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PROPERTIES OF THE BIVARIATE CONFLUENT
HYPERGEOMETRIC FUNCTION KIND 1 DISTRIBUTION

DAYA K. NAGAR AND FABIO HUMBERTO SEPULVEDA-MURILLO

ABSTRACT. The bivariate confluent hypergeometric function kind 1 distribu-
tion is deﬁned by the probability density function proportional to
x?l_l 2=l py (a; B; —x1 — x2). In this article, we study several properties
of this dlstrlbutlon and derive density functions of Xi/X2, X1/(X1 + X2),
X1 + X2 and 2v/X1X2. The density function of 2/X7 X2 is represented in
terms of modified Bessel function of the second kind. We also show that for
vy — v =1/2, 2v/X1 X2 follows a confluent hypergeometric function kind 1
distribution.

1. INTRODUCTION

The random variable X is said to have a confluent hypergeometric function
kind 1 distribution, denoted by X ~ CH(v, a, 8, kind 1), if its probability density
function (p.d.f.) is given by (Gupta and Nagar [1]),

L()I'(6 —v)
ORGRCED
where § > v > 0, @« > v > 0, and 1 F} is the confluent hypergeometric function
(Luke [8]) defined by

xyillFl(a;ﬂ; —QC), T > 07 (11)

1Fi(a;e;2) = %/{) t27 (1 — 1) Lexp(zt) dt, (1.2)
Re(c) > Re(a) > 0.

By expanding exp(zt) in (1.2) and integrating ¢, the series expansion for 1Fj is
obtained as

(c) > Tla+k) 2
1F1(a;¢;2) @ Z c+l<; (1.3)
=0

The confluent hypergeometric function 1 F} (a; ¢; z) satisfy the Kummer’s relation

1F1(a;¢;—2) = exp(—2)1 Fi(c — a; ¢ 2). (1.4)
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The confluent hypergeometric function kind 1 distribution occurs as the distribu-
tion of the ratio of independent gamma and beta variables (Gupta and Nagar [4],
Nadarajah and Kotz [14]). For a = 3, the density (1.1) reduces to a gamma density
given by

{T(w)}y ta" texp(—z), z>0.
The above distribution is designated by X ~ Ga(v). The bivariate generalization of

the confluent hypergeometric function kind 1 distribution, denoted by (X1, X2) ~
CH(v1, va, av, B, kind 1), is defined by the density

I'(o)D(B — v1 — 1)
L) ()T (B (o — vy — 1v2)
xa¥ e (o By —xy — m2), a1 >0, a9 >0,

(1.5)

where 1 > 0, v > 0, 8 > v1 + 10 and @ > 17 + 5. For a = 3, the random
variables X; and X5 are independent, X; ~ Ga(v1) and X5 ~ Ga(rs).

Since, the bivariate distribution defined by the density (1.5) is a generalization
of the bivariate gamma distribution, it can serve an alternative to bivariate gamma
distribution and can be applied in several areas; for example, in the modeling
of rainfall at two nearby rain gauges, data obtained from rainmaking experiments,
the dependence between annual stream flow and areal precipitation, wind gust data
and the dependence between rainfall and runoff (Nadarajah [12], Nadarajah and
Gupta [13]). The bivariate generalization of the confluent hypergeometric function
kind 1 distribution can also be used in reliability theory, renewal processes and
stochastic routing problems.

It can easily be observed that the bivariate confluent hypergeometric function
kind 1 distribution belongs to the Liouville family of distributions proposed by
Marshall and Olkin [10]. Sivazlian [19] introduced Liouville distributions as gen-
eralizations of gamma and Dirichlet distributions. The Dirichlet and Liouville
distributions arise in a variety of context including Bayesian analysis, modeling
of multivariate data, order statistics, limit laws, multivariate analysis, reliability
theory and stochastic processes. These distributions have been widely used in
geology, biology, chemistry, forensic science, and statistical genetics. A compre-
hensive account of some applications and other aspects of these distributions can
be found in Gupta and Song [5], Gupta and Richards [6], Marshall and Olkin [10],
Sivazlian [19], and Song and Gupta [20]. Because of mathematical tractability of
the confluent hypergeometric function and its several special cases, the bivariate
confluent hypergeometric function kind 1 distribution enriches the class of Liou-
ville distributions and may serve as an alternative to many existing distributions
belonging to this class.

In this article, we study several properties of the bivariate distribution defined
by (1.5).

