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2 Instituto de F́ısica, Universidad de Antioquia, AA 1226, Medelĺın, Colombia
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Abstract. A theoretical study, within the effective-mass approximation, of the effects of applied magnetic
fields on excitons in disk-shaped GaAs-Ga1−xAlxAs quantum dots is presented. Magnetic fields are applied
in the growth direction of the semiconductor heterostructure. The parity of the excitonic envelope function
related to the simultaneous exchange of ze → −ze and zh → −zh is a good quantum number and the
wave function, both the odd and even parity, can be expanded as combination of products of the quantum
well electron and hole function that preserves the parity with appropriate Gaussian functions. We have
simultaneously obtained the energies of the excitonic ground and excited states and discuss the behavior
of these energies as a function of the magnetic field.

PACS. 71.35.Cc Intrinsic properties of excitons; optical absorption spectra – 71.35.Ji Excitons in magnetic
fields; magnetoexcitons – 71.55.Eq III-V semiconductors – 78.66.Fd III-V semiconductors

1 Introduction

The quantitative understanding of the physics of low-
dimensional semiconductor systems is of paramount im-
portance due to its potential applications in electronic
and optoelectronic devices. In that respect, the study of
the electronic and excitonic properties of semiconductor
heterostructures is of great interest, and the quest for
an appropriate and reliable knowledge of the excitonic
and optical properties of single and multiple semiconduc-
tor quantum wells (QWs), quantum-well wires (QWWs),
quantum dots (QDs), superlattices (SLs), self-assembled
quantum dots (SAQDs), etc., has resulted in a consid-
erable amount of work in order to elucidate the phys-
ical properties of these systems [1–25]. External influ-
ences such as applied electric and magnetic fields [1–3],
and effects of hydrostatic pressure [4–6] have been mea-
sured and/or calculated. Studies include one-particle
states [7,8], exciton and biexciton states [9–25], analytic
forms of the linear and third-order nonlinear optical ab-
sorption coefficients, diamagnetic shift, absorption spec-
tra, etc. Nonlocal dynamic response and level crossings,
and acceptor levels in QDs, as well as QD/interface defects
in narrow QWs have also been reported [19–21]. Some of
the conclusions are that (i) as a result of the applied elec-
tric and magnetic fields in QWs, there is an infrared shift
in the optical absorption spectra and Stark/Landau ladder

a e-mail: cduque@fisica.udea.edu.co

anticrossings [1]; (ii) type II electron-hole recombinations
can be obtained by hydrostatic pressure in those systems
in which, in the atmospheric pressure regime, the tran-
sitions go as type I [4,5]; (iii) Pacheco and Barticevic [7]
concluded that for QDs under applied electric fields and in
the weak-lateral confinement regime, the electron-hole sys-
tem is appropriately described by the relative and center-
of-mass coordinates, which are weakly coupled by the
lateral potential; and in the strong-lateral confinement
regime the electrons and holes are weakly correlated and
the spectrum may be explained within a single-particle
picture; (iv) associated with geometrical-confinement ef-
fects in QDs, there is a strong blue-shift of the lumines-
cence [13]; (v) the energies of the excitonic states in QDs
– and the interval between them – decrease with reducing
space dimensions [17]; (vi) the optical absorption satura-
tion intensity in QDs may be controlled by adopting a
proper parabolic confinement potential [18]; (vii) the spin
relaxation can be strongly suppressed in SAQDs [22].

In the last decade or so, there has been much interest
in the physical understanding of semiconductor SAQDs,
both from the experimental and theoretical points of
view [19–25]. In particular, here we are concerned with
the physical understanding of the excitonic and optical
properties of SAQDs, and perform a thorough theoreti-
cal study of a number of properties of GaAs-Ga1−xAlxAs
single QDs. To our knowledge, many questions remain
open today on the optical transitions in QDs. In SAQDs
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there is no conclusive answers on the number of electron
states that contribute to the photoluminescence spectra.
Another open question corresponds to the excitonic ef-
fects in these dots: when the e − h Coulomb interaction
is taken into account, anticrossing effects between differ-
ent electron-hole states should be observed. There are no
studies that clearly discuss the anticrossing between exci-
tonic states in QDs, particularly when external magnetic
fields effects are considered. In the present work we use
the effective-mass approximation to describe the corre-
lated electron-hole pair in GaAs-Ga1−xAlxAs QDs. The
model considers a thin QW that confines the carries in the
z-direction. For the x−y in-plane confinement, we consider
an infinite parabolic potential, and the externally applied
magnetic field is taken along the growth direction of the
heterostructure. The work is organized as follows. In Sec-
tion 2 we present the theoretical framework, Section 3 is
devoted to the present results and discussion, and finally
in Section 4 we present our conclusions.

