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Abstract

We prove two triangle equivalences. One is the triangle equivalence
between the homotopy category of the bounded below complexes of
Ext-injectives objects of a closed by subobjects and co-resolving
subcategory B of an abelian category and the derived category of the
bounded below complexes over B. The other triangle equivalence is
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between the homotopy category of the bounded cohomology and
bounded below complexes over a strongly closed by cokernels of
monomorphisms and auto-orthogonal subcategory of an abelian
category A and the derived category of the bounded cohomology and
bounded below complexes over A.

0. Introduction

Derived categories are a “formalization for hyperhomology” (see [16]).
They were introduced in the early sixties by Grothendieck and Verdier and
they are useful in algebraic geometry and homological algebra. The first
applications appeared in duality theory of coherent sets and locally compact
sets. These methods of Grothendieck-Verdier have been adapted to the study
of partial differential equations by Sato in [15] and Kashiwara in [11]. The
derived categories have become a standard language of microbiological
analysis (see [12, 14] and [3]). Brylinski and Kashiwara proved Kazhdan-
Lusztig conjecture (see [4]) and this enabled the use of derived categories in
the theory of representations of Lie groups and finite groups of Chevalley
having a crucial role in the abelian subcategory of the derived categories,
which have been developed to preserve schemes (see [2]).

Beilinson, Bernstein and Gelfand used derived categories to establish
a relationship between coherent schemes in the projective space and
representations of some finite dimensional algebras. Their methods have
allowed many generalizations (see [5, 9] and [10]).

In the area of representation theory of Artin algebras, the study of the
derived category was introduced from an interpretation of the tilted theory
given by Happel in [7], which extended the generalization of the classical
equivalence of Morita in terms of derived equivalences, which produced
several invariants. Thus, if two rings have triangle equivalent derived
categories of modules over these rings, then their centers are isomorphic,
their Hochschild cohomologies are isomorphic, and in the case of
selfinjectives algebras over an algebraically closed field, they have the same
type of representation.
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In this work, we use similar ideas of Borel et al. (see [3], Chapter 1) and
Happel (see [6]) and we show some triangle equivalences between homotopy
and derived categories.

This paper is organized as follows: after preliminaries, in Section 2, we
will show the triangle equivalence between the homotopy category of the
bounded below complexes of the Ext-injectives objects of a strongly closed
by cokernels of monomorphisms subcategory B of an abelian category with
enough sufficient injectives and the derived category of the bounded below
complexes over B (see Theorem 2.6). As a corollary, we obtain the well
known result (see [3], Chapter 1): the homotopy category of the bounded
below complexes of the injectives objects of an abelian category A with
enough sufficient injectives is triangle equivalent to the derived category of
bounded below complexes over A. Also, from Theorem 2.6, we get that
the homotopy category of the bounded below complexes of Ext-injectives
objects of a closed by subobjects and co-resolving subcategory B of an
abelian category is triangle equivalent to the derived category of the bounded
below complexes over B (see Corollary 2.9).

In Section 3, we prove the triangle equivalence between the homotopy
category of the bounded cohomology and bounded below complexes over
a strongly closed by cokernels of monomorphisms and auto-orthogonal
subcategory of an abelian category A and the derived category of the
bounded cohomology and bounded below complexes over A (see Theorem
3.4). This theorem generalizes Theorem 1.6 proved by Happel in [6].

1. Preliminaries

We begin by recalling some definitions and by fixing some notation. In
this section, we just mention basic facts, for a deeper treatment, we refer the
readers to [3, 7, 8] and [17].

From now on, A will be an abelian category and B a full additive
subcategory of A.

We will denote by C(D) the complex category over any additive
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category D, that is, a typical object (called complex) is a family X =
(x', dix)iez’ where X' e D and d : X' — X' are morphisms in D
(called differentials of the complex X) such that dix”d;( =0 forall i e Z.
If X and Y are complexes over D, a morphism f = (fi)ieZ : X —>Y of
complexes is given by a family flox' >yl of morphisms in D such that
df £ = f1+1gL for all i e Z. A complex X = (X', d} ) is a bounded
below complex if there exists iy € Z such that X0 %0 and X' =0 forall
i <ig. Acomplex X = (X', d%)._, isabounded complex if there exists j,
k eZ with j <k suchthat XJ =0, XK 20, X' =0 forall i< j and
X! =0 forall k <i and the width w(X ) of X is defined as k — j + 1.

