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Abstract. We have studied the behavior of the binding energy and photoionization cross-section of a donor-
impurity in cylindrical-shape GaAs-Ga0.7Al0.3As quantum dots, under the effects of hydrostatic pressure
and in-growth direction applied electric and magnetic fields. We have used the variational method under
the effective mass and parabolic band approximations. Parallel and perpendicular polarizations of the
incident radiation and several values of the quantum dot geometry have also been considered. Our results
show that the photoionization cross-section growths as the hydrostatic pressure is increased. For parallel
polarization of the incident radiation, the photoionization cross-section decreases when the impurity is
shifted from the center of the dot. In the case of perpendicular polarization of the incident radiation, the
photoionization cross-section increases when the impurity is shifted in the radial direction of the dot. For
on-axis impurities the transitions between the ground state of the impurity and the ground state of the
quantum dot are forbidden. In the low pressure regime (less than 13.5 kbar) the impurity binding energy
growths linearly with pressure, and in the high pressure regime (higher than 13.5 kbar) the binding energy
growths up to a maximum and then decreases. Additionally, we have found that the applied electric and
magnetic fields may favor the increase or decrease in binding energy, depending on the impurity position.

PACS. 71.55.Eq III-V semiconductors – 78.67.Hc Quantum dots

1 Introduction

Low-dimensional semiconductor heterostructures, such as
quantum wells (QW), quantum-well wires (QWW), and
quantum dots (QD), have received special attention in the
past three decades. The reason for this resides in the nu-
merous potential applications to sensors, optoelectronic
systems, control systems, single-electron transistors, and
infrared photo-detectors. In the case of QWs and QWWs,
it is known that for each state related to a special direction
of confinement, it is possible to associate a continuum of
states – this continuum arising from the free-particle so-
lutions corresponding to directions in which there is no
confinement. However, in the case of QDs, only a dis-
crete set of states – similar to those of a single atom –
are present, due to confinement in all directions of space.
Subbands (in the case of QW and QWW), and sets of
discrete states (in the case of QD), and their interactions
can be controlled by using electric and magnetic fields,
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changes in the incident laser radiation, hydrostatic pres-
sure, hydrostatic-pressure induced Γ−X mixing, or simply
by including shallow-donor and shallow-acceptor impuri-
ties that dope the quantum system.

Many works related to shallow-impurities states in
QW [1–9], QWW [10–15], and QD [16–26] have been re-
ported recently. In almost all the references cited above,
the calculations have been made in the effective-mass ap-
proximation and using variational techniques. In general,
these works provide a good interpretation of experimental
results associated with effects such us geometrical con-
finement, applied electric and magnetic fields, crossover
between the different conduction bands induced by hy-
drostatic pressure, and temperature, among others. Ap-
plied electric fields and a finite increase in temperature
are two useful ways, to obtain red-shifts in the optical
absorption and photoluminescence spectra [27,28]. In the
case of blue-shifts, it is useful to consider, for example,
the effects of applied magnetic fields and hydrostatic pres-
sure [29–33] to tune the value of the electrical field for
which the exciton-peak energy transition corresponds to
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spatially direct or indirect excitons [34–36]. The applied
electromagnetic field can destroy a preexisting symmetry,
or restore a broken symmetry. In this manner, in the case
of shallow impurities, the binding energy can be increased
or decreased, depending on the direction of the applied
electric and magnetic fields, and on the impurity posi-
tion in the heterostructures [8,10]. In the case of mag-
netic fields, generally their contribution is to increase the
binding energy due to the reductions in the radius of the
cyclotron orbits with the applied field. Associated with
the decreasing of the static dielectric constant with hy-
drostatic pressure, in semiconductors such as GaAs and
Ga1−xAlxAs usually hydrostatic pressure implies an in-
creasing in binding energy due to the reduction of the
carriers screening to the impurity center [9,14]. However,
in the high hydrostatic pressure regime, over the Γ − X
crossover for the barrier material, the binding energy de-
creases as the hydrostatic pressure increases, because of
the lowering of the barrier potential which confines the
carriers inside the heterostructure.

