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1. Introduction

In 1892, Th. Molien [1,2] proved that for any finite-dimensional associative algebra 
A with nilpotent radical N over the complex field there exists a subalgebra S ⊆ A
such that S ∼= A/N and A = S ⊕ N . This result was generalized by J. H. Maclagan-
Wedderburnn [3] for all finite dimensional associative algebras over an arbitrary field. 
This result is known as the Wedderburn’s Principal Theorem (WPT). Analogues of the 
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WPT were proved for finite-dimensional alternative algebras by R. D. Schafer [4], and 
for finite-dimensional Jordan algebras by A. A. Albert [5], A. J. Penico [6], V. G. Ask-
inuze [7], E. J. Taft [8]. Thus it is natural to try to extend this result to superalgebras.

In the case of finite dimensional alternative superalgebras A over a field of characteris-
tic zero, N. A. Pisarenko [9] proved an analogue to the WPT. He proved that the theorem 
holds if some restrictions are imposed over summands in the semisimple superalgebra 
A/N . It was also shown with counter-examples that the restrictions are essential.

In the current paper, we consider finite dimensional Jordan superalgebras A over a 
field of characteristic zero with radical N such that N 2 = 0 and A/N is a simple Jordan 
superalgebra of one of the following types: Kac K10, Kaplansky K3, superform or Dt.

It’s proved that a Wedderburn decomposition is possible with certain essential restric-
tions

This paper is organized as follows. In Section 2, the basic examples of Jordan superal-
gebras are given. Sections 3–6 contain the proof of the Main Theorem. In Section 3, the 
necessary reductions are done. Sections 4–6 are devoted to the proofs of the theorems 
for corresponding simple quotients. Finally, in Section 7, the main theorem is deduced.

Note that the cases Mn|m(F)(+), Jospn|2m(F) and JPn n ≥ 3 are considered in [20], 
[21] and [22] respectively. The other cases, when J/N is isomorphic to

JPn(F), Qn(F)(+), K3 ⊕ K3 ⊕ · · · ⊕ K3 ⊕ F · 1, and Kantor superalgebra, are to be 
considered in future papers.

We also stress that the Main Theorem implies that the second cohomology group 
H2(J, N ) is not trivial for some simple Jordan superalgebra J and some irreducible 
J-bimodule N . This gives one more subject of interest to be considered in future papers.

2. Jordan superalgebras, definition and some examples

Throughout the paper, all algebras are considered over an algebraically closed field F
of characteristic zero.

Recall that an algebra A is said to be a superalgebra if it is a direct sum A = A0 �A1

of vector spaces satisfying the relation AiAj ⊆ Ai+j(mod 2), i.e. A is a Z2-graded algebra. 
For an element a ∈ Ai, i = 0, 1, the number |a| = i denotes a parity of a.

Let Γ = alg 〈 1, ei, i ∈ Z
+|eiej + ejei = 0 〉 be the Grassmann algebra. Then Γ =

Γ0 � Γ1, where Γ0 and Γ1 are the spans of all monomials of even and odd lengths, 
respectively. It is not difficult to see that Γ has a superalgebra structure.

For a superalgebra A = A0 �A1, we define the Grassmann envelope of A as follows: 
Γ(A) = Γ0 ⊗ A0 � Γ1 ⊗ A1. We assume that M is a homogeneous variety of algebras. 
The superalgebra A is said to be an M-superalgebra if the Grassmann envelope Γ(A) lies 
in M. Following this definition, one can consider associative, alternative, Lie, Jordan, 
etc. superalgebras.

We recall that an algebra J is said to be Jordan algebra if its multiplication satisfies 
the identity ab = ba of commutativity and the Jordan identity (a2b)a = a2(ba). In this 
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paper, we consider algebras over a field characteristic zero. Thus, the Jordan identity is 
equivalent to its complete linearization

((ac)b)d + ((ad)b)c + ((cd)b)a = (ac)(bd) + (ad)(bc) + (cd)(ba).

An associative superalgebra is just a Z2-graded associative algebra, but it is not the 
case in general terms. It is easy to see that a Jordan superalgebra it is not always a 
Jordan algebra. One can verify that a superalgebra J = J0 �J1 is a Jordan superalgebra 
iff it satisfies the superidentities

aiaj = (−1)ijajai, (1)

((aiaj)ak)al + (−1)l(k+j)+kj((aial)ak)aj + (−1)i(j+k+l)+kl((ajal)ak)ai =
= (aiaj)(akal) + (−1)l(k+j)(aial)(ajak) + (−1)jk(aiak)(ajal)

(2)

for homogeneous elements at ∈ Jt, t ∈ {i, j, k, l}.
We stress that, in view of the restriction on the characteristic of ground field, superi-

dentity (1) yields that the Jordan superalgebra J = J0 � J1 is a (Z2-graded) Jordan 
algebra iff (J1)2 = 0.

Throughout the paper, we denote by � a direct sum of vector space, by + denote a 
sum of vector space and by ⊕ we denote a direct sum of superalgebras.

Some examples of Jordan Superalgebras.

Let A be an associative superalgebra with multiplication ab. We define on the vector 
space A a new multiplication a ◦b = 1

2 (ab +(−1)|a||b|ba) for a, b ∈ A0∪A1. It is not hard 
to verify that A gains a structure of Jordan superalgebra with respect to the defined 
multiplication. We denote this superalgebra by A(+).

C.T.C. Wall [14] proved that every associative simple finite-dimensional superalgebra 
over an algebraically closed field F is isomorphic to one of the following associative 
superalgebras:

(i) A = Mn|m(F), A0 =
{( a 0

0 d

)}
, A1 =

{( 0 b

c 0

)}
,

(ii) A = Qn(F) = Q(n), A0 =
{( a 0

0 a

)}
, A1 =

{( 0 h

h 0

)}
.

where a, h ∈ Mn(F), d ∈ Mm(F), b ∈ Mn×m(F), c ∈ Mm×n(F).

(I) Applying the multiplication “◦” to the associative superalgebras Qn(F) and Mn|m(F), 
we get the Jordan superalgebras Qn(F)(+) and Mn|m(F)(+) respectively.

(II) Let A be an associative superalgebra. A graded linear mapping ∗ : A −→ A is called 
superinvolution if (a∗)∗ = a and (ab)∗ = (−1)|a||b|b∗a∗. By H(A, ∗) denote the set of 
symmetric elements of A relative to ∗. Then H(A, ∗) is a Jordan superalgebra such that 
H(A, ∗) ⊆ A(+).
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Let In, Im be the identity matrices of order n and m respectively, t be the transposition 
and

U = −U t = −U−1 =
( 0 −Im
Im 0

)
.

Consider linear mappings

Osp : Mn|2m(F) −→ Mn|2m(F) and σ : Qn(F) −→ Qn(F)

given by

( a b

c d

)Osp
=

( In 0
0 U

)( at −ct

bt dt

)( In 0
0 U−1

)
,

( a b

c d

)σ

=
( dt −bt

ct at

)
. (3)

It is easy to check that Osp and σ are superinvolutions and its Jordan superalgebras 
are H(Mn|2m(F), Osp) and H(Qn(F), σ). We denote these superalgebras by Jospn|2m(F)
and JPn(F) respectively.

One also may consider the following Jordan superalgebras.

(III) The 4-dimensional 1-parametric family Dt = (F · e1 + F · e2) � (F · x + F · y), with 
nonzero products given by e2

i = ei, eix = xei = 1
2x, eiy = yei = 1

2y, xy = −yx = e1+te2. 
The superalgebra Dt is simple for t �= 0.

(IV) The non unital 3-dimensional Kaplansky superalgebra K3 = F · e � (F · x + F · y), 
with nonzero products ex = xe = 1

2x, ey = ye = 1
2y, xy = −yx = e. The superalgebra 

K3 is simple. Note also that the unital hull K3 ⊕ 1 is isomorphic to D0.

(V) Let V = V0 ⊕ V1 be a vector superspace. We say that a bilinear mapping f :
V × V −→ F is a superform if f is symmetric over V0, skew-symmetric over V1, and 
satisfies f(V0, V1) = 0. Consider a superalgebra J = (F · 1 ⊕V0) �V1 with the unit 1 and 
the multiplication v ·w = f(v, w) · 1, (v, w ∈ V ). If f is a non-degenerate superform and 
dim V0 > 1, then J is a simple Jordan superalgebra.

(VI) The introduced by Kac 10-dimensional superalgebra K10 is a simple Jordan super-
algebra. A detailed description of K10 is given in Section 4.

(VII) I. L. Kantor [11] defined a simple Jordan superalgebra structure in the finite-
dimensional Grassmann algebra generated by e1, . . . , en.

It is known [10,11], that every simple finite-dimensional Jordan superalgebra over 
F is isomorphic to one of the superalgebras Mn|m(F)(+), Qn(F)(+), Jospn|2m(F), 
JPn(F), Dt, K3, K10, a superalgebra of superform or a Kantor superalgebra.
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Let J be a finite dimensional Jordan superalgebra, then a J bimodule M = M0 �M1

is called a Jordan bimodule if the corresponding split null extension E = J ⊕ M is a 
Jordan superalgebra [17]. Recalling that a split null extension is a direct sum J ⊕ M
of vector spaces with a multiplication that extends the multiplication in J through the 
action of J on M, while the product of two arbitrary elements in M is zero.

Let M be a J-bimodule. The opposite bimodule Mop = Mop
0 � Mop

1 is defined by 
the conditions Mop

0 = M1, Mop
1 = M0, and by the following action of J over Mop: 

a · mop = (−1)|a|(am)op, mop · a = (ma)op for all a ∈ J0 ∪ J1, m ∈ Mop
0 ∪ Mop

1 . 
Whenever M is a Jordan J-superbimodule, Mop is a Jordan one as well.

Let A = J as a vector superspace and let am, ma with m ∈ J, a ∈ A be the products 
as defined in the superalgebra J. It is easy to see that A has a natural structure of 
J-bimodule. We call A a regular bimodule.

The irreducible bimodules over the Jordan superalgebras of superform, Jospn|2m(F), 
JPn(F), Mn|m(F)(+), were classified by C. Martinez, E. Zelmanov [17]. C. Martinez, 
I. Shestakov, E. Zelmanov [18], classified the irreducible bimodules for Jordan superalge-
bras Qn(F)(+). Irreducible bimodules for Jordan superalgebra Dt and K3 were classified 
by C. Martinez, E. Zelmanov [16] and independently by Trushina [15]. C. Martinez [19], 
classified the irreducible bimodules over the Jordan superalgebra M1|1(F)(+) and A. S. 
Shtern [13] classified the irreducible bimodules over Jordan superalgebras of type K10, 
and Kantor superalgebra γ(e1, . . . , en), n ≥ 4

Peirce decomposition. Recall, that if J is a Jordan (super)algebra with unity 1, and 
{e1, . . . , en} is a set of pairwise orthogonal idempotents such that 1 =

∑n
i=1 ei, then J

admits Peirce decomposition [17], it is

J =
( n⊕

i=1
Jii

)⊕(⊕
i<j

Jij

)
,

where

Jii = {x ∈ J : eix = x, }

and

Jij = {x ∈ J : eix = 1
2x, ejx = 1

2x if i �= j},

are the Peirce components of J relative to the idempotents ei, and ej . Moreover the 
following relations hold when i �= k, l; j �= k, l

J2
ij ⊆ Jii + Jjj , Jij · Jjk ⊆ Jik, Jij · Jkl = 0.
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3. Preliminary reductions for WPT

As in the case of Jordan algebras, we can make some restrictions before the main 
proof. To start we prove the following proposition.

