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Abstract

Parkinson’s Disease (PD) is one of the most common neurodegenerative
diseases. Patients manifest a progressive degeneration of dopamine, which
plays a key role in abilities such as the locomotion, cognitive capabilities,
sleep regulation and mood. One of the symptoms of the disease is the
progressive gait impairment, resting tremors, slowness of movement, shuffling
steps, among others. There is interest among the scientific community to
develop automatic classification systems to support the diagnosis. The goal is
to properly discriminate the disease and to predict the neurological state of
the patients. This work focuses on the use of Convolutional Auto-Encoders to
obtain efficient representations from multi-channel gait signals from
Smartphones and sensors to classify PD patients vs. Healthy subjects. The
channels represent the acceleration in the 3-dimensional plane (X, Y, Z). The
proposed experiments consist of three models using 64, 128, and
256-dimensional bottlenecks to compress the information of gait signals. The
accuracy and unweighted average recall are used to evaluate the
classification performance over the PC-GITA database, from which 38
controls and 38 subjects were used for training the neural networks, and 30
patients and healthy subjects were used as test dataset. The subjects were
asked to perform the 4x10 gait task, which consists of four repetitions of
walking for 10 meters, stop and perform a 180° turn. A Stratified
5-Fold-Cross-Validation strategy is used to evaluate the performance of a
Support Vector Machine over the testing dataset. The results indicate that the
64-dimensional bottlenecks provide enough information to properly
differentiate between patients and controls. The results report accuracy of up
to 85%, and Unweighted average recall values of 93%. Additionally, the area
under the ROC curve is reported for each fold. There is no variation in the
results when considering gait signals with non -randomized and randomized
channels. It is concluded that the methodology is suitable to classify patients
vs. healthy subjects, despite the different origins from the signals and the
challenges that different sampling frequencies impose for such a
methodology.
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Introduction

Parkinson's Disease (PD) is a degenerative condition which affects the correct
functioning of the brain and the motor system [1]. Patients manifest symptoms
such as bradykinesia, tremors in the limbs and impaired gait. Gait disorders
affect the patients' rhythm control, symmetry, coordination, and postural
stability [1]. The aforementioned affect dramatically the quality of life of the
patients [2].

Cognitive deficits in PD consist of a series of events that lead to the
progressive loss of the neurons which produce dopamine. These are located
within the substancia nigra, in the basal ganglia. Dopamine is a critical
neurotransmitter that plays key roles in the locomotion, cognition capability,
sleep regulation, humor, the ability of learning, among others. The direct
consequences in gait include festinating gait, shuffling steps, slowness of
movement, freezing of gait, among others. The indirect consequences
include depression and sleep disorders. The treatment for PD involves the
active consumption of levodopa, a compound designated to compensate
for the loss of dopamine in the body. Gait therapy has achieved small yet
important contributions in gait rehabilitation for PD patients. Parkinsonian gait
is treated with cognitive therapy, musculoskeletal and cardiorespiratory
therapy, and the promotion of physical activities oriented to the state of each
patient [3]. There is evidence that during the early to mild stages of PD,
patients are still able to learn new motor skills [4]. Other studies report that
combined task programs have proved to be efficient in walking therapy for
PD patients with mild to moderate affection [5-6].

The analysis of parkinsonian gait is conducted by assessing the kinematic,
functional, and postural capabilities of the patients. According to the
Movement Disorder Society-Unified Parkinson's Disease Rating Scale Part III
(MDS-UPDRS-III) [7], kinematic aspects include the agility of the legs and
stepping rate. Functional capabilities comprise the performance and quality
of the walking process. The postural capabilities are related to the patients'
stability when standing up. In the last decade, there has been a lot of
enthusiasm towards data-driven machine learning applications. These are
among the most interesting paradigms, products of the union between
medicine and technology [8-9-10]. Artificial intelligence (AI) is the most
important trend in technology in the last decade. Medical research using AI
techniques focuses primarily on classification tasks, such as PD patients vs.
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Healthy Control (HC) subjects [11-12-13]. The data is processed to reduce
redundant and irrelevant information. Then, the feature extraction process is
performed. The last step involves training and validation of a classifier to
discriminate samples.

The objective of this work is to classify between PD patients and HCs by
implementing a Neural Network (NN) architecture composed of
AutoEncoders (AE) to extract features from gait signals, and a Support Vector
Machine to classify PD patients vs. HCs. The main contribution of this work is to
use two data sources simultaneously (accelerometer data from smartphones,
and data from shoe-attached sensors), to obtain compressed representations
with an AE. Such representations will be used to classify PD patients vs. HCs.
This is one of the few approaches using this technique and could be relevant
to deploy small and precise systems for the automatic detection of PD.

