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Abstract

A central problem in developmental and synthetic biology is understanding the mechanisms

by which cells in a tissue or a Petri dish process external cues and transform such informa-

tion into a coherent response, e.g., a terminal differentiation state. It was long believed that

this type of positional information could be entirely attributed to a gradient of concentration

of a specific signaling molecule (i.e., a morphogen). However, advances in experimental

methodologies and computer modeling have demonstrated the crucial role of the dynamics

of a cell’s gene regulatory network (GRN) in decoding the information carried by the morpho-

gen, which is eventually translated into a spatial pattern. This morphogen interpretation

mechanism has gained much attention in systems biology as a tractable system to investi-

gate the emergent properties of complex genotype-phenotype maps. In this study, we apply

a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-

node GRNs with the ability to generate a band-like expression pattern (target phenotype) in

the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic

field in a developing embryo. Unlike most modeling studies published so far, here we

explore the space of GRN topologies with nodes having the potential to perceive the same

input signal differently. This allows for a lot more flexibility during the search space process,

and thus enables us to identify a larger set of potentially interesting and realizable morpho-

gen interpretation mechanisms. Out of 2061 GRNs selected using the search space algo-

rithm, we found 714 classes of network topologies that could correctly interpret the

morphogen. Notably, the main network motif that generated the target phenotype in

response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which

agrees with previous theoretical expectations and experimental observations. Particularly,

compared to a previously reported pattern forming GRN topologies, we have uncovered a

great variety of novel network designs, some of which might be worth inquiring through
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synthetic biology methodologies to test for the ability of network design with minimal regula-

tory complexity to interpret a developmental cue robustly.

Author summary

Systems biology is a fast growing field largely powered by advances in high-performance

computing and sophisticated mathematical modeling of biological systems. Based on

these advances, we are now in a position to mechanistically understand and accurately

predict the behavior of complex biological processes, including cell differentiation and

spatial pattern formation during embryogenesis. In this article, we use an in silico
approach to probe the design space of multi-input, three-node Gene Regulatory Networks

(GRNs) capable of generating a striped gene expression pattern in the context of a simpli-

fied 1-D morphogenetic field.

Introduction

Cells interact continuously with their environment, which requires precise regulatory strate-

gies to avoid potential detrimental responses. Arguably, most cellular functions arise from the

dynamic activity of Gene Regulatory Networks (GRNs), which play a central role in interpret-

ing external and internal signals. This information processing function is critical in develop-

mental processes such as those in which a group of cells differentiates in response to a

signaling molecule. Such molecules were referred to as morphogens by Turing in 1952 [1], and

posterior theoretical studies on patterning led to the conceptualization of the French Flag

Problem by Wolpert, who also stated in this respect that a gradient of concentration of a mor-

phogen could trigger cell differentiation in a one-dimensional field of cells [2, 3]. Although the

Bicoid protein (bcd), the first example of a molecule that acted as a morphogen, was only

found in the 80s in the developing embryos of Drosophila melanogaster [4, 5], now it is known

that there are many other examples such as the Decapentaplegic (Dpp) protein in Drosophila
wing imaginal discs [6], as well as Sonic Hedgehog [7, 8] and Wnt [9]. However, information

processing by GRNs has proven to be a complex process, and a major goal of developmental

biology is to understand mechanistically how positional information conveyed by morphogens

is translated into spatial differentiation.

Our understanding of how GRNs process information has increased thanks to the concept

and theory of network motifs, defined as patterns of interconnections occurring in networks

at numbers significantly higher than those in randomized networks [10]. This novel

approach, along with mathematical modeling and computational systems biology methods, is

a powerful tool to study GRNs [11], and experimental studies have validated the predictions

of studies using these methods [12–15]. Some have even used synthetic GRNs to produce

artificial cell differentiation [16], circadian gene expression [17], counting devices [18] and

systems that respond to light [19, 20]. Moreover, the design and implementation of GRNs

through synthetic biology is emerging as a promising tool to study biological phenomena as

pattern formation [21] and as a novel therapeutic tool with interesting biomedical applica-

tions [22–26].

In a tissue context, the generation of a stripe of gene expression is a fundamental patterning

function in development, and it has been shown that simple feed-forward motifs can robustly
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achieve such a patterning task [27]. For example, Cotterell and Sharpe studied what kind of

3-node network topologies could effectively translate a morphogen gradient into a striped

gene expression pattern in a one-dimensional field of cells. They found a variety of networks

that implemented at least 7 different mechanisms with varying complexity levels, most of them

variations of feed-forward motifs [28].

Although GRNs with positional information processing capacities have been extensively

analyzed, most studies have so far emphasized particular regulatory systems that respond to a

single input only. These studies have typically focused on either regulatory systems observed

in nature [29–31], synthetic implementations with predefined topologies [16, 32–34], or have

deliberately constrained the study of GRNs to just a handful of alternative designs [27, 35].