Theoretical studies about the photoionization cross-
section (PCS) in low dimensional semiconductor systems
have been the subject of great interest, due to its im-
portance to understand the optical properties of confined
carriers and to characterize the impurity states in the het-
erostructure. Among the different parameters to be con-
sidered when the PCS is calculated, we can mention: 1) the
confinement degree (2D in QW, 1D in QWW, and 0D in
QD) [37–39]; 2) the energy and polarization of the incident
photon; 3) the shape and geometrical dimensions of the
heterostructures; 4) the presence of applied electric [40]
and/or magnetic fields [41–43], and 5) hydrostatic pres-
sure and temperature [39]. All of them are largely respon-
sible for changes in the threshold energy for transitions
from the initial impurity states to final confined states
of the carriers, red- and blue-shifts in the structures of
the PCS, and widening of the peaks in the line-shape of
the PCS. Particularly, in the case of QDs, there are some
calculations about PCS for square, cylindrical, and spher-
ical geometries and take into account effects such us hy-
drostatic pressure and applied magnetic field [44–50]. Sali
et al. [44] and Ham et al. [45,46] have calculated the PCS
in QDs for on-center (on-axis) and off-center (off-axis) im-
purities, and show that, depending on the impurity posi-
tion and the polarization of the incident radiation, new
possibilities are allowed for selection rules. They have also
shown that, whereas the PCS depends on the photon en-
ergy, this dependence is dramatically influenced by dot
size. They showed that the photon energy at which the
PCS reaches a maximum is equal to the photoionization
threshold energy for any direction of the incident light po-
larization. Correa et al. [47,48] and Barseghyan et al. [50]
studied on-axis (on-center) impurities in the cylindrical
(spherical) QD; they found also that PCS diminishes as
the dimension of the QD heterostructure increases. In
spite of these works, there are no systematic studies con-
cerning the combined effects of hydrostatic pressure, ap-
plied electric and magnetic field, and polarization of the
incident radiation on the donor-related PCS in cylindrical

QDs with finite potential barriers in the radial direction
and no systematic study is known about impurities located
at all possible regions of the QD.

In the present work we extend our previous one [50]
and we perform a predictive study of the hydrostatic
pressure and applied electric and magnetic field effects
on the donor-impurity-related binding energy and PCS
in cylindrical-shape GaAs-Ga1−xAlxAs QDs considering
parallel and perpendicular polarizations of the incident
radiation and impurities located both on-axis and off-axis
inside the heterostructure. Our study about impurities
suggests the possibility of extending the allowed selection
rules for each polarization of the incident radiation. The
effective-mass and parabolic-band approximations have
been incorporated within a variational procedure. In Sec-
tion 2 we present the theoretical framwork. Our results
are presented and discussed in Section 3, and Section 4 is
for conclusions.

2 Theoretical framework

In the effective-mass approximation the Hamiltonian for
a hydrogenic impurity in a GaAs-Ga1−xAlxAs QD under
the influence of applied hydrostatic pressure (P ), electric
(F ) and magnetic (B) fields in the z-direction, is given by

H =
1
2

(
−̂→p +

e
−→
A

c

)
1

m(z, P, T )

(
−̂→p +

e
−→
A

c

)

+|e|Fz + V (ρ, z, P, T ) − e2

ε(P, T ) r
, (1)

where
−→
A is the vector potential and r =[|−→ρ −−→ρi |2 + (z − zi)2

] 1
2 is the distance from the

carrier to the impurity site [with (zi,
−→ρi) and (z, −→ρ )

the impurity and electron coordinates, respectively].
Here m(z, P, T ) is the z-, pressure-, and temperature-
dependent conduction effective mass and ε(P, T ) is the
pressure- and temperature-dependent static dielectric
constant. They are given by [51]

m(z, P, T ) =

{
mw(P, T ), if |z| ≤ L(P )/2,

mb(P, T ), if |z| ≥ L(P )/2,
(2)

and

ε(P, T ) = 12.74 × exp(−1.67 × 10−3 kbar−1P )

× exp
[
9.4 × 10−5 K−1(T − 75.6 K)

]
, (3)

with

mw(P, T ) =[
1 +

15020 meV
Eg(P, T )

+
7510 meV

Eg(P, T ) + 341 meV

]−1

m0, (4)

mb(P, T ) = mw(P, T ) + 0.083 xm0, (5)
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Eg(P, T ) the bulk GaAs bandgap, given by:

Eg(P, T ) =(
1519 + 10.7 kbar−1 P − 0.5405 K−1 T 2

T + 204 K

)
meV, (6)

m0 the free electron mass, and x (=0.3 in this work)
the alloy concentration. The dielectric constant mismatch
effects in GaAs-Ga1−xAlxAs QWs have been reported
and indicate that the main effects occur for small well
widths and high Al concentration [52]. Following Raigoza
et al. [51] we have used the same GaAs dielectric con-
stant along the whole heterostructure. V (ρ, z, P, T ) is the
confining potential, which is given by [3,4]

