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1. Introduction

In 1892, Th. Molien [1,2] proved that for any finite-dimensional associative algebra
A with nilpotent radical AV over the complex field there exists a subalgebra S C A
such that S & A/N and A = S ® N. This result was generalized by J. H. Maclagan-
Wedderburnn [3] for all finite dimensional associative algebras over an arbitrary field.
This result is known as the Wedderburn’s Principal Theorem (WPT). Analogues of the
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WPT were proved for finite-dimensional alternative algebras by R. D. Schafer [4], and
for finite-dimensional Jordan algebras by A. A. Albert [5], A. J. Penico [6], V. G. Ask-
inuze [7], E. J. Taft [8]. Thus it is natural to try to extend this result to superalgebras.

In the case of finite dimensional alternative superalgebras A over a field of characteris-
tic zero, N. A. Pisarenko [9] proved an analogue to the WPT. He proved that the theorem
holds if some restrictions are imposed over summands in the semisimple superalgebra
A/N. Tt was also shown with counter-examples that the restrictions are essential.

In the current paper, we consider finite dimensional Jordan superalgebras A over a
field of characteristic zero with radical A" such that A'? = 0 and .A/N is a simple Jordan
superalgebra of one of the following types: Kac K19, Kaplansky K3, superform or D;.

It’s proved that a Wedderburn decomposition is possible with certain essential restric-
tions

This paper is organized as follows. In Section 2, the basic examples of Jordan superal-
gebras are given. Sections 3—6 contain the proof of the Main Theorem. In Section 3, the
necessary reductions are done. Sections 46 are devoted to the proofs of the theorems
for corresponding simple quotients. Finally, in Section 7, the main theorem is deduced.

Note that the cases M,,,,, (F)*), J0sP,|2m (F) and JP, n > 3 are considered in [20],
[21] and [22] respectively. The other cases, when J/A is isomorphic to

JP,.(F), Qn(F)("‘), Ks@®Ks®---dKsdF-1, and Kantor superalgebra, are to be
considered in future papers.

We also stress that the Main Theorem implies that the second cohomology group
H?(J,N) is not trivial for some simple Jordan superalgebra J and some irreducible
J-bimodule N. This gives one more subject of interest to be considered in future papers.

2. Jordan superalgebras, definition and some examples

Throughout the paper, all algebras are considered over an algebraically closed field F
of characteristic zero.

Recall that an algebra A is said to be a superalgebra if it is a direct sum A = Ag + A;
of vector spaces satisfying the relation A;A; C Aj i j(mod 2); i-e. A is a Za-graded algebra.
For an element a € A;, i = 0,1, the number |a| =i denotes a parity of a.

Let I' = alg (1,e;, i € ZT|e;ej + eje; = 0) be the Grassmann algebra. Then I' =
o + I'y, where I'g and I'; are the spans of all monomials of even and odd lengths,
respectively. It is not difficult to see that I' has a superalgebra structure.

For a superalgebra A = Ag + A1, we define the Grassmann envelope of A as follows:
IN'(A) =Ty ® Ap + 'y ® A;. We assume that 9 is a homogeneous variety of algebras.
The superalgebra A is said to be an 9M-superalgebra if the Grassmann envelope I'(A) lies
in 9. Following this definition, one can consider associative, alternative, Lie, Jordan,
etc. superalgebras.

We recall that an algebra J is said to be Jordan algebra if its multiplication satisfies
the identity ab = ba of commutativity and the Jordan identity (a?b)a = a?(ba). In this
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paper, we consider algebras over a field characteristic zero. Thus, the Jordan identity is
equivalent to its complete linearization

((ac)b)d + ((ad)b)e + ((cd)b)a = (ac)(bd) + (ad)(be) + (cd)(ba).

An associative superalgebra is just a Zs-graded associative algebra, but it is not the
case in general terms. It is easy to see that a Jordan superalgebra it is not always a
Jordan algebra. One can verify that a superalgebra J = Jo +J1 is a Jordan superalgebra
iff it satisfies the superidentities

aa; = (—1)"a;a;, (1)
(@iay)ap)ar + (=)' TR (aa0)ap)a; + (=1)" T (0;0)ar)a; =
= (asa;)(ara) + (=)' (a,a1) (aar) + (=1)7* (asax) (a;a)

(2)

for homogeneous elements a; € Jy, t € {4, J, k, 1}

We stress that, in view of the restriction on the characteristic of ground field, superi-
dentity (1) yields that the Jordan superalgebra J = Jo + J1 is a (Zz-graded) Jordan
algebra iff (J1)? = 0.

Throughout the paper, we denote by + a direct sum of vector space, by + denote a
sum of vector space and by @& we denote a direct sum of superalgebras.

Some examples of Jordan Superalgebras.

Let A be an associative superalgebra with multiplication ab. We define on the vector
space A a new multiplication aob = 1 (ab+ (—=1)lellPlpa) for a, b € AgUA;. Tt is not hard
to verify that A gains a structure of Jordan superalgebra with respect to the defined
multiplication. We denote this superalgebra by A,

C.T.C. Wall [14] proved that every associative simple finite-dimensional superalgebra
over an algebraically closed field F is isomorphic to one of the following associative
superalgebras:

P (A N ()
W a-am-am o-{(5 )} a-{(0 1)}

where a, h € M, (F), d € M, (F), b € Mpxm(F), ¢ € Mypsn(F).

[Pl
0]

(I) Applying the multiplication to the associative superalgebras Q,, (F) and M., (IF),

we get the Jordan superalgebras Q,, (F)(*) and Mn|m(]F)(+) respectively.

(IT) Let A be an associative superalgebra. A graded linear mapping * : A — A is called
superinvolution if (a*)* = a and (ab)* = (=1)l*lp*a*. By H(A,*) denote the set of
symmetric elements of A relative to *. Then H(A, %) is a Jordan superalgebra such that

H(A, %) C A,
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Let I,,, I,,, be the identity matrices of order n and m respectively, ¢ be the transposition
and

Consider linear mappings
Osp : M2 (F) — My 20 (F) and o : @, (F) — Q,(F)

given by

(v )G o )@ o)

() ®

C

(a b)OSP
c d
(0 a)

It is easy to check that Osp and o are superinvolutions and its Jordan superalgebras
are H(Myj2m (F), Osp) and H(Q,,(F), o). We denote these superalgebras by Josp,,|o,,, (F)
and JP, () respectively.

One also may consider the following Jordan superalgebras.

(III) The 4-dimensional 1-parametric family Dy = (F-e; +F-e3) + (F-2 +F - y), with

nonzero products given by €? = e;, e;r = we; = %x, ey =ye; = %y, Ty = —yx = e1+tes.

The superalgebra Dy is simple for ¢ # 0.

(IV) The non unital 3-dimensional Kaplansky superalgebra K3 =F-e+ (F-z +F - y),
with nonzero products ex = ze = %x, ey = ye = %y, xy = —yx = e. The superalgebra
K3 is simple. Note also that the unital hull 3 & 1 is isomorphic to Dj.

(V) Let V = Vh @ V4 be a vector superspace. We say that a bilinear mapping [ :
V xV — F is a superform if f is symmetric over Vj, skew-symmetric over Vi, and
satisfies f(Vp, V1) = 0. Consider a superalgebra J = (F-1® Vp) + V; with the unit 1 and
the multiplication v -w = f(v,w) -1, (v,w € V). If f is a non-degenerate superform and
dim V4 > 1, then J is a simple Jordan superalgebra.

(VI) The introduced by Kac 10-dimensional superalgebra Kiq is a simple Jordan super-
algebra. A detailed description of KCyg is given in Section 4.

(VII) I. L. Kantor [11] defined a simple Jordan superalgebra structure in the finite-
dimensional Grassmann algebra generated by eq,...,e,.

It is known [10,11], that every simple finite-dimensional Jordan superalgebra over
F is isomorphic to one of the superalgebras Mn|m(]F)(+), Q, (F) (), Jospn‘zm(]F),
JP,.(F), D:, K3, K19, a superalgebra of superform or a Kantor superalgebra.
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Let J be a finite dimensional Jordan superalgebra, then a J bimodule M = Mg+ M/
is called a Jordan bimodule if the corresponding split null extension & = J & M is a
Jordan superalgebra [17]. Recalling that a split null extension is a direct sum J & M
of vector spaces with a multiplication that extends the multiplication in J through the
action of J on M, while the product of two arbitrary elements in M is zero.

Let M be a J-bimodule. The opposite bimodule M°P = MgP + MIP is defined by
the conditions MJ¥ = My, M¥ = My, and by the following action of J over M°P:
a-meP = (=1)lel(@m)?, m°? . a = (ma)°® for all @ € Jo U Iy, m € M> U MSP.
Whenever M is a Jordan J-superbimodule, M°P is a Jordan one as well.

Let A = J as a vector superspace and let am, ma with m € J, a € A be the products
as defined in the superalgebra J. It is easy to see that A has a natural structure of
J-bimodule. We call A a regular bimodule.

