing any gauge

transformation, taking advantage of the gauge invariance of the Bardeen’s potentials, sub-

stituting in eq.(7-21) and eq.(7-22) the perturbations obtained in eq.(9-47-9-50), getting

again

ΨB “ H2R2ϵ ´
mp1 ` ϵq

R
, (9-55)

ΦB “ ´H2R2ϵ ´
mp1 ´ ϵq

R
, (9-56)

which coincide with the Newton gauge result as expected due to the gauge invariance of ΨB

and ΦB.

The same result can also be obtained from eq.(8-14) and eq.(8-15) with ht “ 2p1` ϵq{R´

2ϵH2R2{m and hr “ 2p1 ´ ϵq{R ´ 4ϵH2R2{m. The potentials reduce to the GR result

ΦN “ ΨN “ ´m
ar

in eq.(7-19,7-20) when ϵ Ñ 0.

From the Bardeen’s potential computed in eq.(9-55) we get the turnaround radius

rTA “
1 ` ϵ

a
3

c

m

H2
, (9-57)

which corresponds to the physical radius

RTA “ arTA “ 3

c

m

H2
p1 ` ϵq , (9-58)
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in agreement with [25].

In general relativity, the absence of anisotropic pressure perturbations in the vacuum

implies that ΦN “ ΨN while in BD theory, the field equations do not imply this anymore,

and they can be different. Note we have recovered, far from the cosmological horizon, the

metric computed in [25] solving the perturbation equations in the Newton gauge. This

explicitly shows the coordinate transformation between the solution in static and comoving

coordinates and that the solutions are indeed the same. The advantage of this approach is

that it allows deriving the metric as a Newton gauge perturbation of the FLRW solution

directly from the metric in static coordinates, without the need to solve the perturbed field

equations again as it was done in [25].

9.5.2 Power law modifications of the de Sitter metric

Flat rotational curves can be explained by a metric with a power law dependence in the

radius [81] as seen in the final section of this chapter. This is the motivation for studying

more general power law modifications. Let’s consider the sub-class of SSS metrics given in

eq.(8-1) corresponding to this choice of ht, hr

htpRq “ λ1R
n1 , (9-59)

hrpRq “ λ2R
n2 . (9-60)

Following the same procedure shown in the previous section, we first identify the perturba-

tions in the spherically symmetric form given in eq.(4-28)

ϕ “ ´
1

6

“

mλ2praq
n
2 ` m2λ22praq

2n2
‰

, (9-61)

ψ “ ´
1

2
mλ1praq

n1 , (9-62)

ω “ Hmar2
„

λ1parqn1

2 ` n1

`
λ2parqn2

2 ` n2

ȷ

, (9-63)

χ “

λ2mr
2parqn2

´

λ2mpraqn2

n2`1
` 4

n2`2

¯

4n2

. (9-64)

We can then compute the Bardeen’s potentials in the region m ! R ! 1{H

ΨB “ ´
mλ1praqn1

2
, (9-65)

ΦB “
mλ2praqn2

2n2
. (9-66)

The difference between the Ψ and Φ is due to the difference between gtt and g´1
rr in static

coordinates, and it could arise in vacuum solutions of modified gravity theories admitting

this SSS solution.

The turnaround radius in comoving coordinates is given by

rTA “
1

a

ˆ

´
mλ1n1

2H2

˙
1

2´n1

, (9-67)
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while in static coordinates it is

RTA “

ˆ

´
mλ1n1

2H2

˙
1

2´n1

, (9-68)

which reduces to eq.(9-40) when λ1 “ 2 and n1 “ ´1.

9.5.3 Exponential modifications of the de Sitter metric

Exponential modifications could be interpreted as a possible large-scale extension of the

power law (i.e. power law could be considered the leading order term of the exponential),

but we didn’t investigate this in the thesis. For the sub-class of SSS metrics given in eq.(8-1)

corresponding to this choice of ht, hr

htpRq “ λ1e
b1R , (9-69)

hrpRq “ λ2e
b2R , (9-70)

for the metric perturbations we get

ϕ “ ´
mλ2e

b2ra ` m2λ22e
2b2ra

6
, (9-71)

ψ “ ´
mλ1e

b1ra

2
, (9-72)

ω “
Hm

“

b21λ2e
b2rapb2ra ´ 1q ` b22λ1e

b1rapb1ra ´ 1q
‰

2b21b
2
2a

, (9-73)