1. Objectives

2.1. General Objective
● Design, implement and test a methodology based on gait signals and

AEs to classify between PD patients vs. HC subjects.

2.2. Specific Objectives
● To extract and analyze features from AEs to model gait signals

captured from external sensors and smartphone accelerometers.
● To design and implement a system to classify PD patients vs. HC

subjects using gait signals.
● To use automatic selection methods to evaluate and select the most

suitable features to improve the classification process.
● To validate the proposed algorithms, the performance will be

evaluated according to different metrics, such as Accuracy (ACC),
and the Area Under the ROC curve (AUC).

3. Theoretical Background

This section covers the necessary methods to fulfill the aforementioned
objectives.

3.1. Gait Signals Processing
3.1.1. e-Gait shoe attached sensors
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The eGait sensors1 are composed of a 3-dimensional accelerometer, and a
3-dimensional gyroscope. Each sensor is attached to the upper right heel of each
shoe. Each accelerometer and gyroscope feature a range of ±6g and (5)00°/s
respectively. Signals are recorded in a tablet, via Bluetooth. A proprietary

Android application (app) allows the user to select specific tasks and ingress
relevant information of the patient. These sensors have a sampling frequency
of 100Hz, with a resolution of 12 bits. Figure 1 shows an eGait sensor attached
to a shoe.

Figure 1. eGait sensor. Source [12].

3.2.2. Apkinson Android App

Apkinson is an Android application to evaluate movement and speech
impairments of PD patients. It includes exercises designed to evaluate
individual muscle groups, such as hands, arms, and legs. These exercises are
randomly selected from various groups, in such a fashion that ensures one
exercise per group in the session. Upon finishing a session, the patient’s
performance is evaluated and the data is stored for further analysis from
previous sessions. The source code of the application is available in a Github2

repository. This application serves from the smartphone’s built-in
accelerometer, and its sampling frequency ranges from 2-200Hz, depending
on resource availability. The biggest drawback from this method is the way
the X-axis, Y-axis, and Z-axis are assigned in the accelerometer, with
significant variations from one manufacturer to another. For the purpose of
this work, all 3 channels are randomized for each recording [10].

2 https://github.com/SAGI-FAU/SMA2
1 Embedded Gait analysis using Intelligent Technology, http://www.egait.de/
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3.1.2. Resampling [19]

It is not clear that the smartphones can contain different sampling
frequencies, due to the power saving and app managing. Each smartphone
does not have a fixed sampling frequency. In order to solve this issue, the
signals from both sources are resampled using a quadratic interpolation. It is
applied to both sources, matching the sampling frequencies to 50 Hz.

Let , , and be three points, which are considered in order(𝑥
0
, 𝑦

0
) (𝑥
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The interpolation equation is defined in Equation 4.𝑃
2
(𝑥)

𝑃
2
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0
𝐿

0
(𝑥) +  𝑦

1
𝐿

1
(𝑥) + 𝑦

2
𝐿

2
(𝑥)       (4)

The process is performed by replacing the data points from the gait signals in
Equation 4 to obtain sections that are used to sample a signal with a
frequency of 50 Hz. Figures 3-4 illustrate the result.

Figure 3. Apkinson signal resampled to 50Hz. Source: Author.

Figure 4. eGait signal resampled to 50Hz. Source: Aut
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3.2. Classification

3.2.1. Support Vector Machines [20]

A Support Vector Machine (SVM) is a supervised learning model which
differentiates classes by finding the optimal hyperplane that better separates
the classes. The idea is to transform the data points into linearly separable
data. This algorithm uses a kernel function to perform such transformations.
Let be the feature vector , , … , and the labels for each , , , … , . The closest
points to the hyperplane are the support vectors, and belong to different
classes. The distance between such vectors is the margin. Figure 4 illustrates
the idea in a hard margin SVM, which uses the closest points from each class
to compute the optimal hyperplane. Hard margin SVMs do not allow points
from different classes to be placed inside the margin, on the other hand, soft
margin SVMs allow such scenarios and are less sensitive to outliers.

Figure 4. Hard margin SVM. Source: Author.

The optimal hyperplane is the one with the maximum margin. The
optimization process is as follows: Let be the kernel function, whichϕ(𝑋

𝑛
)

transforms the feature space of into a space where the features are linearly𝑋
𝑛

separable. is the weight vector, is is the bias term, and is a slack variable𝑊 𝑏 ζ
which defines a margin of tolerance for errors. The Radial-Basis-Function (RBF)
Kernel and the linear kernel will be considered for this work. The decision
function is described in Equation 5.
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𝑦
𝑛
[𝑊𝑇ϕ(𝑋

𝑛
) + 𝑏] ≥  1 − ζ

𝑛
 ∀ ∈ {1, …, 𝑁}       (5) 

Where is the complexity parameter that controls the balance between the
width of the margin and . defines the radius of the RBF. The RBF kernel is based
on a normal distribution with standard deviation (std) and is defined as follows
in Equations 6 and 7.