However, previous work has demonstrated the necessity to expand computational analysis of

pattern forming GRNs to multi-input settings. For instance, it has been shown that the neural

subtypes specification system in the vertebrate neural tube involves a two-input network in

which Sonic Hedgehog acts as a morphogen and the Olig2 and Nkx2.2 genes can act as the

receiver nodes [7, 36, 37].

In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the

design space of three-node GRNs looking for topologies capable of translating a morphogen

gradient (input signal) into a striped pattern of gene expression (phenotype). Importantly,

unlike most previous computational studies, here we allowed any node (e.g., gene) in a GRN

to perceive the input signal in varying ways and selected the best-performing GRNs based on

a fitness criterion used to assess the quality of the phenotype with respect to a prescribed opti-

mal pattern. Based on this computational strategy, we uncovered a great variety of distinct

classes of network topologies that tend to form a complex interconnected meta-graph that

could be easily traversed throughout evolution via single changes in the wiring of the differ-

ent GRNs.

Materials and methods

Gene regulatory networks and morphogenetic field

In order to study three-node GRNs we represented them by three sets of real numbers, the

first set was composed of the interaction values between genes in the network; the second of

the diffusion rates (D) of each of the three gene products; and the third of the degradation

rates (δ) of these same gene products, with D 2 [0, 0.1] and δ = log2 phl, where phl 2 [5, 50] is

the gene product half-life.

The set of interaction values was represented as adjacency matricesW 2 R3�4
where i rep-

resents a regulated node of the GRN and j represents a regulator node of the GRN (Fig 1A and

1B) with wij 2 [−10, 10] (this interval was arbitrarily chosen and it is inherited from the model

of Munteanu et al. [27] and Cotterell & Sharpe [28]). Values in these matrices can be negative,

zero or positive and represent represion, no interaction, or activation respectively. The magni-

tude of the value is proportional to the strength of the interaction; however, this and all other

magnitudes in our model are dimensionless. In this study we define a ‘genotype’ as the set of

interaction, diffusion and degradation values that represent a GRN.

In our model the morphogen could interact with any of the three genes on the GRN, but

could not be affected by them. The morphogenetic field was defined by an unidimensional

array of 30 isogenic cells exposed to the morphogen concentration gradient (Fig 1C). In

multiple-input networks, all the genes of a given cell are exposed to the same morphogen

concentration, given by an exponential decay function (see Morphogen spatial distribu-

tion). The initial concentration of each gene product in all cells was set to 0.1 in all

simulations.
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Mathematical model

Our model is a modification of the model used by Cotterell & Sharpe [28] and proposed by

Reinitz et al. [30]. The model is a dynamical system that describes the change in concentration

of gene product i in time, as shown in Eq 1.

d½G�in
dt
¼ gðuiÞ þ Di � ½ð½G�

i
n� 1
� ½G�inÞ þ ð½G�

i
nþ1
� ½G�inÞ� � di � ½G�

i
n;

ð1Þ

in which ½G�in is the concentration of the i-th gene in the n-th cell (½G�in � 0), g(ui) is a function

describing the relationship between the interactions on the i-th gene and its expression Eq (2)

and described in more detail below. Di and δi are the diffusion and the degradation rate of i-th

gene product, respectively.

Sigmoid functions are often used to approximate Hill functions describing gene activation/

inhibition in which steepness can be modulated by mechanisms as molecular cooperativity

Fig 1. Modelling of GRNs. (A) GRN represented as a directed graph with activation (blue arrows) and inhibition (red arrows) interactions. Black

circles tagged with a M represent the morphogen; A, B and C represent genes in the network. (B) The same GRN represented as an adjacency matrix in

which positive values represent activation, negative ones represent inhibition and zeros represent no interaction. (C) Morphogenetic field. In our model

the field was composed of a linear array of 30 isogenic cells and a morphogen gradient concentration described by an exponential decay function.

Horizontal arrows between cells represent diffusion of gene products between adjacent cells. Optimal gene expression pattern is shown top right. (D)

Heatmap of spatiotemporal expression profile of a GRN where blue colors represent lower expression and red colors represent higher expression. Time

axis goes from 0 to 500 integration steps. Horizontal axis represents the morphogenetic field, i. e. cells from 1 to 30 for each gene.

https://doi.org/10.1371/journal.pcbi.1009704.g001

PLOS COMPUTATIONAL BIOLOGY Gene regulatory networks producing a striped band of gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009704 February 14, 2022 4 / 21

https://doi.org/10.1371/journal.pcbi.1009704.g001
https://doi.org/10.1371/journal.pcbi.1009704


and target sequestration [38]. This approach has been used extensively to model the response

of signaling pathways and gene interactions in GRNs [39–42]. Moreover, differential equation

models using sigmoid functions have shown to fit gene expression data [43, 44]. In this study,

the input function representing regulatory interactions is a sigmoid function described by

Eq 2.

gðuiÞ ¼
1

1þ expða � b � uiÞ
; ð2Þ

in which a is the sigmoid steepness, equal to 5; a/b is the threshold value, set to 1 for all simula-

tions, and ui is the following equation:

ui ¼
X

j

wij � ½G�
j
n þ wim � ½M�n: ð3Þ

This equation sums the interactions acting upon the i-th gene, being wij the interaction

strength of the j-th gene upon the i-th gene and wim the interaction strength of the morphogen

upon the i-th gene. ½G�jn and [M]n are the concentrations of the j-th gene product and the mor-

phogen in the n-th cell.