The irreducible bimodules over the Jordan superalgebras of superform, Josp,, o, (),
JP,(F), ./\/ln|m(IF)(+), were classified by C. Martinez, E. Zelmanov [17]. C. Martinez,
I. Shestakov, E. Zelmanov [18], classified the irreducible bimodules for Jordan superalge-
bras Q,, (F)(+). Irreducible bimodules for Jordan superalgebra D; and K3 were classified
by C. Martinez, E. Zelmanov [16] and independently by Trushina [15]. C. Martinez [19],
classified the irreducible bimodules over the Jordan superalgebra M1|1(IF)(+) and A. S.
Shtern [13] classified the irreducible bimodules over Jordan superalgebras of type Ko,
and Kantor superalgebra v(eq,...,e,), n >4

Peirce decomposition. Recall, that if J is a Jordan (super)algebra with unity 1, and
{€1,...,e,} is a set of pairwise orthogonal idempotents such that 1 = Y7 | e;, then J
admits Peirce decomposition [17], it is

= () ©(@n).

i<j
where
Ju={z€J: ex==xa}
and
Jij={zeJ: eix:%x, ejx:%xifi;éj},

are the Peirce components of J relative to the idempotents e;, and e;. Moreover the
following relations hold when i # k,[l;j # k,1

3%- C Jii +355, Jij - Ijk € Jik, Jij I = 0.
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3. Preliminary reductions for WPT

As in the case of Jordan algebras, we can make some restrictions before the main
proof. To start we prove the following proposition.

Proposition 1. Let J be a Jordan superalgebra without 1 and with radical N.
If the WPT is valid for 3%, then it is also valid for J.

Proof. Let J be a Jordan superalgebra without 1 and with radical A/. Consider J# =
J@®F - 1. It is clear that N(J) = N(J#) = N and J#*/N = (J/N)# = J/NaF-1.
By assumption, there exists S; C J# such that S; = J# /N = (J/N)#, St NN = (0),
J#* =S ®N. Denote S = S; NJ, then SNN = (0). Let us show that SN = J. Take
acJ, thena=s5+n,s1 €S, ne€N.But sy =a—n¢cJ. Hence, s1 € JNS; =S and
a€S@®N. Finally, S S/(SNN) = (SeN)/N2J/N. O

Let J be a unital Jordan superalgebra of dim J = n. Assume that for any unital
Jordan superalgebra of dimension less that n the WPT is true. A base for induction is
dimpy=1,J=F- 1.

Proposition 2. Let J/N =31 @ - ® Ik, where J; are unital simple Jordan superalgebras
with N (J;) = 0. If WPT is valid for 3, k > 1, then the WPT is true for J.

Proof. Denote by e; the identity elements in J;. Then (by Jordan algebras results) there
are orthogonal idempotents f; € J such that e; = f; + N, i = 1,2,...,k. Consider
31(f:) ={f:,3, fi}, then J1(f:)/(@1(fi) N N) = J;. By virtue of N (J;) = 0, we have the
inclusion N (J1(f;)) € J1(fi) N N. Since the inverse inclusion is obvious, we have the
equality N(J1(fi)) = J1(fi) NN If k > 1, then dim J1 (f;) < dim J and by the inductive
hypothesis, there exists S; C J1(f;), Si = Ji/(N N J;). Note that S, - S; = 0. Further,
S=851---dSpisadirect sumand SEZJ 1 d---PJr. O

Now by the Zelmanov Theorem [12], in the case of characteristic zero, it is sufficient
to prove the WPT for unital finite dimensional Jordan superalgebras J satisfying one of
the following conditions:

1. J/N is simple unital;
2. J/IN=(K3EK3D---®K3) DF -1, where K3 is the Kaplansky superalgebra.

Theorem 3. Let J be a finite dimensional semisimple Jordan superalgebra, i.e N'(J) = 0,
where N is the solvable radical. Let IM(J) be a class of finite dimensional Jordan
J-bimodules N such that M(J) is closed with respect to subbimodules and homomor-
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phic images. Denote by K(9M,J) the class of finite dimensional Jordan superalgebras A
that satisfy the following conditions:

1. A/IN(A) =
2. N(A)?2 =0,
3. N(A) considered as a J-bimodule, in M(J).

J,

Then if WPT is true for all superalgebras B € K(IM,J) with the restriction that the
radical N'(B) is an irreducible J-bimodule, then it is true for all superalgebras A from

K, 3).

Proof. We use the induction on dim.A4. The base of induction is provide by the case
dimA = dimJ, so A = J, N(A) = 0. Assume that the theorem is true for all Jordan
superalgebras B € K(9M,J) with dim B < dim A. Let us set by N' = N (A). If NV is an
irreducible J-bimodule, then the theorem is true by the conjecture. Suppose that A is
not irreducible, then let us take a minimal J-bimodule M contained in N. Since that
A is unital JM = AM = M, therefore M is irreducible. Observe that N'/M # 0,
otherwise N/ = M would be irreducible. We see that f//ﬁ ~ A/N =3.

Since A/N is semisimple, we have that N'(A/M) C N /M. But (N/M)? = 0. Thus
N(A/M) = N /M. Observe that A/M € K(M,J) and dim A/ M < dim A. Therefore
there exists a subsuperalgebra S C A/M such that S = % ~ A/N and A/M =
S®N /M. By the main theorems on homomorphisms, there is a subsuperalgebra S C A
such that M C § and S/M = S =2 A/N = J. We observe that S € K(IM,J) and
N(S8) = M is an irreducible J-bimodule. By the assumption, WPT is true for S, hence
there is a subsuperalgebra S; C § C A, such that & & S/ M = A/N. Since &;
is semisimple, N NS C N(S;) = 0. Furthermore, dimS; = dim A — dim N. Hence,
dim(N + S;) =dimAand A=N®S;. O

Let V1,..., V) be irreducible J-bimodules, and J be a simple Jordan superalgebra. Let
M(I; Vi,..., Vi) = {V/V is a J-bimodule, doesn’t containing amoung its irreducible
subbimodule any copy isomorphic to one of the bimodules Vi,...,V;} It is clear that
N is closed with respect to taking of subbimodules and homomorphic images. Thus it
satisfies the conditions of Theorem 3.

In each section, we assume that A is a finite dimensional Jordan superalgebra over F,
with radical A and such that N'2 = 0, A/N =2 J, where J is a simple Jordan superalgebra
and N is an irreducible J-bimodule. Moreover, if by, b, ..., b, is an additive base of Jo,
then we assume that 51,527 . ,En is an additive base of Sy C Ag, Ag = Sy & Ny and,
Fl;i ~ng = l;;\lg If Aj/Ni = 31 and vy, ..., v, is an additive base of J1, we can assume
that v1,...,7; is an additive base of A; /N7, and we shall find vy, ...,7; additive base
of & C Ay such that v; - v; = v;0; and v; ‘gj = 1Tbj, and A; = S; @ N;. Therefore, we
obtain that there exist S = Sy + S; C A such that S= J and A =S @ N. In each case
we can assume that @ -n = an, where a € AgUA1, a € JoUJ1, n € NoUN;
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4. Kac superalgebra

In this section, we consider the 10-dimensional Kac superalgebra K19 = Jo+3J1, where
4
Jo=F-e+d Fo)@F-f, J1=F a1 +F 20+F -y +F-yp,

i=1

and all nonzero products of the basis elements are the following

2 _ _ 2 _ _ _
e“=e, e-vi=v;, [=Ff vi-ve=uv3-v4=2e. (4)

— 1. . — Lo s — Lo Loy — Lo

fraj=gx;, [-yi=3y, e x=3T;, €-Yi=3Y;
Y1 -v1 =22, Y2-V1=—T1, X1 V2= —Y2, T2 V2 =71, (5)

T2 V3 =T1, Y1-°V3=1Y2, Ty - Vg = T2, Y2 - V4 =Y1.

T1-T2 ="V1, T1- Y2 =703,T2 Y1 = V4, Y1 Y2 =02,

;- y; =e—3f. (6)

The zero characteristic of the ground field implies that IC1g is a simple Jordan super-
algebra. Using Theorem 3 and the classifications of irreducible bimodules over iy we
need to consider two cases, the regular bimodule and its opposite. Assume that a <> e,
b f, u; <> vy, mj <>z, and ny <> y; for i =1,2,3,4, j = 1,2, thus

(RegKlo)oz(F-a+F~u1 +F~UQ+F~U3+F~U4)EB]F~I),
(RegK10)1 =F-mi+F -mo+F-ny+F-no

Let A9 = (So EBNQ) and Al/Nl = (lclo)l where Sg = F - €+ Z?:lF'rEi OF- J,fv, and
(K10)o 2 Sp, and Ay /N1 =F -1 +F - Zo+F -5 +F - go.

4.1. N is isomorphic to reqular bimodule

Lemma 4.
o 1= .oy 1~ L. — 1x ooy — 1>
f'xj—ﬁxjv f'yj_ﬁij €-Tj = 5%y, €-Y; = 3Y;,
Y1 -v1 =22, Y2 V1 =—T1, L1 V2= Y2, T2 V2 =Y, (7)
T2 V3 =T1, Y1-V3=Y2, T1 V4 = 22, Y2 - V4 = Y1,

Proof. First prove ex; = %El. To start, we can assume that there exist scalars A{1¢sq,

such that €7y = 1Z; + A2 = 171 + AZ°my + AZLomy + AZ1°ny + A21on;.