χ “
λ22m

2e2b2ra

8b22a
2

`
λ2me

b2ra

2b22a
2

`
1

2
λ22m

2r2Eip2b2raq `
1

2
λ2mr

2Eipb2raq (9-74)

´
λ22m

2re2b2ra

4b2a
´
λ2mre

b2ra

2b2a
, (9-75)

where Eipzq is the exponential integral function defined as

Eipzq “ ´

ż 8

´z

e´t

t
dt. (9-76)

The corresponding Bardeen’s potentials are

ΨB “ ´
1

2
λ1me

b1ra, (9-77)

ΦB “
1

2
λ2mEipb2raq. (9-78)

Note that in the above expressions we are only giving the leading order terms in the region

m ! R ! 1{H.



64 9 Turn Around Radius in Static Spherically Symmetric Metric

9.5.4 Logarithmic modifications of the de Sitter metric

Logarithmic modifications are studied from a mathematical point of view without any specific

physical motivation. In the sub-class of SSS metrics given in eq.(8-1) corresponding to this

choice of ht, hr

htpRq “ λ1 log b1R , (9-79)

hrpRq “ λ2 log b2R, (9-80)

the cosmological perturbations are

ϕ “ ´
mλ2 log parb2q ` m2λ22rlog parb2qs2

6
, (9-81)

ψ “ ´
mλ1 log parb1q

2
, (9-82)

ω “
1

4
Hmr2ar2λ1 logpb1raq ` 2λ2 logpb2raq ´ λ1 ´ λ2s, (9-83)

χ “
1

6
λ22m

2r2 log3pb2raq ´
1

4
λ22m

2r2 log2pb2raq `
1

4
λ22m

2r2 logpb2raq (9-84)

`
1

4
λ2mr

2 log2pb2raq ´
1

4
λ2mr

2 logpb2raq ´
1

8
λ22m

2r2 `
1

8
λ2mr

2. (9-85)

and the corresponding Bardeen’s potentials far away from the horizons (m ! R ! 1{H) are

ΨB “ ´
1

2
λ1m log pb1raq , (9-86)

ΦB “
1

4
λ2m rlog pb2raqs

2 . (9-87)

The turnaround radius can be calculated analytically by solving eq.(9-10), obtaining

rTA “
1

Ha

c

mλ1
2

, (9-88)

which in static coordinates gives

RTA “
1

H

c

mλ1
2
. (9-89)

9.6 SSS metrics giving flat rotation curves

The SSS metric[81] which gives flat rotation curves is

ds2 “

ˆ

R

Rc

˙2v2

dt2 ´
“

1 ´ v2fpRq ´ H2R2
‰

dR2
´ R2dΩ2. (9-90)
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Applying the coordinate transformation given in eq.(6-9) and eq.(6-10) and using con-

formal time, in the low tangential velocity regime and far from the cosmological horizon

(v ! 1, R ! 1{H), the metric takes the following form

ds2 “ a2

#

„

1 ` H2r2a2 ` 2v2 log
ar

Rc

ȷ

dτ 2 ´

«

1 ´ 2H2r2a2 ´ v2fparq

ff

dr2

´

„

6H3r3a3 ` 2Hrv2a

ˆ

fparq ` 2 log
ar

Rc

˙ȷ

drdτ ´ r2dΩ2

*

.

(9-91)

Comparing with equation (4-28) and integrating eq.(4-29) we get

ψ “
H2r2a2

2
` v2 log

ˆ

ar

Rc

˙

, (9-92)

ϕ “
1

3
H2r2a2 `

v2

6
fparq , (9-93)

ω “
1

2

ż r

0

"

´2Hrv2a

„

fpraq ` 2 log

ˆ

ra

Rc

˙ȷ

´ 6H3r3a3
*

dr , (9-94)

χ “

ż r

0

k1

ż k1

0

ˆ

´
v2fpk2aq

k2
´ 2H2k2a

2

˙

dk2 dk1 . (9-95)

We can then compute the Bardeen’s potential by substituting eqs.(9-92-9-95) in eq.(7-21)

ΨB “ v2 log

ˆ

R

Rc

˙

´
1

2
H2R2. (9-96)

This agrees with the results obtained in [81] with an additional term due to the cosmological

constant.