Morphogen spatial distribution

The morphogen concentration along the morphogenetic field is described by Eq 4.

M ¼ A0 � expð� c=hÞ; ð4Þ

were A0 is the concentration of the morphogen in the position zero of the morphogenetic field

and was set to 1 in our experiments; c is the cell index, defined as the ratio between the n-th

cell from left to right and the total number of cells, and h is a decay parameter, whose value in

our model was set to 0.4. We do not consider here how the morphogen gradient can be

formed, i.e., we do not consider morphogen dynamics but we assume a static gradient.

The phenotype of a GRN was defined as the expression pattern of each gene along the mor-

phogenetic field after 500 time steps of integration of the dynamical system. We chose that

number of time steps because numerical experiments showed that GRNs reached the steady

state in approximately 300 steps (S1 Fig).

Optimal pattern definition

The optimal pattern of gene expression defined in this study consists in cells at the border of

the field (n< 11 and n> 20) displaying expression levels lower than 10% of the maximal level

observed along the field of cells for the output gene, and cells at the middle of the field (n 2
[11, 20]) displaying expression levels greater than 90% of the maximal level observed along the

entire field for the output gene (Fig 1C).

Search space algorithm

The Markov chain Monte Carlo (MCMC)-like algorithm used to produce the set of gene regu-

latory networks (GRNs) consisted in the following steps:

1. Generate a random GRN.

2. Numerically solve the dynamical system for the GRN from t = 0 until t = 500. We inte-

grated the differential equation using the function NDSolve from Wolfram Mathematica 11

with the option “EquationSimplification” and the “Residual” simplification method.
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3. Evaluate fitness by comparing the GRN phenotype with the optimal phenotype (Fig

1C). In order to compute the fitness function for each GRN we used three different filters.

The first filter assesses whether the expression profile of the output node reaches a quasi-

steady state:

Sfilter ¼
1

I � N

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI¼3

i¼1

XN¼30

n¼1

ð½G�inðt ¼ 500Þ � ½G�inðt ¼ 250ÞÞ
2

s

: ð5Þ

The expression profile was considered to have reached the steady state if Sfilter< 0.001.

The second filter measures the spatial heterogeneity in the field:

Pfilter ¼
1

I � N

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI¼3

i¼1

XN¼30

n¼1

ð½G�in � h½G�
i
niÞ

2

s

; ð6Þ

where h½G�ini is the mean concentration of the i-th gene along the field at t = 500.

The third filter relates the Manhattan Distance (Dobs) between an expression pattern and

the optimal pattern with the maximum distance achievable (Dmax):

PFeff ¼ 1 �
Dobs
Dmax

: ð7Þ

In this function, the expression profile of the output gene was normalized and discretized

so that each expression value for each cell in the field was an integer ranging from 1 to 10.

The filters mentioned above are integrated in the following functions that evaluate the qual-

ity of a given phenotype:

Q1ðPfilterÞ ¼
Pfilter

10

Pfilter
10 þ 0:110

 !

; ð8Þ

Q2ðSfilterÞ ¼
0:12

Sfilter
2 þ 0:12

 !

: ð9Þ

Finally, these quality functions were used to compute the fitness score with the following fit-

ness function:

F ¼ PFeff � Q1ðPfilterÞ � Q2ðSfilterÞ: ð10Þ

4. Mutate GRNs randomly and evaluate fitness again. Three types of mutations were possi-

ble in our algorithm: 1) changes in the numerical value of the degradation parameter, 2)

changes in the numerical value of the diffusion parameter and 3) changes in the numerical

values of the interaction strengths. The type of mutation to be performed was selected ran-

domly with a probability of 0.15 for type 1 and type 2 mutations and 0.7 for type 3 muta-

tions. If type 3 mutation was selected, either the interaction strength was set to zero (with a

probability of 0.2) or was changed randomly (with a probability of 0.8). If fitness of the

mutated GRN was greater or equal than that of the previous GRN, the mutated GRN was

saved and the cycle continued from step 2. This cycle was repeated 50000 times, and a GRN

sampled at a given step and with a fitness score� 0.95 was saved to a file as long as its asso-

ciated topology had not been sampled in previous steps.
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Steps 1 to 5 were iterated 500 times, resulting in a set of 2061 GRNs with a striped pattern

of gene expression in at least one gene.

The source code for the search space algorithm and other parts of analysis is available at

https://github.com/Nesper94/gene-regulatory-networks.