V (ρ, z, P, T ) =

⎧⎨
⎩

0, if ρ ≤ R(P ), |z| ≤ L(P )/2,
V0(P, T ), if ρ ≥ R(P ), |z| ≤ L(P )/2,
∞, if |z| ≥ L(P )/2,

(7)
where

V0(P, T ) ={
Γ(P,T )

b − Γ(P,T )
w , P ≤ P1,

X
(P,T )
b − Γ(P,T )

w + S0 x P−P1
P , P1 < P ≤ P2,

(8)

and P1 (=13.5 kbar) is the crossover pressure between the
Xb and the Γb conduction bands, P2 (=35 kbar) is the
crossover pressure between the Xb and the Γw conduction
bands, and T (=4 K in the present work) is the system
temperature. S0 (=250 meV) [3,4] is an adjustable param-
eter used to fit the predicted energy at P1 with the exper-
imental result. It is important to clarify that in this work
we have followed the model of Elabsy [3,4] by which the ef-
fect of the Γ−X crossover between the bands of the barrier
material, induced by the hydrostatic pressure, is described
by the pressure dependence of the height of the finite-
potential barriers that confine the carriers inside the het-
erostructure. Other methods, much more complex, have
previously been implemented [2,53–59]. In equation (7),
R(P ) and L(P ) give the pressure-dependent radius and
length of the cylindrical QD, and can be obtained by the
hydrostatic pressure dependence of the fractional change
in volume of the heterostructure [15,60].

To describe the effect of impurity, we used the varia-
tional method. The trial function for the ground state of
the impurity is written as the product between the first
sub-band, associated with the electron in the heterostruc-
tures, and a 1s-like hydrogenic function, of spherical char-
acter. In the present work, the 1s-like hydrogenic function
depends on only one variational parameter (e−α r). This
type of variational function has been widely used to cal-
culate the binding energy of shallow impurities and exci-
tons, the impurity- and exciton related optical absorption
and photoluminescence spectra, and the impurity-related
PCS, all of them in low dimensional systems such us QW,
QWW, and QD [1–50]. In all these previous references, the
authors have considered a wide range of external effects
such as electric and magnetic fields arbitrarily oriented

in the herostructure, and hydrostatic pressure and multi-
ple positions of the impurity within the heterostructures.
Comparisons between these variational calculations with
the available experimental findings have been reasonable
and therefore, we adopt this scheme in our work. Accord-
ingly we have chosen, as the variational ground impurity
state, the following function [61]:

Ψi(ρ, ϕ, z, α) = Ni Υ10(ρ)Φ1(z) e−α r, (9)

where Ni is a normalization constant, α is the variational
parameter,

Υ10(ρ) =⎧⎪⎪⎨
⎪⎪⎩

G1 × F
[
−mw(P,T )E10a2

H

�2 + 1
2 , 1, ρ2

2a2
H

]
, ρ ≤ R(P ),

U
[
−mb(P,T )(E10−V (P,T ))a2

H

�2 + 1
2 , 1, ρ2

2a2
H

]
, ρ > R(P ),

(10)

and Φ1(z) = Ai(Z)+G2×Bi(Z) inside the QD region and
zero elsewhere. (F , U), and (Ai, Bi) are the degenerate
hypergeometric and Airy functions, respectively, aH is the
magnetic length, G1 and G2 are constants obtained from
continuity condition of the wave function in the interfaces,
and Z =

[
2mw(P, T )eF/�

2
]1/3 [z − Ez1/(eF )]. Here E10

and Ez1 are the ground-state energies associated with the
ρ and z confinements. The impurity ground-state energy
is defined as

Ei = 〈Ψi(ρ, ϕ, z, αmin)|H |Ψi(ρ, ϕ, z, αmin)〉, (11)

where αmin is the value of α corresponding to the min-
imum of Ei. The impurity binding energy is defined as

Eb = E0 − Ei, (12)

where E0 is the ground-state electronic energy without the
impurity. We study only electric fields below 100 kV/cm.
The electron-impurity system always corresponds to a
bound system [62] and that is why the model with the
trial wave function that we used is a good choice to de-
scribe the Stark effect.