A complex X = (X', d&)._, is a stalk complex if there exists iy € Z

such that X' 0 and X'© =0 forall i = igp- The object X0 s then called
the stalk at the ip-position of the complex X. When we have an object V € D
we denote by V[i] the stalk complex with V the stalk at the i-position. For
n e Z, we denote by [n]: C(D) — C(D) the classical shift functor, that is,
if X € C(D), then the image is the complex denoted by X[n], where

X[n] = X™' and the differentials of X[n] are d;([n] _ (<)} for al
i eZ.

We denote by C*(D) the full subcategory of C(D) formed by bounded
below complexes. By K*(D) and D*(D) we denote the associated

homotopy category and the derived category, respectively. Similarly, Cb(D)
is the full subcategory of C(D) formed by the bounded complexes and so

we have KP°(D) and D®(D). Also, C*°(D) denotes the full subcategory

of C*(D) of the complexes with only finitely many non-zero cohomology
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groups and so the associated homotopy category K+'b(D) and the derived
category D'P(D).

We will use the following known result, for i > 0, Home(A)(X, Y)=
Extj4(X , Y), for Xand Y stalk complexes.

The derived category D(D) is the triangulated category obtained from
the homotopy category K(D) by localizing with respect to the set of quasi-
isomorphisms (Qisp ). A distinguished triangle in D(D) is a triangle that is
isomorphic to the standard triangle

X >Y —>Cs - X[1],

where f : X — Y is a morphism of complexes and C; denotes the
mapping cone of f.

We now state the following result about localization of categories. For a
multiplicative system S 4 in A, we define Sz = Mor(B)N S 4, where
Mor(B) denotes the set of the morphisms in the category B. If Spz is a

multiplicative system in B, then the localization of B with respectto Sp is

the category 8[31(8) and the canonical functor of localization is 15, : B —
SE(B).

Let &/ # & be a set (or a class) of objects from category .A. Then we
say that U/ co-generates a subcategory B if, for any object V € B, there

exists a monomorphism V < U, with U € add(Z/), where add(/) is the

smallest of the additive categories containing /. If in addition / is finite,
then it is called a finite co-generator of 5. In the case, where U/ is formed
by all injective objects of A and U/ co-generates A, we say that A has
sufficient injectives. If A has sufficient injectives, a subcategory B is auto-

orthogonal, if Ext}g(—, —) =0 forall i >0. An object V € A is called Ext-
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injective in B, if we have that EXt%;(—,V) = 0. We denote by B the

additive category formed by the Ext-injective objects in 5. To a subcategory
B, we associate the subcategory

Bt =V e A/Extls(-, V) =0 foralli > 0}.

Definition 1.1. (a) We say that a subcategory B is strongly closed by
cokernels of monomorphisms (s.c.c.m.) if B is closed by cokernels of
monomorphisms of the form A -V, with A— A4 and V € B.

(b) Let B be a full additive subcategory of the abelian category with
sufficient injectives A. We say that B is co-resolving if it satisfies the
following three conditions:

(i) The category B contains the injective objects of A.
(ii) The category B is closed by extensions.
(iii) The category B is closed by cokernels of monomorphisms.

(c) Let T be an object of an abelian category with sufficient injective and
projective objects and Krull-Schmidt .A. We say that T is a tilting object if it
satisfies the following three conditions:

(i) dp(T) < oo, that is, its projective dimension is finite.
(i) Ext'4(T, T) =0 forall i > 0.
(iif) For every indecomposable injective object | of A, there exists a
long exact sequence of the following form:

01 ->T>Tp)>->T >0
with Tj € add(T).

A B -left approximation of M with M € A is a morphism M

M —V, with V € B such that, for any morphism g: M — V', with

V' e B, there exists g':V — V' such that g'f M = g. Moreover, we say
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that B is a covariantly finite subcategory, if for any M e A, there exists a
B -left approximation.

