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Abstract. In this paper, we consider the convergence of solutions of solutions of
equations of the form

...

X +AẌ + G(Ẋ) + H(X) = P (t, X, Ẋ, Ẍ), in which X ∈ IRn,
P : IR × IRn × IRn × IRn → IRn, A, is an n× n constant matrices and the dots as usual
indicate differentiation with respect to t. We shall assume that the functions G and H
are of class C(IRn), and satisfy for any X1, X2, Y1, Y2 in IRn

G(Y2) = G(Y1) + Bg(Y1, Y2)(Y2 − Y1),

H(X2) = H(X1) + Ch(X1, X2)(X2 −X1),

where Bg(Y1, Y2), Ch(X1, X2) are n× n real continuous operators, having positive eigen-
values.

Under different conditions on P , we shall give new and sufficient conditions to estab-
lish the convergence of solutions.

Mathematics Subject Classification 2000: 34D40, 34D20, 34C25.

Key words: convergence, Lyapunov functions, nonlinear third order system.

1. Introduction. Consider a third order system of nonlinear ordinary
differential equations of the form

...
X +AẌ + G(Ẋ) + H(X) = P (t,X, Ẋ, Ẍ)(1.1)

*This research was supported by University of Antioqua Research Grant CODI through
SUI No. 10095CE.
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or the equivalent system form

Ẋ = Y(1.2)
Ẏ = Z

Ż = −AZ −G(Y )−H(X) + P (t,X, Y, Z)

where X,Y, Z ∈ IRn, A is an n×n constant matrix; G(Y ),H(X), P (t,X, Y, Z)
are real vector functions, which are continuous in their respective argu-
ments.

Two solutions (X1, Y1, Z1), (X2, Y2, Z2) of (1.2) are said to converge to
each other if ‖X2 −X1‖ → 0, ‖Y2 − Y1‖ → 0, ‖Z2 − Z1‖ → 0, as t →∞.

If any pair of solutions of (1.2) satisfy this relation, we shall say that
the solutions of (1.2) converge.

We note that in the special case of a linear third order system of the
form

Ẋ = Y(1.3)
Ẏ = Z

Ż = −AZ −BY − CX

convergence results are valid if the Routh-Hurwitz condition

maxλi(C) < minλi(A)minλi(B)(1.4)

is satisfied, where λi(D) is the eigen-value of matrix D, with A,B, C as
n× n matrices.

In the particular cases when matrices A,B, C are diagonal with positive
eigen-values, (1.4) is very obvious. However, when A, B,C are are symmet-
ric or arbitrary, with positive eigen-values, it is still true. On the other hand,
when any of them is replaced by a non-linear function, the Routh-Hurwitz
condition (1.4) is replaced by a ”generalized” Routh-Hurwitz condition.
This condition depends on the properties of the non-linear function in the
system (see for example [12], [14]).

For example, when CX in (1.3) is replaced by a differentiable function
H(X), Tejumola in [10], (for the case when n = 1), imposed the conditions

h(0) = 0, [h(x2)− h(x1)](x2 − x1)−1 ≥ δ > 0 for x1 6= x2,

h′(x) ≤ c for all x, 0 < c < ab.



3 CONVERGENCE OF SOME THIRD ORDER NON-LINEAR SYSTEMS 13

This was later in [11] improved upon to the situation when both BY and
CX in (1.3) are respectively replaced by non-linear differentiable functions
g(y) and h(x) for n = 1.

However, following the n−dimensional analogue of [10], Afuwape in
[1], Afuwape and Omeike in [4] gave an n−dimensional improved version
of [11].

Another line of thought was initiated by Ezeilo in [8], the case when n =
1, and G(Y ) = by, with b > 0, and h(x) not necessarily differentiable was
considered, but with h(0) = 0, and incrementary ratio [h(ξ + η)− h(ξ)]/η,
(with η 6= 0), lying in a closed subinterval [δ, kab] (k < 1), of the Routh-
Hurwitz interval (0, ab). This was extended to the case when the equations
have two non-linear functions in [5]. This is an extension of [7, 9].

In this work, we shall give the n−dimensional generalized form of these
results to systems of the form (1.2). The main differences in this and the
earlier studies are in the type of Lyapunov functions to be used. While the
earlier generalizations ([1, 5, 6]) had Lyapunov functions that had direct
terms involving matrix A, the present uses only a property of A.