It is clear that our variational function gives a better
account of the impurity effects when the QD is not under
the influence of applied electric field and when the impu-
rity is located at the center of the QD. In this case, both
the axial and azimuthal symmetries are preserved. For QD
large sizes the variational wave function is not very differ-
ent from that for the exact spherically symmetric solution
of the problem under study. To determine the quality of
the trial wave function described above, we have calcu-
lated the dispersion of energy (ΔE = [〈H2〉 − 〈H〉2]1/2).
For all situations reported in this paper ΔE < 3%, Eb.
These results let us believe that the values obtained for 〈z〉
and 〈ρ cosϕ〉, between the initial and final states involved
in the PCS, will be reasonably well described. Because
our family of variational wave functions contains the ex-
act solution of the two- and three-dimensional hydrogenic
atom, it is understandable why when in our calculations
we take L → 0 with R → ∞ or L → ∞ with R → ∞
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the results are Eb = 4 effective Rydberg with ΔE = 0 or
Eb = 1 effective Rydberg with ΔE = 0, respectively. An-
other type of variational functions, with a larger number
of variational parameters could be implemented to further
describe the breaking of spherical symmetry associated
with the cylindrical shape of the QD where the carriers
are confined. Additionally, a much more elaborate calcu-
lation would consider the exact solution of the problem in
which the wave function for the correlated system is writ-
ten as a linear combination of the eigenfunctions of the
Hamiltonian without the Coulomb interaction. Moreover,
numerical solutions with methods for solving differential
equations could improve the numerical results reported
here. In the problem considered in this work we have taken
into account several approximations such us: 1) the effec-
tive mass with parabolic conduction bands; 2) the electric
field is only applied in the quantum dot region; 3) an in-
finite confinement potential in the z direction; and 4) we
have not taken into account the effects of an image charge
associated with the difference in the dielectric constant
between the QD and barrier materials in the radial di-
rection. With these approaches, it is clear that a method
of exact solution of the Schrödinger equation, or a varia-
tional calculation with a trial function with a large number
of variational parameters would be beyond the objectives
of this research.

The PCS describing the transitions from the impurity
ground-state |Ψi〉 to the final state |Ψf 〉 in the dipole and
effective-mass approximations is given by [39,41,43]

σ(ω, P, T ) =

Ω
∑

f

∣∣∣〈Ψi

∣∣∣−→ζ · −→r
∣∣∣Ψf

〉∣∣∣2 δ (Ef − Ei − �ω),

(13)

where

Ω = Ω(P, T )

= 4π2α
F S

ε−1/2
w (P, T )�ω

(
Eeff

Λ

)2(
mw(P, T )

m0

)2

,

(14)

αF S = e2/(�c) is the fine structure constant, �ω is the
photon energy, Eeff is the effective electric field on the
impurity, Λ is the average field,

−→
ζ is the light polarization

vector, m0 is the free electron mass, and Ef and Ei are the
energies of the final and initial states. The final state is the
eigenfunction of the Hamiltonian in equation (1) without
the impurity potential term (last term at the right) which
is given by

Ψf (ρ, z) = Nf Υ10(ρ)Φ1(z). (15)

Here Nf is a normalization constant. We have considered
the case in which the polarization vector is directed along
the z axis (parallel polarization); in this case the selec-
tion rules for the matrix element of the dipole moment
indicate that we must consider those transitions from the

first impurity state to the ground state of the cylindrical
QD. The PCS may then be written as Δ × I1 for paral-
lel polarization of the incident radiation and Δ × I2 for
perpendicular polarization, where

Δ = Ω × Γ

π
[
(Eb − �ω)2 + Γ2

] , (16)

I1 = N2
i N2

f

∣∣∣∣∣
∫ +L/2

−L/2

∫ ∞

0

×
∫ 2π

0

z |Υ10(ρ)|2 |Φ1(z)|2 e−α rρ dρ dz dϕ

∣∣∣∣
2

,

(17)

and

I2 = N2
i N2

f

∣∣∣∣∣
∫ +L/2

−L/2

∫ ∞

0

×
∫ 2π

0

ρ cosϕ |Υ10(ρ)|2 |Φ1(z)|2 e−α rρ dρ dz dϕ

∣∣∣∣
2

.

(18)

Here Γ (=0.4 meV in this work) is a Lorentzian param-
eter. According to equation (18), when the polarization
vector is directed along the y-axis, the transitions from
the ground impurity state to the first band are forbid-
den. These transitions are forbidden also when the donor
impurity is located on the z-axis (ρi = 0 ).