To better understand this solution we can compute the radial energy density profile using

Einstein’s equation G0
0 “ 8πT 0

0 “ 8πρ

8πρ “ G0
0 “ 3H2

` 2∇2Φ ´ 6HΦ1
“

2v2

a2r2
´ 6H2. (9-97)

In terms of the physical radius R “ a r we get

ρpRq “
2v2

8πR2
´

3H2

4π
, (9-98)

and assuming flatness the total energy contained inside a sphere of radius R is obtained by

integrating the density ρ

MpRq “

ż R

0

4πR12ρpR1
qdR1

“

ż R

0

`

v2 ´ 3H2R12
˘

dR1
“ v2R ´ H2R3. (9-99)

We have obtained the expected linear behavior as in [81] with an additional cosmological

constant term. This confirms that the method we have used to re-write the SSS solution in

eq.(9-90) as a perturbed FRW metric is giving correct results.



10 Gravitational Stability Mass in

scalar-tensor theories

We will focus on the class of scalar-tensor theories defined by the action in [82]:

S “

ż

d4x
?

´g

„

1

2
fpR, ϕ,Xq ´ 2Λ ` Lm

ȷ

, (10-1)

where Λ is the bare cosmological constant, ϕ is a scalar field, and X “ ´1
2
BµϕBµϕ is the

scalar field’s kinetic term, and we used a system of units in which c “ 1.

For non-relativistic matter with energy-momentum tensor

δT 0
0 “ δρm, δT

0
i “ ´ρmvm,i, (10-2)

where vm is the matter velocity potential, and using the metric for scalar perturbations in

the Newton gauge

ds2 “ ´p1 ` 2Ψqdt2 ` a2p1 ´ 2Φqδijdx
idxj, (10-3)

the Fourier’s transform of the Einstein’s equations give the modified Poisson equation [82]

Ψk “ ´4πG̃eff
a2

k2
ρmδk, (10-4)

where k is the comoving wave number, the subscript k denotes the corresponding Fourier

modes, and δk is the gauge-invariant matter density contrast. The quantity G̃eff , normally

interpreted as the effective gravitational ”constant”, is given by [82]

G̃eff “
1

8πF

f,X ` 4
´

f,X
k2

a2
F,R

F
`

F 2
,ϕ

F

¯

f,X ` 3
´

f,X
k2

a2
F,R

F
`

F 2
,ϕ

F

¯ , (10-5)

where F “
Bf
BR .

10.1 Gravitational stability mass

According to [83] and [26] the turnaround radius can be computed from the gauge-invariant

Bardeen potentials by solving the equation

:ar ´
Ψ1

a
“ 0, (10-6)
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where the dot and the prime denote derivatives with respect to time and the radial coor-

dinate, respectively. Note that the above condition is independent of the gravity theory

since it is only based on the use of the metric of cosmological perturbations in the Newton

gauge, and it does not assume any gravitational field equation. We can take advantage of

the generality of eq.(10-6) and apply it to any gravity theory, in particular to the theories

defined in eq.(10-1).

For the theories we will consider, and in the sub-horizon limit, we can then take the inverse

Fourier’s transform of eq.(10-4) to get a real space modified Poisson’s equation of the form

∆Ψ “ ´4πGeffρmδ . (10-7)

The gravitational potential outside a spherically symmetric object of mass m is then

obtained by integrating the modified Poisson’s equation (10-7)

Ψ “ ´
Geffm

r
, (10-8)

which substituted in eq.(10-6) allows deriving a general expression for the turnaround radius

for all the scalar-tensor theories defined in eq.(10-1)

rTA “
3

c

3Geffm

Λ
. (10-9)

It is convenient to define the ratio between the Newton constant G and the effective gravi-

tational constant as ∆ “ G{Geff and the gravitational stability mass (GSM) as:

mgs “
Λr3obs
3Geff

“ mGR∆ , (10-10)

where mGRprobsq “ Λr3obs{3G is the value of the GSM predicted by GR. Any object of mass

mobs should have a radius robs ă rTApmobsq, or viceversa any gravitational bounded object

of radius robs should have a mass larger than mgs

mobsprobsq ą mgsprobsq “
Λr3obs
3Geff

“ mGRprobsq∆ . (10-11)

In fact objects of size robs with a mass smaller than mgsprobsq would not be gravitationally

stable, since the effective force is due to dark energy will dominate the attractive gravitational

force.

