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Abstract

The hypergeometric function type I distribution with the pdf

proportional to ( ) ( )xFxx −γβα− −γ−ν 1;;,1 12
11  occurs as the distribution

of the product of two independent beta variables. In this article, we

study several properties and stochastic representations of this

distribution.

1. Introduction

The random variable X is said to have beta distribution, denoted by

( ),,~ baBX  if its probability density function (pdf) is given by

( ){ } ( ) ,10,1, 111 <<− −−− xxxbaB ba (1)

where ,0,0 >> ba  and ( )baB ,  is beta function given by

( ) ( ) ( ) ( ){ } ., 1−+ΓΓΓ= bababaB
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Beta distribution is widely used in statistical modeling of bounded

random variables. Applications of densities of the product and ratio of

independent beta variates in the field of reliability can be found in Pham-

Gia [8] and Pham-Gia and Turkkan [9]. Several univariate

generalizations of this distribution are given in Gordy [1], McDonald and

Xu [5], Nagar and Zarrazola [6] and Ng and Kotz [7]. For an extensive

review on beta distributions the reader is referred to Johnson et al. [3].

Recently, Gupta and Nagar [2, p. 298] introduced a univariate

generalization of (1) involving the Gauss hypergeometric function. Their

generalization of the beta distribution has the pdf

( ) ( )
( ) ( ) ( ) ( ) ( ) ,10,1;;,1 12

11 <<−γβα−
β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ −γ−ν xxFxx (2)

where ,,0,0 β+α>ν+γ>γ>ν  and 12F  is the Gauss hypergeometric

function defined by (Luke [4]),

( ) ( ) ( )
( )∑

∞

=

=
0

12 ,
!

;;,
r

r

r

rr
r
z

c
ba

zcbaF

where z is a complex variable, a, b and c can take arbitrary real or

complex values (provided that ...),2,1,0 −−≠c  and ( ) ( )L1+= aaa n

( ) ( ) ( )11 1 −+=−+ − naana n  for ...,,2,1=n  and ( ) .10 =a  If either a or

b is zero or a negative integer, the series terminates after a finite number

of terms, and its sum is then a polynomial in z. Except for this case, the

radius of convergence of the hypergeometric series is 1. We will call the

above distribution hypergeometric function type I distribution and denote

it by ( ).,,, γβανIH  This distribution occurs as the distribution of the

product of two independent beta variables. For ,γ=α  the density (2)

reduces to a beta distribution given by

( ){ } ( ) ,10,1, 111 <<−γβ−ν −γ−β−ν− xxxB

and for ,γ=β  the hypergeometric function type I density slides to

( ){ } ( ) .10,1, 111 <<−γα−ν −γ−α−ν− xxxB
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In this article, we study several properties and stochastic
representations of the hypergeometric function type I distribution. We
also define the inverted hypergeometric function type I distribution and
derive some of its properties.

2. Properties

In this section we will derive several properties of the hypergeometric

type I distribution defined in Section 1. Note that ( ) ≡γβαν ,,,IH

( ).,,, γαβνIH  Further, using the result

( ) ( ) ( ),;;,1;;, 1212 zcbcacFzzcbaF bac −−−= −− (3)

the pdf of X can also be expressed as

( ) ( )
( ) ( ) ( ) ( ) 11 1 −γ−β−α−γ+ν −

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

xx

( ) .10,1;;,12 <<−γβ−γα−γ× xxF (4)

Hence ( ) ( ) ( )γβ−γα−γβ−α−γ+ν≡γαβν≡γβαν ,,,,,,,,, III HHH

( ).,,, γα−γβ−γβ−α−γ+ν≡ IH  Further, using series expansion of

12 F  in (2) and (4), series representations of the hypergeometric type I

density are obtained as

( ) ( )
( ) ( )

( ) ( )
( )∑

∞

=
γ+ν
βα

β−α−ν+γΓγ+νΓ
β−ν+γΓα−ν+γΓ

0
!

r r

rr
r

( ){ } ( ) 10,1, 111 <<−+γν× −+γ−ν− xxxrB r

and

( ) ( )
( ) ( )