2 Theoretical framework

The effective-mass Hamiltonian for a disk-shaped GaAs-
Ga1−xAlxAs QD, in the presence of a magnetic field B ap-
plied along the z-growth direction, is given by the sum of
single-particle Hamiltonians for electron and hole, the dot
potential that confines the carries inside the heterostruc-
ture, and the e − h Coulomb potential screened by a di-
electric constant,

H = He + Hh + VDot + VC , (1)

where
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Note that the above QD confinement potential has been
modelled by the sum of a lateral parabolic potential and a
one-dimensional square-well potential along the growth di-
rection. We assume the square-well potential barriers [26]
Ve(ze) and Vh(zh) to be 62% (38%) of the band-gap dis-
continuity [27] ∆Eg (eV ) = 1.36 x + 0.22 x2 for the
conduction (valence) band, with the GaAs gap taken
as the low-temperature [27] value Eg = 1.5194 eV. To
solve the eigenvalue problem for the Hamiltonian in (1),
we take the vector potential in the symmetric gauge as
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where ωc = eB/(µc), �z = −i� (x∂/∂y − y∂/∂x), µ =
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The z-dependent confinement potential, V (z), is invariant
under the transformation z → −z. Therefore, one may as-
sign a definite parity for the e or h QW wave function. As
the e−h Coulomb interaction is invariant under the simul-
taneous inversion of the electron and hole positions, the
exciton envelope wave function will therefore have a well-
defined parity (i.e., parity is a good quantum number),
and the excitonic envelope function may be expanded as
products of QW electron and hole eigenfunctions preserv-
ing the parity. Then we can write
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indicates even or odd parity, and ∆P,P ′ =
δP,P ′ for even (+) excitonic states, whereas ∆P,P ′ = (1−
δP,P ′ ) for odd (−) states. In the above, fne(P )(ze) and
fnh(P ′)(zh) are the QW electron and hole eigensolutions,
respectively, i.e.,
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By ignoring the coupling between the in-plane relative and
CM coordinates [7], one may write the Cne(P ),nh(P

′
),(±)
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coefficient as products of the in-plane and CM eigensolu-
tions, i.e.,
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where gl,n(R, Θ) is the eigenfunction of the CM
Hamiltonian, which corresponds to a bi-dimensional har-
monic oscillator, i.e.,
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With all the above-mentioned, we obtain the following
eigenvalue equation for Bne(P ),nh(P ),(+)(ρ, θ) ([and a sim-
ilar equation for the (−) solution)]:
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We note that the above matrix element is θ-independent,
equation (15) has azimuthal-symmetry and therefore one
may write

Bne(P ),nh(P ),(+)(ρ, θ) = exp(imθ) F
(+,m)
ne(P ),nh(P )(ρ), (19)

i.e., the z-component of the angular moment is a good
quantum number. By substituting (19) into (15), we then
obtain a set of coupled equations for F

(+,m)
ne(P ),nh(P )(ρ),

which may be solved numerically by expanding F (+,m)

in a set of Gaussian-type functions with length parame-
ters λ, chosen in order to cover the physical range of rel-
evant spatial parameters [7]. In order to obtain accurate
energies and wave functions, we have used a truncated ba-
sis up to 900 states. We use a set of 25 Gaussian functions
with parameters λ covering the range from 1 Å to 5000 Å,
and with a maximum of 18 e − h QW functions with the
same parity (even-exciton solutions) and a maximum of
18 e − h QW functions with opposite parity (odd-exciton
solutions).