In order to compare theories to experiments, it is crucial to establish the size of gravita-

tionally bounded structures, and for this purpose, the caustic method has been developed

[84], showing good accuracy when applied to simulated data. In the rest of this work, we

will use this method to set constraints on the parameters of the different MGT.

Galaxy clusters data [85, 86] can be used to set upper bounds on GSM, and to consequently

set constraints on Geff , since from eq.(10-11) we get

∆ ă
mobs

mGR

. (10-12)
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10.2 Gravity theory independent constraints

Before considering the constraints on specific gravity theories in the following sections, we

can derive some general gravity theory independent constraints for Geff . Note that since

the GSM only gives a lower bound for the mass of an object of a given radius, we cannot

fit the data points one by one, since each different gravity theory predicts a range of masses

m ą mgsprobsq, not a single value. Consequently, most constraints come from the objects

with the lowest mass to size ratio. Most of the data are consistent with GR, except few

data points corresponding to the galaxy clusters A655, A1413 and NGC5353/4, which give

respectively ∆ ă 0.9162 ˘ 0.2812, ∆ ă 0.9723 ˘ 0.0151 and ∆ ă 0.0969`0.3215
´0.0178, as shown in

fig.(10-1-10-2).

Figure 10-1: Observed masses and radii of galaxy clusters are compared to the GR predic-

tion (black line). Vertical green lines represent the errors on the estimation

of the masses from [86] and blue lines correspond to other cosmological struc-

tures in [75]. The object with the most significant deviation is NGC5353/4

plotted in red [85], which is shown in more detail in fig.(10-2).

The errors have been obtained by Gaussian propagation from the errors on mobs corre-
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sponding to rMAX in [86] for A655 and A1413, and from the probability distribution for the

size of NGC5353/4 in [85] using the normalization relation

ż

ρrprqdr “

ż

ρ∆r∆prqsd∆ “ 1 (10-13)

where ρr and ρ∆ are the probability density functions of the size r and ∆ respectively. The

lower and upper bound are taken from the symmetric two-tail limits on the distribution and

the main value is taken as the maximum likelihood estimate for ∆. The tightest constraints

for GR come from A1413 and NGC5353/4, whose deviation from GR is respectively of

order 1.84σ and 2.61σ, implying that there is not very strong evidence of the need for a

modification of GR.

Figure 10-2: Observed masses and radii of the A655, A1413 and NGC5353/4 galaxy clus-

ters. These are the objects with the most significant deviation from the GR

prediction, respectively of order 0.19σ for A655, 1.84σ for A1413 (see inset)

and 2.61σ for NGC5353/4.
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10.3 fpRq theories

In this case, the action is independent of the scalar field, and in the Jordan frame is

S “

ż

d4x
?

´g

„

1

2
fpRq ´ 2Λ ` Lm

ȷ

, (10-14)

with the effective gravitational constant given by

G̃eff “
1

8πF

1 ` 4k2

a2
F,R

F

1 ` 3k2

a2
F,R

F

. (10-15)

On sub-horizon scales (k
2

a2
F,R

F
" 1) it reduces to [82]

G̃eff “ Geff “
1

6πF
, (10-16)

and the turn around radius is given by

rTA “ 3

c

m

2πΛF
, (10-17)

which corresponds to this expression for the GSM

mgs “ 2πΛFr3obs . (10-18)

Observational data imply F ă p0.0486 ˘ 0.0149qG´1 for A655, F ă p0.0516 ˘ 0.0008qG´1

for A1413, and F ă 0.0051`0.0009
´0.0171 for NGC5353/4. It can noted that GR is not incompatible

with observations, since the tightest constraint on F , corresponding to NGC5353/4 is 2.61σ

away from the GR limit F “ p6πGq´1 « 0.0531G´1.

10.4 Rn theories

For these theories the action is given by

fpR, ϕ,Xq “
1

8πG
R `

α

8πG
Rn, (10-19)

and the corresponding effective gravitational constant is

Geff “
4G

3p1 ` nαRn´1q
“

4G

3p1 ` αβq
, (10-20)

where β “ nRn´1, which gives the following expressions for the turnaround radius and GSM

rTA “ 3

d

4Gm

Λr1 ` αβs
, (10-21)
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mgs “
Λr3obsr1 ` αβs

4G
. (10-22)

In fig.(10-3) we plot the regions of the pα,βq given by [87]. In figs. (10-4) and (10-5)

we plot the regions of the pα,βq parameters space satisfying the condition mobs ą mgs for

A1413 and NGC5353/4 galaxy clusters respectively. The strongest constraints, coming from

the NGC5353/4 galaxy, are overlapped with fig.(10-3) and plotted in fig.(10-6).