γ = 1

2σ2  (6)

ϕ
𝑅𝐵𝐹

(𝑋
𝑛
) = 𝑒

−γ||𝑋
𝑛
−𝑋

𝑚
||2

    (7)

The linear kernel is defined as the inner product between and added to𝑋
𝑛

𝑋
𝑚

a constant k.

ϕ
𝐿
(𝑋

𝑛
) = 𝑋

𝑛
𝑇𝑋

𝑚
+ 𝑘    (8)

This work covers a bi-class scenario; therefore, the objective function to
minimize is:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 1
2 ||𝑊||2 + 𝐶

𝑖=1

𝑛

∑ ζ
𝑖
    (9)

3.2.2. Area under the ROC Curve [21]

The Receiver Operating Characteristic curve (ROC) is a tool designed to
evaluate the predictions of a binary classifier. Such a tool was originally named
due to its creation and use in military radar receivers. The graph is calculated by
computing the True Positive Rate (TPR), and the False Positive Rate (FPR) for a
range of decision thresholds. Equations 10 and 11 define these concepts.
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(10)𝑇𝑃𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(11)𝐹𝑃𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒𝑠

In a ROC curve, the axis is defined as FPR, and the axis as the TPR. The Area
under the curve (AUC) is the area covered by the resulting curve of the ROC
curve. A classifier performs worse the closer the AUC value is to 0.5, which tells
that it is no better than random guessing. Figure 5 Illustrates the idea.

Figure 5. ROC Curve example. Source: Author.

3.2.3. Confusion Matrix [21]

This is a very popular technique to evaluate the performance of a classifier.
This work considers a bi-class scenario; therefore, four coefficients are
computed: True Positives (TP). False Negatives (FN), False Positives (FP), True
Negatives (TN). These coefficients are ordered in a fashion illustrated by Table
1.
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Real

Predicted

Positives Negatives
Positives TP FN

Negatives FP TN

Table 1. Confusion Matrix. Source: Author.

3.2.4. K-Fold Cross Validation [21]

The performance of a model over limited data is measured using
Cross-Validation (CV) techniques. In a K-Fold CV, the parameter is the
number of folds in which the data will be split. In this process, a total of folds
are used for training, and testing. The process is iterative and in each fold the
data is divided as follows: k-1 folds are used for training, 1-fold is used for
testing. For each fold, a Grid Search hyperparameter tuning is performed. The
best hyperparameters are selected according to the accuracy in the test
datasets. A 5-Fold CV is performed, and the process is illustrated in Figure 6.

Figure 6. 5-Fold Cross-Validation. Source: Author.
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Parameter (SVM) Values

C , , , , , , ,10−6 10−5 10−4 10−3 10−2 10−1 1 10

γ , , , , ,10−5 10−4 10−3 10−2 10−1 1

Kernel Linear, RBF

Table 2. Hyperparameter grid.

3.3. Neural Networks

3.3.1. Feed-forward Neural Networks [23]

In this architecture, the information flows in only one direction: from the input of
the NN, to the output. There are inputs, 𝑘 hidden layers , and n outputs .𝑋

𝐷
𝐻

𝐾
 𝑍

𝑁

There are sets of weights that leverage the connections between the𝑊
𝑘−1, 𝑘

layers. Those are composed of neurons, which are represented by activation
functions that respond to the product of the weights added to theσ

𝑘
(𝑊

𝑘−1
, 𝐻

𝑘
)

sum of biases from previous layers. Activation functions are selected according
to the layer type, task among others. For instance, for image recognition,
functions with no response to negative values are often selected e.g Rectifier
Linear Units (ReLU).

Let be the product between the input layer of the network and the 𝟎,𝟏𝑊𝑇
0,1

* 𝐻
0

and the weights associated between it and . The first activation function𝐻
1

output will be where 𝑏 is a bias term which can be𝐻
1

= σ
1
(𝑊

0,1
𝑇 * 𝑋 + 𝑏)

randomly initialized. The output in subsequent layers will be described by
Equation 12. Figure 7 illustrates the main structure of this architecture.

𝐻
𝑘

= σ
𝑘
(𝑊

𝑘−1, 𝑘
,  𝐻

𝑘.1
)     (12)
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Figure 7. Architecture of a feed-forward NN. Source: Author.

