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Abstract
Fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using vinasses–molasses mixture is 
carried out in this work by implementing different process systems engineering tools. Two fed-batch strategies are tested 
experimentally at 5 L scale, considering only offline information: (1) offline optimizing control and (2) exponential feeding. 
Application of these strategies showed that different feeding profiles result in different dynamic behaviour, influencing both, 
yield and biopolymer properties. As offline-based feeding strategies do not consider information of the culture status, they 
cannot deal with uncertainties. Therefore, a closed loop control strategy was implemented, which uses biomass and substrate 
information predicted online by soft-sensors. Results demonstrated the technical feasibility to produce biopolymer using a 
75/25%vol. vinasses–molasses mixture. Successful implementation of the soft-sensor-based control strategy was evidenced 
at pilot plant scale, where sugar concentration was kept almost constant for 14 h, while obtaining the desired copolymer. 
Thus, proposed control strategy could be of interest at industrial-scale.
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Introduction

Polyhydroxyalkanoates (PHAs) are polymers of biological 
origin, claimed to be an environmentally friendly option 
for replacing petroleum-based plastic materials in a wide 
number of applications. However, production costs of these 
materials are still higher when compared to petroleum-based 
plastics, preventing the expansion of this biopolymer indus-
try, in spite of its innumerable environmental advantages. 
Therefore, in the past years, many efforts from the academic 
field have been done in order to improve the technical and 
economic feasibility of the process [1]. Some of these 
efforts have focused on using alternative low-cost substrates 
[2–5]. Other works have focused on using tools from the 
process systems engineering (PSE), in order to address the 

modelling, optimization and control of the process, towards 
increasing its productivity [6–10]. Recently, some references 
[4, 5] have reported the use of vinasses as low-cost substrate 
for producing PHA-type biopolymers, which is attractive 
in terms of using such kind of waste for obtaining a high 
valuable product. The main interest on exploring the use of 
vinasses is that they are a residual liquid obtained in very 
high amounts as by-product of the ethanol industry. As an 
example, the sugarcane-based bio-ethanol industry generates 
around 10–15 litres of vinasses per litre of ethanol produced 
[11]. This means that only in Brazil, which is the largest eth-
anol producer from sugarcane worldwide, between 2011 and 
2012, 492.70 million tons of sugarcane were processed, pro-
ducing 12.7 billion litres of hydrated ethanol and 190.7 bil-
lion litres of vinasses [12]. Vinasses are commonly used as 
fertilizer and soil conditioner in sugar cane fields [11, 13], 
and although they are not considered a hazardous waste, they 
are indeed a complex recalcitrant wastewater. Therefore, 
their discharge into the environment can contaminate the 
soil and groundwater [11], which is a serious environmental 
concern, especially when considering the high amount of 
vinassses produced worldwide. Therefore, it is important to 
explore alternatives for using such wastes and convert them 
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into higher value-added products. In this direction, vinasses 
have been used for biogas production [14] and for PHA pro-
duction [4, 5]. In the case of PHAs obtained from vinasses, 
production of PHA biopolymers has been reported by Halo-
arcula marismortui [4] and Haloferax mediterranei [5]. The 
former work reported that obtained PHA was very similar to 
the standard poly(3-hydroxybutyrate) (P3HB) from Sigma, 
whereas the latter reported obtaining the co-polymer poly-
3-(hydroxybutyrate-co-hydroxyvalerate). Furthermore, pro-
duction of poly(3-hydroxybutyrate) by Cupriavidus neca-
tor, using as raw material a mixture of cane molasses and 
vinasses has been recently reported by Acosta-Cárdenas 
et al. These authors found that the most suitable proportion 
of molasses/vinasses mixture was 25/75%vol [15]. As it has 
been reported, vinasses are characterized by their low pH, 
dark brown color and high content of ashes and dissolved 
organic and inorganic matter [16]. It is important to notice 
that vinasses also contain a considerable number of inor-
ganic salts (i.e. sulfates, phosphates). Precisely, this high 
salt content allows carrying out the PHA production without 
supplementing additional nutrients. Therefore, producing 
PHAs by using vinasses has two main advantages: (1) costs 
related to nutrients and raw materials are reduced and, (2) 
giving a different use to such waste would reduce the envi-
ronmental impact caused by the bioethanol industry.