Classification of GRNs

In order to group all the isomorphic (i.e. topologically equivalent) networks from the totality

(2061) of sampled GRNs we used a classification algorithm that selected a GRN and generated

all isomorphs of that GRN by interchanging rows of the adjacency matrix (i$ j) while inter-

changing the corresponding columns (i + 1$ j + 1). This kind of transformation of the adja-

cency matrix results in isospectral graphs that are also isomorphic to the original graph and is

equivalent to generate a permutation matrix P and multiplying PMPT, whereM is the adja-

cency matrix and PT the transpose of P. The algorithm then compared these isomorphs with

another GRN and classified the topologies in the same group if at least one of the transformed

adjacency matrices (or the original one) was identical to that of the other GRN, i. e., if they

were isomorphic networks.

Neutral network

The neutral network was obtained by generating all possible isomorphs of a network topology

and then calculating the minimal Hamming distance between these isomorphs and other net-

work topologies. The Hamming distance between two topologies was calculated using the fol-

lowing equation:

DHðWA;WBÞ ¼
X

ij

j sgnðwAij Þ � sgnðw
B
ijÞ j : ð11Þ

We adopted the same definition of neighborhood as Cotterell & Sharpe [28], in which two

topologies were neighbors if the gain or removal of any one interaction can transform one of

the topologies into the other.

Robustness analysis

In order to evaluate the robustness of the different topologies to perturbations in parameters

of interactions between genes we took a GRN belonging to each one of the network topologies

and we modified each interaction independently by increasing and decreasing its value by

20%. For topologies with 3 or more GRNs we chose the most similar to the mean configuration

for that topology.

As a measure of the robustness of the topology we chose the proportion of times in which a

perturbation resulted in a GRN with a fitness greater or equal to 0.95. Additionally, we consid-

ered a topology to be robust if the previous measure was greater or equal to 0.5.

As a measure of the robustness of subgraphs (see “Classification of topologies”) we calcu-

lated the mean of the robustness measure of all the topologies containing a particular

subgraph.

Robustness of topology 9 to perturbations in non-network parameters. In order to esti-

mate the robustness of topology 9 to changes in parameters that control morphogen gradient

and changes in initial concentrations of gene products, we generated 100 fitness values for

each one of the 19 GRNs belonging to topology 9; in each of these 100 assays we chose A0, h or

initial concentrations randomly from a Normal Distribution with μ = 1 for A0, μ = 0.4 for h
and μ = 0.1 for initial concentrations and a Coefficient of Variation of 30% in each case.
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Shannon entropy

We calculated the Shannon entropy Eq (12) of the network topologies abundance distribution

in order to test if this distribution could be obtained by chance with a probability greater than

0.05. In order to obtain a 95% confidence interval, we generated 30 samples of a set of 2061

random matrices and calculated the Shannon entropy in bits for each sample and tested these

data for normality.

H ¼ �
P
pðxÞ � log

2
pðxÞ: ð12Þ

Classification of GRNs phenotypes

In order to classify each GRN by its spatiotemporal expression profile (its dynamics of expres-

sion), we selected expression profiles of GRNs from time step 0 to time step 250 each 10 time

steps, for a total of 26 expression profiles over time. These spatiotemporal expression profiles

were represented as tensors S 2 R3�26�30
, in which each element (sitn� 0) is the expression

level of the i-th gene at time t in cell n.

Next, we calculated the distance between all the pairs of tensors and performed a Neighbor

Joining clustering using the package Scikit Bio 0.5.5 from Python 3 [45].

Classification of topologies

In order to classify each topology by its subgraph composition, we first created a matrix T =

(tij) with each row corresponding to a different topology and 17 columns corresponding to

subgraphs shown in S2 Fig. Each element tij of the matrix was 1 if the j-th subgraph was pres-

ent in the i-th topology or 0 if the subgraph was not present.

With this matrix we then calculated a distance matrix in which each element consisted in

the Hamming distance between the row vectors in matrix T between each pair of topologies.

We then clustered the topologies based on the Neighbor Joining method, as implemented in

the Scikit Bio package [45].

Complexity index and network descriptors

As a measure of network complexity, we used the complexity index based on Shannon entropy

proposed by Bonchev & Rovray [46]. We calculated this index using the following equation:

Ivd ¼
XV

i¼1

ai � log2
ai; ð13Þ

where ai denotes the degree of the i-th node and V the number of nodes in the network. Both

the network descriptors and Pearson’s chi-square goodness of fit tests were performed for the

node degree distribution using the built-in functions from the Wolfram Mathematica

software.

Pattern formation under varying size of the morphogenetic field

We evaluated the ability of each of the sampled GRNs to generate a striped pattern of gene

expression under varying sizes of the morphogenetic field. Specifically, we calculated the fit-

ness of each GRN across morphogenetic fields composed of 10, 20, 40, and 50 cells. In these

simulations we redefined the morphogen gradient in such a way that the initial and final con-

centration were constant in all the fields (S3(A) Fig). In order to know if GRNs with the same

PLOS COMPUTATIONAL BIOLOGY Gene regulatory networks producing a striped band of gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009704 February 14, 2022 8 / 21

https://doi.org/10.1371/journal.pcbi.1009704


topology had a similar fitness in the different fields, we performed a Principal Component

Analysis in Scikit-learn 0.24.2 [47] using the fitness values of each in the four different fields

(see S3 Fig).

