
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: August 2015 
http://dx.doi.org/10.17654/FJMSSep2015_001_014  
Volume 98, Number 1, 2015, Pages 1-14 ISSN: 0972-0871    

Received: January 22, 2015;  Revised: May 13, 2015;  Accepted: May 25, 2015 
2010 Mathematics Subject Classification: 16E35, 18E30. 
Keywords and phrases: derived category, triangulated category, homotopy category, auto-
orthogonal category. 
This research was partly supported by CODI, and Estrategia de Sostenibilidad 2014-2015 
(Universidad de Antioquia), and COLCIENCIAS-ECOPETROL (Contrato RC. No. 0266-
2013). 
Communicated by K. K. Azad 

SOME EQUIVALENCES BETWEEN HOMOTOPY 
AND DERIVED CATEGORIES 

Hernán Giraldo1, Agustín Moreno Cañadas2 and O. Saldarriaga1 
 1Instituto de Matemáticas 
Universidad de Antioquia 
Calle 67 No. 53-108, Medellín 
Colombia 
e-mail: hernan.giraldo@udea.edu.co 

omar.saldarriaga@udea.edu.co 
 2Departamento de Matemáticas 
Universidade de Nacional de Colombia 
Carrera 45 No. 26-85, Bogotá D.C. 
Colombia 
e-mail: amorenoca@unal.edu.co 

Abstract 

We prove two triangle equivalences. One is the triangle equivalence 
between the homotopy category of the bounded below complexes of 
Ext-injectives objects of a closed by subobjects and co-resolving 
subcategory B  of an abelian category and the derived category of the 
bounded below complexes over .B  The other triangle equivalence is 
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between the homotopy category of the bounded cohomology and 
bounded below complexes over a strongly closed by cokernels of 
monomorphisms and auto-orthogonal subcategory of an abelian 
category A  and the derived category of the bounded cohomology and 
bounded below complexes over .A  

0. Introduction 

Derived categories are a “formalization for hyperhomology” (see [16]). 
They were introduced in the early sixties by Grothendieck and Verdier and 
they are useful in algebraic geometry and homological algebra. The first 
applications appeared in duality theory of coherent sets and locally compact 
sets. These methods of Grothendieck-Verdier have been adapted to the study 
of partial differential equations by Sato in [15] and Kashiwara in [11]. The 
derived categories have become a standard language of microbiological 
analysis (see [12, 14] and [3]). Brylinski and Kashiwara proved Kazhdan-
Lusztig conjecture (see [4]) and this enabled the use of derived categories in 
the theory of representations of Lie groups and finite groups of Chevalley 
having a crucial role in the abelian subcategory of the derived categories, 
which have been developed to preserve schemes (see [2]). 

Beilinson, Bernstein and Gelfand used derived categories to establish          
a relationship between coherent schemes in the projective space and 
representations of some finite dimensional algebras. Their methods have 
allowed many generalizations (see [5, 9] and [10]). 

In the area of representation theory of Artin algebras, the study of the 
derived category was introduced from an interpretation of the tilted theory 
given by Happel in [7], which extended the generalization of the classical 
equivalence of Morita in terms of derived equivalences, which produced 
several invariants. Thus, if two rings have triangle equivalent derived 
categories of modules over these rings, then their centers are isomorphic, 
their Hochschild cohomologies are isomorphic, and in the case of 
selfinjectives algebras over an algebraically closed field, they have the same 
type of representation. 
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In this work, we use similar ideas of Borel et al. (see [3], Chapter 1) and 
Happel (see [6]) and we show some triangle equivalences between homotopy 
and derived categories. 

This paper is organized as follows: after preliminaries, in Section 2, we 
will show the triangle equivalence between the homotopy category of the 
bounded below complexes of the Ext-injectives objects of a strongly closed 
by cokernels of monomorphisms subcategory B  of an abelian category with 
enough sufficient injectives and the derived category of the bounded below 
complexes over B  (see Theorem 2.6). As a corollary, we obtain the well 
known result (see [3], Chapter 1): the homotopy category of the bounded 
below complexes of the injectives objects of an abelian category A  with 
enough sufficient injectives is triangle equivalent to the derived category of 
bounded below complexes over .A  Also, from Theorem 2.6, we get that       
the homotopy category of the bounded below complexes of Ext-injectives 
objects of a closed by subobjects and co-resolving subcategory B  of an 
abelian category is triangle equivalent to the derived category of the bounded 
below complexes over B  (see Corollary 2.9). 