This also allows us to consider the extension of the convergence results to
larger types of systems. For example, when AX in (1.1) is replaced either by
F (Ẍ), F (Ẋ)Ẍ, or F (X)Ẍ, or if possible, following [13], by F (X, Ẋ, Ẍ)Ẍ,
where only the ultimate boundedness of solutions was studied. This may
demand an appropriate suitable conditions imposed on the functions F, so
as to have the generalized Routh-Hurwitz conditions on the the sub-interval
of (0, ab). Thus in the present study, we are improving on [2], and [5] by
using a Lyapunov function that is freer for the type of matrix A, or a non-
linear function that may replace AX.

We shall make the following assumptions as initiated in [3], and subse-
quently used in [13], that

G(Y2) = G(Y1) + Bg(Y1, Y2)(Y1 − Y2)(1.5)

H(X2) = H(X1) + Ch(X1, X2)(X2 −X1)(1.6)

where Bg(Y1, Y2), Ch(Y1, Y2) are n×n real continuous operators, with posi-
tive eigenvalues λi(Bg(Y1, Y2)), λi(Ch(X1, X2)), (i = 1, 2, · · · , n) satisfying

0 < δg ≤ λi(Bg(Y1, Y2)) ≤ ∆g

0 < δh ≤ λi(Ch(Y1, Y2)) ≤ ∆h.
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2. Notations and definitions. The notations adopted in [4] shall be
used throughout this paper. That is, the δ’s, 4’s with or without suffixes
will be positive constants whose magnitudes depend on matrix A, vector
functions G,H and P . The δ ’s and 4 ’s with numerical or alphabetical
suffixes shall retain fixed magnitudes, while those without suffixes are not
necessarily the same at each occurrence. Finally, we shall denote the scalar
product 〈X, Y 〉 of any vectors X, Y in IRn, with respective components
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) by

∑n
i=1 xiyi. In particular, 〈X, X〉 =

‖X‖2.

3. Main results. Our main result in this paper is the following:

Theorem 1. Suppose that in (1.2)

(i) G(0) = H(0) = 0 and that G, H satisfy (1.5), (1.6) respectively;

(ii) the constant matrix A, operators Bg(Y1, Y2) and Ch(X1, X2) are as-
sociative and commute pairwise;

(iii) the eigen-values of A, with 0 < δa ≤ λi(A) ≤ ∆a, satisfy the general-
ized Routh-Hurwitz condition

∆h ≤ kδaδg, (k < 1);(3.1)

and

(iv) P (t,X, Y, Z) satisfy for any two solutions (X1, Y1, Z1), (X2, Y2, Z2) of
(1.2)

‖P (t,X2, Y2, Z2) − P (t,X1, Y1, Z1)‖
≤ φ(t){‖X2 −X1‖2+ ‖Y2 − Y1‖2 + ‖Z2 − Z1‖2}1/2,(3.2)

for arbitrary t and where φ(t) is a continuous function in t.

∫ t

0
φν(τ)dτ ≤ 40t,(3.3)

for some ν in the range 1 ≤ ν ≤ 2.

Then all solutions of (1.2) converge.
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A particular case of Theorem 1 is when inequality (3.2) is replaced by

‖P (t,X2,Y2,Z2) − P (t,X1,Y1,Z1)‖(3.4)
≤ ∆1{‖X2−X1‖2+ ‖Y2−Y1‖2 + ‖Z2−Z1‖2}1/2,

where 41 is a finite constant. The following is immediate

Corollary 1. Let the conditions of Theorem 1 hold with inequality (3.2)
replaced by (3.4). Then, there exists a finite constant δ1 > 0 such that if the
constant ∆1 < δ1, the solutions of (1.2) converge.

4. Preliminary results and the function V . In this section, we
shall state the algebraic results required in the proof of our result. The
proofs are not given since they are found in [2, 4, 5].

Lemma 1. Let D be a real symmetric n × n matrix. Then for any X
in IRn

δd‖X‖2 ≤ 〈DX,X〉 ≤ 4d‖X‖2

where δd, 4d are respectively the least and greatest eigenvalues of D.