Proposition 1. Let J be a Jordan superalgebra without 1 and with radical N .
If the WPT is valid for J#, then it is also valid for J.

Proof. Let J be a Jordan superalgebra without 1 and with radical N . Consider J# =
J ⊕ F · 1. It is clear that N (J) = N (J#) = N and J#/N = (J/N )# = J/N ⊕ F · 1̄. 
By assumption, there exists S1 ⊆ J# such that S1 ∼= J#/N ∼= (J/N )#, S1 ∩ N = (0), 
J# = S1 ⊕N . Denote S = S1 ∩ J, then S ∩N = (0). Let us show that S ⊕N = J. Take 
a ∈ J, then a = s1 + n, s1 ∈ S1, n ∈ N . But s1 = a − n ∈ J. Hence, s1 ∈ J ∩S1 = S and 
a ∈ S ⊕N . Finally, S ∼= S/(S ∩ N ) ∼= (S ⊕N )/N ∼= J/N . �

Let J be a unital Jordan superalgebra of dim J = n. Assume that for any unital 
Jordan superalgebra of dimension less that n the WPT is true. A base for induction is 
dimF J = 1, J = F · 1.

Proposition 2. Let J/N = J1 ⊕ · · ·⊕Jk, where Ji are unital simple Jordan superalgebras 
with N (Ji) = 0. If WPT is valid for Jk, k > 1, then the WPT is true for J.

Proof. Denote by ei the identity elements in Ji. Then (by Jordan algebras results) there 
are orthogonal idempotents fi ∈ J such that ei = fi + N , i = 1, 2, . . . , k. Consider 
J1(fi) = {fi, J, fi}, then J1(fi)/(J1(fi) ∩ N ) ∼= Ji. By virtue of N (Ji) = 0, we have the 
inclusion N (J1(fi)) ⊆ J1(fi) ∩ N . Since the inverse inclusion is obvious, we have the 
equality N (J1(fi)) = J1(fi) ∩N . If k > 1, then dim J1(fi) < dim J and by the inductive 
hypothesis, there exists Si ⊆ J1(fi), Si

∼= Ji/(N ∩ Ji). Note that Si · Sj = 0. Further, 
S = S1 ⊕ · · · ⊕ Sk is a direct sum and S ∼= J1 ⊕ · · · ⊕ Jk. �

Now by the Zelmanov Theorem [12], in the case of characteristic zero, it is sufficient 
to prove the WPT for unital finite dimensional Jordan superalgebras J satisfying one of 
the following conditions:

1. J/N is simple unital;
2. J/N = (K3 ⊕K3 ⊕ · · · ⊕ K3) ⊕ F · 1, where K3 is the Kaplansky superalgebra.

Theorem 3. Let J be a finite dimensional semisimple Jordan superalgebra, i.e N (J) = 0, 
where N is the solvable radical. Let M(J) be a class of finite dimensional Jordan 
J-bimodules N such that M(J) is closed with respect to subbimodules and homomor-
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phic images. Denote by K(M, J) the class of finite dimensional Jordan superalgebras A
that satisfy the following conditions:

1. A/N (A) ∼= J,
2. N (A)2 = 0,
3. N (A) considered as a J-bimodule, in M(J).

Then if WPT is true for all superalgebras B ∈ K(M, J) with the restriction that the 
radical N (B) is an irreducible J-bimodule, then it is true for all superalgebras A from 
K(M, J).

Proof. We use the induction on dimA. The base of induction is provide by the case 
dimA = dim J, so A = J, N (A) = 0. Assume that the theorem is true for all Jordan 
superalgebras B ∈ K(M, J) with dimB < dimA. Let us set by N = N (A). If N is an 
irreducible J-bimodule, then the theorem is true by the conjecture. Suppose that N is 
not irreducible, then let us take a minimal J-bimodule M contained in N . Since that 
A is unital JM = AM = M, therefore M is irreducible. Observe that N/M �= 0, 
otherwise N = M would be irreducible. We see that A/M

N/M
∼= A/N ∼= J.

Since A/N is semisimple, we have that N (A/M) ⊆ N/M. But (N/M)2 = 0. Thus 
N (A/M) = N/M. Observe that A/M ∈ K(M, J) and dimA/M ≤ dimA. Therefore 
there exists a subsuperalgebra S ⊆ A/M such that S ∼= A/M

N/M
∼= A/N and A/M =

S⊕N/M. By the main theorems on homomorphisms, there is a subsuperalgebra S ⊆ A
such that M ⊆ S and S/M ∼= S ∼= A/N ∼= J. We observe that S ∈ K(M, J) and 
N (S) = M is an irreducible J-bimodule. By the assumption, WPT is true for S, hence 
there is a subsuperalgebra S1 ⊆ S ⊆ A, such that S1 ∼= S/M ∼= A/N . Since S1
is semisimple, N ∩ S ⊆ N (S1) = 0. Furthermore, dimS1 = dimA − dimN . Hence, 
dim(N + S1) = dimA and A = N ⊕ S1. �

Let V1, . . . , Vk be irreducible J-bimodules, and J be a simple Jordan superalgebra. Let 
M(J; V1, . . . , Vk) = {V / V is a J-bimodule, doesn’t containing amoung its irreducible 
subbimodule any copy isomorphic to one of the bimodules V1, . . . , Vk} It is clear that 
M is closed with respect to taking of subbimodules and homomorphic images. Thus it 
satisfies the conditions of Theorem 3.

In each section, we assume that A is a finite dimensional Jordan superalgebra over F, 
with radical N and such that N 2 = 0, A/N ∼= J, where J is a simple Jordan superalgebra 
and N is an irreducible J-bimodule. Moreover, if b1, b2, . . . , bn is an additive base of J0, 
then we assume that b̃1, ̃b2, . . . , ̃bn is an additive base of S0 ⊆ A0, A0 = S0 ⊕ N0 and, 
b̃i · b̃j = b̃ibj . If A1/N1 ∼= J1 and v1, . . . , vk is an additive base of J1, we can assume 
that v̄1, . . . , ̄vk is an additive base of A1/N1, and we shall find ṽ1, . . . , ̃vk additive base 
of S1 ⊆ A1 such that ṽi · ṽj = ṽivj and ṽi · b̃j = ṽibj , and A1 = S1 ⊕N1. Therefore, we 
obtain that there exist S = S0 � S1 ⊆ A such that S ∼= J and A = S ⊕N . In each case 
we can assume that ã · n = an, where ã ∈ A0∪̇A1, a ∈ J0∪̇J1, n ∈ N0∪̇N1
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4. Kac superalgebra

In this section, we consider the 10-dimensional Kac superalgebra K10 = J0�J1, where

J0 = (F · e +
4∑

i=1
F · vi) ⊕ F · f, J1 = F · x1 + F · x2 + F · y1 + F · y2,

and all nonzero products of the basis elements are the following

e2 = e, e · vi = vi, f2 = f, v1 · v2 = v3 · v4 = 2e. (4)

f · xj = 1
2xj , f · yj = 1

2yj , e · xj = 1
2xj , e · yj = 1

2yj ,

y1 · v1 = x2, y2 · v1 = −x1, x1 · v2 = −y2, x2 · v2 = y1,

x2 · v3 = x1, y1 · v3 = y2, x1 · v4 = x2, y2 · v4 = y1.

(5)

x1 · x2 = v1, x1 · y2 = v3,x2 · y1 = v4, y1 · y2 = v2,

xi · yi = e− 3f.
(6)

The zero characteristic of the ground field implies that K10 is a simple Jordan super-
algebra. Using Theorem 3 and the classifications of irreducible bimodules over K10 we 
need to consider two cases, the regular bimodule and its opposite. Assume that a ↔ e, 
b ↔ f , ui ↔ vi, mj ↔ xj , and nj ↔ yj for i = 1, 2, 3, 4, j = 1, 2, thus

(RegK10)0 = (F · a + F · u1 + F · u2 + F · u3 + F · u4) ⊕ F · b,
(RegK10)1 = F ·m1 + F ·m2 + F · n1 + F · n2

Let A0 = (S0 ⊕ N0) and A1/N1 ∼= (K10)1 where S0 = F · ẽ +
∑4

i=1 F · ṽi ⊕ F · f̃ , and 
(K10)0 ∼= S0, and A1/N1 = F · x̄1 + F · x̄2 + F · ȳ1 + F · ȳ2.

4.1. N is isomorphic to regular bimodule

Lemma 4.

f̃ · x̃j = 1
2 x̃j , f̃ · ỹj = 1

2 ỹj , ẽ · x̃j = 1
2 x̃j , ẽ · ỹj = 1

2 ỹj ,

ỹ1 · ṽ1 = x̃2, ỹ2 · ṽ1 = −x̃1, x̃1 · ṽ2 = −ỹ2, x̃2 · ṽ2 = ỹ1,

x̃2 · ṽ3 = x̃1, ỹ1 · ṽ3 = ỹ2, x̃1 · ṽ4 = x̃2, ỹ2 · ṽ4 = ỹ1,

(7)

Proof. First prove ẽ x̃1 = 1
2 x̃1. To start, we can assume that there exist scalars λx1e

s1 s1, 
such that ẽ x̃1 = 1

2 x̃1 + Λx1
e = 1

2 x̃1 + λx1e
m1

m1 + λx1e
m2

m2 + λx1e
n1

n1 + λx1e
n2

n2.
It is easy to see that Λxi

e · ẽ = 1
2Λxi

e . Substituting ai = x̃1 and aj = ak = al = ẽ in (2), 
we get

2((x̃1 · ẽ) · ẽ) · ẽ + x̃1 · ẽ = 3(x̃1 · ẽ) · ẽ.
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Combining the above equality with x̃1 · ẽ = 1
2 x̃1 + Λx1

e , we have 5
2Λx1

e = 3Λx1
e , therefore, 

λx1e
m1

= λx1e
m2

= λx1e
n1

= λx1e
n2

= 0. Thus, Λx1
e = 0 and x̃1 · ẽ = 1

2 x̃1. Similarly one can prove 
the equalities x̃2 · ẽ = 1

2 x̃2, x̃i · f̃ = 1
2 x̃i, ỹi · ẽ = 1

2 ỹi and ỹi · f̃ = 1
2 ỹi.

Now we shall prove that other equalities in (7) hold. Let Λij
x be the radical part in 

the product x̃i · ṽj where Λij
x = λijx

m1
m1 +λijx

m2
m2 +λijx

n1
n1 +λijx

n2
n2 for some scalars λijx

m1
, 

λijx
m2

, λijx
n1

and λijx
n2

. (Similarly, Λij
y .)

First note that (Λij
s · ṽj) · ṽj = 0 for s = x or s = y.

We set ai = ỹ1 and aj = ak = al = ṽ1 in (2). Since ṽ2
i = 0, we have

0 = ((ỹ1 · ṽ1) · ṽ1) · ṽ1 = ((x̃2 + Λ11
y ) · ṽ1) · ṽ1 = (x̃2 · ṽ1) · ṽ1 = Λ21

x · ṽ1.

Thus, λ21x
n1

m2 − λ21x
n2

m1 = 0. The linear independence of m1 and m2 implies λ21x
n1

=
λ21x
n2

= 0 and therefore Λ21
x = λ21x

m1
m1 + λ21x

m2
m2. Similarly one can prove that Λ11

x =
λ11x
m1

m1+λ11x
m2

m2, Λ12
y = λ12y

n1
n1+λ12y

n2
n2, Λ22

y = λ22y
n1

n1+λ22y
n2

n2, Λ13
x = λ13x

m2
m2+λ13x

n1
n1, 

Λ23
y = λ23y

m2
m2 + λ23y

n1
n1, Λ24

x = λ24x
m1

m1 + λ24x
n2

n2 and Λ14
y = λ14y

m1
m1 + λ14y

n2
n2.