Results

The classification of GRNs showed that our initial set of 2061 GRNs can be grouped into 714

distinct network topology classes, with each containing a variable number of GRNs (Fig 2).

This abundances distribution was not produced by chance as its Shannon entropy was signifi-

cantly lower than that of random networks produced without selection involved (Shannon

entropy = 8.52963, 95% confidence interval for random networks = [10.8915, 10.9275]), and

instead it displays some level of structure, indicating the existence of network motifs.

The most abundant network topologies are shown in Fig 2. Interestingly, among the 15

most abundant network topologies, eleven of them presented the Incoherent type 3 Feed-For-

ward Loop (I3-FFL) network motif. In addition, we found that topology number 9 could pro-

duce the striped phenotype with only two nodes.

The neutral network (a metagraph in which each node is a network topology) shows that

most of the network topologies are grouped into a connected graph. This graph is composed

of 639 nodes that are accessible by one mutational step. The 15 most abundant network topol-

ogies, with the exception of number 10, are part of this graph (Fig 3). We also found nodes

inside the neutral network that had more connections between them than with other nodes,

which leads to further clustering of nodes. Interestingly, in almost every cluster one can find

one or more of the 15 most abundant network topologies. In addition, we found that the first

eight most abundant network topologies were located in the largest cluster.

The degree distribution of this neutral network seems to follow a Poisson distribution

(Pearson’s χ2 = 12.8902, p- value = 0.115684) characteristic of a Erdös-Rényi network with

many nodes and edges [48]. This kind of network presents a great number of nodes with low

degree and a few nodes with high degree (Fig 4A). Nodes corresponding to topologies number

Fig 2. Distribution of abundances of network topologies. Some of the most frequent network topologies shown in

the grid contain the I3-FFL network motif (shown on the left). In this network motif the gene B is activated in an

indirect way by the morphogen through the activation of A (positive interactions), and at the same time, it is

inactivated in a direct way by the morphogen (negative interaction). Topologies are numbered in order of decreasing

abundance, being the Topology 1 the most abundant with a number of 95 genotypes. The number of genotypes

belonging to each network topology is presented below the topology number. Note that network topology number 9

produces the striped phenotype using a two-node GRN.

https://doi.org/10.1371/journal.pcbi.1009704.g002
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one and three showed the highest degree (deg(1) = deg(3) = 14). Curiously, we found that

nodes with higher degree turned out to be also those network topologies with higher abun-

dance (Fig 4B). This relationship between abundance and node degree was corroborated by

the Spearman’s rank correlation coefficient (rS = 0.353752, p = 6.2933 × 10−23).

Furthermore, we examined the extent to which the metagraph of topologies remained

highly connected when joining neighbors at two mutational steps. Interestingly, we found that

only topology number 420 remained isolated from the rest of topologies in the metagraph

(Fig 5).

Next to topological robustness, we investigated the robustness of the sampled network

topologies to parameter changes (see Materials and methods). Fig 6A illustrates the association

between the abundance of a topology class versus its robustness. We did not find a significant

correlation between these two variables (rS = −0.0389724, p-value = 0.298475). However, when

we grouped those topologies containing the same subgraph and calculated their mean

Fig 3. Neutral network. This graph shows network topologies connected by one mutational step, where each node represents a single topology. Black

nodes represent the most abundant topologies. All nodes with the same color belong to a cluster of nodes more connected between them than with

other nodes in the graph. The most abundant topologies are represented as directed graphs in the same way as in Fig 1A, except for the topologies 1 to 8

and 15 (orange and red clusters), in which only topology 1 is depicted.

https://doi.org/10.1371/journal.pcbi.1009704.g003
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robustness, we found that between the most robust subgraphs is the “Bistable” motif, the

I3-FFL, as well as the “Overlapping domains” motif (which is a variation of the I3-FFL), which

have been previously reported in Cotterell & Sharpe [28] (see S2 Fig and S1 Table).

On the other hand, analysis of the average vertex degree seems to be indicative that network

topologies are likely to withstand numerous topological modifications (approximately 4) with-

out significant loss in their ability to generate a striped pattern of gene expression, representing

a high fitness solution to the prescribed task. The average complexity index of network topolo-

gies was 39.2435 (±11.6768) and was found to be negatively correlated with the abundance (rS
= −0.316653, p- value = 2.25161 × 10−18) (Fig 6B). Additionally, the average path length seems

to suggest that the evolutionary landscape could be easily traversed by most network topologies

without incurring in significant fitness loss as long as mutational changes results in moves

between adjacent neighbors across the metagraph (Table 1). It is interesting to note that,

although the examined GRNs seem to exhibit, on average, a high robustness to topological/

parameter changes, they generally show a rather high sensitivity to variation in the size of the

morphogenetic field. For instance, we found that when the size of the morphogenetic field was

fixed at 10, 20, 40 and 50 cells only 4.66%, 56.82%, 56.14% and 41.05%, respectively, of the

examined GRNs showed a fitness greater than 0.9 (S3(B) Fig). In addition to robustness, we