3.2.2. Autoencoders [24]

This architecture aims to learn efficient data representations to reconstruct
the inputs of the NN. In this architecture, X are outputs, the hidden layers𝑋  

𝐷
𝐻

𝑘

compress the structure of the data and produce a representation of its
structure. The optimization process focuses on minimizing the reconstruction
error X), which is the distance between the original input and itsς(𝑋,
representation inside the net. The reconstruction error is chosen conveniently,
according to a task. For instance, the Mean Squared Error (MSE) is typically
used in AEs, as shown in Equation 6. The motivation behind AEs is that
non-linear relationships and manifolds could be learned, contrary to
traditional techniques such as Principal Component Analysis. The weight of
the layers is adjusted according to . Figure 8 showcases this architecture.ς

X) X )ς(𝑋, =  1
𝐷

𝑖=1

𝐷

∑ ς(𝑋
𝑖
,  

𝑖
     (13)
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Figure 8. AE Architecture. Source: Author.

3.2.2. Long Short-Term Memory [25]

Recurrent Neural Network (RNN) architectures allow models to operate
considering temporal dynamics. Long Short-Term Memory (LSTM) cells
introduce feedback connections and introduce an internal state to represent
temporal information. LSTMs are composed of input, output, and forget gates,
which regulate the flow of information through the cell. Let be the cell state𝐶

𝑡

that depends on the instant 𝑡, 𝜎 is a sigmoid activation function, the input in𝑋
𝑡

the instant 𝑡, the output of a layer from the previous state, the output atℎ
𝑡−1

ℎ
𝑡

the current state, the forget gate, the information of the input gate, and𝑓
𝑡

𝑖
𝑡

𝑜
𝑡

the output gate.

Figure 9 shows the internal architecture of a LSTM cell. The process begins with
flowing with the information from the previous layer . decides if the𝑋

𝑡
ℎ

𝑡−1
𝑓

𝑡

information of previous states will influence the next state. will decide which𝑖
𝑡

information is going to be selected and a vector of candidates is𝐶
𝑡
'

computed by the function. writes the next state and will produce the𝑡𝑎𝑛ℎ 𝑜
𝑡

𝐶
𝑡

connections to adjacent layers connected to the LSTM cell.
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Figure 9. LSTM architecture. Source: Author.

The weights depend of previous layers and inputs . Each layer has its𝑊
𝑖

ℎ
𝑖−1

𝑋
𝑖

own bias. Equations 13-15 describe the operation of these gates.

𝑖
𝑡

= σ(𝑊
𝑖
[𝑋

𝑡
, ℎ

𝑡−1
] + 𝑏

𝑖
)     (13)

𝑓
𝑡

= σ(𝑊
𝑖
[𝑋

𝑡
, ℎ

𝑡−1
] + 𝑏

𝑓
)     (14)

𝑜
𝑡

= σ(𝑊
𝑖
[𝑋

𝑡
, ℎ

𝑡−1
] + 𝑏

𝑜
)     (15)

In a similar fashion is a function that depends on the previous layer and𝐶
𝑡

weights in a given timestamp. In order to update , a candidate C is𝐶
𝑡

 
𝑡

calculated in each timestamp, according to Equation 16. The state is
updated in Equation 17.

C 
𝑡
= 𝑡𝑎𝑛ℎ(𝑊

𝑖
[𝑋

𝑡
, ℎ

𝑡−1
] + 𝑏

𝑐
)     (16)

C𝐶
𝑡

= 𝑓
𝑡

* 𝐶
𝑡−1

+ 𝑖
𝑡

*  
𝑡
    (17)

Standard RNNs learn temporal sequences, however, it can be difficult for them to
learn long-time temporal sequences. LSTMs solve this problem with the state
gates, which control the flow of information over time. Gated Recurrent Units
(GRUs) are simpler architectures than LSTMs. However, this work will include the
use of LSTMs due to their high popularity in the scientific community [14-15-16].
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3.2.3. Convolutional Neural Networks [36]

Convolutional Neural networks (CNN) are used in image processing as filters
to learn feature maps. This work considers convolutional layers to extract
features from the gait signals. The convolutional maps are computed by
multiplying a sliding kernel matrix, with the inputs of the layer. Each
connection learns a weight, associated from one layer to another. This type of
NN operates usually along 2 dimensions, which are the width, and the height
of an image. This work considers 1-D Convolutional layers, which are used to
operate time series. Figure 10 illustrates the idea.

Figure 10. Convolutional layer. Source [33].

4. Data

The Dataset is composed of two parts: training and testing. The training
data-set consists of 38 patients and 38 HCs. The testing data set has 30
patients and 30 controls. All Patients performed the 4x10 gait task.
Additionally, all PDs and HCs had both Apkinson and eGait recordings, which
were considered for the experiments. The inclusion criterion for the controls is
to be absent of any movement disorder, impairment, or injury. Table 3
contains the demographical information for both groups. All subjects belong
to a study conducted by GITA Lab, Universidad de Antioquia, Medellín,
Colombia, and signed an informed consent, where they can opt out of the
study anytime. The histogram of age distribution is illustrated in Figures 11-11b.
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PD patients HC subjects

Gender [F/M] 14/16 18/12

Age [F/M] 58.2 ± 8.7 / 70.7 ± 7.1 60 ± 3.6 / 58.6 ± 4.1

Educational 10.5 ± 4.9 / 8.1 ± 5.2 -
attainment[F/M]

Years since diagnosis 10.5 ± 4.9 / 8.1 ± 5.3 -
[F/M]

Table 3. Demographic and clinical data from the testing dataset.