( ) ( )
( )∑

∞

=
β−α−γ+ν
β−γα−γ

β−α−ν+γΓνΓ
β−ν+γΓα−ν+γΓ

0
!22

r r

rr
r

( ){ } ( ) .10,1, 111 <<−+γβ−α−γ+ν× −+γ−β−α−γ+ν− xxxrB r

That is, the pdf of the hypergeometric type I variable is a mixture of beta

densities. From (2) and (4) the pdf of XU −= 1  is derived as



w
w

w
.p

ph
m

j.c
om

DAYA K. NAGAR and JOSÉ ANGEL ALVAREZ344

( ) ( )
( ) ( ) ( ) ( ) ( ) ,10,;;,1 12

11 <<γβα−
β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ −ν−γ uuFuu

and
( ) ( )
( ) ( ) ( ) ( ) 11 1 −β−α−γ+ν−γ −

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

uu

( ) .10,;;,12 <<γβ−γα−γ× uuF

The cumulative distribution function (cdf) of X is obtained as

( ) ( ) ( )
( ) ( ) ( )β−α−ν+γΓνΓγΓ

β−ν+γΓα−ν+γΓ
=≤ xXP

( ) ( )∫ −γβα−× −γ−ν
x

dzzFzz
0

12
11 .1;;,1

Expanding ( )zF −γβα 1;;,12  in series form and integrating with respect

to z, the above expression is rewritten as

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )∑

∞

=

+γν
γ

βα
β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

=≤
0

,,
!

r
x

r

rr rB
r

xXP (5)

where the incomplete beta function ( )baBx ,  is defined by

( ) ( )∫ >><<−= −−
x ba

x baxdyyybaB
0

11 .0,0,10,1,

Theorem 2.1. Let ( ).,,,~ γβανIHX  Then, the moment generating

function (mgf ) ( )tM X  of X is given by

( ) ( ),;,;,22 tFtM X β−γ+να−γ+νβ−α−γ+νν= (6)

where 22F  is the generalized hypergeometric function (Luke [4]).

Proof. By definition

( ) ( ) ( )
( ) ( ) ( )β−α−ν+γΓνΓγΓ

β−ν+γΓα−ν+γΓ
=tM X

( ) ( ) ( )∫ −γβα−× −γ−ν
1

0
12

11 .1;;,1exp dxxFxxtx (7)
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Expanding ( )txexp  in power series and using the results

 ( ) ( )∫ −γβα− −−
1

0
12

11 1;;,1 dxxFxx ba

( ) ( )
( ) ( ),1;,;,,23 γ+βα

+Γ
ΓΓ

= babF
ba
ba

(8)

and

( ) ( ) ( )
( ) ( ) ( ) ,0Re,1;;,12 >−−

−Γ−Γ
−−ΓΓ

= bac
bcac
bacc

cbaF (9)

...,,2,1,0 −−≠c  the above integral is evaluated as

( ) ( ) ( )∫ −γβα− −γ−ν
1

0
12

11 1;;,1exp dxxFxxtx

( ) ( ) ( )
( ) ( )β−ν+γΓα−ν+γΓ

β−α−ν+γΓνΓγΓ
=

( ).;,;,22 tF β−γ+να−γ+νβ−α−γ+νν× (10)

Now, substitution of (10) in (7) yields the desired result.

Theorem 2.2. Let ( ).,,,~ γβανIHX  Then

[ ( ) ] ( ) ( )
( ) ( ) ( )

( ) ( )
( )sr

rs
XXE sr

++γ+νΓ
+νΓ+γΓ

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

=−1

( ),1;,;,,23 srsF ++γ+νγ+γβα× (11)

where 23F  is the generalized hypergeometric function (Luke [4]).

Proof. From the density of X, we have

[ ( ) ] ( ) ( )
( ) ( ) ( )β−α−ν+γΓνΓγΓ

β−ν+γΓα−ν+γΓ
=− sr XXE 1

( ) ( )∫ −γβα−× −+γ−+ν
1

0
12

11 .1;;,1 dxxFxx sr

Now, using (8) and simplifying the resulting expression we get the

desired result.
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Substituting 0=s  in (11) and using (9), the r-th moment of X is

obtained as

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,

β−+γ+νΓα−+γ+νΓ
β−α−+γ+νΓ+νΓ

β−α−ν+γΓνΓ
β−ν+γΓα−ν+γΓ

=
rr

rr
XE r (12)

where ( ) .Re β+α>+γ+ν r  Finally, using the above expression, the

mean and variance of X are derived as

( ) ( )
( ) ( ) ,

β−γ+να−γ+ν
β−α−γ+νν=XE

and

( ) ( )
( ) ( )

( ) ( )
( ) ( )


+β−γ+ν+α−γ+ν
+β−α−γ+ν+ν

β−γ+να−γ+ν
β−α−γ+νν=

11
11

Var X

( )
( ) ( ) .


β−γ+να−γ+ν

β−α−γ+νν−

3. Stochastic Representations

In this section we obtain stochastic representations of the

hypergeometric type I variable in terms of beta and inverted beta random

variables. First we define inverted beta distribution.