Figure 10-3: Allowed regions of the (α, β) parameters space for Rn theories, respectively

in units of Mpc2n´2 and Mpc2´2n according to [87]. The white dashed line

corresponds to GR.
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Figure 10-4: Allowed regions of the (α, β) parameters space for Rn theories, respectively in

units ofMpc2n´2 andMpc2´2n. This constraints come from the galaxy cluster

A1413. The dark blue region corresponds to mobs ą mgs and the other colours

to three different confidence bands defined by mobs ` nσm ą mgs, delimited

by dashed (n=1), dot-dashed (n=2), and dotted (n=3) lines respectively. The

continuous black line corresponds to the parameters which give mobs “ mgs.

The white dashed line corresponds to GR.
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Figure 10-5: Allowed regions of the (α, β) parameters space for Rn theories, respectively in

units of Mpc2n´2 and Mpc2´2n. The main constraints come from the galaxy

cluster NGC5353/4 studied in [85]. The dark green region corresponds to

mobs ą mgs, and other regions are the confidence bands as defined in fig.(10-

4). The continuous black line corresponds to the parameters which givemobs “

mgs. The white dashed line corresponds to GR.
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Figure 10-6: Allowed regions of the (α, β) parameters space for Rn theories, respectively

in units of Mpc2n´2 and Mpc2´2n. This figure shows the overlapping regions

between fig.(10-3) and fig.(10-5).

10.5 Generalized Brans-Dicke

These theories [88, 89] are a generalization of Brans-Dicke theory [80], with a more general

kinetic term, defined by the action

fpR, ϕ,Xq “
ϕ

8πG
R `

gpϕq

4πG
X . (10-23)

After decomposing the scalar field as the sum of a homogeneous background component and

a space-dependent perturbative part according to

ϕpt, xq “ ϕptq ` δϕpt, xq , (10-24)

at leading order in perturbations, the effective gravitational constant is given by

Geff “
4 ` 2ϕ0 g0
3ϕ0 ` 2ϕ2

0 g0
G , (10-25)
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where ϕ0 “ ϕ̄pt0q, g0 “ gpϕ0q, and t0 is the cosmic time corresponding to the red-shift of the

observed structure.

The corresponding turnaround radius and GSM are given by

rTA “ 3

d

3Gm

Λ

4 ` 2ϕ0g0
3ϕ0 ` 2ϕ2

0g0
, (10-26)

mgs “
r3obsΛ

3G

3ϕ0 ` 2ϕ2
0g0

4 ` 2ϕ0g0
. (10-27)

The regions of the pϕ0, g0q parameters space satisfying the condition mobs ą mgs are shown

in fig.(10-7) for the strongest constraints, which come from the NGC5353/4 galaxy cluster.

Figure 10-7: Allowed regions of the pϕ0, g0q dimensionless parameters space, for generalized

Brans-Dicke theories. The main constraints come from the galaxy cluster

NGC5353/4 studied in [85]. The dark green region corresponds tomobs ą mgs,

and the other regions are the confidence bands as defined in fig.(10-4). The

continuous black line corresponds to the parameters which give mobs “ mgs.

The white dashed line corresponds to the GR limit.
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10.6 Quintessence

The action of Quintessence is given by

fpR, ϕ,Xq “
gpϕq

8πG
R ´

1

4πG
X , (10-28)

and in this case, the effective gravitational constant is

Geff “
G

g0

2g0 ` 4g12
0

2g0 ` 3g12
0

, (10-29)

where g0 “ gpϕ0q, g
1
0 “ g1pϕ0q, ϕ0 “ ϕpt0q and the turnaround radius and GSM are given

by

rTA “
3

d

3Gm

g0Λ

2g0 ` 4g12
0

2g0 ` 3g12
0

, (10-30)

mgs “
g0Λr

3
obs

3G

2g0 ` 3g12
0

2g0 ` 4g12
0

. (10-31)

We plot in fig.(10-8) the regions of the pϕ0, g0q parameters space satisfying the condition

mobs ą mgs, with the strongest constraints coming from the NGC5353/4 galaxy cluster.
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Figure 10-8: Allowed regions of the (g0, g
1
0) dimensionless parameters space for

Quintessence. The main constraints come from the galaxy cluster NGC5353/4

studied in [85]. The dark green region corresponds to mobs ą mgs, and the

other regions are the confidence bands as defined in fig.(10-4). The contin-

uous black line corresponds to the parameters which give mobs “ mgs. The

white dashed line corresponds to the GR limit.