3 Results and discussion

In Figures 1–4 we present our results for the bind-
ing energy as a function of the hydrostatic pressure in
cylindrical-shape GaAs-Ga0.7Al0.3As QDs considering dif-
ferent values of the dot size (R and L), external applied
electric and magnetic fields, and donor impurity positions.
For the parameters used in the present calculation see, for
example, Correa et al. [39] and references therein.

In all cases that we studied, the binding energy in-
creases linearly with pressure up to 13.5 kbar, mainly due
to the fact that for this pressure regime the barrier height
remains constant. For higher pressure values, the bind-
ing energy reaches a maximum and then decreases, be-
cause the potential barrier decreases monotonically as the
pressure increases. For the complete range of hydrostatic
pressure we are considering, the following effects are also
observed: 1) the electron-effective mass is an increasing
function of pressure, which itself increases the binding en-
ergy; 2) the static dielectric constant is a decreasing func-
tion of pressure, which itself increases the Coulomb in-
teraction and, consequently, increases the binding energy;
and 3) the dimensions of the dot decrease with pressure,
and this forces the binding energy to increase or decrease,
depending on whether the system is in the high or low
confinement regime.
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Fig. 1. Binding energy of a donor impurity in cylindrical-shape
GaAs-(Ga, Al)As quantum dot (R = 100 Å, L = 200 Å) as a
function of the hydrostatic pressure. Several impurity positions
(zi, ρi) have been considered: (0, 0) (a), (0, R/4) (b), (0, R/2)
(c), (0, 3R/4) (d), and (0, R) (e). Solid, dashed, and dotted
lines are for 10 T, 20 T, and 30 T, respectively, for the external
applied magnetic field. Results are for two different strengths
of the applied electric field, 10 kV/cm and 100 kV/cm.

In Figure 1 we present the hydrostatic pressure de-
pendencies of the binding energy for several values of the
applied magnetic field and the radial-impurity coordinate,
ρi. From Figures 1a–1c it is clear that with increasing mag-
netic fields the binding energy increases as the carrier is
much more localized along the axis of the dot; such ef-
fect is more apparent for the smaller values of the radial-
impurity coordinate. When the impurity is shifted from
the QD axis to ρi = 3R/4 or ρi = R, the binding en-
ergy decreases with increasing magnetic field, due to the
smaller probability for the electron to be near the impu-
rity. In this last case the effect of the applied magnetic
field is to localize the carrier along the z-axis of the dot
and far from the impurity center, with the corresponding
reduction of the binding energy. In Figure 1, the bend-
ing of the curves is larger for lower magnetic field induc-
tion and lower impurity coordinate values. The bending
of these curves can be understood as an effect of the mag-
netic field pushing the carriers along the axial direction of
the dot. For ρi = 3R/4 or ρi = R (see Figs. 1d and 1e) and
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Fig. 2. Binding energy of a donor impurity in cylindrical-shape
GaAs-(Ga, Al)As quantum dot (R = 100 Å, L = 200 Å) as a
function of the hydrostatic pressure. Several impurity positions
(zi, ρi) have been considered: (−L/2, 0) (a), (+L/2, 0) (b),
(−L/4, 0) (c), (+L/4, 0) (d), and (0, 0) (e). Solid, dashed, and
dotted lines are for 10 kV/cm, 50 kV/cm, and 100 kV/cm, re-
spectively, for the external applied electric field. Solid and open
symbols denote, respectively, 10 T and 30 T for the external
applied magnetic field.

for fixed values of the impurity coordinate with increas-
ing magnetic field the binding energy decreases. With in-
creasing magnetic field the delocalization of the electron
is decreasing (Coulomb interaction is weaker). From Fig-
ures 1d and 1e it is clear that with increasing pressure the
binding energy increases monotonically (no bending). Be-
cause in this case the localization of the electron is caused
basically by magnetic field effects, we understand that the
behavior of the curves is caused mainly by the increasing
of the effective mass with the hydrostatic pressure. Be-
cause all the results in Figure 1 are reported for the impu-
rity at zi = 0, with the increasing of the applied electric
field also there is an increasing in the expectation value of
the electron-impurity distance along the z-direction with
the corresponding decreasing of the binding energy, as can
be observed by comparing the results at 10 kV/cm and
100 kV/cm.
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Fig. 3. Binding energy of a donor impurity in cylindrical-shape
GaAs-(Ga, Al)As quantum dot (R = 200 Å) as a function of the
hydrostatic pressure. Several impurity positions (zi, ρi) have
been considered: (−L/2, 0) (a), (+L/2, 0) (b), (−L/4, 0) (c),
(+L/4, 0) (d), and (0, 0) (e). Solid, dashed, and dotted lines
are for L = 50 Å, L = 100 Å, and L = 150 Å, respectively. The
results are for B = 10 T and F = 10 kV/cm.