In Section 3, we prove the triangle equivalence between the homotopy 
category of the bounded cohomology and bounded below complexes over          
a strongly closed by cokernels of monomorphisms and auto-orthogonal 
subcategory of an abelian category A  and the derived category of the 
bounded cohomology and bounded below complexes over A  (see Theorem 
3.4). This theorem generalizes Theorem 1.6 proved by Happel in [6]. 

1. Preliminaries 

We begin by recalling some definitions and by fixing some notation. In 
this section, we just mention basic facts, for a deeper treatment, we refer the 
readers to [3, 7, 8] and [17]. 

From now on, A  will be an abelian category and B  a full additive 
subcategory of .A  

We will denote by ( )DC  the complex category over any additive 
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category ,D  that is, a typical object (called complex) is a family =X  

( ) ,, Z∈i
i
X

i dX  where D∈iX  and 1: +→ iii
X XXd  are morphisms in D  

(called differentials of the complex X) such that 01 =+ i
X

i
X dd  for all .Z∈i               

If X and Y are complexes over ,D  a morphism ( ) YXff i
i →= ∈ :Z  of 

complexes is given by a family iii YXf →:  of morphisms in D  such that 
i
X

iii
Y dffd 1+=  for all .Z∈i  A complex ( ) Z∈= i

i
X

i dXX ,  is a bounded 

below complex if there exists Z∈0i  such that 00 ≠iX  and 00 =iX  for all 

.0ii <  A complex ( ) Z∈= i
i
X

i dXX ,  is a bounded complex if there exists j, 

Z∈k  with kj ≤  such that ,0≠jX  ,0≠kX  0=iX  for all ji <  and 

0=iX  for all ik <  and the width ( )Xw  of X is defined as .1+− jk  

A complex ( ) Z∈= i
i
X

i dXX ,  is a stalk complex if there exists Z∈0i  

such that 00 ≠iX  and 00 =iX  for all .0ii ≠  The object 0iX  is then called 

the stalk at the 0i -position of the complex X. When we have an object D∈V  

we denote by [ ]iV  the stalk complex with V the stalk at the i-position. For 

,Z∈n  we denote by [ ] ( ) ( )DD CCn →:  the classical shift functor, that is, 

if ( ),DCX ∈  then the image is the complex denoted by [ ],nX  where 

[ ] ini XnX +=  and the differentials of [ ]nX  are [ ] ( ) in
X

ni
nX dd +−= 1  for all 

.Z∈i  

We denote by ( )D+C  the full subcategory of ( )DC  formed by bounded 

below complexes. By ( )D+K  and ( )D+D  we denote the associated 

homotopy category and the derived category, respectively. Similarly, ( )DbC  

is the full subcategory of ( )DC  formed by the bounded complexes and so        

we have ( )DbK  and ( ).DbD  Also, ( )DbC ,+  denotes the full subcategory 

of ( )D+C  of the complexes with only finitely many non-zero cohomology 



Some Equivalences between Homotopy and Derived Categories 5 

groups and so the associated homotopy category ( )DbK ,+  and the derived 

category ( )., DbD+  

We will use the following known result, for ,0>i  ( )( ) =YXHom bD ,A  

( ),, YXExti
A  for X and Y stalk complexes. 

The derived category ( )DD  is the triangulated category obtained from 

the homotopy category ( )DK  by localizing with respect to the set of quasi-

isomorphisms ( ).DQis  A distinguished triangle in ( )DD  is a triangle that is 

isomorphic to the standard triangle 

[ ],1XCYX
p

f
qf

→→→  

where YXf →:  is a morphism of complexes and fC  denotes the 

mapping cone of f. 