3 Results and discussion

The dimensions of the QD are modelled as follows: the
lateral QD radius was taken as R =

√
�/µω, where µ is

the in-plane heavy-hole exciton effective mass, whereas the
height of the dot corresponds to the Lz width of a QW in
the z-direction. Moreover, the e − h Coulomb interaction
is screened by the ε =12.4 static dielectric constant [27]
of the GaAs, i.e., image-charge effects are ignored. Rele-
vant mass parameters are taken from the work by Li [27].
Calculations were performed for P = P

′
(cf. Eq. (9)), i.e.,

results presented are for even excitons (one may show that
the odd-exciton peaks would be associated to much higher
PL-peak energies). In our model the energy spectrum for
the e−h non-interacting pair in a QD has energy sequences
of Landau-like levels (see, for instance, Figs. 1a and 2a)
associated with the various non-correlated e − h states in
a QW/QD of width Lz. Also, one should notice that as
the relative motion of the carriers and that of the center
of mass are taken as independent, then the Coulomb in-
teraction only mixes states with the same m. Moreover, in
the absence of external magnetic fields, the Hamiltonian
depends on the absolute value of m and for it the energies
are degenerate for states with angular moment equal to
±m. Finally, energy levels EM,m in the present work are
labelled as (M,m), which is strictly valid only for the case
of a non-interacting e − h pair, where m is the azhimu-
tal quantum number in (19), and M is associated with
the energy level of the bi-dimensional harmonic oscillator
spectrum (cf. Eqs. (6) and (8)), i.e., EM,m = � ω(M + 1),
with M ≥ 0, −M ≤ m ≤ M , and m and M are either
both even or both odd [28].

In Figure 1, we present our results for the heavy-
hole exciton peak, which would show up in experiment,
for instance, as a photoluminescence peak, and for the
correlation energies (here defined as the e − h Coulomb-
interaction energy) for a GaAs-Ga0.7Al0.3As QD of thick-
ness Lz = 10 Å and for zero magnetic field. Figure 1a
shows the excitonic peak as a function of the lateral
confining energy and for this ultrathin QW only one
set of peaks can be observed. For low-lateral confine-
ment energies (�ω � R∗

x, where R∗
x is the QW exci-

ton effective Rydberg) the spectrum manifest excitonic
character, as it is clearly seen for the ground-state (gs)
exciton: in Figure 1a, the energy position of the gs exci-
ton peak essentially goes to the appropriate limiting value
of Eg + Ee + Ehh −R∗

x + µω2/2〈ρ2〉, and in Figure 1c the
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Fig. 1. Heavy-hole exciton peak [(a) and (b)] and correlation
energies [(c) and (d)] for a disk-shaped GaAs-Ga0.7Al0.3As QD
of thickness Lz = 10 Å, and lateral radius R, as functions of
the strength �ω of the in-plane confinement potential [(a) and

(c)] or lateral disk radius R =
√

�/µω [(b) and (d)], where µ
is the heavy-hole exciton effective mass.

gs correlation energy behaves, in the low-lateral confin-
ing regime, as – R∗

x – �ω(M + 1) + µω2/2〈ρ2〉. As the
�ω confining energy increases, one eventually reaches the
harmonic oscillator regime, in which the exciton peak en-
ergy behaves, in this limit, as �ω(M + 1), as expected
(cf. Fig. 1a). Moreover, the exciton binding energy (de-
fined as the negative of the correlation energy) behaves,
for �ω � R∗

x, as ≈1/R ≈ √
ω as seen in Figures 1c

and 1d. Note that, in this regime, the electron and hole
are strongly confined in the z-direction and, although the
Coulomb interaction may be considered as a perturbation,
the behavior of the exciton binding energy is essentially
governed by the effect of the e−h Coulomb interaction en-
ergy on the energy harmonic-oscillator states. Figures 1b
and 1d display the exciton spectrum and correlation ener-
gies as functions of the corresponding lateral QD radius,
respectively. It is apparent that for QD radii larger than
the effective Bohr radius (a∗

0 ≈ 150 Å), the excitonic spec-
trum and correlation energies are essentially independent
of the lateral confinement energy, as expected.

In Figure 2 we display both the non-interacting (non-
correlated) e−h pair energies and the excitonic peak ener-
gies for a GaAs-Ga0.7Al0.3As QD of thickness Lz = 50 Å
and zero magnetic field, as functions of the strength of the
lateral confining potential. This allows one to identify, as
the lateral confinement increases, the possible occurrence
of energy crossings/anticrossings, when the effect of the
Coulomb interaction is taken into account in the calcu-
lation of the corresponding excitonic states. For the QW
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Fig. 2. Non-correlated electron-heavy-hole (e−h) (a) and cor-
responding exciton peak energies (b) for a disk-shaped GaAs-
Ga0.7Al0.3As QD of thickness Lz = 50 Å, and lateral radius
R =

√
�/µω, as functions of the strength �ω of the in-plane

confinement potential.

width Lz = 50 Å, the e−h non interacting pair shows two
manifolds of energy levels associated with the two possi-
ble z-confined e − h QW states of the same parity, with
each manifold associated with a bi-dimensional harmonic
oscillator spectrum. Note the crossing of the uncorrelated
energy states when the lateral confining strength is var-
ied. Of course, the crossing position of noninteracting e−h
states provides information on the comparative strength
of lateral and QW confinement energies. Also, one should
notice that the Coulomb interaction only couples exciton
states with the same azhimutal quantum number m and
it is such e − h interaction that produces the level anti-
crossings observed in Figure 2b.