It is easy to see that AZi - %Aﬁl Substituting a; = 71 and a; = a = a; = € in (2),

we get

2((z,1-€)-€)-e+T1-e€=3(x1-€)-€.
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Combining the above equality with Z; - € = %551 + A%t we have gAgl = 3AZr, therefore,
Ame = \me = \t1¢ = \v1¢ = (. Thus, A?* = 0 and Z; - € = 32;. Similarly one can prove
the equalities Ts - € = %52, Ti-f = %%i, yi-€= %ﬂl and y; - f = %ﬂl

Now we shall prove that other equalities in (7) hold. Let A¥ be the radical part in
the product 7; - v; where A% = )\?L’fml + )\%ng + )\ﬁff’nl + )\ﬁljfng for some scalars )\}%91‘,
Aa, Al and AT (lSlimilarly, AY)

First note that (AY -v;)-v; =0for s=z or s =y.

We set a; = 31 and aj; = a, = a; = 0 in (2). Since 97 = 0, we have

0=((y1-v1) -v1) -1 = ((§2+A11}1) D) -0 = (Ty-01) - 01 = A2 Ty

Thus, A2*my — A21my = 0. The linear independence of m; and my implies A2'* =

AT = 0 and therefore AZ' = A21%my + A2!%m,. Similarly one can prove that ALt =

)\}ifml +)\},}:m2, Agl;Q = )\}iyn1+)\}i22yn2, A§2 = A%zlynl +A%€yn2, A}cs = )\},‘ffngr/\}gmnl,

AZ3 = N2Ymg + 23y, A2F = N2Pmy + A28 ng and ALY = Ay + A0 ns.
Substituting a; = 71, a; = U1 and a; = a; = U in (2), we have,

(g1 -01) - 02) - V2 + (g1 - V2) - V2) - 01 + (V1 - V2) - Va) - Y1 = 2(v1 - V2) - (Y1 - V2)  (8)

Observe that Af = )\}iynl + )\,ﬁyng, therefore Af - Uy = 0. Recall that v7 - 19 = 2€,
e-v;=v;and €- (1 -U2) = %371 - U3. Thus, combining the above observation with (8), we
obtain the equality

0=((1-01)02) D2 =Ny + AP Ty = A2 + A2 -,
therefore, (AL2Y + A22%)ny 4+ (AL2Y — A22")ny = 0. Using the fact that n; and ny are
linearly independent, we obtain /\gy = ,)\%3290 and )\711223’ = A%ff"

Taking a; = y1, a; = 01 and a; = a; = v3 in (2) we have,

0= ((y1-v1)-v3) 03+ ((41-V3) - V3) - V1.

Thus we obtain )\711?:; = —)\%?f”.

Using 0 = ((§2-01)02) - 02+ ((§2-V2) - V2) - U1, we obtain A\}2% = A22 and A} 2% = —\22v,
Since, 0 = (G2 - 1) - Ua) - Vg + (Y2 - Va) - V4) - U1, then A22* = —\127.

Similarly, we obtain )\%f = )\,111297 )\%11; = —A,lllly, )\72;;519 = —)\},f’;‘/, )\fgy = —)\}L?;y, )\725’;” =
e, A2y = e By = 3 3 _ i il _ el e o 3 3
—AZWLAY = 222y = 2w \DSe = Z\280 0 \Mv — A1 = 0. Thus, we have
AZN =0, A" = A?% = A2 and Ayt = A1Ymy + A Yms.

Let a; = 1, aj = a; = 1 and a;, = U2 in (2). Then we have y; -1 = ((y1-01) - U2) - 01,
therefore, A22* = —A1l¥ and A\22* = ALV, Similarly, we can obtain A\}J* = A23% A& =
e, JHz = jMs 2 g M3 NI g, M = by Mg =g, bl =,
R v s R T VO )

23y _ 14z _ _ \23z 24y _ _ 13y 14y _ _ )22z 11y _ 24y
AZY — 0, AMr — _)\28e \2dy . \I8y \ly 322w 31y )2y,
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Thus, we have AiQ _ Aglﬁ?; _ A3:4 _ A?1!2 - A§2 = A§3 =0
Setting a; = §1, aj = U1, a = 03 and a; = Uy in (2), we obtain

((g1-v1) - v3) - U2+ ((g1 - V2) - v3) - U1 + 41 - V3 = 0.

Therefore we have )\},};” = )\}f;y Similarly one can prove the equalities )\}r}f = )\fg’f =
2z _ 11 _ A14 _ A22 _ A23 _ ALl _ A13 _ Ald4 _ A21 _ A24 _
At =0.Thus Ay = A=A =A7=A =A"=A"=A=A"=0. O

Lemma 5. There exist o € F such that

(i) T1-To =01 + Quq, (il) Y1 Y2 = U2 + Qua
(iii) @1 - y2 = U3 + aus, (iv) T2 - y1 = Vs + Quy (9)
(V) Z1 -1 =€—3f +aa—3ab (vi) Zy-Jp = € — 3f + ca — 3ab
Proof. We can assume that there exist A12, A12 A}fy,Ai}ﬁAn and A22 € Ny such that
Ty-Ty = 01+A2, 102 = Ua+A2, T1-00 = 03+Axy, Ty = v4+Axy7 Ty =e— 3f+A3';y
and Zs - 4o :€—3f—|—A
We assume that there ex1st ntid, g, niia, ntid ntid and nt € F such that AY =
nta + 07 b+ ntuy + 0t ug + ntiug + ntiduy for i, j e {1,2} and t € {z,y, 2y}
Replacing a; = Z1, a; = Ta, ar, = a; = U1 in equation (2) and using (7); we have
((%1 fg) 51) -51 = O, thus

0 =((01 +n2"%a+ i "2b + 05 Pus + nlPus + nptPus + it tug) - U1) - 01
( zl2u1 + 277112 ) 'Ul — 27,]m12

xl2 __ rl2 __ o xl2 __

Therefore, 7, = 0. In the same way one can prove that n;,* = .~ = 0, thus

T1 Ty =01+ 0 Pa+ g P+ tu (10)

Similarly, we obtain that 71 - g2 = U2 + 7¥*%a + ny12b + n¥1%uy

Since (7) and replacing a; = Z1, a; = T and a, = a; = U3 in (2), we obtain

((Z1 - Ta) - Ug) - Uy = 2(T1 - Va) - (Vo - T2) = 201 - Ya- (11)

Replacing (10) and its equivalent for g1 -7 in (11), we obtain 20y +7% 2uy = 2(V2+nY"2a+

12b + n¥2uy), therefore n¥'? = y12 = 0 and 72! = ny!2. If we take a; = J1, a; = J2
and ar = a; = 01 in (2) we obtain 773“2 nEt? = 0.

Let a; = 71, a; = Y2 and a, = a; = v1 in (2), thus, we obtain 779”912 = 0. If we shall
take ap = a; = 3 or a, = a; = v3 we obtain nf¥'? = nI¥12 = (. Similarly to the case
above, we obtain 17"”1’21 n"”ym 77”””21 =0.

Setting a;, = 71, a; = Y2 and ar = a; = V4 (respectively, a; = T2, a; = 7 and
ar = a; = v3) in (2), we obtain n*¥2! = nl”;ym = 0 (respectively n*v!? = ngym = 0) and
nT’le nrle

Uyg us °



F.A. Gémez-Gonzdlez / Journal of Algebra 505 (2018) 1-32 11

If we take a; = T1, a; = T, arp = V2 and a; = V4 in (2), then using (7) we have
((z1 - T2) - U2) - U4 = 2To - y1. Therefore, nwyzl = nﬁ?. Thus we get 1 - To = U7 + auy,
Y1 Y2 = U2 + g, T1 - Yo = U3 + aug and Zs - y; = U4 + auy for some a € F.

Let a; = Z1, aj = ¥1, and ax = a; = 01 in (2). Using the products in Sy and (7),
we obtain ((Z1-#1)-01) - 01 = 0. Thus ((Zy - 71) - 01) - 01 = 0 and therefore ni¥'" = 0.
Analogously, one can verify that nfv't = pivtt = pivll = 0. Thus 7, - 1 = € — 3f +

nE¥a + nYM . Similarly one can show that Ty - o = € — 3f 4 n™v22q + niv2,
Taking a; = Z1, a; = y1, ap = U1 and a; = Vs, in (2), we obtain
((Z1-91) - 01) 2+ Z1 41 = 2€- (1 - Y1) + T2 - Yo (12)
From the above equality, it is easy to see that 7% = 5z¥?2 and 77¥'" = 17¥**. Thus we

have that 21 - y1 = T2 - .
Let a; = 71, a; = T2 and ap = a; = ¥ in (2), hence

0=((Z1-Z2) 1) - —((@T1-91) - 51) -T2+ ((ZT2-71) - 71) - 21
=((®1 +aur) - G1) - 51 — (€= 3f + 12 a+ 0 0) - 1) - T2 + ((a + aug) - 1) - I

=1 -v1+ay-u) -y — (1 + —2( a:yll + nwyll)nl) " To
1
xyll nafy11>m2 ny = ( acyll npqll))uéb

- - - 1
=T2 Y +ame -y —T2-y1 + 5 2(

5 Ula
thus, 2a = —(n*v! + szyn)-

If we take a; = 1, aj = J1, a, = T and a; = o in (2), we obtain n*¥'! = o and

n;yn = —3q, therefore T1 -1 = To - Yo = € — 3f+ aa —3ab. O

Lemma 6. For i = 1,2 there exists § € F such that T; = x; + B my, and y; = y; + Bn;.