In Section 2, we show that if (X1, X2) ~ CH(vq,v9, @, 8,kind 1), then X; ~
CH(v1, a0 — 12, B — vo,kind 1), Xo ~ CH(va, ¢ — 11,8 — v1,kind 1) and compute
correlation coefficient between X; and Xs. We also derive bivariate confluent
hypergeometric function kind 1 distribution using independent gamma and beta
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variables. In Section 3, we derive distributions of (i) X /X2, (i) X /(X1 + X2),
(iii) Xy + X2 and (iv) 2v/ XX when (X, X5) ~ CH(vy, v, f,kind 1). The
density function of 24/ X7 X5 is represented in terms of modified Besel function of
the second kind. We also show that 21/X; X5 for v = 11 4+ 1/2 follows a confluent
hypergeometric function kind 1 distribution.

2. PROPERTIES

In this section we study several properties of the bivariate confluent hypergeo-
metric function kind 1 distribution defined in Section 1. We first derive marginal
and conditional distributions.

Theorem 2.1. Let (X1, X2) ~ CH(v1, va, o, B, kind 1). Then, X1 ~ CH(vq, a—vsa,
B — vo,kind 1) and Xo ~ CH(ve,a — v1, 8 — 11, kind 1).

Proof. To find the marginal p.d.f. of X;, we integrate (1.5) with respect to zs to
get

T(a)T(B — v — 1)
L) ()T (BN — 1 — 1o

o0
)a:ll’ﬁl /0 a:nglFl (o B; —x1 — w2) daa.
Replacing 1 F1 («; 8; —x1 — x2) by its equivalent integral represenation, namely,

1Fy (o B; —x1 — a2) (2.1)
__ e 't )P lexp (2 + 2
- _a)/ot (1—1) p [—(x1 + x2)t] dt,

(e)l(B
Re(B) > Re(a) > 0,
and integrating o, the density of X is derived as

INCESZIEN 2y
P)T(B —a)(a — vy — 1)

1
xaht / tev2 (1 — )P Lexp(—aot) dt.
0
Now, the desired result is obtained by using (1.2). O

Using the above theorem, the conditional density function of X; given Xo =
x9 > 0 is obtained as

T(a)T(B—v) o' "1 Fi(a; B —a1 — 23)
L()L(B)T (o —v1) 1Fri(a—vi; B — vy —a2)

x1 > 0.
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The cumulative distribution function (c.d.f.) of (X7, X2) is derived as

F(a)F(/B — v — 1)

. _ 2.2
X1.X2 (71, 2) (1 @) (a—wv —vy) 2
2
/ / u "t F (0 B —un — ug) dug dus.
-V — VQ) V1 ,.V2

T T
T ( r(ﬂ)F(a—vl—wV ’
// VT Ry (0s B — 21w — 20m0) d2 dag,

where the last line has been obtained by substituting z; = u;/z; with du; = x; dz;,
1 =1,2. Replacing 1 Fy («; 8; —z121 — 22w2) by its integral representation, namely

1F1 (o By —z121 — 2012)

_ G "ot —t)P7 2 Lexp[— (2121 + 222
S A Pl (w121 + 222)t] b,

Re(8) > Re(a) > 0,
and integrating out z; and zs, the c.d.f. in (2.2) is rewritten as

FXl,Xz (1[:1,1[:2)

_ LB —v1—1) o
T T+ DT (e + DB — )T —vy —wp) 1 72

1
X / to‘fl(]_ — t)ﬂiaillFl(l/l; v+ 1; —xlt)lFl(V% vy + 1; _th) dt
0

_ F(Q)F(ﬁ — V1= VQ) 2V 2

Ly 4+ DI (ve + DIB)M(a — vy —vg) ' 72
1:1;1| GV V2 e

XF1;1;1|: 6~V1+1,1/2+1, X1, —T2 )

where F%H is the Kampé de Fériet function defined by (Sdnchez, Nagar and
Gupta [18], Srivastava and Karlsson [21]),

c:dy;ds; 1, %2 ]
T 1
= %/ t N1 = ) B (brydatea)1 P (bos dos tzo) dt
- 0
(a)jl +J2 (bl)jl (b2)32 2112%2
(01442 (d1) 4, (d2) g, G11!