Remark 1.2 (See [1]). For an object T € A with the property
Extj4(T, T)=0 for all i >0, we associate the subcategory T+ whose
objects B are such that Extj4(T, B) =0 forall i > 0. It is known that TLis
a co-resolving subcategory of 4. Furthermore, T is a tilting object if and

only if Tt s covariantly finite and for any object C in A there exists an
exact sequence of finite length, of the following form:

05Co>T% 5. 5T 50,
with T' e T+,
2. Triangle Equivalence for Co-resolving Subcategory

In this section, we prove the first triangle equivalence. We will denote by
B’ the intersection of B with the category of Ext-injective objects in B,

that is, B' = B N B.

The following theorem allows us to obtain a resolution for a bounded
below complex, in the sense of having a quasi-isomorphism for another
complex.

Theorem 2.1. Let B be an s.c.c.m. If B’ co-generates 5, then for any

X e C*(B), thereexists Y e C*(B’) and a quasi-isomorphism of X to Y.

Proof. If X e C*(B), without loss of generality, we can suppose that
X" =0 whenever n<0. We shall construct a complex Y with entries
Y" € B" and a quasi-isomorphism u: X — Y. To do that, let us suppose

that the complex has been constructed at grade n > 0 in such a way that u®
is a monomorphism for q < n and a quasi-isomorphism for g < n —1.

Consider the following diagram:
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=1 n
s X n—1 “x X" ,f_\

E ‘\'”"—]

Y™ /Imdy! T (Y"/Imdy= ") A X"
where (Y"/Imdy 1) A X "*1 is an amalgamated sum of 7u"™ and d§.

To finalize the proof, it is sufficient to note that (Y"/Imdy™) A

X "1 < B because B is s.c.c.m. and to follow the same proofs of part (1) of

Lemma 4.6 in Chapter | in [8] (or Theorem 7.5, Section 7, Chapter | in [3]).

O

It is easy to see that if a category C is B or Bt, then as full
subcategories K*(C) with (* = ¢, +, b), they are triangulated subcategories
of K*(A) and that the multiplicative system Qis; = Qis 4 N Mor(K*(C)) is
a multiplicative system in K*(C) compatible with the triangulated structure
(see [3], Chapter 1).

Lemma 2.2. Let B be an s.cc.m. If X e C(B) for an acyclic complex

in C(A) and Y e C*(B1), then Homy (5)(X, Y) = 0.

Proof. Letting u e Homg)(X, Y), we shall prove that u ~ 0. Without
loss of generality, we can suppose that the entries of complex Y satisfy

yP =0 for p <0. Suppose also that a homotopy k is defined at kP for
p <q, with g > 0.

Define k™ : Ind§ — Y9 by kI*(x) = ud(x') - dIkI(x') for x e

Imd§ with x" e X9 such that d§} (x') = x.
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k™ is well defined, in fact, if x” € X9 is such that d§} (x") = x, then
there exists x” e X971 such that d§ *(x") = x’ - x". Therefore, u%(x' - x")
_ d?—lkq(xf _ X// — dYq—].uq—l(Xm) _ dYq—].(uq—l(Xm) _ d?—qu—l(xm)) — 0,

thus ud(x) - dJ Kk 9(x) = ud(x") - dJ k9 (x").

Since Y9 e B™, we can to extend qu+1 to k91 : x9*1 5 v 9 which

satisfies the required condition. O

Lemma 2.3. If B is s.c.c.m. and u e Hom (X,Y) is a quasi-

c*(B1)
isomorphism, then u is a homotopic equivalence.

Proof. Let us consider a standard triangle

u q p
X ->Y = C, » X[

Since u is a quasi-isomorphism, it is easy to see that C, is an acyclic

complex (see [3], Chapter 1), therefore, by Lemma 2.2, p is homotopic to
zero. Therefore, there exists a homotopy k such that dk + kd = p, thus, we

have a morphism v = kq e HomC+(BLl)(Y, X).

For each n e Z, we define s" = k" g} : Y"1 - Y" where qy is

the inclusion morphism of X (with entries Y") in C,. We have that

1 a1 MM = R sy SN2 0L thus, vu ~ 1y. Clearly, v is a quasi-

isomorphism and applying the above reasoning for v, we obtain a morphism

W e HomC+(BL1)(X, Y ) such that wv ~ 1y. Therefore, uv ~ 1y. O
Proposition 2.4. The canonical functor of localization

1z - K*(B') > D" (B)

is an isomorphism of categories.
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Proof. By Lemma 2.3, the identity functor 1 transforms quasi-

K*(B)
isomorphisms in isomorphisms, so, by the universal property of functor 1,
there exists a unique functor G :D*(B') - K*(B') such that Giz =

]K*(B') :

The universal property of functor 13 shows that 153G =15 B

We have the following diagram:

KH(B)—2L ~ K+(B)
D+ (B) D*(B).

where J is the inclusion functor and 15 is the canonical functor of
localization. The universal property of 1 allows to define F : D*(B') —»
D*(B) such that Fiz = 13J.