Proof. Assume that there exist A, and A} € N such that T; = z;4+ A% and ; = y;+ A},

where A} = X my + Al mo + A ny + /\t ,n2 and Ao oAU AL and M) e FL It is easy
to see that 7; = x; + /\f,;i m; and y; = y; + A n;.
Using the Lemma 4, we have that 21 - U3 = —¥o, T1 - U4 = —Z2 and o - V4 = 1. Thus

one easily verifies that A7l = A\¥2,
ApL =A%, 0O

T — \T2 Y2 — \V1 Y — \Y2 —
Al = A02 and A2 = AL Therefore, AL = \i2 =

4.2. N is isomorphic to opposite reqular bimodule

Lemma 7.
Fog. =l fF.g. =1y &7 =1%  &.7. =17,
f'iCJ—QJU], [y =395 e-xj—QmJ, € Yji = 3Y;
Y101 =T, Yo U1 =—T1, Z1-U2=—Y2, L2 V2=, (13)
T2 V3 =T1, Y1-V3=Y2, Ty V4 = T2, Y2 - V4 = Y1,
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Proof. To start, we proof the first line in (13). Let us denote W = {z1, 22,91, y2} and
T = {e, f}. We can assume that for ¢ € T and w € W there exist scalars A such that

o~ 1 _ 1_
w-t= iw +AY = iw + )\t“’a + )\t“’ul + )\tqu + )\th3 + )\u4 ug + Atwb
where s € {a,b,u1,usz,uz, us}.
Substituting a; = w, a; = a; = € and a; = € in (2), we get

2(@-9)-J)-e= (@)@

w4+ AY and w- f =

Replacing w - € =

% w+ AY in the above equality we obtain

0= (AY - f) &= AMur + Az + ALPus + A,

therefore, @ - = 2 + At + Af“b. Since @ - € = @ - f we obtain A = AY.
Con81der1ng a; =W, a; = f and a = a; = € in equation (2), we obtain ((@- f) - €) -
+((w-e)-e)- f (w f) ¢, replacing w - f: w - f: %f[[) + AY in the above equality,
we obtain AY - f + A¥ - e = 0, therefore A = A = 0 and we have @ - t = 1.

We consider the set V' = {v1,v9,v3,v4}. Without lost of generality, we can assume
that for v € V and w € W there exist A¥ € N7 and @’ € W such that w - v = dw’ + AY
where 6 € {0,1} and A} = A\0%a + A\JYup + AjYus + ApYus + ApYug + APWb for some
scalars AYY.

We begin by proving =, - v1 = y, - v2 = 0, for n = 1,2, 71 - U3 = —¥ya, To - V3 = Y1,
To 03 =221 and T - Uy = 1.

Let us consider a; = T, a; = € and a; = a; = 1 in equation (2), thus we have

(Tn-€)-01) 01+ (T - 01) - V1) - € = 2((Ty, - 1) - V1.

o~ 1 ~ . . .
replacing =,, - € = 301 and T, -v1 = A" in the above equality and noting that (Ajr -

01) - €= AJr - v, we obtain %A;";‘ -v1 = 0, therefore A\g1™» = \j1%» = 0.

If we take a; = T, a; = a; = U1 and aj, = U3 in equation (2), then ((Z,-01)-v3)-v1 =0
and therefore A1 = 0. Note that if a; = T, aj = a; = v1 and ay, = vy, then A\j1%" = 0.

Now, let a; = ¥y, a; = ar = 1 and q; = e in equation (2). Using ys-€ = 5372, it follows
that 2((y - v1) - v1) - € = 3((y2 - 01) - U1. Since Yo - U1 = =1 + AY? and 2, - v1 = AJ! we
obtain 3AJ! — 2A7! - € — AY?2 -0y = 0, hence A" = A\J1¥2 = 0, and A;1® = A'¥2 Thus,
we have 71 - v1 = A\j}®'u;. By a similar argument we could show that, - v = A\jL1%2uy,
and ¥y, - U2 = A2V us.

Considering a; = Z1, a; = a; = V2 and a; = v1, in equation (2), we obtain ((z; -
52) . 51) . 62 = 2(51 . 52) 6 therefore Ag}n; — 2Ag§21 g+ (Aigﬁl) . 52 - Agf . ’172 = 0, it

S V21 _ \v2T1 V221 V2T1 — V2T1 — vV1Y2 V2T1 — \V1Y2
follows that A, = N2T = R0 = 0 =0, A = 2y and AT = A2,
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hence Z1 - U2 = —¥2 + A2" a + A2 ug. (Similar arguments apply to the case Zo - Vo =
Ui + A2P2a 4 AU2P2).

Analogously, we obtain yp-v1 = —T1 + A0 Y 2a+ A 2w, (Y1-01 = Toa+ A a+ A0V )
moreover Agt¥2 = 2A72%1 and A2t = AP1¥2 thus A\g2¥t = AUY2 = 2A\71¥2 and \2*t =
Agtvz = 27271 therefore A\p2®t = AP1¥2 = \72%1 = \Pi¥2 = () hence Z; - Uz = —y2 and
Y2 U1 = —T1, (T2 - 02 =1 and Y1 - U1 = T2)

If we choosing a; = ¥2, a; = ar = U1 and a; = V2 in equation (2), we obtain ((y2-v1) -
61) '52 + ((gg 7172) :[),1) ‘51 +2§2 'F’ljl = 4(’yv2 51) °€, if follows that —Agll '52 + (Agg 51) '71\}11 = 0,
later AJ1*1 = A72¥2 = 0. (Analogously we obtain AJ1*2 = \72¥1 = 0).

Note that if we take a; = T2, a; = a; = v3 and a; = U4 in equation (2), then
To U3 = T1 + A3T2a + A3 uz, and A\g3T2 = —2)\PA% and A3*? = —\pet. Similarly we
obtain 1 - vy = To + A" a + Ay ug, and Agi®t = —2A13%2 and A2t = — (372, Hence

To-U3 = T1 and T -4 = To. Analogously, we can see that §;-03 = 72 and J2-04 = §1. O
Lemma 8.
(i) 1 -2 =11 (ii) 71 - v2 = V2
(iii) 7 - Jo = Vs, (iv) T2 -1 =4 (14)

(V)@ G1=e-3f (vi)T2-Jo=¢—3f

Proof. First we prove that 71 - 7o = ¥;. Assume that there exists Al2 € Aj such that
71 -T2 = U1 + AL%2. We note that Nj is spanned by (m1,ma,n1,n2), therefore, we can
take \; € F for i = 1,2,3,4 such that A% = \ymy + Xama + Agmaz + Agmy.

Let a; = Z1, aj = T2, a, = 01 and a; = Uy in equation (2). Substituting z; - v, = 0 we
obtain

(@1 -T2) - 01) - V2 + ((T1 - 02) - 01) - T2 — (T2 - V2) - V1) - T1 = 2(T1 - T2) - €.

Using Lemma 7 and noting that Al? - €= 2Al% it is clear that (AL? - 91) - 05 + Al2 =0,
therefore \y = Ay = A3 = Ay = 0. Similarly, we can show that 1 - Yo = Vs, 1 - Y2 = U3,
and .%2 . ?71 = f174

Assume that 71 - 1 = € — 3f + Ayy and Zo - Yo = € — 3f + Agy. For i =1,2,3,4
let \; and B; be some scalars such that Ayy = Aymq 4+ Adoma + Azng + Aqng and A,y =
Bimy + Bamg + Bang + Bang.

Considering a; = Z1, a; = ¥1, a = v1 and a; = U2 in equation (2). and substituting
y1 - U2 = 0 we obtain

((@y-y1)-01) V24 (T -02) -01) 51 — (Y1 -V2) - 01) - T1 = 2(Z1 - Y1) - €+ (T1 - V2) - (Y1 - 1)
Using Lemma 7 and combining the different products we have (A, -v1)-v2+ %Amy =Ny,
hence the following equalities hold

1 1 3 3
5)\1 = B, §>\2 = B, 5)\3 = (33, and 5)\4 = fa. (15)
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We now apply this argument again, with a; = Z1, a; = 91, ar = V2 and a; = v1 to obtain

3 3 1 1
§>\1 = B, 5/\2 = Ba, 5/\3 = f33, and 5/\4 = B4. (16)

Combining (15) and (16) it follows that Ay, = Ay, =0. O
Let us prove the following theorem

Theorem 9. Let A be a finite dimensional Jordan superalgebra with solvable radical N
such that N2 = 0 and A/N = K19. Then there exists a subsuperalgebra S C A such that
Sglcm CLTLd.A:S@N.