J1,52=0
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Further, using (1.5), the joint (r, s)-th moment is obtained as
L(@)I'(8 — 11 — 1)
T(v1)T ()T (BT (e — vy — 1)
x / / .
o Jo
Pr+r) (e +s)T(B—1r1—w)l(a—v1 —vg —r—3s)
Tn)T(w)T(f—v1 —ve —r—s)T(a—v — 1)

E(X7X3)

vi+r—1 _vo+s—1 R
1 Ty 1F1 (o B; —x1 — x2) doq dzg

where v1 +r > 0,04+ >0,8>11+vo+r+s>0,anda>vy+ve+r+s>0.
Now, substituting appropriately, we obtain

vi(B—v1 —re—1)
a_Vl—VQ—l

E(X;) =

- l/i(l/i—Fl)(ﬁ—lll —Vg—l)(ﬁ—lll —1/2—2)

B(X) = (@ —v1 —vo —D)(a—v; — g —2) ’
Bn) = MR e T T
Var(X) =
X[wi(B—a)+ (B—v1—va —2)(a—v1 —1p — 1)],
Cov(Xy, X2) = 73 ?Zf (—ﬁl/_z = 1_)21/(2_—131(6—;: )_ 2)’
Corr(X1, X5) = [<1 T G ”2;(25)(_0‘;) i 1)>

Bivariate gamma distributions arise as tractable “lifetime” models in many ar-
eas, including life testing and telecommunications. In the context of reliability,
the stress-strength model describes the life of a component which has a random
strength X5 and is subjected to a random stress X;. The component fails at the
instant that the stress applied to it exceeds the strength and the component will
function satisfactorily whenever Xo > X;. Thus, R = Pr(X; < X2) is a mea-
sure of the component reliability. In a recent paper, Nadrajah [12] has given an
extensive survey on applications and computation of R when X; and X5 are inde-
pendent random variables belonging to the same univariate family of distributions.
In the same paper he has computed R when X; and X5 are dependent random
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16 D. K. NAGAR AND F. H. SEPULVEDA-MURILLO

variables from six flexible families of bivariate gamma distributions. If (X7, X5)
has a bivariate confluent hypergeometric function kind 1 distribution, then

()T —v1 — 1)
()T (2)T(B)T (a0 — v1 — 12)

o0 o0
></ x{l_l/ xg2_11F1(04;6;—x1—xg)dxgdxl.
0 x1

R =

Replacing 1 Fy (a; §; —x1 — 22) by its integral representation given in (2.1), inte-
grating x5 and x; using

F(a,x):/ exp(—t)t* 1 dt

and (Gradshteyn and Ryzhik [3, Eq. 6.455.1])

o0 l/]:‘
/ a#~exp(— )l (v, ax) da Ty +v) 2 Fy (17M+V;M+ 15i> )
0

Wt By e
Re(a+ ) > 0, Re(u) > 0, Re(p +v) > 0,

where o F} is the Gauss hypergeometric function, we obtain
(8 —vi — )l (11 + 10)
Ty + DT (1e)T(a — v — va)T(S — )

1 a—1 —a—1
te= (1 —¢)f-« t
X A1 o +1;—— | dt.
/0 R e

R:

Finally, expanding 5 F} in series form and integrating ¢, we get
F(ﬂ — UV — 1/2)
2t ()T (o — vy — 1)

— D(v1 + 120 + ) (o + 1)
> 2T (v + 1+ )L (B +9)

R:

. 1
2 (5—047V1+1/2+Z;5+Z;5)~
i=0

In the next theorem we derive the bivariate confluent hypergeometric function
kind 1 distribution using independent beta and gamma variables. First, we define
beta type 1 and beta type 2 distributions. These definitions can be found in
Johnson, Kotz and Balakrishnan [7].

Definition 2.2. The random variable X is said to have a beta type 1 distribution
with parameters (a,b), a > 0, b > 0, denoted as X ~ Bl(a,b), if its p.d.f. is given
by

{B(a,b)} tz* (1 —-2)"t, 0<x<l,
where B(a,b) is the beta function given by
B(a,b) = (@G} (0 + )}

Rev. Un. Mat. Argentina, Vol 52-1
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Definition 2.3. The random variable X is said to have a beta type 2 distribution
with parameters (a,b), denoted as X ~ B2(a,b), a > 0, b > 0, if its p.d.f. is given
by

{B(a,b)} tz* Y1 +2)" @) x>0

Several univariate generalizations of these distributions are given in Gordy [2],
Ng and Kotz [17], Nagar and Zarrazola [15] and McDonald and Xu [11]. The matrix
variate generalizations of beta type 1 and beta type 2 distributions have also been
defined and studied extensively. For example, see Gupta and Nagar [4].