Figure 11. Age distribution of training dataset for CAENC. Source: Author.
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Figure 11-b. Age distribution of the test dataset. Source: Author.

5. Methodology

5.1.   Model Training

The gait signals from the training dataset are used for this process. 70% of the
data is used for training, 30% for validation. The training dataset purpose is to
avoid biases that could result from combining information from the subjects of
the testing dataset. Each recording has over 600.000 registers. Each patient
recording is split in 3 channel windows, composed of 125 samples (2.5
seconds). These samples are used to train a convolutional AE (CAE).

The encoder is composed by a three-channel convolutional layer, which
receives the three channel inputs and scales those channels by a factor of 2.
A MaxPool1D layer with a kernel size and stride of 2 is used afterwards to
select relevant features from the convolutional maps, followed by a Gaussian
Error Linear Unit (GELU) activation function. The next stage is composed of
three LSTM layers, which are aimed to learn features from the time variation of
the signals. Next, a BatchNorm1D layer is added to normalize the outputs. The
compression stage is composed of a sequential reduction of size composed
of fully connected layers, which reduce 16128 neurons into 64, in 5 steps. Each
step is a fully connected layer with dropout in order to reduce overfitting, as
follows:
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1. 16128 > 4096 Dropout: 20%

2. 4096 > 2048 Dropout: 20 %
3. 2048 > 1024 Dropout: 25 %
4. 1024 > 128 Dropout: 25 %
5. 128 > 64

Figure 12. Encoder stage. Source: Author.

Figure 12 features the full connection of the encoder. The decoder follows a
decompression stage, following 5 steps, which correspond to the inverse of
those in the compression stage, with a variation of the dropouts between the
fully connected layers (Fig. 13). The last fully connected layer is followed by a
Sigmoid activation function. The outputs are fed into a three-layer LSTM with
BatchNorm1D. An interpolation is computed in order to restore the same
dimensions as the input and finally, a Convolution from 6 channels to 3 is
performed, in order to compare the result with the original signal. Figure 13
illustrates the decoder stage.

Figure 13. Decoder stage. Source: Author

The 64-neuron representation is the bottleneck of the network, which contains
the compressed representation of the 3 channels. Two additional models are
considered, using a 128 and 256-dimensional bottleneck respectively. This
work is performed using Pytorch v1.11.0. The training is composed of the
following parameters:
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1. Batch size = 16

2. Epochs = 15

3. Training samples: 13739

4. Validation samples: 6767

The model is trained using the MSE loss function, and the Adam optimizer, with

a learning rate of 1 , and weight decay (L2 regularization in Pytorch𝑒−4

implementation)3 of 1 . Figure 14 illustrates the loss summary for the best𝑒−4

model. The loss values indicate that the errors in the output are small, in spite
of the oversampling step in the decoder stage.

Figure 14. Training summary. Source: Author.

The model is trained considering the early stopping technique as a
regularization method to prevent overfitting. Figures 15-17 show the
comparison between the X, Y, and Z channels, which will now be
considered as 1, 2, and 3, at the input of the network vs. the same
channels at the output of the model. All plots correspond to a single
random sample from the testing dataset.

3 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Figure 15. Random sample from channel 1. Source: Author.

Figure 16. Random sample from channel 2. Source: Author.
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Figure 17. Random sample from channel 3. Source: Author.

The representation of the input follows the expected behavior, albeit with loss
of information due to the interpolation. A Min-Max scaling process was
computed per channel for the training process.

5.2. Feature Extraction

The model produces compressed representations from the 3 channels in the
bottleneck section, which will be used as features. Three models are
proposed for this work:

1. Model #1: 64-Dimensional bottleneck

2. Model #2: 128-Dimensional bottleneck

3. Model #3: 256-Dimensional bottleneck

Two statistical functionals are computed for each recording: the mean, and
the std along the vertical axis of the feature vectors. The early fusion of these
features is considered, forming a 128-dimensional vector per patient in #1, a
256-dimeinsional vector in #2, and a 512-dimensional vector for #3.

6. Experiments, results, and analysis

Three sets of experiments are conducted. First, randomized input channels are
considered, and secondly, non-randomized channels. For each set, stratified
5-Fold-CV strategies are conducted, considering the scenarios listed in Table
5. The ROC curve plots for each experiment, ACC, Sensitivity (SEN), Specificity
(SPEC), and Unweighted Average Recall (UAR) are reported in Tables 6 and 7.
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The best hyperparameters are selected based on the ACC in the
development set.