We now state the following result about localization of categories. For a 
multiplicative system AS  in ,A  we define ( ) ,AB SBS ∩Mor=  where 

( )BMor  denotes the set of the morphisms in the category .B  If BS  is a 

multiplicative system in ,B  then the localization of B  with respect to BS  is 

the category ( )BSB
1−  and the canonical functor of localization is →ι B

BS :  

( ).1 BSB
−  

Let ∅≠U  be a set (or a class) of objects from category .A  Then we 
say that U  co-generates a subcategory B  if, for any object ,B∈V  there 

exists a monomorphism ,UV   with ( ),UaddU ∈  where ( )Uadd  is the 

smallest of the additive categories containing .U  If in addition U  is finite, 
then it is called a finite co-generator of .B  In the case, where U  is formed 
by all injective objects of A  and U  co-generates ,A  we say that A  has 
sufficient injectives. If A  has sufficient injectives, a subcategory B  is auto-

orthogonal, if ( ) 0, =−−iExtB  for all .0>i  An object A∈V  is called Ext-
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injective in ,B  if we have that ( ) .0,1 =− VExtB  We denote by 1⊥B  the 

additive category formed by the Ext-injective objects in .B  To a subcategory 
,B  we associate the subcategory 

{ ( ) }.0allfor0, >=−∈=⊥ iVExtV i
BAB  

Definition 1.1. (a) We say that a subcategory B  is strongly closed by 
cokernels of monomorphisms (s.c.c.m.) if B  is closed by cokernels of 
monomorphisms of the form ,VA   with AA  and .B∈V  

(b) Let B  be a full additive subcategory of the abelian category with 
sufficient injectives .A  We say that B  is co-resolving if it satisfies the 
following three conditions: 

  (i) The category B  contains the injective objects of .A  

 (ii) The category B  is closed by extensions. 

(iii) The category B  is closed by cokernels of monomorphisms. 

(c) Let T be an object of an abelian category with sufficient injective and 
projective objects and Krull-Schmidt .A  We say that T is a tilting object if it 
satisfies the following three conditions: 

  (i) ( ) ,∞<Tdp  that is, its projective dimension is finite. 

 (ii) ( ) 0, =TTExti
A  for all .0>i  

(iii) For every indecomposable injective object I of ,A  there exists a 
long exact sequence of the following form: 

,00 21 →→→→→→ tTTTI "  

with ( ).TaddTi ∈  

A B -left approximation of M with A∈M  is a morphism :Mf  

,VM →  with B∈V  such that, for any morphism ,: VMg ′→  with 

,B∈′V  there exists VVg ′→′ :  such that .gfg M =′  Moreover, we say 
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that B  is a covariantly finite subcategory, if for any ,A∈M  there exists a 
B -left approximation. 

Remark 1.2 (See [1]). For an object A∈T  with the property 

( ) 0, =TTExti
A  for all ,0>i  we associate the subcategory ⊥T  whose 

objects B are such that ( ) 0, =BTExti
A  for all .0>i  It is known that ⊥T  is 

a co-resolving subcategory of .A  Furthermore, T is a tilting object if and 

only if ⊥T  is covariantly finite and for any object C in A  there exists an 
exact sequence of finite length, of the following form: 

,00 0 →→→→→ nTTC "  

with .⊥∈ TT i  

2. Triangle Equivalence for Co-resolving Subcategory 

In this section, we prove the first triangle equivalence. We will denote by 
B′  the intersection of B  with the category of Ext-injective objects in ,B  

that is, .1 BB�B ∩⊥=′  

The following theorem allows us to obtain a resolution for a bounded 
below complex, in the sense of having a quasi-isomorphism for another 
complex. 

Theorem 2.1. Let B  be an s.c.c.m. If B′  co-generates ,B  then for any 

( ),B+∈ CX  there exists ( )B′∈ +CY  and a quasi-isomorphism of X to Y. 

Proof. If ( ),B+∈ CX  without loss of generality, we can suppose that 

0=nX  whenever .0<n  We shall construct a complex Y with entries 

B′∈nY  and a quasi-isomorphism .: YXu →  To do that, let us suppose 

that the complex has been constructed at grade 0≥n  in such a way that qu  

is a monomorphism for nq ≤  and a quasi-isomorphism for .1−≤ nq  

Consider the following diagram: 
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where ( ) 11 +− nn
Y

n XdImY ∧  is an amalgamated sum of nuπ  and .n
Xd  

To finalize the proof, it is sufficient to note that ( )∧1−n
Y

n dImY  

B∈+1nX  because B  is s.c.c.m. and to follow the same proofs of part (1) of 
Lemma 4.6 in Chapter I in [8] (or Theorem 7.5, Section 7, Chapter I in [3]). 