Fig 4. Node degree in the neutral network. (A) Histogram of vertex degree distribution in the neutral network. (B)

Scatter plot of Topology abundance vs. Node degree in the neutral network.

https://doi.org/10.1371/journal.pcbi.1009704.g004
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wanted to investigate which of the GRNs could still produce a striped pattern in absence of dif-

fusion, as it has been shown that some networks can work without diffusion involved [32]. We

found that out of 2061 GRNs, 404 were diffusion independent, many of them presenting the

I3-FFL (see S1 Appendix).

Hierarchical clustering of spatiotemporal expression profiles showed that GRNs with topol-

ogies that seemed to be very different have indeed very similar expression dynamics. We

expected to find GRNs with the same topology to group together but instead we found GRNs

with different topologies grouped as close neighbors (Fig 7A). Intriguingly, some GRNs dis-

playing very abundant network topologies were grouped together with GRNs displaying very

infrequent network topologies. This seems to indicate that additional interactions in the net-

works are likely to represent alternative regulatory mechanisms for fine tuning gene expres-

sion, instead of drastically changing the expression mechanism, which can be seen in the

expression dynamics of networks with different topologies (S4 Fig). Additionally, clustering of

Fig 5. Neutral network of topologies separated by two mutational steps. The network shows that almost all the topologies are connected by two or

less mutational steps. Big red circle represents topology 420 that remains unconnected from the main graph. Big black circles correspond to the 15 most

abundant topologies described in Fig 3. Different colors in the graph represent different clusters of topologies.

https://doi.org/10.1371/journal.pcbi.1009704.g005
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topologies revealed that there are six main groups of topologies in our set of 2061 GRNs

(Fig 7B).

Among the new network topologies we report here, perhaps one of the most interesting

ones is the topology number 9, which is able to express the striped gene expression pattern

Fig 6. Relationship between the abundance of topologies with robustness and complexity index. (A) Abundance

vs. Robustness. The robustness of each topology was calculated as the ratio of perturbations in which the fitness was

greater or equal to 0.95 with respect to the total of perturbations performed. (B) Abundance vs. Complexity index.

Each point in the plot represents one of the 714 network topologies. More complex topologies tend to be less abundant

than simple topologies (rS = −0.316653, p- value = 2.25161 × 10−18).

https://doi.org/10.1371/journal.pcbi.1009704.g006

Table 1. Network descriptors of neutral network of topologies.

Network descriptor Value

Average vertex degree 3.85714

Clustering coefficient [49] 0.117097

Average path length 7.25261

Graph connectedness 0.00540974

Graph diameter� 25

Average path length� 9.0499

�These descriptors were calculated for the main connected subgraph of the network.

https://doi.org/10.1371/journal.pcbi.1009704.t001
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with only two genes (Fig 8). This topology is composed of a core quite similar to the Gierer-

Meinhardt mechanism [50, 51] known to generate stripes and dots in bidimensional fields,

with the only differences being the self inhibition of gene A and the inhibition of the genes by

the morphogen. Such additional interactions in the topology number 9 play a role in restrict-

ing the striped expression pattern to a precise location along the morphogenetic field.

Despite having only two genes, the regulatory mechanism underlying the topology 9 gener-

ates dynamically more complex expression patterns compared to other topologies, such as the

I3-FFL; however, and despite the fact that the Gierer-Meinhardt model forms patterns that can

scale with tissue size in the presence of external forcing [52, 53], we found that topology 9 was

more sensible to changes in the morphogenetic field size than those topologies based on

I3-FFL (S2 Table), indicating that the additional regulatory interactions need to be fine-tuned

depending on the number of cells in the field.

Fig 7. Clustering of expression profiles and topologies. (A) Clustering of spatiotemporal expression profiles obtained by neighbor joining. (B)

Clustering of network topologies. Blue circles correspond to topologies that contain the I3-FFL network motif.

https://doi.org/10.1371/journal.pcbi.1009704.g007

Fig 8. Expression dynamics of topology 9. (A) Network topology number 9. Although this topology consists only of

two genes, it display a striped pattern of gene expression for both of them as can be observed in (B). (B) Spatiotemporal

expression profile of a GRN with topology 9. Gene B is not shown as it was lost in this topology in the evolutionary

process simulated by the search space algorithm.

https://doi.org/10.1371/journal.pcbi.1009704.g008
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In the mechanism of expression of topology 9 the initial expression pattern of gene A is uni-

form across the morphogenetic field, but later on the morphogen gradient shapes its dynamics

in such a way that two important events occur: firstly, the overall expression level of the gene A

is decreased by the inhibition of the morphogen, releasing gene C from its repression by gene

A; next, gene A tend to display a non-homogeneous spatial distribution with higher expression

levels being shifted towards the cells at the rightmost part of the morphogenetic field.