Substituting ai = ỹ1, aj = ṽ1 and ak = al = ṽ2 in (2), we have,

((ỹ1 · ṽ1) · ṽ2) · ṽ2 + ((ỹ1 · ṽ2) · ṽ2) · ṽ1 + ((ṽ1 · ṽ2) · ṽ2) · ỹ1 = 2(ṽ1 · ṽ2) · (ỹ1 · ṽ2) (8)

Observe that Λ12
y = λ12y

n1
n1 + λ12y

n2
n2, therefore Λ12

y · ṽ2 = 0. Recall that ṽ1 · ṽ2 = 2ẽ, 
ẽ · ṽi = ṽi and ẽ · (ỹ1 · ṽ2) = 1

2 ỹ1 · ṽ2. Thus, combining the above observation with (8), we 
obtain the equality

0 =((ỹ1 · ṽ1) · ṽ2) · ṽ2 = Λ12
y + Λ22

x · ṽ2 = Λ12
y + Λ22

x · ṽ2,

therefore, (λ12y
n1

+ λ22x
m2

) n1 + (λ12y
n2

− λ22x
m1

) n2 = 0. Using the fact that n1 and n2 are 
linearly independent, we obtain λ12y

n1
= −λ22x

m2
and λ12y

n2
= λ22x

m1
.

Taking ai = ỹ1, aj = ṽ1 and ak = al = ṽ3 in (2) we have,

0 = ((ỹ1 · ṽ1) · ṽ3) · ṽ3 + ((ỹ1 · ṽ3) · ṽ3) · ṽ1.

Thus we obtain λ13x
n2

= −λ23x
n1

.
Using 0 = ((ỹ2 · ṽ1) · ṽ2) · ṽ2+((ỹ2 · ṽ2) · ṽ2) · ṽ1, we obtain λ12x

m1
= λ22y

n2
and λ12x

m2
= −λ22y

n1
. 

Since, 0 = ((ỹ2 · ṽ1) · ṽ4) · ṽ4 + ((ỹ2 · ṽ4) · ṽ4) · ṽ1, then λ24x
n1

= −λ14x
n2

.
Similarly, we obtain λ21x

m1
= λ11y

n2
, λ21x

m2
= −λ11y

n1
, λ23y

m1
= −λ13y

m2
, λ23y

n2
= −λ13y

n1
, λ23x

m2
=

−λ13x
m1

, λ12y
n1

= −λ12x
m2

, λ12y
n2

= λ12x
m1

, λ24x
m2

= −λ14x
m1

, λ11x
m2

= λ21y
n1

, λ11x
m1

= −λ21y
n2

, λ14y
m2

=
−λ24y

m1
, λ14y

n1
= −λ24y

n2
, λ22y

n2
= −λ12x

m1
, λ13x

m1
= −λ23x

m2
, λ11y

n2
= λ11y

n1
= 0. Thus, we have 

Λ21
x = 0, Λ12y = Λ22y = λ12y

n1
n1 and Λ11

y = λ11y
m1

m1 + λ11y
m2

m2.
Let ai = ỹ1, aj = al = ṽ1 and ak = ṽ2 in (2). Then we have ỹ1 · ṽ1 = ((ỹ1 · ṽ1) · ṽ2) · ṽ1, 

therefore, λ22x
n1

= −λ11y
m2

and λ22x
n2

= λ11y
m1

. Similarly, we can obtain λ11x
m1

= λ23x
n2

, λ11x
m2

=
−λ23x

n1
, λ24x

n1
= λ14x

n2
= 0, λ12x

n1
= λ12x

n2
= 0, λ13x

m1
= −λ21y

n1
, λ13x

n2
= 0, λ14x

n1
= λ21y

n2
, 

λ21y
m1

= λ21y
m2

= 0, λ23y
n1

= λ12x
m2

, λ24y
m1

= 0, λ12y
n1

= −λ24y
m2

, λ22y
n1

= −λ13x
m2

, λ13y
m1

= −λ22x
m2

, 
λ23y
n = 0, λ14x

m = −λ23x
m , λ24y

n = −λ13y
n , λ14y

n = −λ22x
n , λ11y

m = λ24y
n .
2 2 1 1 2 1 2 1 2
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Thus, we have Λ12
x = Λ13

x = Λ24
x = Λ12

y = Λ22
y = Λ23

y = 0.
Setting ai = ỹ1, aj = ṽ1, ak = ṽ3 and al = ṽ2 in (2), we obtain

((ỹ1 · ṽ1) · ṽ3) · ṽ2 + ((ỹ1 · ṽ2) · ṽ3) · ṽ1 + ỹ1 · ṽ3 = 0.

Therefore we have λ11y
m2

= λ13y
n2

. Similarly one can prove the equalities λ11x
m1

= λ23x
m1

=
λ22x
n1

= 0. Thus Λ11
x = Λ14

x = Λ22
x = Λ23

x = Λ11
y = Λ13

y = Λ14
y = Λ21

y = Λ24
y = 0. �

Lemma 5. There exist α ∈ F such that

(i) x̃1 · x̃2 = ṽ1 + αu1, (ii) ỹ1 · ỹ2 = ṽ2 + αu2

(iii) x̃1 · ỹ2 = ṽ3 + αu3, (iv) x̃2 · ỹ1 = ṽ4 + αu4

(v) x̃1 · ỹ1 = ẽ− 3f̃ + αa− 3αb (vi) x̃2 · ỹ2 = ẽ− 3f̃ + αa− 3αb

(9)

Proof. We can assume that there exist Λ12
x , Λ12

y , Λ12
xy, Λ21

xy, Λ11
xy and Λ22

xy ∈ N0 such that 
x̃1·x̃2 = ṽ1+Λ12

x , ỹ1·ỹ2 = ṽ2+Λ12
x , x̃1·ỹ2 = ṽ3+Λ12

xy, x̃2·ỹ1 = ṽ4+Λ21
xy, x̃1·ỹ1 = ẽ−3f̃+Λ11

xy

and x̃2 · ỹ2 = ẽ− 3f̃ + Λ22
xy.

We assume that there exist ηtija , ηtijb , ηtiju1
, ηtiju2

, ηtiju3
and ηtiju4

∈ F such that Λij
t =

ηtija a + ηtijb b + ηtiju1
u1 + ηtiju2

u2 + ηtiju3
u3 + ηtiju4

u4 for i, j ∈ {1, 2} and t ∈ {x, y, xy}.
Replacing ai = x̃1, aj = x̃2, ak = al = ṽ1 in equation (2) and using (7); we have 

((x̃1 · x̃2) · ṽ1) · ṽ1 = 0, thus

0 =((ṽ1 + ηx12
a a + ηx12

b b + ηx12
u1

u1 + ηx12
u2

u2 + ηx12
u3

u3 + ηx12
u4

u4) · ṽ1) · ṽ1

=(ηx12
a u1 + 2ηx12

u2
a) · ṽ1 = 2ηx12

u2
u1.

Therefore, ηx12
u2

= 0. In the same way one can prove that ηx12
u4

= ηx12
u3

= 0, thus

x̃1 · x̃2 = ṽ1 + ηx12
a a + ηx12

b b + ηx12
u1

u1. (10)

Similarly, we obtain that ỹ1 · ỹ2 = ṽ2 + ηy12
a a + ηy12

b b + ηy12
u2

u2.
Since (7) and replacing ai = x̃1, aj = x̃2 and ak = at = ṽ2 in (2), we obtain

((x̃1 · x̃2) · ṽ2) · ṽ2 = 2(x̃1 · ṽ2) · (ṽ2 · x̃2) = 2ỹ1 · ỹ2. (11)

Replacing (10) and its equivalent for ỹ1·ỹ2 in (11), we obtain 2ṽ2+ηx12
u1

u2 = 2(ṽ2+ηy12
a a +

ηy12
b b + ηy12

u2
u2), therefore ηy12

a = ηy12
b = 0 and ηx12

u1
= ηy12

u2
. If we take ai = ỹ1, aj = ỹ2

and ak = at = ṽ1 in (2) we obtain ηx12
a = ηx12

b = 0.
Let ai = x̃1, aj = ỹ2 and ak = at = ṽ1 in (2), thus, we obtain ηxy12

u2
= 0. If we shall 

take ak = at = ṽ2 or ak = at = ṽ3 we obtain ηxy12
u1

= ηxy12
u4

= 0. Similarly to the case 
above, we obtain ηxy21

u1
= ηxy21

u2
= ηxy21

u3
= 0.

Setting ai = ṽ1, aj = ỹ2 and ak = at = ṽ4 (respectively, ai = x̃2, aj = ỹ1 and 
ak = at = ṽ3) in (2), we obtain ηxy21

a = ηxy21
b = 0 (respectively ηxy12

a = ηxy12
b = 0) and 

ηxy21
u = ηxy12

u .

4 3
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If we take ai = x̃1, aj = x̃2, ak = ṽ2 and at = ṽ4 in (2), then using (7) we have 
((x̃1 · x̃2) · ṽ2) · ṽ4 = 2x̃2 · ỹ1. Therefore, ηxy21

u4
= ηx12

u1
. Thus we get x̃1 · x̃2 = ṽ1 + αu1, 

ỹ1 · ỹ2 = ṽ2 + αu2, x̃1 · ỹ2 = ṽ3 + αu3 and x̃2 · ỹ1 = ṽ4 + αu4 for some α ∈ F.
Let ai = x̃1, aj = ỹ1, and ak = at = ṽ1 in (2). Using the products in S0 and (7), 

we obtain ((x̃1 · ỹ1) · ṽ1) · ṽ1 = 0. Thus ((x̃1 · ỹ1) · ṽ1) · ṽ1 = 0 and therefore ηxy11
u2

= 0. 
Analogously, one can verify that ηxy11

u1
= ηxy11

u3
= ηxy11

u4
= 0. Thus x̃1 · ỹ1 = ẽ − 3f̃ +

ηxy11
a a + ηxy11

b . Similarly one can show that x̃2 · ỹ2 = ẽ− 3f̃ + ηxy22
a a + ηxy22

b .
Taking ai = x̃1, aj = ỹ1, ak = ṽ1 and at = ṽ2, in (2), we obtain

((x̃1 · ỹ1) · ṽ1) · ṽ2 + x̃1 · ỹ1 = 2ẽ · (x̃1 · ỹ1) + x̃2 · ỹ2. (12)

From the above equality, it is easy to see that ηxy11
a = ηxy22

a and ηxy11
b = ηxy22

b . Thus we 
have that x̃1 · ỹ1 = x̃2 · ỹ2.

Let ai = x̃1, aj = x̃2 and ak = at = ỹ1 in (2), hence

0 =((x̃1 · x̃2) · ỹ1) · ỹ1 − ((x̃1 · ỹ1) · ỹ1) · x̃2 + ((x̃2 · ỹ1) · ỹ1) · x̃1

=((ṽ1 + αu1) · ỹ1) · ỹ1 − ((ẽ− 3f̃ + ηxy11
a a + ηxy11

b b) · ỹ1) · x̃2 + ((ṽ4 + αu4) · ỹ1) · ỹ1

=(ỹ1 · ṽ1 + αỹ1 · u1) · ỹ1 − (−ỹ1 + 1
2(ηxy11

a + ηxy11
b )n1) · x̃2

=x̃2 · ỹ1 + αm2 · ỹ1 − x̃2 · ỹ1 + 1
2(ηxy11

a + ηxy11
b )x̃2 · n1 = (α + 1

2(ηxy11
a + ηpq11b ))u4,

thus, 2α = −(ηxy11
a + ηxy11

b ).
If we take ai = x̃1, aj = ỹ1, ak = x̃2 and at = ỹ2 in (2), we obtain ηxy11

a = α and 
ηxy11
b = −3α, therefore x̃1 · ỹ1 = x̃2 · ỹ2 = ẽ− 3f̃ + αa − 3αb. �

Lemma 6. For i = 1, 2 there exists β ∈ F such that x̃i = xi + β mi, and ỹi = yi + β ni.