 ~ 

It is easy to see that if a category C  is 1⊥B  or ,⊥B  then as full 

subcategories ( )C∗K  with ( ),,, b+φ=∗  they are triangulated subcategories 

of ( )A∗K  and that the multiplicative system ( ( ))CAC
∗= KMorQisQis ∩  is 

a multiplicative system in ( )C∗K  compatible with the triangulated structure 

(see [3], Chapter 1). 

Lemma 2.2. Let B  be an s.c.c.m. If ( )BCX ∈  for an acyclic complex 

in ( )AC  and ( ),1⊥+∈ BCY  then ( )( ) .0, =YXHomK B  

Proof. Letting ( )( ),, YXHomu C B∈  we shall prove that .0~u  Without 

loss of generality, we can suppose that the entries of complex Y satisfy 

0=py  for .0<p  Suppose also that a homotopy k is defined at pk  for 

,qp ≤  with .0≥q  

Define qq
X

q YIndk →+ :1
1  by ( ) ( ) ( )xkdxuxk qq

Y
qq ′−′= −+ 11

1  for ∈x  

q
XdIm  with qXx ∈′  such that ( ) .xxd q

X =′  
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1
1
+qk  is well defined, in fact, if qXx ∈′′  is such that ( ) ,xxd q

X =′′  then 

there exists 1−∈′′′ qXx  such that ( ) .1 xxxd q
X ′′−′=′′′−  Therefore, ( )xxuq ′′−′  

( ) ( ) ( ( ) ( )) ,01211111 =′′′−′′′−′′′=′′−′− −−−−−−− xkdxudxudxxkd qq
Y

qq
Y

qq
Y

qq
Y  

thus ( ) ( ) ( ) ( ).11 xkdxuxkdxu qq
Y

qqq
Y

q ′′−′′=′−′ −−  

Since ,1⊥∈ BqY  we can to extend 1
1
+qk  to qqq YXk →++ 11 :  which 

satisfies the required condition. ~ 

Lemma 2.3. If B  is s.c.c.m. and ( )( )YXHomu BC ,1⊥+∈  is a quasi-

isomorphism, then u is a homotopic equivalence. 

Proof. Let us consider a standard triangle 

[ ].1XCYX
p

u
qu

→→→  

Since u is a quasi-isomorphism, it is easy to see that uC  is an acyclic 

complex (see [3], Chapter 1), therefore, by Lemma 2.2, p is homotopic to 
zero. Therefore, there exists a homotopy k such that ,pkddk =+  thus, we 

have a morphism ( )( ).,1 XYHomkqv
BC ⊥+∈=  

For each ,Z∈n  we define ,: 11 nnn
X

nn YYqks →= +−  where Xq  is 

the inclusion morphism of X (with entries )nY  in .uC  We have that 

,1 12111
1

+++++ +=−+
n
X

nnn
X

nn
Y

dssduvn  thus, .1~ Xvu  Clearly, v is a quasi-

isomorphism and applying the above reasoning for v, we obtain a morphism 

( )( )YXHomw BC ,1⊥+∈  such that .1~ Ywv  Therefore, .1~ Yuv  ~ 

Proposition 2.4. The canonical functor of localization 

( ) ( )BBB ′→′ι +++
′ DK:  

is an isomorphism of categories. 
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Proof. By Lemma 2.3, the identity functor ( )B′+K
1  transforms quasi-

isomorphisms in isomorphisms, so, by the universal property of functor ,+
′ιB  

there exists a unique functor ( ) ( )BB ′→′ ++ KDG :  such that =ι+ ′BG  

( ) .1 B′+K  

The universal property of functor +
′ιB  shows that ( ).1 BB ′

+
′ +=ι DG  ~ 

We have the following diagram: 

 

where J is the inclusion functor and +
′ιB  is the canonical functor of 

localization. The universal property of +
′ιB  allows to define ( ) →′+ BDF :  

( )B+D  such that .JF ++
′ ι=ι BB  

Proposition 2.5. The functor ( ) ( )BB ++ →′ DDF :  is a triangle 

equivalence. 