Proof. Recall that A. S. Shtern [13] proved that any irreducible Jordan bimodule over
K10 is isomorphic to Reg (K1) or its opposite. By Theorem 3, we only need to consider
this cases.

If AV is isomorphic to regular bimodule, then by Lemma 5, we can assume that there
exists @ € A such that

—~~

(1) T1+To =11 + auq, li) gl'g2:f172+au2
(iii) =1 - y2 = v3 + aus, (iv) T2 - g1 = U4 + quy (17)
(V)T -h =¢—3f+aa—3ab (vi) Tz- o = ¢ — 3f + aa — 3ab

By Lemma 6, there is a 5 € F such that z; = x; + fm; and y; = y; + B n;.

It is easy to verifies the following equalities

Ty =711 +28(a—3b), To-Po=1z2 ys+28(a—3b),
1 -Tg =21 - To + 2Puq, T -T2 = y1 - Yo + 2Bus, (18)
Ty Yo =1 Y2 + 20us, Ty -1 = T2 - Y2 + 2Bus.

Using (17) and (18), we get Z; - §; = € — 3f, 1+ Ty = U1, &1 - Jo = U3, To - 1 = U4 and
Y1 - Y2 = vg if and only if, 25 = «. This equality has always a solution.

If \V is isomorphic to opposite regular bimodule, using Lemmas 7 and 8 we note that
T1, To, Y1 and 7o satisfies the conditions.

Therefore, it is clear that an analogue to WPT holds in the case under considera-
tion. 0O

5. Jordan superalgebra of superform
In this section we use the classification of irreducible J-bimodules obtained by E.

Zelmanov and C. Martinez in [17], where J = J(V, f) = (F-1&V,) + V1 is a Jordan su-
peralgebra of nondegenerate super-symmetric superform f on a superspace V = Vy+ V.
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We may assume that dim V; > 1. Let vy, ..., v, be an f-orthonormal basis of V), i.e.
flvi,v:) = 1, f(v,v;) =0 for i # 4, 4,5 =1...,n. Let w,..., wam be a basis of V;
such that f(wap—1,w2p) = 1,1 < p < m, and all the other products of basis elements
are zero.

Since [17] we have that all products

Uil ~-~vil"wlf1 wé”“fn’"
form a basis of the Clifford superalgebra C of V, where iy, ..., 4, € {0,1} and kq, ..., kam
are nonnegative integers and C denotes the Clifford superalgebra of V. Let C, be the
subspace in C spanned by the products of basis elements of length at most r, and let
J = (F-14Vy)+ V1 be the Jordan superalgebra of superform f. Let a be an even vector
such that V' = V@F-a. We extend the superform f to V'’ so that f(a,a) =1, f(a,V) =0.
Denote by C.. the subspace in C’' defined in the same way as C, in C.

In this section, we put into correspondence to every element

Uil ~-~vf{‘w’f1 w§72n
a pair (I, K), where I = (i1,...,i5) is a n-tuple and K = (k1,..., ko) is a 2m-tuple
such that i,, k; satisfies the above conditions.

We write nr g = vi' - vinwht w2 — VWi Note that for any pair of elements
Nk, N,k € C, the following relation holds 17 x = 7/ k- if and only if I = I’, and
K = K'. Thus every element of the basis of C has a unique representation in terms of
(I, K). We denote Vo) =1, V1) = 0102 - vy

Let Z, K be the following sets

I={I=(i1,...,in),4;=00r1l,j=1,...,n},
K={K=(ki,...,kam), k; €ZY U{0}, j=1,...,2m }.

ForI €7, K € K, we denote |I| = i1+ -+iy, | K| = ki+- - -+kam and |0 x| = |I]|+]|K].
Some relations in C(1).

Using the supersymmetric product in the Jordan superalgebra CT we obtain
Wop—1Wap — WopWop_1 = 2, Wop_1Wq = WqWap—1 if ¢ # 2p and viw, = —wpv;. It
follows easy that

1\at++ii—1
V]WKO’Uj = (— —)

5 Viirosigtoimy Wi (1 (= 1)1y (19)

1
ViWic 0 wap1 = 5ViWiky byt 1o (1 (1150 =
k2pVIW(k1,...,kgp—l,...,km)

and



16 F.A. Gémez-Gonzdlez / Journal of Algebra 505 (2018) 1-32

1
ViWgk o wgy = §V1W(k1,‘..7k2p+1,‘..7k2m)(1 + (—1)Eh+ (21)

(=) gy s ViW iy g~ s
forj=1,...,nand p=1,2,...,m.

Assume that So =F-14+F -0+ -+ F -0, Jo = So, Ao = So ® Ny and Ay /N7 =
F-w,+F -wy+- -+ TF-wa,. We consider two cases for N

5.1. N is isomorphic to Cp./Cr_o
Without loss of generality, we can take

No = vectw (11,5, N1, k| = 7,7 — 1 and |K]| is even ),

N = vectr (11K, N1, k| =77 — 1 and |K]| is odd ).

Using the notation introduced above, due to equations (19) and (20), we have the follo-
wing products:

N %j _ :l:v(il,nwij—l,07ij+1,-~-7in)WK %f |771,K| i Ty i :.177 (22)
:l:v(il,~~~,ij—1,17ij+1,-~-,in)WK if |771,K| =r—1, = 0.

Wik - Ty — Fhpt 1 VIW ko kpt 1, ko) %f Inrx| =, (23)
VIW (koo byt 1, kam) if  |nrx|=7r—1

First, we prove three lemmas.
Lemma 10. v; - w, = 0.
Proof. Setting a; = ws, a; = a; = v; and ax = v; in (2), we have
((ws - 0;) - 05) - 0; = 0. (24)

We may assume that there exist some scalars fé“l K) such that

Uk Ws = Y ELoViWk+ D> & ViWk.

K IK
1,k |=r In1,k|=r—1
|K] odd |K]| odd

Let fécj WK € Ni be a nonzero element and j # k, j, k € {1,2,...,n}. Using (22)
and (24), we obtain the following relations:

(a) If [nr,x| =7 — 1 and i; = 1, then (§f; joynr,x - 05) - Oy = 0.
(b) If [n1,x| =7 — 1, i = ix = 0, then (§7 xynr,x - ;) - g = 0.
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(¢) If [nrx| =7, i = 0, then (£ oynr,x - U;) - O = 0.
(d) If [nr,xc| =7, 35 = i, = 1, then (£f g1, - U;) - O = 0.

From (a)—(d) and (24), we have

~ o~ k
Vg - Ws = E f(LK)V(il,...,ij,l,o,z‘Hl,...,in)WK-i-
I, K
1,k |=r—1
|K| odd

k
E : €(I,K)V(i1,~-~’ij—1’1,ij+17--~,in)WK+
IK
I, k|=r
|K| odd

k
E f([yK)V(il,...,ij_l,0,¢j+1,...,ik,l,o,ikﬂ,...,in)WK-i-
I, K
1,k |=r—1
|K| odd

k _
E g([,K)V(i1wqij—l,O,ij+1wu,ik—l,O,ik+1,~-.7in)WK =0.

IK
Inr,kx|=r
|K| odd
Thus,
~ ~ § k i in
Uk'ws: S(I,K)Ull"'vj."vn WK+
IK
1,k |=r—1
|K| odd

§ k 7 in
§(I,K)vll .. .ij ce Uk '.'UnnWK+
I, K
Inr,x|=r—1
|K| odd

k i tj—1, tj41 in
g )it v v o Wkt
I, K

1,k |=r
|K] odd

If we apply (24) to the obtained above equation for all j # k, we get

TeWe = Y. vt vaWe Y oWrt Y. oVoWs.

I,K K K
Inr,x|=r—1 |K|=r |K|=r—n
|K| odd |K| odd |K| odd

(25)
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Substituting a; by w,s and a; = a, = a; by v, respectively in (2), we obtain
((Tﬂs 5}.@) 5}6) -ﬁk = Zs %k (26)

Applying (26) to (25), we get

Uy - Wy = E f(I’K)v1-~-v;€’“ v Wi (27)
IK
T+ K|=r—1
|K| odd

Substituting a; , a;, ax, and a; by ws, Uy, v; and v; respectively in (2), we have
((Ws - Ok) - Vj) - U + ((Ws - 05) - V) - U = Ws - V,
Applying the obtained equality to (27), we have vy - ws =0. O

Lemma 11.

Wy - Wy = oy + Z a(o K)WK + Z a(l K)V(l Wi, where of? € {0,1}

|K|:r—1 |K|_r n
n odd

Proof. Since w, - W, € Ap, we can assume that there exist some scalars a’()(’)qK), o/&qm
such that

=~ ~ _ ~Pd p,q p,q
Wyp - Wq = O + g a([,K)‘/IWK + E O[(I,K)VIWK7 (28)
I,K I,K
[nr,x|=r—1 nr,xk=r—1
|K| even |K| even

where af? is 0 or 1.