We calculated the effect of the hydrostatic pressure on
the binding energy of a donor impurity located at several
axial positions (zi); we did this for the case of cylindrical-
shape QD, and for several values of the applied electric
field; our results are displayed in Figure 2. From Fig-
ures 2a–2c, when the impurity is shifted from the center
of the dot and in the same direction of the applied electric
field, it is clear that for fixed values of the impurity co-
ordinate the binding energy decreases with the increasing
of the electric field. The explanation of this behavior can
be as follows. The electric field forces the electron to leave
the impurity, this causes an increasing in the expectation
value of the electron-impurity distance, and this is accom-
panied by a reduction of the Coulomb interaction. When
the zi increases, the localization of electron diminishes and
the binding energy decreases. The opposite behavior is ob-
served when the impurity is shifted in the −z direction, as
shown in Figures 2a, 2d, and 2e. In this last case, the elec-
tric field reduces the electron-impurity distance with the
corresponding increasing in the binding energy, and this
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Fig. 4. Binding energy of a donor impurity in cylindrical-shape
GaAs-(Ga, Al)As quantum dot (L = 200 Å) as a function of
the hydrostatic pressure. Several impurity positions (zi, ρi)
have been considered: (0, 0) (a), (0, R/4) (b), (0, R/2) (c), (0,
3R/4) (d), and (0, R) (d). Solid, dashed, and dotted lines are
for R = 100 Å, R = 150 Å, and R = 200 Å, respectively. The
results are for B = 10 T and F = 10 kV/cm.

happens because the infinite potential barrier in z = −L/2
repels the wavefunction. Because all the results in Figure 2
are reported for the impurity at ρi = 0, with the increasing
of the applied magnetic field there is a decreasing in the
expectation value of the electron-impurity distance along
the radial-direction with the corresponding increasing of
the binding energy, as can be observed by comparing the
results at 10 T and 30 T.

Figures 3 and 4 show the dependencies of the binding
energy with the hydrostatic pressure for different values of
the cylindrical-shape QD length and radius, respectively.
In all cases, and for fixed values of the impurity coordi-
nate, the binding energy decreases when the radius and
length are increased. The binding energy decreases due
to the reduction of the geometrical confinement. The be-
havior with the axial and radial impurity positions is in
accordance with the physical analysis in Figures 1 and 2.

In Figure 5 we present the impurity-related PCS as
a function of hydrostatic pressure in the case of parallel
polarization of the incident radiation, for several values
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Fig. 5. Donor impurity related photoinization cross section
in cylindrical-shape GaAs-(Ga, Al)As quantum dot (R =
100 Å, L = 200 Å) as a function of the hydrostatic pressure
and for parallel polarization (with respect to the z-axis of the
dot) of the incident radiation. The results are for B = 10 T
and F = 10 kV/cm. The impurity is shifted along the axial (a)
and radial (b) direction of the dot. In each curve for the energy
of the incident photon we take �ω = Eb|P=0 . The lateral Fig-
ures 1 and 2 are, according with equations (16) and (17), for
the pressure dependence of Delta and I1 for impurities located
at (0, 0), (−L/2, 0), and (0, R).