Definition 3.1. The random variable X is said to have an inverted

beta distribution with parameters ( ),, ba  denoted as ( ),,~ baIBX

,0>a  ,0>b  if its pdf is given by

( ){ } ( ) ( ) .0,1, 11 >+ +−−− xxxbaB baa

Theorem 3.1. Let 1X  and 2X  be independent, ( )baBX ,~1  and

( ).,~2 dcBX  Then ( )dbadcbcHXX I +−+ ,,,~21  with the pdf

( ) ( )
( ) ( ) ( ) ( ) 11 1 −+− −

+ΓΓΓ
+Γ+Γ dbc xx

dbca
dcba

( ) .10,1;;,12 <<−+−+× xxdbadcbF
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Proof. The r-th moment of ,10, 2121 << XXXX  is given by

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ,21 rdcrbaca

rcradcba
XXE rr

++Γ++ΓΓΓ
+Γ+Γ+Γ+Γ

=

where ( ) .0Re >r  Now by comparing the above moment expression with

(12) it is easy to see that adcbc −+=β=α=ν ,,  and .db +=γ

Corollary 3.1.1. Let ( )baBX ,~1  and ( )dcBX ,~2  be independent.

Then, ( )dbaBXX +,~21  if bac +=  and ( )dbcBXX +,~21  if .dca +=

An alternative proof of the above theorem using transformation of
variables is given in Gupta and Nagar [2, p. 299]. Next, in Theorems
3.2-3.4, we give stochastic representations of the hypergeometric type I
variable in terms of beta and inverted beta random variables.

Theorem 3.2. Let 1X  and 2X  be independent, ( )baBX ,~1  and

( ).,~2 dcBX  Then, ( ) ( ) ( ) ~1,,,,~1 2121 XXdabdcacHXX I −+−+−

( )cbadcbdH I +−+ ,,,  and ( ) ( ) ( ).,,,~11 21 cabdcadHXX I +−+−−

Proof. The result follows from Theorem 3.1 by noting that ~1 1X−

( )abB ,  and ( ).,~1 2 cdBX−

Corollary 3.2.1. Let 1X  and 2X  be independent, ( )baBX ,~1  and

( ).,~2 dcBX  Then, ( ) ( )dacBXX +− ,~1 21  if ( ) ~1, 21 XXdcb −+=

( )dabB +,  if ( ) ( )cbdBXXbac +−+= ,~1, 21  if ( )21 1, XXdca −+=

( )cbaB +,~  if ,bad +=  ( ) ( ) ( )cadBXX +−− ,~11 21  if dcb +=  and

( ) ( ) ( )cabBXX +−− ,~11 21  if .bad +=

Theorem 3.3. Let 1X  and 2X  be independent, ( )baBX ,~1  and 2X

( ).,~ dcIB  Then, ( ) ( ) ( ) 21221 1,,,,~1 XXdbadcbcHXXX I −+−++

( ) ( ) ( ) ( )cbadcbdHXXdabdcacHX II +−+++−++ ,,,~1,,,,~1 212

and ( ) ( ) ( ).,,,~11 21 cabdcadHXX I +−++−

Proof. In this case observe that ( ) ( ) ~1,,~1 221 XXabBX +−

( ) ( ) ( )cdBXdcB ,~11,, 2+  and apply Theorem 3.1.
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Corollary 3.3.1. Let 1X  and 2X  be independent, ( )baBX ,~1  and

( ).,~2 dcIBX  Then, ( ) ( )dbaBXXX ++ ,~1 221  if bac +=  and

( ) ( )dbcBXXX ++ ,~1 221  if ( ) ( ) ( )dacBXXXdca ++−+= ,~11, 221

if ( ) ( ) ( )dabBXXXdcb ++−+= ,~11, 221  if ( )21 1, XXbac ++=

( )cbdB +,~  if ( ) ( )cbaBXXdca +++= ,~1, 21  if ,bad +=

( ) ( ) ( )cadBXX ++− ,~11 21  if dcb +=  and ( ) ( ) ~11 21 XX +−

( )cabB +,  if .bad +=

Theorem 3.4. Let 1X  and 2X  be independent, ( )baIBX ,~1  and

( ).,~2 dcIBX  Then, ( ) ( ) ( ),,,,~11 2121 dbadcbcHXXXX I +−+++

( )( ) ( ) ( ) ( ) ( ,~11,,,,~11 211212 dHXXXdabdcacHXXX II +++−+++

)cbadcb +−+ ,,  and ( ) ( ) ( ).,,,~111 21 cabdcadHXX I +−+++

Proof. Similar to the proof of Theorem 3.3.