If we take a; = Wy, a; = W, and a = a; = v; in (2), and use Lemma 10, then we
obtain ((W, - Wgq) - V;) - V; = Wy, - We. Combining (28) in the stated before equality, we have

Y. ol ) Tt Y el (W) T =

I.K I.K
|1, K |=r—1 nrx=r—1
|K| even |K| even
p,q
§ (1 K)nl K+ E Q)L K- (29)
I.K K
Inpxcl=r—1 n i =r—1
|K| even |K| even

Let 7 = nr,x be a nonzero element in Ny. Using equality (22), one can easily prove
the following statements

() I |n;, x| =7 —1, and i; = 0, then (n-v;) - v; = .
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(i) If |97, x| =r —1, and i; = 1, then n - v; = 0 therefore, (n-v;) - v; = 0.
(iii) If |nr,x| =r, and ¢; = 0, then (1 -v;) =0, thus (n-v;) - v; =0.
(iV) If ‘WI,K| =, and ij = 1, then (r] . 51) 'Gj =1.

Using statements (i)—(iv), we note that if |[n| = — 1 and i¢; = 1 for some j then the
left part of (29) is equal to zero and, consequently, the right part is zero. Thus, in the
right part of (29) the only terms of length r — 1 are of type w’fl . w’;ﬁ,;” Now, if || =7
and 4; = 0 for some j then, v; - n = 0. Hence, every term of length r on the right hand
side of (29) must contain every v;, but this is only possible if n is an odd integer.

We have thus proved

By =g+ Y ol Wi ) oYWk O
K

K
|K|=r—1 |K|=r—n
n odd
Lemma 12.
Tp=wpt D EopWrt D &Vl
K K
|K|=r |K|=r—n—1
n odd
Proof. Let p € {1,...,2m} be a fixed integer. We assume that there exist some scalars
gfl,K) such that
Tp=wp Y &y i+ ) §lr) 0. (30)
I.K I.K
Inr, i |=r—1 In, i |=r
K odd K odd

Using Lemma 10, we have that w, - v; = 0, and therefore,

0=" > &y -5+ > &1 .50y ILK  Uj- (31)
I.K LK
[n1, 5 |=r—1 [nr,x|=r
K odd K odd

Let n = &1, knr,x be a nonzero element in (31). We shall use statements (i)—(iv) from
Lemma 11.

We note that if || = —1 and i; = 1, then -v; = 0. Using (31) one can easily verify
that if I # (1) then &; ) = 0. Therefore, we see that the only elements in (30) of length
r — 1 are of type V(;)Wk.

Let |n| = r and i; = 1, then (n-v;) - v; = 1 and therefore, if Vi # 1, then {7 k) = 0.
Thus, the only elements of length r that are not zero on the right part of (31) are precisely
those where 4; = 0. As this is valid for every j, we have that the only elements of length

kam

r that appear in (30) are of type w’fl -+~ wy2m with | K| = r. Thus, we have proved that
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Ty =wp+ Y & 1o Wi + > & VoW, O

K K
|K|=r |K|=r—n—1
n odd

5.2. N is isomorphic to uC,/uCr_o, where r is an even integer and u is an even vector
Without loss of generality we can take

No = vect g (uViWk |nr. x| =r,r — 1 and |K| even ),
N = vect g (uVIWgk, |nr x| =r,r— 1 and |K| odd ).

As in above case, one can easily verify that
WiWi 0¥ = (=) T H Vi, oy Wi (—1)Imml=i 1),
Moreover, we have

uViWg -0 = TuViiy, iy oWk i k| =1—-1,4;=0,
J :l:uvv(il,~-.,ij,1,1,...,in)WK if |77[’K| =, Zj — ]_7
uWViWie - @, = Fhpr1uWViWiey o kpr =1, ko) i ML K] =T,
P WViW(ky . k41, ko) if |nrk|=r-1

Now, we note one can prove analogues to Lemmas 10, 11 and 12, implying the following
equalities

Wy + Wq = Opy1,q + Z a?é?K)UW(klw--,k&m) + Z a?i‘,]l{)uv(l)w(kl,...,km)’

K K
|K|=r |K|=r—mn
n even

Ty =wp+ D Eory Wik ko) T D G0V Wik ko

K K
|K|=r—1 |K|=r—n—1
n even

We shall prove the following theorem

Theorem 13. Let A be a finite-dimensional Jordan superalgebra with a solvable radical
N such that N? =0, A/N is isomorphic to the Jordan superalgebra of superform J and
N € M(F; J*), where J*F) = Copy1/Cop1 if dimVy = 2k + 1 or J*) = aCyy, /Oy if
dimVy = 2k. Then there exists a subsuperalgebra S C A such that S = J and A = SON.

Proof. By Theorem 3 it suffices to prove the theorem when A is irreducible. So, by
Theorem 7.7 in [17] we only need to consider the two cases.
Using Lemma 10, we have w, -v; =0fori=1,...,n;p=1,...,2m.
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Let p be an odd integer. Due to Lemmas 11 and 12, we can assume that

Wp - Wq = Opy1,q + Z 0‘(0 K) Wi + Z of i K)V(l)WKv (32)
|K|—’I" 1 |K|_£dn
Ty =wp+ > Wi+ Y, VWi (33)
|KI|<:’I“ |K|:7["in71
n odd

Thus

Ty - g =wy - wg+ Y &y Wi -wg+ > & Vi W wg+

K K
|K|=r \K|:rgg—l
> o Wit D & VWi
K K
|K|=r |K|=r—n—1
n odd
Using (20), (32) and (34), we have that wy, - Wy = dp11,4 if and only if,
Z CY © K)WK + Z (_kp+1£€)0’[{))W(k1,...,kp+171,...,k2m)+
\K\:rfl \K\i(rfl
Z kp— 15(0 KWk kpo1 =1, k) T+ Z O‘(l ) ViWk+
\K\:rfl |K|:r7n
n odd
> VoW by tko) + 2 i VO Wik k1 i)
K K
|[K|=r—n |K|=r—n
n odd n odd
(35)

Combining the above equality with a linear independence property of the elements V; Wy
we have the following relations:

Z a KWk = Z k‘p+1§(0K Wik kpir =1, kam) —

|K|:7‘—1 |K|:7‘—1

Z ( p— 15(0 K))W(k1 kp—1—1,....kam)>»

K
|K|=r—1
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Z a’(’i?K)V(l)WK = - Z ff17K)W1)W(k1... kp+1,..kam)
K K
" "

n o n o (37)

D oV Wik okt
K
|K|=r—n

n odd

Let aféqst)WSt be a nonzero element at the left part of (36), such that Sy = (s1,...,8p_1,
SpySp+1s---,Sn) I8 a 2m-tupla, with |S;| = r — 1. We shall find a 2m-tupla S,4; and
Sp—1 on the right part of (36), such that Sp41 = (S1,...,8p—1,8p, Sp+1 + 1,...,8,) and
Sp—1 =(S1,--+,Sp—1 +1,8p, Sp+1,...,8n). We observe that |S,_1| = |Sp41| = 7.

Applying similar arguments to above stated, and using (37), we have that for each
K, = (k1,...,kp,. s k) we should take K, = (k1,...,kp —1,...,ky). Moreover, if
|Kp| =7 —n, then |[Ky|=r—n—1.

It is easy to see that equations (36) and (37) are respectively equivalent to

> (ofifs) = (sprr + Defs, ) + (o1 + Dy, ) ) W =0,

K
|[K|=r—1

> (O‘fji?m Tt 5f,§p>v<1>WKt =0

K
|[K|=r—n
n odd

(38)

Using the linear independence of Wk, V(1)Wk and (38), for each t € {1,...,2m}, we
have

Uorsy ~ (o1 + D& s, T (-1 + DG s, ,) =0, (39)

D,q q P _
X1k T 5(1,%1) + 5(1,26,) =0

Hence, we have a solvable linear equation system if r # n. We note that a similar
procedure is valid if r is an even integer. O

Remark 1. By Lemmas 11 and 12, if n is an odd integer and r = n, then

Gp=wp+ Y & Wi, and @y @y =g+ Y ol Wi +afi) Vo
\KI\(:T |K|§n—1
D,q Pp.q

We see that the system Q.5 ~ £€O,St+1) + f?o,st_l) =0, and ooy = 0 has no solution

when O‘Z()i?o) # 0.
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5.8. Counter-examples to WPT for Jordan superalgebras of superform with radical
Cr/Cr_g and dimJo = r

Now we will show that the restrictions imposed in Theorem 13 are essential, and we
have two cases to consider:

Case 1. Let n be an odd integer. Consider the superalgebra
J=F -14+F-v14+--+F-v, +No)+ (F-wy + - + F - wop, + N1),

where

No = Spann(vit - oirwh . owhzm K| is even, | T |+ | K |=n—1orn),

Ny = Spann(vit - vlrwft ooz | K|isodd | T |+ | K |=n—1orn),

and 41,...,4, are 0 or 1, and k; are nonnegative integers, |K| = k1 + -+ + ko, |I| =
i1 + -+ - + i,. All nonzero products of the basis elements of J are defined as follows

2
v; =1l,w-wy=14v1---v, = —wz - wy,
Was—1 - Was = —Was - Was—1 = 1 for s € {2,3,...,m},
i in. ki ks 1 in. ki kp+1 ks ||+ K|
7_}1 ...'Un"wl ...w2mm.wp_§fvl ...'UT{wl ...wpp mem(]__’_(_l) )_
i1 in k1 kp—1 kom _
kpravyt - oprwyt w iy wgp ifp=2s — 1, s €{1,...,m},
i ik k2m R T TR kpt1 Kam 1)+ K]|
Ul ...fvnﬂwl ...w2m .wp_§U1 ...fUn'"wl ...wpl’ ...w2m (1+(_1) )+
i1 in, K kp—1—1 Kom s o
kp_1v)' ooy - w P wg i p=2s, s € {1,...,m},
il i, kl ka L —
vl .../Un“wl ...w2m ./Uj_
(_1)i1+“'+i1—1vil T ik ...wkZm(l + (_1)|1|+\K\—ij)
B 1 § n Wi 2m ‘

We note that J/N = (F-14+F v+ +F-v,)+ F-wy + - +F-wap) is a
Jordan superalgebra isomorphic to Jordan superalgebra of superform, N is isomorphic
to Cn/Cn,Q.