Proof. Assume that there exist Λi
x and Λi

y ∈ N1 such that x̃i = xi+Λi
x and ỹi = yi+Λi

y, 
where Λi

t = λti
m1

m1 +λti
m2

m2 +λti
n1
n1 +λti

n2
n2 and λti

m1
, λti

m2
, λti

n1
and λti

n2
∈ F. It is easy 

to see that x̃i = xi + λxi
mi

mi and ỹi = yi + λyi
ni

ni.
Using the Lemma 4, we have that x̃1 · ṽ2 = −ỹ2, x̃1 · ṽ4 = −x̃2 and ỹ2 · ṽ4 = ỹ1. Thus 

one easily verifies that λx1
m1

= λy2
n2

, λx1
m1

= λx2
m2

and λy2
n2

= λy1
n1

. Therefore, λy1
n1

= λy2
n2

=
λx1
m1

= λx2
m2

. �
4.2. N is isomorphic to opposite regular bimodule

Lemma 7.

f̃ · x̃j = 1
2 x̃j , f̃ · ỹj = 1

2 ỹj , ẽ · x̃j = 1
2 x̃j , ẽ · ỹj = 1

2 ỹj ,

ỹ1 · ṽ1 = x̃2, ỹ2 · ṽ1 = −x̃1, x̃1 · ṽ2 = −ỹ2, x̃2 · ṽ2 = ỹ1,

x̃2 · ṽ3 = x̃1, ỹ1 · ṽ3 = ỹ2, x̃1 · ṽ4 = x̃2, ỹ2 · ṽ4 = ỹ1,

(13)
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Proof. To start, we proof the first line in (13). Let us denote W = {x1, x2, y1, y2} and 
T = {e, f}. We can assume that for t ∈ T and w ∈ W there exist scalars λtw

s such that

w̃ · t̃ = 1
2 w̃ + Λw

t = 1
2 w̃ + λtw

a a + λtw
u1
u1 + λtw

u2
u2 + λtw

u3
u3 + λtw

u4
u4 + λtw

b b

where s ∈ {a, b, u1, u2, u3, u4}.
Substituting ai = w̃, aj = al = ẽ and ak = ẽ in (2), we get

2((w̃ · ẽ) · f̃) · ẽ = (w̃ · f̃) · ẽ.

Replacing w̃ · ẽ = 1
2 w̃ + Λw

e and w̃ · f̃ = 1
2 w̃ + Λw

f in the above equality we obtain

0 = (Λw
e · f̃) · ẽ = λew

u1
u1 + λew

u2
u2 + λew

u3
u3 + λew

u4
u4,

therefore, w̃ · t̃ = 1
2 w̃ + λtw

a a + λtw
b b. Since w̃ · ẽ = w̃ · f̃ we obtain Λw

e = Λw
f .

Considering ai = w̃, aj = f̃ and ak = al = ẽ in equation (2), we obtain ((w̃ · f̃) · ẽ) ·
ẽ + ((w̃ · ẽ) · ẽ) · f̃ = (w̃ · f̃) · ẽ, replacing w̃ · f̃ = w̃ · f̃ = 1

2 w̃ + Λw
e in the above equality, 

we obtain Λw
e · f + 1

2Λw
e · e = 0, therefore λtw

a = λtw
b = 0 and we have w̃ · t̃ = 1

2 w̃.
We consider the set V = {v1, v2, v3, v4}. Without lost of generality, we can assume 

that for v ∈ V and w ∈ W there exist Λw
v ∈ N1 and w̃′ ∈ W such that w̃ · ṽ = δw̃′ + Λw

v

where δ ∈ {0, 1} and Λw
v = λvw

a a + λvw
u1

u1 + λvw
u2

u2 + λvw
u3

u3 + λvw
u4

u4 + λvw
b b for some 

scalars λvw
s .

We begin by proving x̃n · ṽ1 = ỹn · ṽ2 = 0, for n = 1, 2, x̃1 · ṽ2 = −ỹ2, x̃2 · ṽ2 = ỹ1, 
x̃2 · ṽ3 = x̃1 and x̃1 · ṽ4 = ỹ1.

Let us consider ai = x̃n, aj = ẽ and ak = al = ṽ1 in equation (2), thus we have

((x̃n · ẽ) · ṽ1) · ṽ1 + ((x̃n · ṽ1) · ṽ1) · ẽ = 2((x̃n · ṽ1) · ṽ1.

replacing x̃n · ẽ = 1
2 x̃1 and x̃n · ṽ1 = Λxn

v1
in the above equality and noting that (Λxn

v1
·

ṽ1) · ẽ = Λxn
v1

· ṽ1 we obtain 
1
2Λxn

v1
· ṽ1 = 0, therefore λv1xn

a = λv1xn
u2

= 0.
If we take ai = x̃n, aj = al = ṽ1 and ak = ṽ3 in equation (2), then ((x̃n · ṽ1) · ṽ3) · ṽ1 = 0

and therefore λv1xn
u4

= 0. Note that if ai = x̃n, aj = al = ṽ1 and ak = ṽ4, then λv1xn
u3

= 0.
Now, let ai = ỹ2, aj = ak = ṽ1 and al = e in equation (2). Using ỹ2 · ẽ = 1

2 ỹ2, it follows 
that 2((ỹ2 · ṽ1) · ṽ1) · ẽ = 3((ỹ2 · ṽ1) · ṽ1. Since ỹ2 · ṽ1 = −x̃1 + Λy2

v1
and x̃1 · ṽ1 = Λx1

v1
we 

obtain 3Λx1
v1

− 2Λx1
v1

· ẽ− Λy2
v1

· ṽ1 = 0, hence λv1x1
b = λv1y2

u2
= 0, and λv1x1

u1
= λv1y2

a Thus, 
we have x̃1 · ṽ1 = λv1x1

u1
u1. By a similar argument we could show that, x̃2 · ṽ1 = λv1x2

u1
u1, 

and ỹn · ṽ2 = λv2yn
u2

u2.
Considering ai = x̃1, aj = al = ṽ2 and ak = ṽ1, in equation (2), we obtain ((x̃1 ·

ṽ2) · ṽ1) · ṽ2 = 2(x̃1 · ṽ2) · ẽ, therefore Λx1
v2

− 2Λx1
v2

· ẽ + (Λx1
v2
ṽ1) · ṽ2 − Λy2

v1
· ṽ2 = 0, it 

follows that λv2x1
b = λv2x1

u = λv2x1
u = λv2x1

u = 0, λv2x1
a = 2λv1y2

u and λv2x1
u = λv1y2

a , 

1 3 4 1 2
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hence x̃1 · ṽ2 = −ỹ2 + λv2x1
a a + λv2x1

u2
u2. (Similar arguments apply to the case x̃2 · ṽ2 =

ỹ1 + λv2x2
a a + λv2x2

u2
u2).

Analogously, we obtain ỹ2 ·ṽ1 = −x̃1+λv1y2
a a +λv1y2

u1
u1, (ỹ1 ·ṽ1 = x̃2+λv1y1

a a +λv1y1
u1

u1) 
moreover λv1y2

a = 2λv2x1
u2

and λv2x1
a = λv1y2

u1
, thus λv2x1

a = λv1y2
u1

= 2λv1y2
u1

and λv2x1
u2

=
λv1y2
a = 2λv2x1

u2
, therefore λv2x1

a = λv1y2
u1

= λv2x1
u2

= λv1y2
a = 0 hence x̃1 · ṽ2 = −ỹ2 and 

ỹ2 · ṽ1 = −x̃1, (x̃2 · ṽ2 = ỹ1 and ỹ1 · ṽ1 = x̃2)
If we choosing ai = ỹ2, aj = ak = ṽ1 and al = ṽ2 in equation (2), we obtain ((ỹ2 · ṽ1) ·

ṽ1) · ṽ2+((ỹ2 · ṽ2) · ṽ1) · ṽ1+2ỹ2 · ṽ1 = 4(ỹ2 · ṽ1) · ẽ, if follows that −Λx1
v1
· ṽ2+(Λy2

v2
· ṽ1) · ṽ1 = 0, 

later λv1x1
u1

= λv2y2
u2

= 0. (Analogously we obtain λv1x2
u1

= λv2y1
u2

= 0).
Note that if we take ai = x̃2, aj = al = ṽ3 and ak = ṽ4 in equation (2), then 

x̃2 · ṽ3 = x̃1 + λv3x2
a a + λv3x2

u3
u3, and λv3x2

a = −2λv4x1
u4

and λv3x2
u3

= −λv4x1
a . Similarly we 

obtain x̃1 · ṽ4 = x̃2 + λv4x1
a a + λv4x1

u4
u4, and λv4x1

a = −2λv3x2
u3

and λv4x1
u4

= −λv3x2
a . Hence 

x̃2 · ṽ3 = x̃1 and x̃1 · ṽ4 = x̃2. Analogously, we can see that ỹ1 · ṽ3 = ỹ2 and ỹ2 · ṽ4 = ỹ1. �
Lemma 8.

(i) x̃1 · x̃2 = ṽ1 (ii) ỹ1 · ỹ2 = ṽ2

(iii) x̃1 · ỹ2 = ṽ3, (iv) x̃2 · ỹ1 = ṽ4

(v) x̃1 · ỹ1 = ẽ− 3f̃ (vi) x̃2 · ỹ2 = ẽ− 3f̃

(14)

Proof. First we prove that x̃1 · x̃2 = ṽ1. Assume that there exists Λ12
x ∈ N0 such that 

x̃1 · x̃2 = ṽ1 + Λ12
x . We note that N0 is spanned by 〈m1, m2, n1, n2〉, therefore, we can 

take λi ∈ F for i = 1, 2, 3, 4 such that Λ12
x = λ1m1 + λ2m2 + λ3m3 + λ4m4.

Let ai = x̃1, aj = x̃2, ak = ṽ1 and al = ṽ2 in equation (2). Substituting x̃i · ṽ1 = 0 we 
obtain

((x̃1 · x̃2) · ṽ1) · ṽ2 + ((x̃1 · ṽ2) · ṽ1) · x̃2 − ((x̃2 · ṽ2) · ṽ1) · x̃1 = 2(x̃1 · x̃2) · ẽ.

Using Lemma 7 and noting that Λ12
x · ẽ = 1

2Λ12
x , it is clear that (Λ12

x · ṽ1) · ṽ2 + Λ12
x = 0, 

therefore λ1 = λ2 = λ3 = λ4 = 0. Similarly, we can show that ỹ1 · ỹ2 = ṽ2, x̃1 · ỹ2 = ṽ3, 
and x̃2 · ỹ1 = ṽ4

Assume that x̃1 · ỹ1 = ẽ − 3f̃ + Λxy and x̃2 · ỹ2 = ẽ − 3f̃ + Δxy. For i = 1, 2, 3, 4
let λi and βi be some scalars such that Λxy = λ1m1 + λ2m2 + λ3n1 + λ4n2 and Δxy =
β1m1 + β2m2 + β3n1 + β4n2.