Corollary 3.4.1. Let 1X  and 2X  be independent, ( )baIBX ,~1  and

( ).,~2 dcIBX  Then, ( ) ( ) ( )dbaBXXXX +++ ,~11 2121  if bac +=

and ( ) ( ) ( )dbcBXXXX +++ ,~11 2121  if ( ) ( )212 11, XXXdca +++=

( )dacB +,~  if ( ) ( ) ( )dabBXXXdcb ++++= ,~11, 212  if ,bac +=

( ) ( ) ( )cbaBXXX +++ ,~11 211  if ,bad +=  ( ) ( ) ~11 211 XXX ++

( )cadB +,  if ( ) ( ) ( )cadBXXdca ++++= ,~111, 21  if dcb +=  and

( ) ( ) ( )cabBXX +++ ,~111 21  if .bad +=

4. Inverted Hypergeometric Function Type I Distribution

In this section we will define the inverted hypergeometric function
type I distribution, study its properties and relationship to the
hypergeometric function type I distribution. First we define the inverted
hypergeometric function type I distribution.

Definition 4.1. The random variable Y is said to have an inverted

hypergeometric function type I distribution with parameters ( ),,,, γβαν

denoted as ( ),,,,~ γβανIIHY  if its pdf is given by
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( ) ( )
( ) ( ) ( ) ( ) ( )ν+γ−−ν +

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

yy 11

,0,
1

1;;,12 >






+
γβα× y

y
F (13)

where ,0>ν  ,0>γ  ,β+α>ν+γ  and 12F  is the Gauss hypergeometric

function.

From the above definition it is easy to see that ( ) ≡γγαν ,,,IIH

( )γα−ν ,IB  and ( ) ( ).,,,, γβ−ν≡γβγν IBIH I

In the following theorem we give relationship between

hypergeometric function type I and inverted hypergeometric function

type I distributions. The proof is straightforward and is left to the reader.

Theorem 4.1. If ( ),,,,~ γβανIHX  then ( ) ( ).,,,~1 γβαν− IIHXX

Similarly, if ( ),,,,~ γβανIIHY  then ( ) ( ).,,,~1 γβαν+ IHYY

Using (3), the inverted hypergeometric function type I density can

also be written as

( ) ( )
( ) ( ) ( ) ( ) ( )β−α−ν+γ−−β−α−γ+ν +

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ 21 1 yy

.0,
1

1;;,12 >






+
γβ−γα−γ× y

y
F (14)

Thus, ( ) ( ) ( )γβ−γα−γβ−α−γ+ν≡γαβν≡γβαν ,,,,,,,,, III IHIHIH

( ).,,, γα−γβ−γβ−α−γ+ν≡ IIH  Using series expansion of 12 F  in (13)

and (14), the pdf of the inverted hypergeometric type I variable can be

expressed as a mixture of inverted beta densities:

( ) ( )
( ) ( )

( ) ( )
( )∑

∞

=
γ+ν
βα

β−α−ν+γΓγ+νΓ
β−ν+γΓα−ν+γΓ

0
!

r r

rr
r

( ){ } ( ) ( ) ,0,1, 11 >++γν× +ν+γ−−ν− yyyrB r
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and

( ) ( )
( ) ( )

( ) ( )
( )∑

∞

=
β−α−γ+ν
β−γα−γ

β−α−ν+γΓνΓ
β−ν+γΓα−ν+γΓ

0
!22

r r

rr
r

( ){ } ( ) ( ) .0,1, 211 >++γβ−α−γ+ν× +β−α−γ+ν−−β−α−γ+ν− yyyrB r

From (13) and (14) the pdf of YV 1=  is derived as

( ) ( )
( ) ( ) ( ) ( ) ( ) ,0,

1
;;,1 12

1 >






+
γβα+

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ γ+ν−−γ v

v
vFvv

and

( ) ( )
( ) ( ) ( ) ( ) ( )β−α−γ+ν−−γ +

β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ 21 1 vv

.0,
1

;;,12 >






+
γβ−γα−γ× v

v
vF

The cumulative distribution function (cdf) of Y is obtained as

( ) ,
1 







+
≤=≤

y
yXPyYP

where ( ).,,,~ γβανIHX  Now, from (5), the cdf of Y is obtained as

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ).,

! 1
0

rB
r

yYP yy
r r

rr +γν
γ

βα
β−α−ν+γΓνΓγΓ
β−ν+γΓα−ν+γΓ

=≤ +

∞

=
∑
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