In Figure 3a, we present our results for even-parity ex-
citonic peak energies for the low-energy excitonic states
with the z-component of angular moment, m, running
from −2 to 2, as functions of the lateral confinement en-
ergy of Lz = 100 Å GaAs-Ga0.7Al0.3As QDs, at zero mag-
netic field. The energy spectrum shows exciton states orig-
inated from three different manifolds associated to QW
e−h z-confined states. For clarity, we display in Figure 3b
only m = 0 excitonic states, which can be optically ex-
cited with circularly-polarized light. Again, experimental
measurements around the anticrossing region will provide
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Fig. 3. Excitonic peak energies for the lower even parity ex-
citonic states with the z-component of angular moment, m,
running from −2 to 2, as a function of the lateral confinement
energy in the case of a GaAs-Ga0.7Al0.3As QD of thickness
Lz = 100 Å and lateral radius R =

√
�/µω, at zero magnetic

field. In (b) only excitonic energies with m = 0 are displayed.

information of the comparative value of the lateral and
QW confinement. Of course, the same information could
be experimentally obtained in a much easier way by prob-
ing the semiconductor QD system by a variable growth-
direction magnetic field.

Figure 4 displays the magnetic-field effects on the exci-
tonic peak energies in a GaAs-Ga0.7Al0.3As QD of thick-
ness Lz = 100 Å and radius R = 100 Å. In Figure 4a,
we present calculated results for excitonic peak energies
for the lower excitonic states for the azimuthal quantum
number m running from −2 to +2 as functions of the
magnetic field. As before, results are shown for exciton
states originated from three different manifolds associated
to QW e − h z-confined states. The applied magnetic
field lifts the energy degeneracy in the quantum num-
ber m and yields to a rich-structured spectrum. In Fig-
ure 4b, only excitonic energies with m = 0 are displayed
as a function of the magnetic field, so that one clearly
observes the anticrossing of exciton levels associated to
the three lowest QW z-confined manifold. An estimate of
the value of the magnetic field for which the anticross-
ing occurs may be calculated as follows. For instance, the
anticrossing of the (2, 0)1 and (0, 0)2 levels is given by
E(2,0)1 ≈ E(0,0)2 , i.e., EQW,1 + 3� ωeff ≈ EQW,2 + � ωeff ,
where ω2

eff = ω2 + ω2
c/4, and EQW,1 and EQW,2 are two

different solutions, with the same parity, of the QW e− h
z-confined states. In order to see how the anticrossings de-
pend on parameters, we have also displayed in Figures 4c
and 4d our calculated results when R changes from 100 Å
to 150 Å (Fig. 4c) or when Lz changes from 100 Å to
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Fig. 4. (a) Excitonic peak energies for the lower even parity
excitonic states with the z-component of angular moment, m,
running from −2 to 2, as a function of the growth-direction
applied magnetic field in the case of a GaAs-Ga0.7Al0.3As QD
of thickness Lz = 100 Å, and radius R = 100 Å. In (b) only
excitonic energies with m = 0 are displayed; (c) as in (b),
for Lz = 100 Å, and radius R = 150 Å; (d) as in (b), for
Lz = 150 Å, and radius R = 100 Å.

150 Å (Fig. 4d). In general the anticrossings widths will
be larger for higher excitonic confinement as it can be ob-
served in Figure 4b as compared with Figure 4d. However
in the case of similar z-confinement but different geometric
lateral-confinement as in Figures 4b and 4c the anticross-
ing width is found to be nearly the same. This is because
the lower lateral geometric confinement in the last case is
compensated by a higher magnetic-field confinement be-
cause the anticrossings occur for larger field values.