Lemma 2. Let Q,D be any two real n× n commuting symmetric ma-
trices. Then

(i) the eigenvalues λi(QD), (i = 1, 2, . . . , n) of the product matrix QD
are all real and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D);

(ii) the eigenvalues λi(Q + D), (i = 1, 2, . . . , n) of the sum of matrices Q
and D are all real and satisfy

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
≤ λi(Q + D)

≤
{

max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}

,

where λj(Q) and λk(D) are respectively the eigenvalues of Q and D.
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Now, we define the main tool in the proof of our results. This is the
scalar function V = V (X, Y, Z) defined for any X, Y, Z ∈ IRn by

2V = β(1− β)δ2
g‖X‖2 + βδg‖Y ‖2 + αδgδ

−1
a ‖Y ‖2 + αδ−1

a ‖Z‖2(4.1)

+‖Z + δaY + (1− β)δgX‖2

with 0 < β < 1, and α > 0. This is a modification of a Lyapunov function
used in [2, 4].

This function has the following properties:

Lemma 3. Assume that all the assumptions on A, G(Y ), and H(X)
hold. Then there exists positive constants δ2 and δ3 such that

δ2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) ≤ 2V (X, Y, Z) ≤ δ3(‖X‖2 + ‖Y ‖2 + ‖Z‖2),(4.2)

for arbitrary X, Y, Z in IRn.
These inequalities follow from (4.1) if we choose

δ2 = min{β(1− β)δ2
g ; (β + α4−1

a )δg; α4−1
a }

and

δ3 = max{δg(1− β)(1 + δg +4a); δg(β + αδ−1
a ) +4a(1 + δg +4a);

1 + αδ−1
a + δg(1− β) +4a}.

5. Proof of Theorem 1. It was proved in [3] that the solutions of
(1.2) are ultimately bounded.

Let (X1(t), Y1(t), Z1(t)), (X2(t), Y2(t), Z2(t)) be any two ultimately bounded
solutions of (1.2).

Define

W (t) = V (X1(t)−X2(t), Y1(t)− Y2(t), Z1(t)− Z2(t)),(5.1)

Then, from (4.2), following the method used in [5] we have

δ2(S(t)) ≤ 2W (t) ≤ δ3(S(t))(5.2)

where S(t) = {‖X2(t)−X1(t)‖2 + ‖Y2(t)− Y1(t)‖2 + ‖Z2(t)− Z1(t)‖2}.
In view of inequalities (4.2), it suffices to prove that

W (t2) ≤ W (t1) exp{−δ2(t2 − t1) + δ3

∫ t2

t1

φν(τ)dτ}(5.3)
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for t2 ≥ t1.

On differentiating (5.1), with respect to t, and using (1.2), we obtain
after some simplifications that Ẇ (t) = −W1(t) + W2(t), where

W1(t) = (1− β)δg〈X2 −X1,H(X2)−H(X1)〉
+δa〈Y2 − Y1, [G(Y2)−G(Y1)]− δg(1− β)(Y2 − Y1)〉
+α〈Z2 − Z1, Z2 − Z1〉+ (1 + αδ−1

a )〈Z2 − Z1,H(X2)−H(X1)〉
+δa〈Y2 − Y1, H(X2)−H(X1)〉
+(1− β)δg〈X2 −X1, [G(Y2)−G(Y1)]− δg(Y2 − Y1)〉
+(1 + αδ−1

a )α〈Z2 − Z1, [G(Y2)−G(Y1)]− δg(Y2 − Y1)〉

and W2(t) = 〈 (1−β)δg(X2−X1)+δa(Y2−Y1) + (1+αδ−1
a )(Z2−Z1), θ〉 with

θ = P (t,X2, Y2, Z2)− P (t,X1, Y1, Z1).
A re-arrangement of W1(t), following the methods used in [5, 13], we

can easily conclude that

W1(t) ≥ 2δ4(‖X2 −X1‖2 + ‖Y2 − Y1‖2 + ‖Z2 − Z1‖2)

and

W2(t) ≤ δ5(‖X2 −X1‖2 + ‖Y2 − Y1‖2 + ‖Z2 − Z1‖2)
1
2 ‖θ‖

using the assumptions (1.5) (1.6) and properties of H(X), G(Y ), and P (t,X, Y, Z)
as given in the statement of the theorem. We thus have

Ẇ (t) ≤ −2δ4(‖X2 −X1‖2 + ‖Y2 − Y1‖2 + ‖Z2 − Z1‖2)(5.4)

+δ5(‖X2 −X1‖2 + ‖Y2 − Y1‖2 + ‖Z2 − Z1‖2)
1
2 ‖θ‖.