Theorem 2.4. Let X1, Xo and X3 be independent, X; ~ Ga(k;), i = 1,2 and X3 ~
Bl(a,b). Then, (X1/X3,X2/X3) ~ CH(k1, ka,a+ K1 + K2, a+ b+ K1 + Ko, kind 1).

Proof. Using independence, the joint density of X7, X5 and X3 is given

exp|—(z1 + x2)]2y* ey ag T (1~ a)" !

['(k1)T(r2)B(a, b)
Now, transforming 7, = X1/X3,Z2 = X3/X3 with the Jacobian J(z1,22 —
21,22) = 22 in (2.3), the joint density of Z1, Z; and X3 is obtained as
b—1

(2.3)

exp[—(z1 + ZQ)xg]zfl_1252_1x'§1+”2+a_1(1 —x3)

I'(k1)T(k2)B(a,b) ’
where z; > 0, z3 > 0 and 23 > 0. Now, the result follows by using (1.2). O

Theorem 2.5. Let X1, X5 and X3 be independent, X; ~ Ga(k;), ¢ = 1,2 and
X3 ~ Bl(a,b), Then, (Xl/(l—Xg),Xg/(l—Xg)) ~ CH(H1,I€2,b+/€1+I€2,a+b+
K1 + ko, kind 1).

Proof. Noting that 1— X3 ~ B1(b, a) and using Theorem 2.4, we get the result. O

Theorem 2.6. Let X1, X5 and X3 be independent, X; ~ Ga(k;), i = 1,2 and
X3 ~ BZ(a, b) Then, (Xl(l + X3), Xg(l + X3)) ~ CH(Hl, Ko,b+ K1+ Ko,a+ b+
K1+ Ko, kind 1).

Proof. The desired result is obtained by observing that 1/(1 4+ X3) ~ B1(b,a) and
using Theorem 2.4. O

Theorem 2.7. Let X1, X5 and X3 be independent, X; ~ Ga(k;), i = 1,2 and
X3 ~ BZ(a,b). Then, (Xl(l + X3)/X3,X2(1 + X3)/X3) ~ CH(Hl,Iig,a + K1 +
Ko,a + b+ K1 + Ko, kind 1).

Proof. Noting that X3/(1 + X3) ~ Bl(a,b) and using Theorem 2.4, we get the
result. O

3. DISTRIBUTIONS OF SUM AND QUOTIENTS

In statistical distribution theory it is well known that if X; and X, are in-
dependent, X; ~ Ga(r1) and Xy ~ Ga(ry), then (i) X1/Xo ~ B2(vy,v2), (i)
Xl/(Xl + XQ) ~ B].(Vl,llg), (111) X1+ Xo ~ Ga(l/l + 1/2) and (IV) 2/ X1 X ~
Ga(2v1) if vo = 11 +1/2. Recently, Nagar and Sepilveda-Murillo [16] have derived
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18 D. K. NAGAR AND F. H. SEPULVEDA-MURILLO

distributions of X7 /X5, X7 /(X1 + X5) and X7 + X5 when X; and X, are indepen-
dent confluent hypergeometric function kind 1 and gamma variables, respectively.
In this section we derive similar results when X; and X5 have a bivariate general-
ization of the confluent hypergeometric function kind 1 distribution.

Theorem 3.1. Let (X7,X2) ~ CH(v1,v2,a, B, kind 1). Then, Z = X;/(X; +
Xo) and S = X; + X5 are independent, Z ~ Bl(vy,v2) and S ~ CH(v1 +
Vo, a, B, kind 1).

Proof. Substituting Z = X1/(X; + X2) and S = X; + X, with the Jacobian of
transformation J(z1,x2 — 2,$) = s in (1.5) we obtain the joint p.d.f. of Z and S
as

D(o)T(8 —v1 — 12)
T(v1)T ()T (BT — vy — va)

where 0 < z < 1 and x5 > 0. Now, from the above factorization it is clear that Z
and S are independent, Z ~ B1l(vy,12) and S ~ CH(vy + v2, @, 5, kind 1). O

ZV171(1 o Z)V27181/1+1/2711F1(a;5; —S),

Corollary 3.1.1. Let (X7, X2) ~ CH(v1,v9, v, 8,kind 1). Then, X1/X5 ~ B2(vq, v9)
and is independent of X1 + Xs.