of the impurity position. For the calculations that led to
those figures, we supposed that the energy of the incident
photon is equal to the impurity binding energy at zero
pressure. In all the cases considered, the PCS increases
with increasing pressure, and this is due to the linear in-
creasing of the electron effective mass, see equations (2),
(12) and (13); inspection of the curves reveals that for
smaller values of the impurity coordinate this behavior is
larger, because the electron is more localized and in these
conditions the influence of the hydrostatic pressure effect
is bigger. From Figure 5 it is clear that the PCS increases
(decreases) when the impurity is shifted towards the −z
(+z) direction. This effect is dominated by the expectation
value of z between the initial and final states, represented
by I1 in equation (17) and depicted in the lateral Fig-
ure 2. Note that as effect of the electric field the electron
is pushed towards the impurity when zi is negative and far
from the impurity when zi is positive. Finally, when the
impurity is shifted along the radial direction the PCS de-
creases mainly due to the diminishing in the Δ-parameter
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Fig. 6. Donor impurity related photoinization cross section in
cylindrical-shape GaAs-(Ga, Al)As quantum dot (R = 100 Å,
L = 200 Å) as a function of the hydrostatic pressure and for
perpendicular polarization (with respect to the z-axis of the
dot) of the incident radiation. The results are for B = 10 T
and F = 10 kV/cm. The impurity is shifted along the radial
direction of the dot. In each curve for the energy of the incident
photon we take �ω = Eb|P=0 . Figures 1 and 2 in the right and
bottom panels are, according with equations (16) and (18), for
the pressure dependence of Δ and I2 for impurities located at
(0, R/2) and (0, R/4).

represented in equation (16) and depicted in the lateral
Figure 1.

Our calculation for the effect of the hydrostatic pres-
sure on the PCS for different values of radial-impurity co-
ordinate for perpendicular polarization of the incident ra-
diation is displayed in Figure 6. Again, for the calculations
that led to this figure, we supposed that the energy of the
incident photon is equal to the impurity binding energy
at zero pressure. Again, the PCS increases with increasing
pressure, as happened in Figure 5. This effect is mainly
associate to the increasing of the Δ-parameter with the
hydrostatic pressure, as is shown in Figure 1. According
with the increasing of the effective mass with the hydro-
static pressure, there is an increasing in the Γ-parameter
– equation (14) – and finally in the Δ-parameter. For
P = 30 kbar and for radial impurity positions lower than
3R/4, the PCS is a growing function with the increasing of
ρi due to the increasing of the expectation value of ρ cosϕ
between the initial and final states, as can be observed by
comparing the results for I2 in the two lateral Figure 2.
For ρi = R the PCS decreases mainly due to the increas-
ing of the binding energy. In this case, because the barrier
height is close to zero, the electron wavefunction is almost
symmetrical around the impurity position with the corre-
sponding increasing in the Coulomb interaction. A similar
increasing and decreasing behavior with the impurity po-
sition is observed at P = 0. Note that in accordance with
equation (18), the PCS is exactly zero for ρi = 0.
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4 Conclusions

We studied the behavior of the donor-impurity related
binding energy and PCS in a cylindrical-shape QDs, under
the effects of hydrostatic pressure and in-growth direction
applied electric and magnetic fields. In our calculations
we used the effective mass and parabolic bands approx-
imations within a variational scheme. Several values for
the structure dimensions were considered, too. Our re-
sults show that in the regime of low pressure (less than
the corresponding value to the Γ − X crossover for the
barrier material) the impurity binding energy growths lin-
early with the pressure. We also showed that in the high
pressure regime (larger than the corresponding value to
the Γ − X crossover for the barrier material) the bind-
ing energy growths up to reach a maximum and then de-
creases. We additionally found that the applied electric
and magnetic fields may favor the increase or decrease in
the binding energy, depending of the impurity position.
Also, we found that for the parallel and perpendicular po-
larization of the incident radiation, the PCS growths with
the hydrostatic pressure. Our results suggest that for par-
allel polarization of the incident radiation, the PCS can in-
creases or decreases depending of the axial direction along
which the impurity is shifted from the center of the dot.
In this case of parallel polarization, the PCS always de-
creases with radial displacements of the impurity. In the
case of perpendicular polarization of the incident radia-
tion, the PCS is a complicated function of the impurity
position along the radial direction of the dot showing that
the PCS decreases when the impurity is placed close to
the axis of the dot or near to the cylindrical boundary.
Both for parallel and perpendicular polarizations of the
incident radiation, the PCS drops to zero when the axial
or radial symmetries are preserved, respectively.
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55. M.E. Mora-Ramos, S.Y. López, C.A. Duque, V.R. Velasco,

Phys. Stat Sol. (c) 4, 418 (2007)
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Porras-Montenegro, L.E. Oliveira, Phys. Rev. B 51, 2259
(1995); E.C. Niculescu, Mod. Physics Lett. B 14, 1073
(2000)

62. D.S. Chemla, J. Lumin. 30, 502 (1985)


	Introduction
	Theoretical framework
	Results and discussion
	Conclusions
	References