Four experiments are proposed. First, only signals from Apkinson are
considered to classify PDs vs. HCs. The second experiment consists of the
classification using the eGait system, left and right side are considered
separately. The third experiment uses the early fusion of both sides for the
classification task. The fourth experiment is only considered for the first model,
since it is not possible to use different sources as it will introduce biases in the
classifier when differentiating PDs vs HCs. Table 5 resumes the experiment list:

# Side Experiment

1 PD Apkinson VS.

2
L PD left foot  eGait VS. HC left foot  eGait

R PD right foot eGait VS. HC right foot eGait

3 PD eGait Early-Fusion
Left-Right

VS. HC eGait Early-Fusion
Left-Right

4
L PD Apkinson VS. PD right foot eGait

R PD Apkinson VS. PD left foot eGait

Table 5. Experiment list.

Experiments in sections 6.1-6.3 were conducted using randomized channels
for the CAE. On the other hand, section 6.4 contains experiments using
non-randomized channels.

6.1. Model #1 (64-dimensional bottleneck)

Experiment ACC (%) SEN SPEC UAR Best Model
C=0.001,

1 48.00 ± 9.67 0.15 ± 0,20 0.52 ± 0.23 0.33 gamma=0.001, kernel=
RBF
C=1, gamma=0.1,

2
80.30 ± 11.40 0.90 ± 0.13 0.93 ± 0.08 0.91 kernel= RBF

C=1, gamma=1,
82.20 ± 16.01 0.87 ± 0.19 0.93 ± 0.08 0.90 kernel=RBF

3 85.00 ± 6.20 0.93 ± 0.08 0.93 ± 0.08 0,93
C=1, gamma=1
kernel= RBF

4
79.60 ± 11.00 0.86 ± 0.17 0.86 ± 0.16 0.86 C=1, kernel=Linear

83.10 ± 8.00 1.00 ± 0.00 1.00 ± 0.00 1.00 C=1, kernel=Linear

Table 6. Results for Model #1. 64-dimensional embeddings.
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6.1.1. Experiment 1

The results from experiment 1 indicate that the proposed hyperparameter
grid, classifier and features are not adequate to properly differentiate
between classes. Another CV is performed using the mean, std, kurtosis and
skewness as features. The results improved, resulting in the following metrics:
ACC 71.3 ± (6.1), SEN 0.68 ± 0.06, SPEC 0.66 ± 0.06, and UAR 0.67. One of the
explanations of such a result is that the AE models were not trained with
signals from both sources, creating the necessity for more information.
However, the consideration of more statistical functionals resulted in better
results. Figure 18 illustrates the results for the experiment listed in Table 6.

Figure 18. ROC report for Model #1 - experiment 1. Source: Author.

6.1.2. Experiment 2

This experiment showcases the comparison between the left and right sides.
Although the ACC score is better than the results of Experiment 1, the stability
of the models is inferior, according to the ROC Curve report in Figures 19-20,
and Table 6. The Same applies to the SEN, and SPEC values. Additionally, the
complexity parameters for the best models are equal, with the difference
being in the gamma parameter, which means that the decision boundary is
more curved in the left side.
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Figure 19. ROC report for Model #1 - experiment 2-L. Source: Author.

Figure 20. ROC report for Model #1 - experiment 2-R. Source: Author.

6.1.3. Experiment 3

According to Table 6, when considering the mean of both sides for each class,
the results improved by an average of 4.7% and 2.8% with respect to experiments
1, and 2. Moreover, the stability of the ACC results improved, with a std of 6.2%.
Furthermore, it is evident that this model is more suitable to detect patients than
those that consider left and right sides separately. It is evident that the
information from both sides provides more information for the classifier.
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Figure 21. ROC report for Model #1 - experiment 3. Source: Author.

6.1.4. Experiment 4

The signals from the mobile phone, and the eGait system are differentiable,
according to the results in Table 6. Despite the representations from the AEs,
such signals can be differentiated with high accuracy. The big issue with
these experiments is that the origin of both signals is different. Both models
exhibit a similar ROC report that the previous ones (Figures 22 & 23).

Figure 22. ROC report for Model #2 - experiment 4-L. Source: Author.
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Figure 23. ROC report for Model #2 - experiment 4-R. Source: Author.