If we assume that the WPT is valid for J, then, for ¢ = 1,...,2m there exists w; € J1
such that w; = w;(modN7), and Wy _1 - Wo; = 1.

By Lemma 12 there exist Sk, £k, o, A € F such that w; = wy + Z Blefl . -w;c;"nm

|K|=n
and wg = wy + Z Egwit - wh? . Hence,
|[K|=n
Wy - Wy = Wy - Wa + Z Epwy - wh wgfn + Z Brwh - whzm s,
|K|=n |K|=n
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We observe that wy -ws = 1 if and only if vy ---v,, + Z wKwil . wg‘;;j = 0. Using the
|K|=n
fact that vy - - - v, and wl ---wh2™ are linearly independent, we have a contradiction.

Case 2. Let n be an even integer. Consider the superalgebra

J=F -1+F- v+ +F-v, +Ng) + (F-wy + -+ +TF-wap, +Np).

N is spanned by (uwvl' ---virwh ... wh2m K| is even) and N is spanned by
i in g K1 k2 ; ; ;
(wvyt -+ vlrwi™ - ws2m o |K| is odd ), where 4q,. .., i, are 0 or 1 and k; are nonnega-

tive integers, |K| = k1+---+kam, |I| =41+ - +i, and | K|+ |I| = nor |K|+|I| =n—1.
All nonzero products of the basis elements of J are defined as follows

2
v; =1, wy-we=1+uvy - v, =—ws- wy,
Wos—1 * Wos = —Wa; - Woi—1 = 1 for s € {2,3,...,m},
in iy K o O Y Y S B o 1]+ K|
wvy oyt W Wy = Syt oy wpr < ws2m (14 (—1) )+
i1 i, k1 kpt1—1 kom . _
kpriuwvy' - vprwp -cw B g ifp=2s—1, s € {1,...,m},
i1 in, K1 k2m _ i in, k1 kp+1 kom |T|+| K|
wvyt Wyt e Wenr TWp = Suv) coevgrwyt e wpr T wge (14 (1) )—
k i iRt e T ke e~ 9g g € {1 }
p—1UV] vy Wy w7 wa2m p=2s,s yee oy},
il 7 kl k2m, J—
uq}l ...fUn"wl ...w2m .’UJ =
irteij o1+, i ij+1 in K1 k2m [T|+|K|—i;
(g g gl ki (14 (1) IR,

It is easy to verify that J/N is a Jordan superalgebra of superform and N =
wCpn/uCp_a.

If we assume that the WPT is valid for J, then, for i = 1,...,2m there exists w; € J;
such that w; = w;(modN7), and wWy;_1 - W = 1,1 > 2.

By an analogous to Lemma 12, we have that w; = wy + Z ,BKuwlfl . ~w’2€fn’" and
|[K|=n—1
Wy = Wo + Z {Kuwlfl wgfn’” for some Bk, £k, a, A € F.

|K|=n—1
. JUR t tam
It is clear that wq - wy = wy - we + E wruwy - wyt - wer, wi € F. Therefore

|[K|=n—1

~ ~ . . k kam 3

wy - we = 1 if and only if uvy -+ v, + E wruw - wy' - wym = 0. Once again,
|K|=n—1

uvy - - Up and uu)lf1 wéﬁ;” are linearly independent, consequently, we have a contra-

diction.
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6. Superalgebra D, and Kaplansky /C3

In this section, we consider the Jordan superalgebra D; = (F-e1+F-e3)+ (F-2+F-y),
and Kaplansky, K3 = (F-e) + (F-z+F-y).

We stress that D, is a simple Jordan superalgebra if ¢ # 0. If ¢t = 0, then Dy con-
tain /3. Unital irreducible bimodules over D; and K3 were classified by C. Martinez
and E. Zelmanov in [16] and by M. Trushina in [15]. In this section, we shall use the
examples, notations and ideas introduced by M. Trushina.

Let slo be a Lie algebra with the basis e, f,h and the multiplication given by
[f,h] =2f, [e,h] = 2e, [e, f] = h, where [a,b] = ab — ba.

We shall say that a module £ with the basis lg,[1,...,l, is an irreducible sls-module
with standard basis lg, l1, ..., 1, if

li-h=(n—29)l,
lore=0, li-e=(—in+i(i—1));—y fori > 0,
lnfzo, ll~f=l,'+1 for i < n.

By R, we denote the operator of right multiplication by a, we also denote it by the

capital letter A. One can easily check that the operators 12 X oY, lit X2, 1?H Y? span

the simple lie algebra sly. In terms of operators above, it is easy to see that a bimodule £

with basis lg, 1, ...,l, is an irreducible sly-module with the standard basis lg,l1,...,[,
if
14+t
LXoY = %(n — 20,
2 g 14+t s -
hX*=0, L X°= T(—m +i(i — 1)l;—1) for any i > 0, (40)

|
LY2=0, L,Y?= %zm for i < n.

In terms of right multiplication operators, equality (2) may be written as follows:

Ra,Ra,Ra, +(=1)"T* 7 R, Ro Ra, + (—1)""Riaap)a, =

(
Ro,Raja + (—1)7T* R, Ry o, + (—1)YRa,Rayay -

i

(41)

Substituting a; = ay = « and a; = e; (respectively a; = ay =y and a; = e1) in (41),
we obtain [X?, E] = 0 (respectively [Y2, E] = 0), where E denote R, .

6.1. Jordan superalgebra Dy
In this section, we shall prove the following theorem.

Theorem 14. Let A be a finite-dimensional Jordan superalgebra with a solvable radical
N such that N? =0, A/JN =Dy, t # —1, and N' € M(A/N; RegD;), where RegDy is a
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regular Dy-bimodule. Then there exists a subsuperalgebra S C A such that S = Dy and
A=SoN.

Proof. Using 3 and Theorem 1.1 in [15], we need to consider three main cases. Here,
80 :Fgl +F52 = (Dt)() and .Al/Nl :Fi"i’Fgg (Dt)h ./40 :SO@NQ.

Case 1. Let n be a positive integer and suppose t € R, ¢t # 0,1, —"T"‘Q

We assume that where No = L} @ L2 |, N1 = Lo ®Ly,. Here, L 1, L2 1, L0,
L, are the same as in Example 1 in [15].

It is easy to see that E |y, = 5, therefore €;-7 = —ac and e;-y = 2y Assume that there
exist scalars 35, Bf,, 83, B, € and &7 for i = —1,0,1,...,n and j = 0,1,...,n,

such that

n n
T=x+ f ym o+ B ,mY2 Y £y g, my?E =Y L my Ry,
k=1 k=1

(42)
=y + By _ym+ BY,my>"t Z 9 Y 2 — Z By ymY*LEY,
k=1
T-y=2¢ +tés+ Z( f/g ) y2k+lp 4 252,ymyzk+1 (43)
k=0 k=0
where ¥3, . = B354 + B, and 75, = B3,y + B
Now, we have T - y = €1 + teo, if and only if
0= (53 _ym+ B3 ,m my*" 2 4 Z V34, Y 2 Z ﬂjﬁka%_lEY) Y=
k=1 k=1
( _ym+ Y, mY?" T 4 273747ka2k — Z Bg7ka2k_lEY) - x+
k=1 k=1
Z(ffi’ _ gg,]g>my2k+1E + Eé&”’,’;’mY%“ _
k=0 k=0
Py _imY + Bgmmyznw + Z 7§,4,kmy2k+l + Z 5f,kmy2k+1E+ (44)
k=1 k=1