In Figure 5, the calculated binding energies of the
ground state in disk-shaped GaAs-Ga0.7Al0.3As QDs, as
functions of the QD lateral radius, are presented. Differ-
ent values of the height of the dot and of the applied mag-
netic field are considered. One notes from Figure 5 that,
for small QD lateral radii, i.e., R ∼ 50 Å, the effects of
applied magnetic fields are quite visible, even for fields of
the order of 20–40 T. In the high confinement regime and
zero magnetic field, when the dot radius increases, the ex-
citon binding energy decreases as approximately 1/R. In
the opposite regime, i.e., when the Coulomb interaction
is predominant over the lateral confinement, the binding
energy should be essentially constant as the dot radius in-
creases. The insets show that for the large radius limit,
the exciton binding energy behaves as

√
B in agreement

with the predominant effect of the magnetic confinement.
In this case, the e− h pair essentially does not feel the ef-
fects of either the QW barriers or of the lateral parabolic
potential.

Finally, in Figure 6 we present the exciton ground-state
peak energy for different configurations (Lz, RQD) of the
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Fig. 5. Heavy-hole exciton binding energies for a disk-shaped
GaAs-Ga0.7Al0.3As QD of thicknesses (a) Lz = 10 Å, (b)
Lz = 30 Å, (c) Lz = 50 Å, and (d) Lz = 100 Å, as functions of
the disk radius R, and different values of the growth-direction
applied magnetic field. Insets in (a) and (d) show the magnetic-
field dependence of the square of the exciton binding energy
(E2

b ) in the limit of large QD radii (full dots are theoretical
values, and the line indicates the linearity for large values of
the magnetic field).

QD. In order to zoom in the effects of the applied mag-
netic field, in part (b) the diamagnetic shift [E(B)−E(0),
where E(B) is the applied magnetic field dependent ex-
citon peak energy] is presented. Clearly it is observed
that for small values of the applied magnetic field (up
to 20 T) and high radial confinement (RQD =50 Å) the
diamagnetic shift shows a quadratic dependence with the
magnetic field, just as it has been observed by Itskevich
et al. [4] in self-assembled InAs/GaAs QDs with dimen-
sions in the order of magnitude of 100 Å, where the elec-
tron and/or hole wave functions are strongly confined. For
higher fields, the diamagnetic shift behaves linearly with
the field, what demonstrates the decrease of the effect of
the potential barriers since the system is acquiring the lin-
eal character with the magnetic field of in bulk Landau lev-
els. For weak radial confinement (RQD =100 Å) the high
dependence with the magnetic field is observed since the
wave functions are quite extended in the space and they
are more susceptible to the radial magnetic confinement
as effect of the applied magnetic fields.

4 Conclusions

In summary, we have studied the excitonic spectra of disk-
shaped QDs, subject to an uniform magnetic field, applied
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Fig. 6. Heavy-hole m = 0 exciton peak energy (a) and
diamagnetic shift of the exciton energy (b) as a function of
the z-direction applied magnetic field, for disk-shaped GaAs-
Ga0.7Al0.3As QDs of thicknesses Lz and lateral disk radii R.
Different dot dimensions (Lz, R) are considered: (a) (100 Å,
100 Å), (b) (100 Å, 50 Å), (c) (50 Å, 100 Å), (d) (50 Å,
50 Å), (e) (30 Å, 100 Å), (f) (30 Å, 50 Å), (g) (10 Å, 100 Å),
and (h) (10 Å, 50 Å).

along the QD axis. We obtain the excitonic ground state
and the excited states simultaneously, with calculated re-
sults displaying the appropriate physical behavior. The
parity of the excitonic envelope function related to the
simultaneous exchange of ze → −ze and zh → −zh is
a good quantum number, and the exciton wave function
(both the odd and even parity functions) can be expanded
as a combination of products of the QW electron and hole
functions that preserves the parity. The Coulomb interac-
tion only couples excitons with the same m and the same
parity, and it is this coupling that turns crossings of levels
into level anticrossings [29].

If one is able to observe the anticrossing region, it will
provide information on the relative values of the lateral
and axial confinements. Anticrossing effects can be de-
tected by optical techniques like photoluminescence and
photocurrent spectroscopy [30,31]. Of course, the lateral
confinement may be varied by applying a magnetic field
in the axial direction, and, experimentally, these excitons
may be optically excited with circularly-polarized light.
Here we must mention that to perform high magnetic-
field measurements of diamagnetic shifts is a notoriously
difficult task [32–34] and therefore trying to infer infor-
mation on band-structure or QD energy levels must be
viewed with care. Nevertheless, we do believe the present
theoretical findings provide results for the magnetic-field
dependence of the excitonic spectrum of a disk-shaped
QD with different geometrical configurations which may
be valuable in analyzing future experimental studies.
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