Corollary 3.1.2. Let X1 and X5 be independent random variables, X1 ~ Ga(vy)
and Xo ~ Ga(ve). Then, X1 + Xo is independent of X1/(X1 + X2) and X1/Xo.
Further, X1 + Xo ~ Ga(v1 + 12), X1/(X1 + X3) ~ Bl(v1,12) and X1/Xs ~
B2(vq, v9).

Theorem 3.2. Let (X1, X32) ~ CH(vy,v2,a, 8,kind 1). Then, the p.d.f. of Y =
2v/ X1 X5 is given by

ZF(ﬁ -V — VQ) Y vi+ra—1
T )T (va) (@ — 11 — 12)T(B — a) (3) (3.1)

1
x/ N1 =) K, L, (yt) dt,  y > 0.
0

Proof. Transforming Y = 2v/X71X,, X; = X; with the Jacobian J(z1,z2 —
x1,y) = y/2x1 in (1.5), we obtain the joint p.d.f. of X; and Y as
D(a)D(B —v1 — 1)
220217 ()T () T(B)T (o — vy — 19)

(3.2)
y?
xy?2 e TR (a;ﬁ; —z1 — —) , 11>0, y>0,
41[,‘1
To find the marginal p.d.f. of Z, we integrate (3.2) with respect to z1 to get
L(a)l(8 —v1 — 1)
220217 (1 )T ()BT — vy — 1a)

00 y2
><y2”271/ ey 1 (04;5; —x1 — 4—) dz.
0 1

(3.3)
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BIVARIATE CONFLUENT HYPERGEOMETRIC FUNCTION DISTRIBUTION 19

Replacing | F} (a; B; —x1 — y?/ 4x1) by its equivalent integral represenation, namely,

y?
1k (04555 —&1 — 4_J?1> (34)

L'(8) / S f—a-1 v
=— ) [ el _ypbf-e —( —)t dt,
G A B
Re(B) > Re(a) > 0,
and changing the order of integration, the above density is rewritten as

L(B—v1— 1) (y)%z*l

T ()T ()T (o — v1 — 12)T(B — a) \2

1 o0
« / ta—l(l _ t)B_O(_l/ J,‘Tl_VQ_l exp |:_ (xl + y—>t:| dxl dt.
0 0 4251

Now, using the integral (Gradshteyn and Ryzhik [3, Eq. 3.471.9])
> 8 B\
/ exp (—at - ?> ' tdt =2 (E) K,(2v/ap), Re(a) > 0, Re(B) > 0,
0
where K, is the modified Bessel function of the second kind, we obtain the desired
result. O

For a non-negative integer n, we use the result (Erdélyi, Magnus, Oberhettinger
and Tricomi [1, Eq. 7.2.6.40]),

Kot1)2(2) = \/QEZexp(—z) Z (2z)m%

m=0

in the above theorem to get the following corollary.
Corollary 3.2.1. Let (X1,X5) ~ CH(v,v + n+ 1/2,a,8,kind 1), where n is a
non-negative integer. Then, the p.d.f. of Y = 2/ X1 X5 is given by

VAL(B —2v —n —1/2) (g)2"+”*1

Frw)I'v+n+1/2)T(a—2v—n—1/2) \2
- e Tn+m+ 1D (a—m—1/2
XZ(Zy)mP( )( /)'

— (n—m+1DT(B—m-—1/2)m!

1 1
x 1 (a—m—§;ﬂ—m—§;—y>, y > 0.

Corollary 3.2.2. Let (X1,X2) ~ CH(v,v +1/2,«, 8,kind 1). Then, 2/ X1 X2 ~
CH(2v,a — 1/2,5 —1/2,kind 1).
Corollary 3.2.3. Let the random wvariables X1 and Xo be independent, X1 ~
Ga(v) and Xy ~ Ga(v +n+ 1/2), where n is a non-negative integer. Then, the
p.d.f. of Y = 2y/X1 X5 is given by
VT (/2" exp(—y) ¢
F(wv)I'(v+n+1/2)

(2y)mrf(n+m+1) Y >0,

_ K
= n—m-+1)m!
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Corollary 3.2.4. Let the random wvariables X1 and Xo be independent, X1 ~
Ga(v) and Xo ~ Ga(v +1/2). Then, 2/X1Xs ~ Ga(2v).

The above corollary was derived by Malik [9].
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