11 Deep learning reconstruction of large

scale structure from supernovae

luminosity distance

Another significant cosmological effect of gravity is its impact on luminosity distance. The

matter content of large-scale structures curves space-time according to Einstein’s Field Equa-

tions, which modifies the light-like geodesics followed by photons and consequently the lumi-

nosity distance. It is possible to reconstruct the matter density field from this effect on the

luminosity distance, and this procedure is called the inversion problem [31, 32, 33, 34, 35, 36].

It is a unique method to reconstruct the density field at high redshift where only SNe can

be observed. This problem has been solved previously with some numerical and analyti-

cal techniques under very restrictive symmetry assumptions [90, 91, 92] such as spherical

symmetry, while in this thesis we will develop a completely general approach valid for an

arbitrary geometry, based on the use of artificial intelligence.

We want to solve the inversion problem of reconstructing the density contrast and ve-

locity fields from their effects on the luminosity distance using a CNN. To train the CNN

architecture in fig.(11-1), 103 random density and velocity profiles were generated using the

nbodykit package [93]. The CNN training set is then obtained by computing the effects of

these inhomogeneities on the luminosity distance. Finally, the inversion problem is solved by

training the CNN to reconstruct the density and velocity fields from the luminosity distance

synthetic data obtained in the previous step.

This chapter is organized as follows: the first section explains how the effects on the

luminosity distance are calculated from the density and velocity fields, the second section

describes how the random density fields are generated, the third section shows the neural

network architecture we adopt, the function which is minimized, and provide details about

the training process. In the last sections, we present the results of the inversion.

11.1 Effects of cosmic structure on the luminosity Distance

A direct measurement of cosmological distance, through parallax or triangulation, is only

possible for objects that are relatively close to us, while at higher red-redshift, we can only

measure the luminosity distance DLpzq.

The luminosity distance is defined as
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DL “

c

L

4πF
, (11-1)

where we denote the observed flux as F and the source’s absolute luminosity as L.

We compute the effects of the inhomogeneities on the luminosity distance using the dom-

inating terms in the linear perturbation theory formula [37]

DLpzSq “ p1 ` zSqpχ0 ´ χSqp1 ´ kv ´ kδq , (11-2)

where z is the red-shift, χ is the comoving distance, and kv and kδ correspond to the effects

[94] of the peculiar velocity and the density contrast respectively

kv “
1 ` zS

pχO ´ χSqHs

vOvOvO ¨ nnn `

„

1 ´
1 ` zS

pχO ´ χSqHs

ȷ

vSvSvS ¨ nnn, (11-3)

kδ “
3

2
H2

0Ωm

ż χO

χS

χpχS ´ χqr1 ` zpχqs

pηO ´ ηSq
δ dη . (11-4)

In the above equations, subscripts s and o denote quantities evaluated at the source and

observer, nnn is the unit vector between the source and the observer, and HS “ HpzSq is the

Hubble parameter at the source, obtained from the Friedmann’s equation

Hpzq “ H0

a

ΩΛ ` Ωmp1 ` zq3 . (11-5)

The red-shift zpχq associated with a given comoving distance is obtained by inverting nu-

merically the relationship

χpzq “

ż z

0

dz1

Hpz1q
. (11-6)

Using eq.(11-2), we obtain the luminosity distance for each cell of the grid. For each

simulation, we generate a density profile grid δG with L3 elements, a velocity grid vG with

L3 elements, corresponding to the line of sight projection of the source velocity vSvSvS ¨nnn, and a

luminosity distance grid DG with L3 elements.

11.2 Simulation of cosmic structure

We use nbodykit package [93] to generate the density and velocity fields needed as inputs

for calculating the training set. The mock catalogs are generated using Planck 2018 [95]

cosmological parameters. Using nbodykit averaging functions, we obtain the density and

velocity fields on a discrete three-dimensional grid defined over a cube of edge length 150

Mpc, consisting of 113 cubical cells of equal edge length. The mock catalogs obtained in this

way have statistical properties in good agreement with the results of N-body simulations

[93].