2
k=1

n

1+1¢ 1+tn+2 _
Z( kvs 4+ (=1) ¥54 k) my =14
-1

n+1 n+1

(1 — & ImY? T E 4 252 b_ymY Tl
=1 k=1



F.A. Gémez-Gonzdlez / Journal of Algebra 505 (2018) 1-32 27

Since o = 2(1+t)n+2 we have that

(14+t)(n+1)°

I 1+1)5Y no(l+t)3Y
LR, PR T

2 2 55:6’} mY + B, my 2

(I+t)(n+1)p4,
2

By 1+ aBi, +&0+ ] my 4

[(1+t)np,
2

-G | mYE [0 - G+ 1) my

)

1+t
[ﬂgvk—Q +affp_1 + Q[kzﬂg,k—l +a(k+ (=1)*(n+ DB+ &0 my

=

2

>
U
N

14+t)(n—(k-1))

M=

[6Z,k1 + Bik =& [ mY*TIE =0

2 .
k=2
(45)
Note that fixing the £’s in (43), we get
B =0, B = -l B, - el G
3,n ’ 4.n 2n 1,n> 4,1 (t—|— 1)7’L ’
Be = na(l + t)ﬁg,l - 25%,—1 - 253,’8
3,0 (1 +t) )
g —2(8% -1 +aBf, + &) (46)
3 (1+t)(n+1) ’
By = 2 —p2 R T P Y i ] k=2,...,n
4,k (1 i t)(n _ (k‘ _ 1)) 4,k—1 1,k—1 2,k—1]> ’ ’
1| =2085 o + By +&051)
y o == ’ ’ : —a(k+ (=1)* 1
B3 k-1 A 1+ alk+ (=1)%(n+1)Bax

such that equality (45) holds.

1 _ _ n_

Case 2. Let n be a positive integer, ; = —325. Consider the following cases: N =
Mn+1,n+2), N2 M(n+1,n), N= M) and ny # n. (See example 2 in [15].)

(A) Assume that N = M(n + 1,n + 2) where Nj is the irreducible sl3-module with
the standard basis lo, . .., I, and N is spanned by loz, loy, 119, - - -, lny-
Since E [pm, = %, then ¢;-7 = 1

B8 x> Bose -5 By B6.2» B5s -+ -, and B scalars such that

Z and €;-§ = 7. Assume that there exist {7, ..., £,
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n
x-y=-e1+teg+ Zfz’ylk,
k=0

n n
T=a+p,lor+ Y By, T=y+B lox+ Y By
k=0 k=0

We observe that ¥ -y = €1 + tes if and only if

0= e+ 55, () o (B

k=0

n—1

+z}%(£iglﬂ1 2}%(—%i10(%k+mn+m+mm@,

which gives rise to the system of equations

vw o (1t 1+t
0=2¢" 4065, (T) + 83 (T),

o=graay (B ) v (). (47)

0=V 4 B, (ﬂ> By (%) (=(k+ D)+ (k + k),

for k=1,2,...,n— 1. We note that the system (47) has always a solution.

(B) N =2 M(n+1,n) where N is the irreducible sly-module with the standard basis
lo,...,l, and N7 is spanned by Iz, ... lnx
As in the case (A) €T = %x e -y = 2y and there exist £, ...,£5Y € F such that
T-y=e +téy + ng’ylk. Let us find Bf and S} such that ¥ =z + >_;_, Bz, and
k=0
U=y+ -1 Bilez.
Now, we note that z -y = e + tes if and only if

0= e - 8t (%) kle— > 6 (%) (—kn -+ k(k — 1)),
k=0 k=1 k=1

which gives rise to the system of equations

» L (14t 1+t (48)
0= &Y —Bik (T) - Bi (T) (—(k+1Dn+ (k+ 1)k),

fork=1,2,...,n—1.

)
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System of equations (48) has always a solution.

(C) Finally, if N = Mv(nl), ny # n. This case is similar to Case (1), with the replace-
ment of n by ny.

Case 3. Let ¢ = 1. In this case, \ is isomorphic to M (n) or to a 1-dimensional vector

space with a generator m such that maz =0, me = %m. (See example 3 in [15].)

It only remains to consider the case when A is isomorphic to a 1-dimensional vector
space. The case when N' = M(n) is similar to Case (1). In particular we take ¢ = 1 in
equation (45). Now we shall consider two subcases:

(A) If m is an even vector, then Ny = F - m. Assume that = -y = €; + téa + nm, for
some 1 € F Since A7 = 0 we have T = x, § = y. Note that the equality Z -y = €1 + tea
holds if and only if n = 0. If we take a; = =, a; = y, ar = e1 and a; = e2 in the equality
(2) we obtained, 0 = ((Z - §)e1)es = ((e1 + tea + mm)e1)ez = Tnym and therefore, n = 0,
thus the WPT is valid.

(B) If m is an odd vector, then Ny = 0 and N} = F - m. Therefore, z - y = €1 + tés.
Let 2 =2z 4+ 8“m and y = y 4+ B*m, hence x - §y = €1 + tes is always solvable.

From Cases (1)—(3), we conclude that it is possible to give some conditions for 7, and
1, € N1, such that an analogue to WPT is valid under the Theorem conditions. O

6.2. Jordan superalgebra KCs

We shall proof the following theorem

Theorem 15. Let A be a finite-dimensional Jordan superalgebra with solvable radical N,
N2 =0 and such that AJN = K3. Then there exists a subsuperalgebra S C A such that
A/N=S and A=SaeN.

Proof. Since Theorem 3 and [15], we have to consider two cases, N' = RegKs and
N = Mv(n) But the second cases is analogous to case (1), for Dy, one can obtain an
analogue of equality (44) substituting ¢ = 0. This gives rise to the system of equations
equivalent to (46).

We consider N/ = RegK3. Assume that (K3)g = So = F-¢e1, (K3)1 =& A/N =
F-z2+F-g N=F-f+(F-u+F-z2), where f <> e, u <>z, z > y. Let T and y be some
preimages of & and y respectively and suppose that zy = e; +7nf for some n € F. Let «,
B, v and § be scalars such that £ = 2 + au + Bz and wy = y + yu + 0z. We note that

T -y = e if and only if a + § = 7. The equality is always solvable. O

Remark 2. In the case of the Jordan superalgebra K3 ®F -1 we have that the irreducible
bimodules are the same as the ones for the Jordan superalgebra KCs. In general, for any
algebra A there exist an isomorphism of category of bimodules over A, (Bimod .A) into
category of unital bimodules over A%, (Bimod A% ). Thus, the proof of the above theorem
is also true if we substitute K3 by 3 & F - 1.
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6.3. Counter-examples to WPT for Jordan superalgebras of type Dy, t # —1

Now we will show that restrictions imposed in Theorem 14 are essential.

Let B = A® N be a superalgebra, where Ag = F-e; +F-es +F-a; +F - as,
A =F-2+F - y+F-v+F - w,Ng=F-a;+F-ay and N; =F-v+F - w. All nonzero
products of the basis elements of B are defined as follows:

, 1 1
e; =e;, e€ia; =005, €T = 3% ey =3y,

(49)

_ 1 _ 1 _ 1 _
GE = FU, QY= S, GV G0, W = S,
Tw =0y =ay +tay, xy=e;+tex+a;+ (—2—1t)as (50)

for i = 0,1. The products in (49) and (50) commute and anticommute respectively and
t#£—1.

One easily verifies that B is a Jordan superalgebra, and B/ is a Jordan superalgebra
isomorphic to Dy, t # —1, NV = Reg D; and N 2 = 0.

Consider the product zy = e1 + tez + aay + Bagz. Replacing a; = ai, = z, a; = y and
a; = e in (2) we obtain ((zy) - z) - e1 — 2(xy) - @ = 0, thus we have 1 +¢+a + 8 =0,
later on aw + 8 = —1 — t and therefore, B is a Jordan superalgebra.

If we assume that the WPT is valid for B, then there are Z,y such that ¥ = =,
¥ =y (mod A1) and Ty = ey + teg, €, = 1T, e,y = 37.

We note that T =z +ov and § = y +ww. If T = 2 + ov + \w, using 22 = 0, we obtain
Azw = 0 and therefore A = 0. Now

Ty = xy + oyv + wrw = e1 +tes + a1 + (=2 — t)as — o(ay + tas) + w(ay + tas)

Therefore, 1 — 0 +w = 0 and (=2 —t) — ot + wt = 0, later on w — 0 = —1 and
0=(-2—-1t)+t(w—0)=—2—2t thus t = —1 and this is a contradiction.

7. Main theorem
Using Theorems 9, 13, 14 and 15, we have the following theorem:

Theorem 16. Let A be a finite dimensional Jordan superalgebra with solvable radical
N such that N? = 0 and A/N = J where J is a simple Jordan superalgebra. We
set M(F; N1, ..., M) = {V/V is a J-bimodule such that homomorphic images of V do
not contain subbimodules isomorphic to N for i = 1,2,...,t}. If one of the following
conditions holds:
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iii) J is a superalgebra of a superform with even part of dimension n such that N €
M(J;Cr/Cr—z (n is 0dd), u - Cp/u - Cr_s (0 is even));
iV) 3 = Dt, t 7& —1, N S im(Dt,'Reg Dt),'

then there is a subsuperalgebra S C A such that S =3 and A = S®N . The restrictions
of items iii) and i) are essential.
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