Considering ai = x̃1, aj = ỹ1, ak = ṽ1 and al = ṽ2 in equation (2). and substituting 
ỹ1 · ṽ2 = 0 we obtain

((x̃1 · ỹ1) · ṽ1) · ṽ2 +((x̃1 · ṽ2) · ṽ1) · ỹ1 − ((ỹ1 · ṽ2) · ṽ1) · x̃1 = 2(x̃1 · ỹ1) · ẽ+(x̃1 · ṽ2) · (ỹ1 · ṽ1).

Using Lemma 7 and combining the different products we have (Λxy ·ṽ1) ·ṽ2+ 1
2Λxy = Δxy, 

hence the following equalities hold

1
λ1 = β1,

1
λ2 = β2,

3
λ3 = β3, and 3

λ4 = β4. (15)
2 2 2 2
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We now apply this argument again, with ai = x̃1, aj = ỹ1, ak = ṽ2 and al = ṽ1 to obtain

3
2λ1 = β1,

3
2λ2 = β2,

1
2λ3 = β3, and 1

2λ4 = β4. (16)

Combining (15) and (16) it follows that Λxy = Δxy = 0. �
Let us prove the following theorem

Theorem 9. Let A be a finite dimensional Jordan superalgebra with solvable radical N
such that N 2 = 0 and A/N ∼= K10. Then there exists a subsuperalgebra S ⊆ A such that 
S ∼= K10 and A = S ⊕N .

Proof. Recall that A. S. Shtern [13] proved that any irreducible Jordan bimodule over 
K10 is isomorphic to Reg (K10) or its opposite. By Theorem 3, we only need to consider 
this cases.

If N is isomorphic to regular bimodule, then by Lemma 5, we can assume that there 
exists α ∈ N such that

(i) x̃1 · x̃2 = ṽ1 + αu1, (ii) ỹ1 · ỹ2 = ṽ2 + αu2

(iii) x̃1 · ỹ2 = ṽ3 + αu3, (iv) x̃2 · ỹ1 = ṽ4 + αu4

(v) x̃1 · ỹ1 = ẽ− 3f̃ + αa− 3αb (vi) x̃2 · ỹ2 = ẽ− 3f̃ + αa− 3αb

(17)

By Lemma 6, there is a β ∈ F such that x̃i = xi + β mi and ỹi = yi + β ni.
It is easy to verifies the following equalities

x̃1 · ỹ1 = x1 · y1 + 2β(a− 3b), x̃2 · ỹ2 = x2 · y2 + 2β(a− 3b),

x̃1 · x̃2 = x1 · x2 + 2βu1, ỹ1 · ỹ2 = y1 · y2 + 2βu2,

x̃1 · ỹ2 = x1 · y2 + 2βu3, x̃2 · ỹ1 = x2 · y2 + 2βu3.

(18)

Using (17) and (18), we get x̃i · ỹi = ẽ− 3f̃ , x̃1 · x̃2 = ṽ1, x̃1 · ỹ2 = ṽ3, x̃2 · ỹ1 = ṽ4 and 
ỹ1 · ỹ2 = ṽ2 if and only if, 2β = α. This equality has always a solution.

If N is isomorphic to opposite regular bimodule, using Lemmas 7 and 8 we note that 
x̃1, x̃2, ỹ1 and ỹ2 satisfies the conditions.

Therefore, it is clear that an analogue to WPT holds in the case under considera-
tion. �
5. Jordan superalgebra of superform

In this section we use the classification of irreducible J-bimodules obtained by E. 
Zelmanov and C. Martinez in [17], where J = J(V, f) = (F · 1 ⊕V0) � V1 is a Jordan su-
peralgebra of nondegenerate super-symmetric superform f on a superspace V = V0 �V1.
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We may assume that dimV1 > 1. Let v1, . . . , vn be an f -orthonormal basis of V0, i.e. 
f(vi, vi) = 1, f(vi, vj) = 0 for i �= j, i, j = 1 . . . , n. Let w1, . . . , w2m be a basis of V1
such that f(w2p−1, w2p) = 1, 1 ≤ p ≤ m, and all the other products of basis elements 
are zero.

Since [17] we have that all products

vi11 · · · vinn wk1
1 · · ·wk2m

2m

form a basis of the Clifford superalgebra C of V, where i1, . . ., in ∈ {0, 1} and k1, . . . , k2m
are nonnegative integers and C denotes the Clifford superalgebra of V. Let Cr be the 
subspace in C spanned by the products of basis elements of length at most r, and let 
J = (F ·1 +V0) �V1 be the Jordan superalgebra of superform f . Let a be an even vector 
such that V ′ = V⊕F ·a. We extend the superform f to V ′ so that f(a, a) = 1, f(a, V) = 0. 
Denote by C′

r the subspace in C′ defined in the same way as Cr in C.
In this section, we put into correspondence to every element

vi11 · · · vinn wk1
1 · · ·wk2m

2m

a pair (I, K), where I = (i1, . . . , in) is a n-tuple and K = (k1, . . . , k2m) is a 2m-tuple 
such that is, kt satisfies the above conditions.

We write ηI,K = vi11 · · · vinn wk1
1 · · ·wk2m

2m = VIWK . Note that for any pair of elements 
ηI,K , ηI′,K′ ∈ C, the following relation holds ηI,K = ηI′,K′ if and only if I = I ′, and 
K = K ′. Thus every element of the basis of C has a unique representation in terms of 
(I, K). We denote V(0) = 1, V(1) = v1v2 · · · vn.

Let I, K be the following sets

I = {I = (i1, . . . , in), ij = 0 or 1, j = 1, . . . , n },
K = {K = (k1, . . . , k2m), kj ∈ Z

+ ∪ {0}, j = 1, . . . , 2m }.

For I ∈ I, K ∈ K, we denote |I| = i1+· · ·+in, |K| = k1+· · ·+k2m and |ηI,K | = |I| +|K|.

Some relations in C(+).

Using the supersymmetric product in the Jordan superalgebra C+ we obtain 
w2p−1w2p − w2pw2p−1 = 2, w2p−1wq = wqw2p−1 if q �= 2p and viwp = −wpvi. It 
follows easy that

VIWK ◦ vj =
(
− 1

2

)i1+···+ij−1
V(i1,...,ij+1,...,in)WK(1 + (−1)|ηI,K |+ij ), (19)

VIWK ◦ w2p−1 = 1
2VIW(k1,...,k2p−1+1,...,k2m)(1 + (−1)|ηI,K |)−

k2pVIW(k1,...,k2p−1,...,k2m)

(20)

and
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VIWK ◦ w2p = 1
2VIW(k1,...,k2p+1,...,k2m)(1 + (−1)|K|)+

(−1)|K|+1k2p−1VIW(k1,...,k2p−1−1,...,k2m)

(21)

for j = 1, . . . , n and p = 1, 2, . . . , m.
Assume that S0 = F · 1 + F · ṽ1 + · · · + F · ṽn, J0 ∼= S0, A0 = S0 ⊕N0 and A1/N1 =

F · w̄1 + F · w̄2 + · · · + F · w̄2m. We consider two cases for N .

5.1. N is isomorphic to Cr/Cr−2

Without loss of generality, we can take

N0 = vect F 〈 ηI,K , |ηI,K | = r, r − 1 and |K| is even 〉,
N1 = vect F 〈 ηI,K , |ηI,K | = r, r − 1 and |K| is odd 〉.

Using the notation introduced above, due to equations (19) and (20), we have the follo-
wing products:

ηI,K · ṽj =
{

±V(i1,...,ij−1,0,ij+1,...,in)WK if |ηI,K | = r, ij = 1,
±V(i1,...,ij−1,1,ij+1,...,in)WK if |ηI,K | = r − 1, ij = 0.

(22)

ηI,K · w̃p =
{

±kp±1VIW(k1,...,kp±1−1,...,k2m) if |ηI,K | = r,

VIW(k1,...,kp+1,...,k2m) if |ηI,K | = r − 1.
(23)

First, we prove three lemmas.

Lemma 10. ṽj · w̃s = 0.

Proof. Setting ai = w̃s, aj = al = ṽi and ak = ṽj in (2), we have

((w̃s · ṽi) · ṽj) · ṽi = 0. (24)

We may assume that there exist some scalars ξk(I,K) such that

ṽk · w̃s =
∑
I, K

|ηI,K |=r
|K| odd

ξk(I,K)VIWK +
∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)VIWK .

Let ξk(I,k)ηI,K ∈ N1 be a nonzero element and j �= k, j, k ∈ {1, 2, . . . , n}. Using (22)
and (24), we obtain the following relations:

(a) If |ηI,K | = r − 1 and ij = 1, then (ξk(I,K)ηI,K · ṽj) · ṽk = 0.
(b) If |ηI,K | = r − 1, ij = ik = 0, then (ξk ηI,K · ṽj) · ṽk = 0.
(I,K)
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(c) If |ηI,K | = r, ij = 0, then (ξk(I,K)ηI,K · ṽj) · ṽk = 0.
(d) If |ηI,K | = r, ij = ik = 1, then (ξk(I,K)ηI,K · ṽj) · ṽk = 0.

From (a)–(d) and (24), we have

ṽk · w̃s =
∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)V(i1,...,ij−1,0,ij+1,...,in)WK+

∑
I, K

|ηI,K |=r
|K| odd

ξk(I,K)V(i1,...,ij−1,1,ij+1,...,in)WK+

∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)V(i1,...,ij−1,0,ij+1,...,ik−1,0,ik+1,...,in)WK+

∑
I, K

|ηI,K |=r
|K| odd

ξk(I,K)V(i1,...,ij−1,0,ij+1,...,ik−1,0,ik+1,...,in)WK = 0.

Thus,

ṽk · w̃s =
∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)v
i1
1 · · · vj · · · vinn WK+

∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)v
i1
1 · · · vj · · · vk · · · vinn WK+

∑
I, K

|ηI,K |=r
|K| odd

ξk(I,K)v
i1
1 · · · vij−1

j−1 v
ij+1
j+1 · · · vinn WK+

∑
I, K

|ηI,K |=r
|K| odd

ξk(I,K)v
i1
1 · · · vj · · · vk · · · vinn WK = 0.

If we apply (24) to the obtained above equation for all j �= k, we get

ṽk · w̃s =
∑
I, K

|ηI,K |=r−1
|K| odd

ξk(I,K)v1 · · · vikk · · · vnWK +
∑
K

|K|=r
|K| odd

ξk(0,K)WK +
∑
K

|K|=r−n
|K| odd

ξk(1,K)V(1)WK .

(25)
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Substituting ai by w̃s and aj = ak = al by ṽk respectively in (2), we obtain

((w̃s · ṽk) · ṽk) · ṽk = zs · ṽk. (26)

Applying (26) to (25), we get

ṽk · w̃s =
∑
I, K

|I|+|K|=r−1
|K| odd

ξk(I,K)v1 · · · vikk · · · vnWK . (27)

Substituting ai , aj , ak, and al by w̃s, ṽk, ṽj and ṽj respectively in (2), we have

((w̃s · ṽk) · ṽj) · ṽj + ((w̃s · ṽj) · ṽj) · ṽk = w̃s · ṽk

Applying the obtained equality to (27), we have ṽk · w̃s = 0. �
Lemma 11.

w̃p · w̃q = αp,q
0 +

∑
K

|K|=r−1

αp,q
(0,K)WK +

∑
K

|K|=r−n
n odd

αp,q
(1,K)V(1)WK , where αp,q

0 ∈ {0, 1}

Proof. Since w̃p · w̃q ∈ A0, we can assume that there exist some scalars αp,q
(0,K), α

p,q
(I,K)

such that

w̃p · w̃q = αp,q
0 +

∑
I,K

|ηI,K |=r−1
|K| even

αp,q
(I,K)VIWK +

∑
I,K

ηI,K=r−1
|K| even

αp,q
(I,K)VIWK , (28)

where αp,q
0 is 0 or 1.