The solution of the inversion problem can be summarized in this way:
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• generate many random grids for the radial velocity and density fields tδG, vGu

• compute the grid DG “ fpδG, vGq for each tδG, vGu using eq.(11-2)

• train a CNN to invert the above relationship i.e. to obtain tδG, vGu “ f´1pDGq

where we are denoting symbolically with f´1 the process of the solution of the inversion

problem. The solution of the inversion problem is, in general, not unique since different

inhomogeneities could produce the same effects on DL. However, we can train the CNN

to minimize the error of the inversion problem within the limits of the above-mentioned

intrinsic degeneracy of the inversion problem.

11.3 Neural network architecture

We solve the IP using convolutional neural networks; specifically, a modified version of the

U-Net architecture [96]. We train two CNN separately, one for the density field δG and

another for the velocity field vG. The architecture is symmetrical and has two main parts:

the left part is the encoder, which consists of convolutional layers, while the right side is the

decoder. The latter uses nearest-neighbor interpolation to upsample the data, which is used

to reconstruct the density and velocity fields from their effects on the luminosity distance.

The simulated input data used to train the CNN is a four-dimensional array of size 11 ˆ

11ˆ11ˆ4. This is because for each of the 113 cells of the grid, there is the corresponding value

DG and the three spatial coordinates of the cell. This is necessary to provide information

about the spatial location of the cells, which is important to determine the effects on the

luminosity distance. The outputs of the CNNs are three-dimensional arrays of size 11x11x11,

which corresponds to the density and radial component of the source velocity in each grid

cell.

11.3.1 Loss function

We train two different networks, one for δG and the other for vG. In both cases we minimize

the loss function given by Mean Absolute Error:

MAEpy, ŷq “
1

m

m
ÿ

i“1

1

L3

L3
ÿ

c“1

|yic ´ ŷic|, (11-7)

where m is the total number of simulations, yic and ŷic are the inputted and predicted data

respectively for each cell c in each simulation i. We apply early stopping to select the network

parameters that best fit the test set to avoid overfitting and have good generalization results.

Since both δG and vG can often have very small values, the Mean Average Percentage

Error (MAPE) is not a good measure of the goodness of fit because it can often diverge due

to the presence of a small quantity in the denominator. For this reason, we have chosen the

MAE as loss function and metric to measure the inversion results accuracy.
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Figure 11-2: Training curves of the Mean absolute error (MAE) for the density contrast δ.

The orange and blue curves correspond respectively to the test and training

datasets.

11.4 Results of the inversion of the density field

The learning curves for δ are shown in fig. (11-2). The probability distribution of the δ field

of the test set and the corresponding reconstructed δ obtained applying the neural network

to the luminosity distance are shown in fig.(11-3). As it can be seen, the reconstructed δ

follows approximately the same distribution of the test set, showing that the neural network

can recover the statistical properties of the input data set. Different cross-sections of δG
and their corresponding reconstructions are shown in fig. (11-4). The overall pattern is

visible on the predicted cross-section. The MAE of the reconstructed δ is 0.2012, which is

considerably smaller than the standard deviation σδ “ 0.5546 of the test set, which can be

used as a benchmark to assess the efficacy of the inversion.

11.5 Results of the inversion of the peculiar velocity field

The mean absolute error of the source velocity in the line of sight is shown in fig. (11-5).

There is no apparent overfit between the training and test curves. The distributions of the

velocity in the test set and their prediction overlap almost completely, as seen in fig. (11-6).

The cross-section of the predicted velocity also exhibits the same features as the velocity in

the test set, as seen in fig. (11-7). The MAE of the reconstruction is 24.3285km{s which is
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Figure 11-3: Probability distribution of the δ field of the test set (blue), and corresponding

reconstructed δ (orange) obtained applying the neural network to the lumi-

nosity distance.

much smaller than the standard deviation σv “ 174.8255km{s.
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Figure 11-4: Cross-section of the different three-dimensional density contrast fields with a

plane perpendicular to the z-axis. The left column is for the test set, and

the right column is the corresponding δ reconstructed from the luminosity

distance.
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Figure 11-5: Training curve of the Mean absolute error (MAE) of the velocity for the train-

ing and test data sets in blue and orange respectively.

Figure 11-6: Distribution of the velocity of the test set in blue and its reconstruction in

orange.
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Figure 11-7: Cross-section of the velocity field for different simulations in the test set. The

left column corresponds to the velocity field of the test set and the images on

the right column are their respective reconstructions.