The remaining part of the proof of Theorem 1 follows from [2]. Let ν be
any constant such that 1 ≤ ν ≤ 2 and set µ = 1− 1

2ν, so that 0 ≤ µ ≤ 1
2 .

Consider inequality (5.4) in the form

Ẇ + δ4S ≤ δ5S
1
2 ‖θ‖ − δ4S,(5.5)

Ẇ + δ4S ≤ δ5S
µW ∗,(5.6)

where W ∗ = S( 1
2
−µ)(‖θ‖ − δ4δ

−1
5 S

1
2 ).
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Considering the two cases (i) ‖θ‖ ≤ δ4δ
−1
5 S

1
2 and (ii) ‖θ‖ > δ4δ

−1
5 S

1
2

separately, we find that in either case, there exists some constant δ6 > 0
such that W ∗ ≤ δ6‖θ‖2(1−µ). Thus, using (4.2), inequality (5.6) becomes

dW

dt
+ δ4S ≤ δ7S

µφ2(1−µ)S(1−µ),(5.7)

where δ7 ≥ 2δ5δ6. This immediately gives

dW

dt
+ (δ8 − δ9φ

ν(t))W ≤ 0,(5.8)

after using (5.2) on W , with δ8, δ9 as some positive constants.
On integrating (5.8) from t1 to t2, (t2 ≥ t1), we obtain

W (t2) ≤ W (t1) exp
{
−δ8(t2 − t1) + δ9

∫ t2

t1

φν(τ)dτ

}
.(5.9)

Thus, we obtain (5.3), with

δ2 = δ8 and δ3 = δ9.(5.10)

From inequality (5.3), if
∫ t2

t1

φν(τ)dτ ≤ δ2δ
−1
3 (t2 − t1),

then, the exponential index remains negative for all (t2 − t1) ≥ 0. As
t = (t2 − t1) → ∞, we have W (t) → 0. That is, ‖X2(t) − X1(t)‖ → 0,
‖Ẋ2(t)− Ẋ1(t)‖ → 0 and ‖Ẍ2(t)− Ẍ1(t)‖ → 0 as t →∞.

This completes the proof of Theorem 1.

6. Remarks

Remark 1. (i) If in (1.1), G(Ẋ) = BẊ, then we shall have the equa-
tion which was discussed in [1];

(ii) If in (1.1), H(X) = CX, then we shall have an independent result on
equation

...
X +AẌ + G(Ẋ) + CX = P (t,X, Ẋ, Ẍ);(6.1)

This again will require that the generalized Routh-Hurwitz condition
be maxλi(C) < minλi(A)min λi(Bg(Y1, Y2)), with(i = 1, 2, · · · , n).
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Remark 2. Let P (t,X, Ẋ, Ẍ) = 0 and hypothesis (i) of Theorem 1
hold with inequality (3.1). Then, the trivial solution X(t) = 0 of (1.1) is
exponentially stable in the large.

Remark 3. We can equally use the present Lyapunov function defined
in (4.1) easily for the convergence of solutions systems of the form

...
X +F (Ẍ) + G(Ẋ) + H(X) = P (t,X, Ẋ, Ẍ);(6.2)

if condition (iii) of Theorem 1 is replaced by the assumptions that

F (Z2) = F (Z1) + Af (Z1, Z2)(Z2 − Z1)(6.3)

for some continuous operator Af (Z1, Z2), such that

0 < δa ≤ λi(Af (Z1, Z2)) ≤ ∆a(6.4)

with (3.1) valid as before for F (Z) ∈ C(IRn).

Remark 4. This same remark holds true if we consider systems of the
form

...
X +F (Ẋ)Ẍ + G(Ẋ) + H(X) = P (t,X, Ẋ, Ẍ);(6.5)

or
...
X +F (X, Ẋ)Ẍ + G(Ẋ) + H(X) = P (t,X, Ẋ, Ẍ);(6.6)

or
...
X +F (X, Ẋ, Ẍ)Ẍ + G(Ẋ) + H(X) = P (t,X, Ẋ, Ẍ);(6.7)

after making the appropriate assumptions as (6.3) and (6.4) on the non-
linearities following the ideas of [13], which is the adaptation of that of
[3].
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