Proof. Theorem 2.1 implies that F is a triangle equivalence (see 

( )op2.7.1  in [13]). ~ 

Finally, we have the following triangle equivalence. 

Theorem 2.6. Let B  be an s.c.c.m. of an abelian category with sufficient 
injectives A  and such that B′  co-generates B.  Then the functor =G  

( ) ( )BBB
+++

′ →′ι DKF :  is a triangle equivalence. 

In particular, if ,AB =  then we have that ( )I+K  and ( )I+D  are 

triangle equivalents, where I  is the full additive subcategory of injective 
objects of .A  
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Proof. It is easy to see that G preserves distinguished triangles. By 
Proposition 2.4 and Proposition 2.5, G is a triangle equivalence. ~ 

Corollary 2.7. If B  is a subcategory s.c.c.m. of an abelian category         

with sufficient injectives A  and such that BB ∩⊥  co-generates ,B  then 

( )BB ∩⊥+K  and ( )B+D  are triangle equivalent. 

Corollary 2.8. If B  is co-resolving and closed by subobjects, then 

( )B′+K  is triangle equivalent to ( ).B+D  

In particular, ( )⊥+ BK  and ( )B+D  are triangle equivalent. 

As an application of the above, we have the following. 

Corollary 2.9. Let T be a tilting object of an abelian category with 

sufficient injectives and Krull-Schmidt .A  If ⊥T  is closed by subobjects, 

then ( )⊥+ TK  and ( )( )TaddD+  are triangle equivalent. 

Proof. The result easily follows from Remark 1.2 and Corollary 2.8. ~ 

All the results described above can be dualized by taking generators,        
Ext-projective objects, B  resolving, B  strongly closed by kernels of 
epimorphisms (s.c.k.e.), A  with sufficient projectives, homotopy and 
derived categories of bounded above complexes. 

3. Equivalence for Auto-orthogonal Subcategory 

This section is devoted to the second triangle equivalence. 

The following result is due to Happel (see [6], Lemma 1.1) and it is 
essential for our results. 

Lemma 3.1. If B  is auto-orthogonal, then 

( )( ) ( )( ).,, YXHomYXHom bb DK AB
≅  

Lemma 3.2. If B  is an auto-orthogonal and s.c.c.m., then ( )BbK  and 

( )BbK ,+  are triangle equivalent. 
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Proof. Let X be in ( )., BbK +  Then we can choose n such that 

( ) 0=XH i  for ni >  and so we define ( )BbKY ∈  and XYf →:  as 

follow: ii XY =  for ,1+< ni  n
X

n dImY =+1  (which is in B  because B  is 

s.c.c.m.), 0=iY  for 1+> ni  and f is the natural inclusion. It is easy to see 
that f is a quasi-isomorphism, but B  is an auto-orthogonal and s.c.c.m., 
therefore, we can do exactly of the same proofs of Lemma 2.2 and Lemma 

2.3 and we conclude that f is an isomorphism in ( )., BbK +  ~ 

Proposition 3.3. Let B  be an auto-orthogonal and s.c.c.m. Then 

( )( ) ( )( ).,, ,, YXHomYXHom bb DK AB ++ ≅  

Proof. It is very well known that ( )AbD  and ( )AbD ,+  are triangle 

equivalent, so the result easily follows from Lemma 3.1 and Lemma 3.2. ~ 

The previous result implies the following triangular equivalence. 

Theorem 3.4. If B  co-generates ,A  is auto-orthogonal, and s.c.c.m., 

then ( )BbK ,+  and ( )AbD ,+  are triangle equivalent. 

Proof. The result easily follows from Proposition 3.3 and Theorem 2.1. ~ 

As an application of this theorem, we have the following. 

Corollary 3.5. Let T be a tilting object of an abelian category with 

sufficient injectives and Krull-Schmidt ,A  { ( )( )−∈=⊥ ,VExiVT i
TaddA  

},00 >= iallfor  and .⊥⊥= TT ∩C  If C  is closed by subobjects, then 

( )CbK ,+  is triangle equivalent to ( )., AbD+  

Proof. The result easily follows from Remark 1.2 and Theorem 3.4. ~ 
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