These two events lead to the repression of the gene C by the gene A in the rightmost part of

the morphogenetic field and by the morphogen in the leftmost part of the morphogenetic

field, thus generating a slightly higher level of expression of gene C in the center of the field.

Because gene C activates its own expression, a band of expression begins to form. This band of

expression then begins to activate the gene A also in the center of the field (S5 Fig).

In this way two bands of expression that depend on each other are formed. The high level

of gene C in the middle of the field counteract its inhibition by gene A, while at the ends of the

bands the inhibition of gene A on gene C overcomes the self-activation of gene C, preventing

the expression of the latter to extend out of the middle of the field. In turn, the band of

expression of gene A can only exist in the middle of the field because its expression depends

on gene C.

This is a complex mechanism reminiscent of the Gierer-Meinhardt model, which to the

best of our knowledge is reported for the first time in the context of multiple morphogen

inputs, and could thus be of particular interest for synthetic biology implementations to assess

the feasibility and robustness conferred by this mechanism to GRNs.

Discussion

In this work, we have conducted extensive computational explorations of small GRNs with the

capacity to generate a simple spatial pattern in a 1-D morphogenetic field. Our findings shed

new light on regulatory rules and dynamical mechanisms that GRNs in nature could poten-

tially implement to achieve stereotyped spatio-temporal tasks.

Overall, based on our extensive search space exploration we identified a great variety of pat-

tern-forming GRN topologies with distinctive and often widely shared building blocks (net-

work motifs), which are likely to confer each topology the ability to achieve specific regulatory

tasks in a semi-autonomous manner. In particular, we uncovered a great variety of network

topologies that could produce a striped gene expression pattern, where 615 out of 714 were

found to be multi-input topologies, which highlights the importance of often disregarded

pleiotropic signaling events as a potentially critical design specification rule for successful syn-

thetic biology implementations of GRNs with various types of pattern-forming abilities. Most

importantly, we found that this ensemble of pattern-forming GRNs tends to form a highly

connected meta-graph, which highlights emergent properties, such as robustness and evolva-

bility, of complex biological systems at a very high level [54].

Robustness is a defining feature of any developmental patterning process. Our results sug-

gest that the underlying morphogen interpretation mechanisms (GRNs) are highly accessible

by exploring the topology space constrained by selection for their final steady-state and by

their ability to buffer noise [37, 55]. In our study, the most abundant topologies were found

forming highly connected clusters in a so-called neutral network of genotypes, implying that

the corresponding GRN topologies would tend to be robust to quantitative changes in the

strength of regulatory interactions, diffusion, and degradation parameters, as well as to qualita-

tive changes in the topology itself. In essence, such organization could be seen as an intrinsic

evolutionary property of GRNs that facilitates the coexistence of robustness and evolvability

[56]. For instance, bridge topologies in the neutral network connect distinct classes of pattern-
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forming GRNs (S6 Fig), suggesting that evolutionary transitions between different GRNs (for

example, between a Gierer-Meinhardt-like network to an Incoherent Feed-Forward Loop)

could be achieved with minimal fitness costs. This high-level property of the neutral network

of topologies could thus facilitate the fine-tuning of the regulatory systems through genetic

modifications to meet specific functional requirements under selective pressures.

In contrast to this robustness to qualitative and quantitative changes, we found that many

GRNs were susceptible to changes in morphogenetic field size. However, GRNs with the same

topology behave in different ways for each field size (S3(C) Fig), indicating that the specific val-

ues of network parameters are more important than the network topology when it comes to

producing the same pattern at different scales.

Other studies have shown that Incoherent Feed-Forward Loops can form spatial stripes of

gene expression [57]. In particular, we found that the I3-FFL is one of the network motifs that

appears more frequently in these GRNs, which is in agreement with the study by Cotterell &

Sharpe [28], and has been found in transcriptional networks involved in cell fate definition

[58]. Moreover, our results indicate that this is a robust motif that can be useful for construct-

ing synthetic gene regulatory networks exposed to stochastic fluctuations in the environment

and mutations.

Moreover, as our model was less stringent and allowed the morphogen input to interact

with any gene, we found a significantly larger number of pattern-forming topologies, which

can operate under disparate combinations of diffusion and degradation parameters (S7 Fig).

For example, in a single input GRN model, the I4-FFL has not been found capable of generat-

ing a striped gene expression pattern [27], whereas, in our experimental setup, 20.17% of the

topologies were found to implement such a regulatory motif (S1 Table).

Although recent experimental evidence highlights the importance of the Incoherent Feed-

Forward Loop type 2 (I2-FFL) for generating a striped gene expression pattern [16, 35], it is

intriguing to find that such motif is underrepresented in our study, with only 10.92% of the

topologies implementing such regulatory mechanism. This might be due to the difficulty to

find optimal solutions when probing the design space of multi-input GRNs, which are likely to

contain multiple locally optimal solutions. In addition, it is important to mention here that the

application of a MCMC-like algorithm as a search space strategy for such complex tasks can-

not be expected to allow for extensive exploration of the design space of GRNs nor for the

accessibility of every single locally optimal solution. However, it is also possible that the I2-FFL

motif is not as robust as other motifs and therefore be less represented.