If we take ai = w̃p, aj = w̃q and ak = al = ṽi in (2), and use Lemma 10, then we 
obtain ((w̃p · w̃q) · ṽi) · ṽi = w̃p · w̃q. Combining (28) in the stated before equality, we have∑

I,K
|ηI,K |=r−1
|K| even

αp,q
(I,K)(ηI,K · ũi) · ṽi +

∑
I,K

ηI,K=r−1
|K| even

αp,q
(I,K)(ηI,K · ũi) · ṽi =

∑
I,K

|ηI,K |=r−1
|K| even

αp,q
(I,K)ηI,K +

∑
I,K

ηI,K=r−1
|K| even

αp,q
(I,K)ηI,K . (29)

Let η = ηI,K be a nonzero element in N0. Using equality (22), one can easily prove 
the following statements

(i) If |ηI,K | = r − 1, and ij = 0, then (η · ṽj) · ṽj = η.
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(ii) If |ηI,K | = r − 1, and ij = 1, then η · ṽj = 0 therefore, (η · ṽj) · ṽj = 0.
(iii) If |ηI,K | = r, and ij = 0, then (η · ṽj) = 0, thus (η · ṽj) · ṽj = 0.
(iv) If |ηI,K | = r, and ij = 1, then (η · ṽj) · ṽj = η.

Using statements (i)–(iv), we note that if |η| = r − 1 and ij = 1 for some j then the 
left part of (29) is equal to zero and, consequently, the right part is zero. Thus, in the 
right part of (29) the only terms of length r− 1 are of type wk1

1 · · ·wk2m
2m . Now, if |η| = r

and ij = 0 for some j then, ṽj · η = 0. Hence, every term of length r on the right hand 
side of (29) must contain every vj , but this is only possible if n is an odd integer.

We have thus proved

w̃p · w̃q = αp,q
0 +

∑
K

|K|=r−1

αp,q
(0,K)WK

∑
K

|K|=r−n
n odd

αp,q
(1,K)V(1)WK . �

Lemma 12.

w̃p = wp +
∑
K

|K|=r

ξp(0,K)WK +
∑
K

|K|=r−n−1
n odd

ξp(1,K)V(1)WK .

Proof. Let p ∈ {1, . . . , 2m} be a fixed integer. We assume that there exist some scalars 
ξp(I,K) such that

w̃p = wp +
∑
I,K

|ηI,K |=r−1
K odd

ξp(I,K)ηI,K +
∑
I,K

|ηI,K |=r
K odd

ξp(I,K)ηI,K . (30)

Using Lemma 10, we have that w̃p · ṽj = 0, and therefore,

0 =
∑
I,K

|ηI,K |=r−1
K odd

ξp(I,K)ηI,K · ṽj +
∑
I,K

|ηI,K |=r
K odd

ξp(I,K)ηI,K · ṽj . (31)

Let η = ξI,KηI,K be a nonzero element in (31). We shall use statements (i)–(iv) from 
Lemma 11.

We note that if |η| = r− 1 and ij = 1, then η · ṽj = 0. Using (31) one can easily verify 
that if I �= (1) then ξ(I,K) = 0. Therefore, we see that the only elements in (30) of length
r − 1 are of type V(1)WK .

Let |η| = r and ij = 1, then (η · ṽj) · ṽj = η and therefore, if VI �= 1, then ξ(I,K) = 0. 
Thus, the only elements of length r that are not zero on the right part of (31) are precisely 
those where ij = 0. As this is valid for every j, we have that the only elements of length
r that appear in (30) are of type wk1

1 · · ·wk2m
2m , with |K| = r. Thus, we have proved that
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w̃p = wp +
∑
K

|K|=r

ξp(0,K)WK +
∑
K

|K|=r−n−1
n odd

ξp(1,K)V(1)WK . �

5.2. N is isomorphic to u Cr/u Cr−2, where r is an even integer and u is an even vector

Without loss of generality we can take

N0 = vect F 〈uVIWK |ηI,K | = r, r − 1 and |K| even 〉,
N1 = vect F 〈uVIWK , |ηI,K | = r, r − 1 and |K| odd 〉.

As in above case, one can easily verify that

uVIWK ◦ ṽj = (−1
2)i1+···+ij−1uV(i1,...,ij+1,...,in)WK((−1)|ηI,K |−ij − 1).

Moreover, we have

uVIWK · ṽj =
{

±uV(i1,...,ij−1,1,...,in)WK if |ηI,K | = r − 1, ij = 0,
±uV(i1,...,ij−1,1,...,in)WK if |ηI,K | = r, ij = 1,

uVIWK · w̃p =
{

∓kp±1uVIW(k1,...,kp±1−1,...,k2m) if |ηI,K | = r,

uVIW(k1,...,kp+1,...,k2m) if |ηI,K | = r − 1.

Now, we note one can prove analogues to Lemmas 10, 11 and 12, implying the following 
equalities

w̃p · w̃q = δp+1,q +
∑
K

|K|=r

αp,q
(0,K)uW(k1,...,k2m) +

∑
K

|K|=r−n
n even

αp,q
(1,K)uV(1)W(k1,...,k2m),

w̃p = wp +
∑
K

|K|=r−1

ξi(0,K)uW(k1,...,k2m) +
∑
K

|K|=r−n−1
n even

ξi(1,K)uV(1)W(k1,...,k2m).

We shall prove the following theorem

Theorem 13. Let A be a finite-dimensional Jordan superalgebra with a solvable radical 
N such that N 2 = 0, A/N is isomorphic to the Jordan superalgebra of superform J and 
N ∈ M(J; J (k)), where J (k) = C2k+1/C2k−1 if dimV0 = 2k + 1 or J (k) = aC2k/C2k−2 if 
dimV0 = 2k. Then there exists a subsuperalgebra S ⊆ A such that S ∼= J and A = S⊕N .

Proof. By Theorem 3 it suffices to prove the theorem when N is irreducible. So, by 
Theorem 7.7 in [17] we only need to consider the two cases.

Using Lemma 10, we have w̃p · ṽi = 0 for i = 1, . . . , n; p = 1, . . . , 2m.
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Let p be an odd integer. Due to Lemmas 11 and 12, we can assume that

w̃p · w̃q = δp+1,q +
∑
K

|K|=r−1

αp,q
(0,K)WK +

∑
K

|K|=r−n
n odd

αp,q
(1,K)V(1)WK , (32)

w̃p = wp +
∑
K

|K|=r

ξp(0,K)WK +
∑
K

|K|=r−n−1
n odd

ξp(1,K)V(1)WK . (33)

Thus

w̃p · w̃q =wp · wq +
∑
K

|K|=r

ξp(0,K)WK · wq +
∑
K

|K|=r−n−1
n odd

ξp(1,K)V(1)Wk · wq+

∑
K

|K|=r

ξp(0,K)wp ·WK +
∑
K

|K|=r−n−1
n odd

ξp(1,K)wp · V(1)WK .
(34)

Using (20), (32) and (34), we have that w̃p · w̃q = δp+1,q if and only if,

0 =
∑
K

|K|=r−1

αp,q
(0,K)WK +

∑
K

|K|=r−1

(−kp+1ξ
p
(0,K))W(k1,...,kp+1−1,...,k2m)+

∑
K

|K|=r−1

kp−1ξ
q
(0,K)W(k1,...,kp−1−1,...,k2m) +

∑
K

|K|=r−n
n odd

αp,q
(1,K)V(1)WK+

∑
K

|K|=r−n
n odd

ξp(1,K)V(1)W(k1,...,kp+1−1,...,k2m) +
∑
K

|K|=r−n
n odd

ξq(1,K)V(1)W(k1,...,kp+1,...,k2m).

(35)

Combining the above equality with a linear independence property of the elements VIWK

we have the following relations:

∑
K

|K|=r−1

αp,q
(0,K)WK =

∑
K

|K|=r−1

kp+1ξ
p
(0,K)W(k1...,kp+1−1,...,k2m)−

∑
K

(kp−1ξ
q
(0,K))W(k1...,kp−1−1,...,k2m),

(36)
|K|=r−1
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∑
K

|K|=r−n
n odd

αp,q
(1,K)V(1)WK = −

∑
K

|K|=r−n
n odd

ξp(1,K)V(1)W(k1...,kp+1,...,k2m)−

∑
K

|K|=r−n
n odd

ξq(1,K)V(1)W(k1...,kp+1,...,k2m).
(37)

Let αp,q
(0,St)WSt

be a nonzero element at the left part of (36), such that St = (s1, . . . , sp−1,

sp, sp+1, . . . , sn) is a 2m-tupla, with |St| = r − 1. We shall find a 2m-tupla Sp+1 and 
Sp−1 on the right part of (36), such that Sp+1 = (s1, . . . , sp−1, sp, sp+1 + 1, . . . , sn) and 
Sp−1 = (s1, . . . , sp−1 + 1, sp, sp+1, . . . , sn). We observe that |Sp−1| = |Sp+1| = r.

Applying similar arguments to above stated, and using (37), we have that for each 
Kp = (k1, . . . , kp, . . . , kn) we should take K̃p = (k1, . . . , kp − 1, . . . , kn). Moreover, if 
|Kp| = r − n, then |K̃p| = r − n − 1.

It is easy to see that equations (36) and (37) are respectively equivalent to

∑
K

|K|=r−1

(
αp,q

(0,S) − (sp+1 + 1)ξp(0,Sp+1) + (sp−1 + 1)ξq(0,Sp−1)

)
WSt

= 0,

∑
K

|K|=r−n
n odd

(
αp,q

(1,Kp) + ξq
1,K̃p

+ ξp
1,K̃p

)
V(1)WKt

= 0.
(38)

Using the linear independence of WK , V(1)WK and (38), for each t ∈ {1, . . . , 2m}, we 
have

αp,q
(0,St) − (sp+1 + 1)ξp(0,St+1) + (sp−1 + 1)ξq(0,St−1) = 0,

αp,q
(1,Kt) + ξq

(1,K̃t)
+ ξp

(1,K̃t)
= 0.

(39)

Hence, we have a solvable linear equation system if r �= n. We note that a similar 
procedure is valid if r is an even integer. �
Remark 1. By Lemmas 11 and 12, if n is an odd integer and r = n, then

w̃p = wp +
∑
K

|K|=r

ξp(0,K)WK , and w̃p · w̃q = δi+1,j +
∑
K

|K|=n−1

αp,q
(0,K)WK + αp,q

(1,0)V(1).