6.2. Model #2 (128-dimensional embeddings)

Experiment ACC (%) SEN SPEC UAR Best Model
C=1

1 50.00 ± 9.00 0.39 ± 0,21 0.52 ± 0.23 0.46 gamma=0.1
kernel=RBF
C=1, gamma=0.1,

2
78.30 ± 10.000 0.93 ± 0.13 0.93 ± 0.08 0.93 kernel= RBF

78.30 ± 6.71 0.96 ± 0.06 0.96 ± 0.06 0.96 C=1, kernel=Linear

3 80.00 ± 8.50 0.95 ± 0.10 0.97 ± 0.06 0,96
C=1, kernel=Linear

Table 7. Results for Model #2. 128-dimensional embeddings.

6.2.1. Experiment 1

Compared to the results in section 6.1.1, the results seem to improve.
However, the same problem is present. When considering the mean, std,
kurtosis and skewness, the results improve to ACC 74.1 ± (9.9), SEN 0.66 ± 0.50,
SPEC 0.61 ± 1.26, and UAR 0.63. There is a 24.1% average improvement in
ACC, 40% in sensitivity, 19% in specificity, and a considerable increase in the
UAR with an average of 17%. Figure 24 Illustrates the result.
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Figure 24. ROC report Model #2 - experiment 1. Source: Author.

6.2.2. Experiment 2

The results indicate that there is not a considerable difference in the ACC
scores, SEN, SPEC and UAR, indicating that there is a possibility in which the
64-D embeddings provide sufficient information to represent both patients
and HCs for the classification tasks. Figures 25 and 26 show the ROC curve
report for this case.

Figure 25. ROC report Model #2 - experiment 2-L. Source: Author.
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Figure 26. ROC report Model #2 - experiment 2-R. Source: Author.

6.2.3. Experiment 3

Similarly, this experiment does not show important improvements in the
classification metrics. One possible explanation for such results is that the
smaller bottleneck of Model #1 contains more meaningful information of the
subjects. Figure 27 illustrates the result for this section.

Figure 27. ROC report Model #2 - experiment 3. Source: Author.
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6.3. Model #3 (256-dimensional embeddings)

Experiment ACC (%) SEN SPEC UAR Best Model
C=0.01, gamma=0.001

1 73.90 ± 15.00 0.73 ± 0.16 0.68 ± 0.16 0.71 kernel=RBF

C=0.001, gamma=0.1,
2 85.00 ± 18.600 0.87 ± 0.19 0.90 ± 0.13 0.88 kernel= RBF

78.30 ± 14.50 0.86 ± 0.18 0.80 ± 0.26 0.83
C=1, gamma=0.001,
kernel=RBF

3 81.70 ± 9.70 0.83 ± 0.09 0.83 ± 0.10 0,83
C=1, gamma= 0.001,
kernel=RBF

Table 8. Results for Model #3. 256-dimensional embeddings.

As specified by Table 8, there is not a substantial difference in the results using
higher dimensions in the bottleneck of the CAE, with the exception of
experiment 1. In experiments 1 and 2, all metrics improved when considering
more features. However, in this experiment, only the mean+std were
considered. It is evident that the signals from the smartphones are more
difficult to classify, given the recording constraints of the Android devices.
Such constraints include different accelerometer manufacturers, and variable
sampling frequency, depending on resource availability. Since the devices
used for recording these signals had variability, the quality of the data is
different when compared to the eGait signals. Further research is needed
with this source, to determine more approaches to analyse the impact of
these constraints in the classification metrics. Figure 28 shows the ROC report
for this experiment.

Figure 28. ROC report for Exp 3:1. Source: Author.
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6.4. Non-randomized channels

Tables 9-11 Illustrate the results of training the CAENC with non-randomized
channels.

Experiment ACC (%) SEN SPEC UAR Best Model
C=0.001,

1 46.20 ± 11.31 0.15 ± 0,31 0.52 ± 0.11 0.34 gamma=0.001, kernel=
RBF
C=1, gamma=0.1,

2
81.00 ± 9.31 0.92 ± 0.01 0.90 ± 0.10 0.90 kernel= RBF

C=1, gamma=1,
85.10 ± 13.31 0.83 ± 0.19 0.97 ± 0.12 0.90 kernel=RBF

3 83.10 ± 8.00 0.93 ± 0.13 0.93 ± 0.02 0,93
C=1, gamma=1
kernel= RBF

4
79.70 ± 13.26 0.88 ± 0.12 0.84 ± 0.30 0.86 C=1, kernel=Linear

84.90 ± 6.21 0.99 ± 0.06 0.98 ± 0.12 0.99 C=1, kernel=Linear

Table 9. Results for Model #1. Non-randomized.