Proposition 2.5. The functor F :D"(B') —» D"(B) is a triangle
equivalence.

Proof. Theorem 2.1 implies that F is a triangle equivalence (see
(1.7.2)° in [13]). O

Finally, we have the following triangle equivalence.

Theorem 2.6. Let B be an s.c.c.m. of an abelian category with sufficient
injectives .4 and such that B’ co-generates 5. Then the functor G =

Fip : KT(B') — D*(B) is a triangle equivalence.

In particular, if B = A, then we have that K*(Z) and D*(Z) are

triangle equivalents, where Z is the full additive subcategory of injective
objects of A.
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Proof. It is easy to see that G preserves distinguished triangles. By
Proposition 2.4 and Proposition 2.5, G is a triangle equivalence. O

Corollary 2.7. If B is a subcategory s.c.c.m. of an abelian category
with sufficient injectives .4 and such that B+ N B co-generates 3, then
K*(B+ N B) and D" (B) are triangle equivalent.

Corollary 2.8. If B is co-resolving and closed by subobjects, then
K™ (B') is triangle equivalent to D*(B).

In particular, K*(81) and D*(B) are triangle equivalent.

As an application of the above, we have the following.

Corollary 2.9. Let T be a tilting object of an abelian category with
sufficient injectives and Krull-Schmidt A. If T+ is closed by subobjects,
then K*(T1) and D™ (add(T)) are triangle equivalent.

Proof. The result easily follows from Remark 1.2 and Corollary 2.8. [

All the results described above can be dualized by taking generators,
Ext-projective objects, B resolving, B strongly closed by kernels of
epimorphisms (s.c.k.e.), A with sufficient projectives, homotopy and
derived categories of bounded above complexes.

3. Equivalence for Auto-orthogonal Subcategory

This section is devoted to the second triangle equivalence.

The following result is due to Happel (see [6], Lemma 1.1) and it is
essential for our results.

Lemma 3.1. If B is auto-orthogonal, then
Home(B)(X, Y)z Home(A)(X, Y).

Lemma 3.2. If B is an auto-orthogonal and s.c.c.m., then Kb(B) and

K™ b(B) are triangle equivalent.
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Proof. Let X be in K+’b(B‘). Then we can choose n such that
Hi(X)= 0 for i >n and so we define Y e Kb(B) and f:Y > X as
follow: Y' = X' fori<n+1 Y"1 = Imd% (which is in B because B is

s.c.c.m.), y! =0 for i > n+1 and f is the natural inclusion. It is easy to see
that f is a quasi-isomorphism, but B is an auto-orthogonal and s.c.c.m.,
therefore, we can do exactly of the same proofs of Lemma 2.2 and Lemma

2.3 and we conclude that f is an isomorphism in K™ ID(l’p’). O
Proposition 3.3. Let B be an auto-orthogonal and s.c.c.m. Then

Hom (X,Y)= Hom (X, Y).

K+,b(B) D+,b(A)

Proof. It is very well known that DP(4) and D*P°(A) are triangle
equivalent, so the result easily follows from Lemma 3.1 and Lemma 3.2. [

The previous result implies the following triangular equivalence.

Theorem 3.4. If B co-generates A, is auto-orthogonal, and s.c.c.m.,
then K*°(8) and D*°(A4) are triangle equivalent.

Proof. The result easily follows from Proposition 3.3 and Theorem 2.1.[]

As an application of this theorem, we have the following.

Corollary 3.5. Let T be a tilting object of an abelian category with
sufficient injectives and Krull-Schmidt A4, 1T ={V e A/Exi;dd(T)(V, -)
=0 foralli>0}, and C = T NTL If ¢ s closed by subobjects, then
K*P(C) is triangle equivalent to D*'°(A).

Proof. The result easily follows from Remark 1.2 and Theorem 3.4. [
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