12 Conclusions

We have studied gravity in the weak and strong regimes in different scenarios. We trained a

neural network with frequency domain gravitational-wave data to obtain black hole merger

masses in the strong gravity regime. In the weak gravity regime, we computed the Bardeen

potentials of SSS metrics and used the corresponding turnaround radius and gravitational

stability mass to constrain modified gravity theories using observational galaxy cluster data.

Finally, we tackled an inversion problem with a neural network on a cosmological scale,

reconstructing the density and velocity fields from the luminosity distance.

In the strong gravity regime, numerical relativity has been used to simulate black hole

mergers. The spectrograms of these simulated GW signals have been used to train a

new convolutional neural network, FCNN, to determine the merger masses, and compared

its performance with other CNN trained on time-domain data (TCNN) [10]. The net-

works were trained for 1000 epochs using synthetic gravitational wave signals with a 70-30

train/development split, the mean absolute percentage error between the masses and their

predictions was minimized. The FCNN was trained on spectrograms, allowing it to reduce

the input dimension, resulting in a lower number of parameters in the final fully-connected

layers of the network, reducing its variance.

The execution time of the FCNN is, in general, much lower than the TCNN because the

FCNNs have much fewer parameters. Adding the computational time of the spectrogram, we

obtain a total time which is on average only about 6% greater than that of a CNN working

on the time domain data, but with a slightly better MAPE and substantially less over-fit,

due to the smaller number of parameters.

Regarding weak gravity, the Bardeen potentials from SSS metrics were computed with

cosmological perturbation theory. We applied the method to the Schwarzschild de Sitter

metric, confirming it does indeed allow to compute the Newtonian potential correctly due

to a point mass in an expanding universe. Using the gauge invariance of the Bardeen’s

potentials, we have obtained a gauge-invariant definition of the turnaround radius, checking

it is consistent with the result obtained in static coordinates for the SDS metric.

We have then applied the method to derive general expressions for the Bardeen’s potentials

for a class of SSS metrics obtained by adding a term linear in the mass and proportional to

a general function of the radius to the de Sitter metric. We have computed the Bardeen’s

potentials for an SSS solution of the Brans-Dicke theory in static coordinates, confirming

the results obtained independently by solving the Brans-Dicke field equations in the Newton

gauge. Bardeen’s potentials have also been derived explicitly for logarithmic, power-law,

and exponential modifications. We applied the method to study SSS metrics which give flat
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rotation curves. After re-writing them as perturbations of an FRW background, we have

computed the energy density radial profile, obtaining the expected behavior together with a

contribution from the cosmological constant.

Using the same framework, we have derived the theoretical prediction of the gravitational

stability mass for a broad class of scalar-tensor theories, including fpRq, Quintessence, and

generalized Brans-Dicke. Most of the observations are consistent with GR except the galaxy

clusters A655, A1413, and NGC5353/4, which have masses smaller than the GR prediction.

The tightest constraints for GR come from A1413 and NGC5353/4, whose deviation from

GR is respectively of order 1.84σ and 2.61σ, implying that there is no statistically significant

evidence of the need for a modification of GR.

Finally, a set of mock lognormal density profiles with their corresponding velocity profiles

were generated using large-scale structure simulations. The direct problem involved the

computation of the luminosity distance for each simulation, and the inverse problem was

solved by training a fully convolutional neural network with the data generated by the direct

problem.

There are different applications of the results obtained in this thesis that would be interest-

ing to apply to observational data. The FCNN could be applied to gravitational-wave data

from the LIGO or LISA detector [2]. A new neural network could be designed to estimate

additional parameters such as the spin of the black holes. The GSM and TAR could be used

to constrain gravity theories using observations from the Euclid mission [97, 98, 99, 100]. The

inversion method we have developed could be used to reconstruct the density and velocity

fields from future SNe catalogs [101]. It would also be interesting to extend the inversion

method to obtain other cosmological parameters.

Apart from applying these analysis methods to new datasets, several theoretical problems

could be interesting to investigate in the future. Regarding gravitational waves produced by

black hole mergers, it would be interesting to study the effects of modified gravity theories

and constrain their parameters using gravitational-wave observations. For the calculation

of the GSM and the TAR, non-gravitational physics or deviations from spherical symmetry

[102, 103] could be taken into account.
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