We see that the system αp,q
(0,St) − ξp(0,St+1) + ξq(0,St−1) = 0, and αp,q

(1,0) = 0 has no solution 
when αp,q

(1,0) �= 0.
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5.3. Counter-examples to WPT for Jordan superalgebras of superform with radical 
Cr/Cr−2 and dim J0 = r

Now we will show that the restrictions imposed in Theorem 13 are essential, and we 
have two cases to consider:

Case 1. Let n be an odd integer. Consider the superalgebra

J = (F · 1 + F · v1 + · · · + F · vn + N0) � (F · w1 + · · · + F · w2m + N1),

where

N0 = Spann〈 vi11 · · · vinn wk1
1 · · ·wk2m

2m , |K| is even, | I | + | K |= n− 1 or n 〉,
N1 = Spann〈 vi11 · · · vinn wk1

1 · · ·wk2m
2m , |K| is odd , | I | + | K |= n− 1 or n 〉,

and i1, . . . , in are 0 or 1, and ki are nonnegative integers, |K| = k1 + · · · + k2m, |I| =
i1 + · · · + in. All nonzero products of the basis elements of J are defined as follows

v2
i = 1, w1 · w2 = 1 + v1 · · · vn = −w2 · w1,

w2s−1 · w2s = −w2s · w2s−1 = 1 for s ∈ {2, 3, . . . ,m},

vi11 · · · vinn wk1
1 · · ·wk2m

2m · wp = 1
2v

i1
1 · · · vinn wk1

1 · · ·wkp+1
p · · ·wk2m

2m (1 + (−1)|I|+|K|)−

kp+1v
i1
1 · · · vinn wk1

1 · · ·wkp−1
p+1 · · ·wk2m

2m if p = 2s− 1, s ∈ {1, . . . ,m},

vi11 · · · vinn wk1
1 · · ·wk2m

2m · wp = 1
2v

i1
1 · · · vinn wk1

1 · · ·wkp+1
p · · ·wk2m

2m (1 + (−1)|I|+|K|)+

kp−1v
i1
1 · · · vinn wk1

1 · · ·wkp−1−1
p−1 · · ·wk2m

2m if p = 2s, s ∈ {1, . . . ,m},
vi11 · · · vinn wk1

1 · · ·wk2m
2m · vj =

(−1
2)i1+···+ij−1vi11 · · ·vij+1

j · · · vinn wk1
1 · · ·wk2m

2m (1 + (−1)|I|+|K|−ij ).

We note that J/N = (F · 1 + F · v1 + · · · + F · vn) � (F · w1 + · · · + F · w2m) is a 
Jordan superalgebra isomorphic to Jordan superalgebra of superform, N is isomorphic 
to Cn/Cn−2.

If we assume that the WPT is valid for J, then, for i = 1, . . . , 2m there exists w̃i ∈ J1
such that w̃i ≡ wi(modN1), and w̃2i−1 · w̃2i = 1.

By Lemma 12 there exist βK , ξK , α, λ ∈ F such that w̃1 = w1 +
∑

|K|=n

βKwk1
1 · · ·wk2m

2m

and w̃2 = w2 +
∑

|K|=n

ξKwk1
1 · · ·wk2m

2m . Hence,

w̃1 · w̃2 = w1 · w2 +
∑

|K|=n

ξkw1 · wk1
1 · · ·wk2m

2m +
∑

|K|=n

βKwk1
1 · · ·wk2m

2m · w2.
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We observe that w̃1 · w̃2 = 1 if and only if v1 · · · vn +
∑

|K|=n

ωKwt1
1 · · ·wt2m

2m = 0. Using the 

fact that v1 · · · vn and wk1
1 · · ·wk2m

2m are linearly independent, we have a contradiction.

Case 2. Let n be an even integer. Consider the superalgebra

J = (F · 1 + F · v1 + · · · + F · vn + N0) � (F · w1 + · · · + F · w2m + N1).

N0 is spanned by 〈 uvi11 · · · vinn wk1
1 · · ·wk2m

2m , |K| is even 〉 and N1 is spanned by 
〈 uvi11 · · · vinn wk1

1 · · ·wk2m
2m , |K| is odd 〉, where i1, . . . , in are 0 or 1 and ki are nonnega-

tive integers, |K| = k1+ · · ·+k2m, |I| = i1+ · · ·+in and |K| + |I| = n or |K| + |I| = n −1.
All nonzero products of the basis elements of J are defined as follows

v2
i = 1, w1 · w2 = 1 + uv1 · · · vn = −w2 · w1,

w2s−1 · w2s = −w2i · w2i−1 = 1 for s ∈ {2, 3, . . . ,m},

uvi11 · · · vinn wk1
1 · · ·wk2m

2m · wp = 1
2uv

i1
1 · · · vinn wk1

1 · · ·wkp+1
p · · ·wk2m

2m (1 + (−1)|I|+|K|)+

kp+1uv
i1
1 · · · vinn wk1

1 · · ·wkp+1−1
p+1 · · ·wk2m

2m , if p = 2s− 1, s ∈ {1, . . . ,m},

uvi11 · · · vinn wk1
1 · · ·wk2m

2m · wp = 1
2uv

i1
1 · · · vinn wk1

1 · · ·wkp+1
p · · ·wk2m

2m (1 + (−1)|I|+|K|)−

kp−1uv
i1
1 · · · vinn wk1

1 · · ·wkp−1−1
p−1 · · ·wk2m

2m , if p = 2s, s ∈ {1, . . . ,m},

uvi11 · · · vinn wk1
1 · · ·wk2m

2m · vj =

(−1
2)i1+···+ij−1+1uvi11 · · · vij+1

j · · · vinn wk1
1 · · ·wk2m

2m (1 + (−1)|I|+|K|−ij ).

It is easy to verify that J/N is a Jordan superalgebra of superform and N ∼=
u Cn/u Cn−2.

If we assume that the WPT is valid for J, then, for i = 1, . . . , 2m there exists w̃i ∈ J1

such that w̃i ≡ wi(modN1), and w̃2i−1 · w̃2i = 1, i ≥ 2.
By an analogous to Lemma 12, we have that w̃1 = w1 +

∑
|K|=n−1

βKuwk1
1 · · ·wk2m

2m and 

w̃2 = w2 +
∑

|K|=n−1

ξKuwk1
1 · · ·wk2m

2m for some βK , ξK , α, λ ∈ F.

It is clear that w̃1 · w̃2 = w1 · w2 +
∑

|K|=n−1

ωKuw1 · wt1
1 · · ·wt2m

2m , ωK ∈ F. Therefore 

w̃1 · w̃2 = 1 if and only if uv1 · · · vn +
∑

|K|=n−1

ωKuw1 · wk1
1 · · · wk2m

2m = 0. Once again, 

uv1 · · · vn and uwk1
1 · · ·wk2m

2m are linearly independent, consequently, we have a contra-
diction.
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6. Superalgebra Dt and Kaplansky K3

In this section, we consider the Jordan superalgebra Dt = (F ·e1+F ·e2) �(F ·x +F ·y), 
and Kaplansky, K3 = (F · e) � (F · x + F · y).

We stress that Dt is a simple Jordan superalgebra if t �= 0. If t = 0, then D0 con-
tain K3. Unital irreducible bimodules over Dt and K3 were classified by C. Martinez 
and E. Zelmanov in [16] and by M. Trushina in [15]. In this section, we shall use the 
examples, notations and ideas introduced by M. Trushina.

Let sl2 be a Lie algebra with the basis e, f, h and the multiplication given by 
[f, h] = 2f , [e, h] = 2e, [e, f ] = h, where [a, b] = ab − ba.

We shall say that a module L with the basis l0, l1, . . . , ln is an irreducible sl2-module 
with standard basis l0, l1, . . . , ln if

li · h = (n− 2i)li,
l0 · e = 0, li · e = (−in + i(i− 1))li−1 for i > 0,
ln · f = 0, li · f = li+1 for i < n.

By Ra we denote the operator of right multiplication by a, we also denote it by the 
capital letter A. One can easily check that the operators 2

1+tX ◦ Y, 2
1+tX

2, 2
1+tY

2 span 
the simple lie algebra sl2. In terms of operators above, it is easy to see that a bimodule L
with basis l0, l1, . . . , ln is an irreducible sl2-module with the standard basis l0, l1, . . . , ln
if

li X ◦ Y = 1 + t

2 (n− 2i)li,

l0 X
2 = 0, li X

2 = 1 + t

2 (−in + i(i− 1)li−1) for any i > 0,

ln Y
2 = 0, li Y

2 = 1 + t

2 li+1 for i < n.

(40)

In terms of right multiplication operators, equality (2) may be written as follows:

Rai
Raj

Rak
+(−1)ij+ik+jkRak

Raj
Rai

+ (−1)jkR(aiak)aj
=

Rai
Rajak

+ (−1)ij+ik+jkRak
Rajai

+ (−1)ijRaj
Raiak

.
(41)

Substituting ai = ak = x and aj = e1 (respectively ai = ak = y and aj = e1) in (41), 
we obtain [X2, E] = 0 (respectively [Y 2, E] = 0), where E denote Re1 .

6.1. Jordan superalgebra Dt

In this section, we shall prove the following theorem.

Theorem 14. Let A be a finite-dimensional Jordan superalgebra with a solvable radical 
N such that N 2 = 0, A/N ∼= Dt, t �= −1, and N ∈ M(A/N ; RegDt), where RegDt is a 
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regular Dt-bimodule. Then there exists a subsuperalgebra S ⊆ A such that S ∼= Dt and 
A = S ⊕N .

Proof. Using 3 and Theorem 1.1 in [15], we need to consider three main cases. Here, 
S0 = F · ẽ1 + F · ẽ2 ∼= (Dt)0 and A1/N1 = F · x̄ + F · ȳ ∼= (Dt)1, A0 = S0 ⊕N0.

Case 1. Let n be a positive integer and suppose t ∈ R, t �= 0, 1, −n+2
n .

We assume that where N0 = L1
n+1⊕L2

n+1, N1 = Ln+2⊕Ln. Here, L1
n+1, L2

n+1, Ln+2, 
Ln are the same as in Example 1 in [15].

It is easy to see that E |N1≡ 1
2 , therefore ẽi · x̃ = 1

2 x̃ and ẽi · ỹ = 1
2 ỹ. Assume that there 

exist scalars βx
3,i, βx

4,i, β
y
3,i, β

y
4,i, ξ

x,y
1,j and ξx,y2,j for i = −1, 0, 1, . . . , n and j = 0, 1, . . . , n, 

such that

x̃ =x + βx
3,−1m + βx

3,nmY 2(n+1) +
n∑

k=1

γx
3,4,kmY 2k −

n∑
k=1

βx
4,kmY 2k−1EY,

ỹ =y + βy
3,−1m + βy

3,nmY 2(n+1) +
n∑

k=1

γy
3,4,kmY 2k −

n∑
k=1

βy
4,kmY 2k−1EY,

(42)

x · y = ẽ1 + tẽ2 +
n∑

k=0

(ξx,y1,k − ξx,y2,k )mY 2k+1E +
n∑

k=0

ξx,y2,kmY 2k+1, (43)

where γx
3,4,k = βx

3,k−1 + αβx
4,k and γy

3,4,k = βy
3,k−1 + αβy

4,k.
Now, we have x̃ · ỹ = ẽ1 + tẽ2, if and only if

0 =
(
βx

3,−1m + βx
3,nmY 2n+2 +

n∑
k=1

γx
3,4,kmY 2k −

n∑
k=1

βx
4,kmY 2k−1EY

)
· y−

(
βy

3,−1m + βy
3,nmY 2n+2 +

n∑
k=1

γy
3,4,kmY 2k −

n∑
k=1

βy
4,kmY 2k−1EY

)
· x+

n∑
k=0

(ξx,y1,k − ξx,y2,k )mY 2k+1E +
n∑

k=0

ξx,y2,kmY 2k+1 =

βx
3,−1mY + βx

3,nmY 2n+3 +
n∑

k=1

γx
3,4,kmY 2k+1 +

n∑
k=1

βx
4,kmY 2k+1E+

βy
3,n

(1 + t)(n + 1)
2 mY 2n+1 +

n∑
k=1

(1 + t)(n− (k − 1))
2 βy

4,kmY 2k−1E+

n∑
k=1

(1 + t

2 kγy
3,4,k + (−1)k (1 + t)n + 2

4 βy
4,k

)
mY 2k−1+

n+1∑
(ξx,y1,k−1 − ξx,y2,k−1)mY 2k−1E +

n+1∑
ξx,y2,k−1mY 2k−1.