We also found GRNs with a similar topology to that of the “opposing gradients” reported

by Schaerli et al. [32, 35]. Although the “opposing gradients” mechanism requires the constitu-

tive expression of two of the genes in the GRN, and our model does not take constitutive

expression into account, we observed that the GRNs that implement the “opposing gradients”

mechanism also tend to implement auto-regulation interactions on these two nodes, bypassing

in this way the lack of constitutive expression as found in previous studies [27].

The correlation between the complexity index of a topology and its abundance indicates

that networks with simpler designs are more robust to changes in interaction parameters and

that more complex networks are less robust. For example, topology number 420 (Fig 5), which

presents high complexity, was one of the topologies with lower abundance and was discon-

nected from all other topologies in the two-step neighbors in the neutral network.

Although GRNs that produce a band of gene expression with only two nodes have been

described (e.g., the I-zero motif [35]), this is to our knowledge the first time that a novel GRN

topology such as number 9 (Fig 8) has been reported, which adds considerably to existing

knowledge on the genotype-phenotype mapping problems studied in the context of develop-

mental pattern formation. It would be interesting to assess experimentally the ability of this
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particular topology to generate striped gene expression patterns, as well as to assess its robust-

ness in the face of mutational changes and noisy morphogen input profiles.

Overall, we believe our work provides a set of enticing hypotheses on GRN designs, repre-

sented as a large catalog of distinct GRN topologies that could provide valuable information as

starting points for future computational and theoretical analysis of the genotype-phenotype

map, as well as for experimental validation and future discovery of potentially interesting GRN

designs.

Supporting information

S1 Fig. Most GRNs reach the steady state before 250 time steps. (A) Gene regulatory net-

work displaying the topology number 33. (B) Spatiotemporal expression profile of the gene

regulatory network shown in (A).

(TIF)

S2 Fig. Relevant subgraphs present in the set of GRNs. These are subgraphs that have been

reported in previous studies as networks involved in morphogenesis and development [28, 32,

35]. These were used to calculate the subgraph profile and the results reported in S1 Table.

(TIF)

S3 Fig. Response of GRNs to changes in morphogenetic field size. (A) Morphogen gradients

of fields with 10, 20, 40 and 50 cells. These morphogen gradients were set up so that the mor-

phogen concentration in the first cell and in the last cell were constant and only one morpho-

gen gradient was considered at a time depending on the number of cells in the morphogenetic

field. (B) Fitness of the GRNs by topology in each one of the morphogenetic fields. (C) Princi-

pal Component Analysis of fitness by morphogenetic field size. Although principal compo-

nents separate GRNs in clusters, not all the GRNs with the same topology are located in the

same group. (D) Average fitness of GRNs evolved in different morphogenetic field sizes.

(PDF)

S4 Fig. Expression dynamics of main networks. The dynamics of expression is shown from

t = 1 to t = 30 for the eight most abundant topologies. The red line represents the expression

level of the gene C along the morphogenetic field, the blue line represents the expression level

of gene B and the dotted line represents the expression level of gene A.

(PDF)

S5 Fig. Dynamics of expression of topology number 9. The dynamics of expression is shown

from t = 5 to t = 150, where this topology reaches its steady state expression. The red line repre-

sents the expression level of the gene C along the morphogenetic field, whereas the dotted line

represents the expression level of gene A. The striped pattern of gene expression can be seen

for both genes since t = 80.

(TIF)

S6 Fig. Bridge topologies in the neutral network. “Bridge topologies” are those topologies

that connect two clusters in the neutral network (Fig 3), and as such can be interpreted as

intermediary steps in the evolution from a cluster of related topologies into another cluster.

For example the topology 441 could be an initial step to reach the topology 9, as in this topol-

ogy nodes B and C are not connected.

(TIF)

S7 Fig. Diffusion and degradation parameters. (A) Ternary plot showing the combination of

diffusion parameters for genes A, B and C. (B) Ternary plot showing the combination of
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degradation parameters for genes A, B and C. The color gradient that goes from topology 1 in

white to topology 714 in black shows no distinguishable pattern.

(PDF)

S1 Appendix. Diffusion independent networks and robustness to changes in the signal

input.

(PDF)

S1 Table. Proportion of relevant subgraphs in the set of GRNs. The 19 subgraphs presented

in this table are those presented in S2 Fig. Most of the topologies presented at least one nega-

tive feedback loop (70.73%), and 62.46% of them presented the I3-FFL network motif. The

robustness of each subgraph was calculated as the mean robustness of the topologies present-

ing that subgraph.

(TSV)

S2 Table. Average fitness of each topology in different morphogenetic fields. The average

fitness by topology is reported for morphogenetic fields with 10, 20, 40 and 50 cells. Data from

this table are shown in S3(B) Fig.

(TSV)
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