Experiment ACC (%) SEN SPEC UAR Best Model
C=1

1 51.78 ± 6.00 0.42 ± 0,14 0.57 ± 0.39 0.49 gamma=0.1
kernel=RBF
C=1, gamma=0.1,

2
76.35 ± 12.25 0.90 ± 0.13 0.93 ± 0.08 0.92 kernel= RBF

78.91 ± 8.41 0.96 ± 0.06 0.96 ± 0.06 0.96 C=1, kernel=Linear

3 82.02 ± 8.50 0.93 ± 0.27 0.95 ± 0.13 0,94
C=1, kernel=Linear

Table 10. Results for Model #2. Non-randomized.
Experiment ACC (%) SEN SPEC UAR Best Model

C=0.01, gamma=0.001
1 75.10 ± 12.23 0.70 ± 0.16 0.69 ± 0.16 0.69 kernel=RBF

C=0.001, gamma=0.1,
2 83.00 ± 18.600 0.76 ± 0.12 0.85 ± 0.10 0.81 kernel= RBF

78.30 ± 14.50 0.79 ± 0.01 0.80 ± 0.10 0.80
C=1, gamma=0.001,
kernel=RBF

3 83.10 ± 4.72 0.80 ± 0.09 0.80 ± 0.30 0,80
C=1, gamma= 0.001,
kernel=RBF

Table 11. Results for Model #3. Non-randomized.
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Randomizing the channels does not seem to affect the classification process,
such a behavior is expected, as the information from all channels is compressed
inside the bottleneck, and after a few iterations, the CAE will learn how to parse
the information despite the channel of origin. The experiment conducted using
randomized channels is the one suitable for future tasks, as it follows the
principle of generalization.

There is enough information to conclude the results of this work, therefore, it is
not necessary to present any more figures related with the ROC curve. Model
#1 provides high ACC, SEN, SPEC, and UAR values overall, with the smallest
bottleneck. In order to improve the detection rates in the Apkinson signals,
more features such as the kurtosis and skewness should be considered.
Considering this case. There are not any considerable improvements in the
proposed metrics when using Models #2 and #3. Following the results in
Tables 6-8. Most of the stds in the tables indicate that there is a small
variability inside the hyperparameters from the stratified 5-Fold CVs. Further
research is needed to verify if the inclusion of more features may lead to
reduce such variations and improve the classification results. There is a huge
gap between the signals from the eGait system and the ones obtained via
Apkinson. Experiments with detailed information about which pocket the
smartphone is placed in at all times are needed, in order for experiments
including Apkinson vs eGait to really become meaningful. The results show
that efficient representations of gait signals could be used in the future for
clinical applications using Convolutional Auto-Encoders. Additionally, a
possible investigation line could be followed using the results of this work, to
better understand the possible uses of Smartphone based signals in PD
classification and to predict the neurological state of the patients.

7. Conclusions

This study used Convolutional Auto-Encoders to extract features from gait
signals of Parkinson’s Disease patients and Healthy subjects. The signals were
extracted from the Apkinson smartphone app and the eGait system. A
quadratic interpolation process was used to equalize the sampling
frequencies from both sources to 50Hz. A total of 38 PD patients and 38 HCs
were used to train 6 models, 3 using randomized channels, and 3 using
non-randomized channels. The inputs of the models were 3-channel,
125-dimensional windows extracted from the gait signals. The testing dataset is
conformed of 30 PDs and 30 HCs, all subjects had Apkinson and eGait data. The
testing dataset comprised 30 PDs and 30 HCs. Each set of Auto-Encoders used
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64, 128, and 256-dimensional bottlenecks respectively to learn efficient
representations from the signals. The feature sets were composed of the
embedding vector from each recording. The early fusion of the mean and
standard deviation from the feature vectors was considered for the classification
task.

The goal was to model the gait impairments of the patients, in order to classify
them vs HCs. A stratified 5-Fold Cross-Validation strategy was conducted, using a
Support Vector Machine. The hyperparameter optimization was performed
according to the accuracy on the development set. For each experiment, the
Accuracy, Sensitivity, Specificity, Unweighted Average Recall and ROC Curve
summary were reported. The results indicate that the 64-dimensional bottleneck
model provides enough information to classify the PDs. The best result overall
using such a model indicates an average Accuracy of 85%, and an Unweighted
Average Recall of up to 93%. This result was obtained using information from both
sides of the eGait system. Additionally, the signals from Apkinson needed more
statistical functionals in order to differentiate PD patients vs. HC subjects. When
considering the early fusion of the mean, standard deviation, skewness, and
kurtosis, this classification process reaches average accuracy values 71.3%, and
UAR values of 0.67. The 128 and 256- dimensional models did not provide
significant improvements. When using the latter. Average accuracy values of
73.9% and UAR of 0.71 were obtained for the classification process using only
Apkinson signals.

Experiments comparing non-randomized vs. randomized channels indicated
that there are not substantial differences, as the resulting loss values are
similar to the ones in the previous models and the classification is not affected
by such a change. Further research is required with the aim of investigating
into the analysis of the Apkinson signals using these kinds of methods.
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