(44)
k=1 k=1
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Since α = (1+t)n+2
2(1+t)(n+1) , we have that

[
βx

3,−1 +
(1 + t)βy

3,0

2 −
nα(1 + t)βy

4,1

2 + ξx,y2,0

]
mY + βx

3,nmY 2n+3+

[
βx

3,n−1 + αβx
4,n + ξx,y2,n +

(1 + t)(n + 1)βy
3,n

2

]
mY 2n+1+

[ (1 + t)nβy
4,1

2 + ξx,y1,0 − ξx,y2,0

]
mY E +

[
ξx,y1,n − ξx,y2,n + βx

4,n
]
mY 2n+1E+

n∑
k=2

[
βx

3,k−2 + αβx
4,k−1 + (1 + t)

2 [kβy
3,k−1 + α(k + (−1)k(n + 1)βy

4,k] + ξx,y2,k−1

]
mY 2k−1+

n∑
k=2

[
βx

4,k−1 + βy
4,k

(1 + t)(n− (k − 1))
2 + ξx,y1,k−1 − ξx,y2,k−1

]
mY 2k−1E = 0.

(45)

Note that fixing the ξ’s in (43), we get

βx
3,n = 0, βx

4,n = ξx,y2,n − ξx,y1,n , βy
4,1 =

2(ξx,y2,0 − ξx,y1,0 )
(t + 1)n ,

βx
3,0 =

nα(1 + t)βy
4,1 − 2βx

3,−1 − 2ξx,y2,0

(1 + t) ,

βy
3,n =

−2(βx
3,n−1 + αβx

4,n + ξx,y2,n)
(1 + t)(n + 1) ,

βy
4,k = 2

(1 + t)(n− (k − 1))

[
−βx

4,k−1 − ξx,y1,k−1 + ξx,y2,k−1

]
, k = 2, . . . , n

βy
3,k−1 = 1

k

[
−2(βx

3,k−2 + αβx
4,k−1 + ξx,y2,k−1)

(1 + t) − α(k + (−1)k(n + 1)β4,k

]

(46)

such that equality (45) holds.

Case 2. Let n be a positive integer, 1
t = − n

n+2 . Consider the following cases: N ∼=
M(n + 1, n + 2), N ∼= M(n + 1, n), N ∼= M̃(n1) and n1 �= n. (See example 2 in [15].)

(A) Assume that N ∼= M(n + 1, n + 2) where N0 is the irreducible sl2-module with 
the standard basis l0, . . . , ln and N1 is spanned by l0x, l0y, l1y, . . . , lny.

Since E |M1≡ 1
2 , then ẽi ·x̃ = 1

2 x̃ and ẽi ·ỹ = 1
2 ỹ. Assume that there exist ξu,z0 , . . . , ξu,zn , 

βu
0,x, βu

0 ,. . ., βu
n , βz

0,x, βz
0 , . . ., and βz

n scalars such that
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x · y = ẽ1 + tẽ2 +
n∑

k=0

ξx,yk lk,

x̃ = x + βx
0,xl0x +

n∑
k=0

βx
k lky, ỹ = y + βy

0,xl0x +
n∑

k=0

βy
k lky

We observe that x̃ · ỹ = ẽ1 + tẽ2 if and only if

0 =
n∑

k=0

ξx,yk lk + βx
0,x

(
1 − t

2

)
l0 + βy

n

(
(n + 1)t
n + 2

)
ln

+
n−1∑
k=0

βx
k

(
1 + t

2

)
lk+1 −

n−1∑
k=0

βy
k

(
1 + t

2(n− k)

)
(−(k + 1)n + (k + 1)k)lk,

which gives rise to the system of equations

0 = ξx,y0 + βx
0,x

(
1 − t

2

)
+ βy

0

(
1 + t

2

)
,

0 = ξx,yn + βy
n

(
(n + 1)t
n + 2

)
+ βx

n−1

(
1 + t

2

)
,

0 = ξx,yk + βx
k−1

(
1 + t

2

)
− βy

k

(
1 + t

2(n− k)

)
(−(k + 1)n + (k + 1)k)lk,

(47)

for k = 1, 2, . . . , n − 1. We note that the system (47) has always a solution.

(B) N ∼= M(n + 1, n) where N0 is the irreducible sl2-module with the standard basis 
l0, . . . , ln and N1 is spanned by l1x, . . . , lnx.

As in the case (A), ẽi · x̃ = 1
2 x̃, ẽi · ỹ = 1

2 ỹ and there exist ξx,y0 , . . . , ξx,yn ∈ F such that 

x · y = ẽ1 + tẽ2 +
n∑

k=0

ξx,yk lk. Let us find βx
k and βy

k such that x̃ = x +
∑n

k=1 β
x
k lkx, and 

ỹ = y +
∑n

k=1 β
y
k lkx.

Now, we note that x̃ · ỹ = ẽ1 + tẽ2 if and only if

0 =
n∑

k=0

ξx,yk lk −
n∑

k=1

βx
k

(
1 + t

2

)
k lk −

n∑
k=1

βy
k

(
1 + t

2

)
(−kn + k(k − 1))lk−1,

which gives rise to the system of equations

0 = ξx,y0 − βy
0

(
1 − t

2

)
n = ξx,yn − nβx

n

(
1 + t

2

)
,

0 = ξx,yk − βx
kk

(
1 + t

2

)
− βy

k+1

(
1 + t

2

)
(−(k + 1)n + (k + 1)k),

(48)

for k = 1, 2, . . . , n − 1.
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System of equations (48) has always a solution.

(C) Finally, if N ∼= M̃(n1), n1 �= n. This case is similar to Case (1), with the replace-
ment of n by n1.

Case 3. Let t = 1. In this case, N is isomorphic to M̃(n) or to a 1-dimensional vector 
space with a generator m such that mx = 0, me = 1

2m. (See example 3 in [15].)

It only remains to consider the case when N is isomorphic to a 1-dimensional vector 
space. The case when N ∼= M̃(n) is similar to Case (1). In particular we take t = 1 in 
equation (45). Now we shall consider two subcases:

(A) If m is an even vector, then N0 = F ·m. Assume that x · y = ẽ1 + tẽ2 + ηm, for 
some η ∈ F Since N1 = 0 we have x̃ = x, ỹ = y. Note that the equality x̃ · ỹ = ẽ1 + tẽ2
holds if and only if η = 0. If we take ai = x, aj = y, ak = e1 and al = e2 in the equality
(2) we obtained, 0 = ((x̃ · ỹ)e1)e2 = ((e1 + te2 + ηm)e1)e2 = 1

4ηm and therefore, η = 0, 
thus the WPT is valid.

(B) If m is an odd vector, then N0 = 0 and N1 = F ·m. Therefore, x · y = ẽ1 + tẽ2. 
Let x̃ = x + βum and ỹ = y + βzm, hence x̃ · ỹ = ẽ1 + tẽ2 is always solvable.

From Cases (1)–(3), we conclude that it is possible to give some conditions for ηu and 
ηz ∈ N1, such that an analogue to WPT is valid under the Theorem conditions. �
6.2. Jordan superalgebra K3

We shall proof the following theorem

Theorem 15. Let A be a finite-dimensional Jordan superalgebra with solvable radical N , 
N 2 = 0 and such that A/N ∼= K3. Then there exists a subsuperalgebra S ⊆ A such that 
A/N ∼= S and A = S ⊕N .

Proof. Since Theorem 3 and [15], we have to consider two cases, N ∼= RegK3 and 
N ∼= M̃(n). But the second cases is analogous to case (1), for Dt, one can obtain an 
analogue of equality (44) substituting t = 0. This gives rise to the system of equations 
equivalent to (46).

We consider N ∼= RegK3. Assume that (K3)0 ∼= S0 = F · ẽ1, (K3)1 ∼= A1/N1 =
F · x̄+F · ȳ, N = F · f � (F · u + F · z), where f ↔ e, u ↔ x, z ↔ y. Let x̃ and ỹ be some 
preimages of x̄ and ȳ respectively and suppose that xy = ẽ1 + ηf for some η ∈ F. Let α, 
β, γ and δ be scalars such that x̃ = x + αu + βz and wy = y + γu + δz. We note that 
x̃ · ỹ = ẽ1 if and only if α + δ = η. The equality is always solvable. �
Remark 2. In the case of the Jordan superalgebra K3⊕F ·1 we have that the irreducible 
bimodules are the same as the ones for the Jordan superalgebra K3. In general, for any 
algebra A there exist an isomorphism of category of bimodules over A, (Bimod A) into 
category of unital bimodules over A#, (BimodA#). Thus, the proof of the above theorem 
is also true if we substitute K3 by K3 ⊕ F · 1.
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6.3. Counter-examples to WPT for Jordan superalgebras of type Dt, t �= −1

Now we will show that restrictions imposed in Theorem 14 are essential.
Let B = A ⊕ N be a superalgebra, where A0 = F · e1 + F · e2 + F · a1 + F · a2, 

A1 = F · x + F · y + F · v + F ·w, N0 = F · a1 + F · a2 and N1 = F · v + F ·w. All nonzero 
products of the basis elements of B are defined as follows:

e2
i = ei, eiaj = δijaj , eix = 1

2x, eiy = 1
2y,

aix = 1
2v, aiy = 1

2w, eiv = 1
2v, eiw = 1

2w,
(49)

xw = vy = a1 + ta2, xy = e1 + te2 + a1 + (−2 − t)a2 (50)

for i = 0, 1. The products in (49) and (50) commute and anticommute respectively and 
t �= −1.

One easily verifies that B is a Jordan superalgebra, and B/N is a Jordan superalgebra 
isomorphic to Dt, t �= −1, N ∼= RegDt and N 2 = 0.

Consider the product xy = e1 + te2 + αa1 + βa2. Replacing ai = ak = x, aj = y and 
al = e1 in (2) we obtain ((xy) · x) · e1 − 1

2 (xy) · x = 0, thus we have 1 + t + α + β = 0, 
later on α + β = −1 − t and therefore, B is a Jordan superalgebra.

If we assume that the WPT is valid for B, then there are x̃, ̃y such that x̃ ≡ x, 
ỹ ≡ y (mod N1) and x̃ỹ = e1 + te2, eix̃ = 1

2 x̃, eiỹ = 1
2 ỹ.

We note that x̃ = x +σv and ỹ = y+ωw. If x̃ = x +σv+λw, using x̃2 = 0, we obtain 
λxw = 0 and therefore λ = 0. Now

x̃ỹ = xy + σyv + ωxw = e1 + te2 + a1 + (−2 − t)a2 − σ(a1 + ta2) + ω(a1 + ta2)

Therefore, 1 − σ + ω = 0 and (−2 − t) − σt + ωt = 0, later on ω − σ = −1 and 
0 = (−2 − t) + t(ω − σ) = −2 − 2t, thus t = −1 and this is a contradiction.

7. Main theorem

Using Theorems 9, 13, 14 and 15, we have the following theorem:

Theorem 16. Let A be a finite dimensional Jordan superalgebra with solvable radical 
N such that N 2 = 0 and A/N ∼= J where J is a simple Jordan superalgebra. We 
set M(J; N1, . . . , Nt) = { V/V is a J-bimodule such that homomorphic images of V do 
not contain subbimodules isomorphic to Ni for i = 1, 2, . . . , t}. If one of the following 
conditions holds:

i) J ∼= K10;
ii) J ∼= K3;
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iii) J is a superalgebra of a superform with even part of dimension n such that N ∈
M(J; Cn/Cn−2 (n is odd), u · Cn/u · Cn−2 (n is even));

iv) J ∼= Dt, t �= −1, N ∈ M(Dt; Reg Dt);

then there is a subsuperalgebra S ⊆ A such that S ∼= J and A = S ⊕N . The restrictions 
of items iii) and iv) are essential.
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