Production of PHAs using a vinasses–molasses mixture 
is carried out in this work in batch and fed-batch operation. 
As it is known, an important fact in fed-batch fermentations 
is the definition of the feeding strategy. Different strategies 
have been reported in the literature for calculating the feed-
ing profile of nutrients in fed-batch fermentations [17]. The 
work in Ref. [18] shows an excellent review on the topic of 
control strategies for manipulating the feed rate in fed-batch 
fermentation processes. Although academic developments 
in this field go up to the use of the model-based predictive 
control (MPC) strategy, it can be noticed that at industrial 
level, carbon-limited fermentation processes are still oper-
ated following any open loop strategy [19]. There are two 
main reasons for this: (1) additional investment costs for 
implementing a closed loop control strategy are required 
(hardware and software) and (2) the absence of reliable 
online measurements for key process variables: biomass, 
substrate and metabolite concentrations. These reasons pre-
vent the application of closed loop control strategies to fed-
batch fermentations at industrial level and, therefore, open 
loop control is the current approach [18, 20]. Open loop 
control applies a predefined feeding profile, which is calcu-
lated taking into account the initial process conditions and 
the defined operating point, without using any information 
of the actual process state. Therefore, although less expen-
sive, open loop control is not able to reject disturbances to 
the system, which is one of the reasons of the variability 
observed from batch to batch in bioprocesses.

This work is directed to contribute towards the improve-
ment of the technical and economic feasibility of the biopol-
ymers industry, by using a vinasses-molasses mixture as 
low-cost raw material (impacting the process economy) and 
by implementing Process Systems Engineering tools (i.e. 
modelling and control) for improving the process perfor-
mance. Some species of bacteria that produce Polyhydroxy-
alkanoates, such as Cupriavidus necator, Azohydromonas 
australica and recombinant Escherichia coli, have been used 
for producing this type of bio-polymers at industrial scale 
[21]. Following previous results reported in reference [15], 
a mixture of vinasses and molasses in a ratio 75/25%vol., 
respectively, is used for producing PHAs by Cupriavidus 
necator ATCC 17699. For controlling the process, two open 
loop strategies are compared: an offline optimizing control 
strategy and the commonly used exponential feeding strat-
egy. As it will be shown, using these two different feeding 
strategies has led to obtain biopolymers with different char-
acteristics. Furthermore, it was observed that operating the 
process in an open loop strategy is not optimal at all. There-
fore, a closed loop strategy is proposed which relies on the 
use of soft-sensors that only require online measurement of 
O2/CO2 at the exhaust gas.

Materials and methods

In this study, the fermentation of sugars present in a 
vinasses-molasses mixture by Cupriavidus necator ATCC 
17699 to produce PHBV has been carried out at 5 L and 
500 L scale. Both bioreactors are stirred tanks and have the 
same geometrical similarity.

Pre‑treatment of vinasses

Vinasses used in this study were obtained from a Colom-
bian sugarcane factory located in the Valle del Cauca region, 
which produces ethanol from sugarcane molasses. The 
vinasses were stored in a freezing room at 4 °C. Based on 
a previous work [15], a mixture of vinasses and molasses 
(75/25%vol. respectively) was prepared in order to obtain an 
initial total sugars (i.e. fructose, glucose and sucrose) con-
centration of ~ 20 g/L. Before fermentation, the mixture of 
vinasses–molasses was heated at 80 °C for 6 h. Afterwards, 
the pH was adjusted to 3.5. This process was performed 
in order to sterilize the medium and to precipitate organic 
wastes.

Strain and cultivation conditions

Cupriavidus necator ATCC 17699 was purchased from 
ATCC (Manassas, VA, USA) through CES University 
(Medellín, Colombia). They remained cryopreserved at 
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− 20 °C in TSB medium (formula per Liter Purified Water: 
Tryptone 17.0 g, Soytone 3.0 g, Glucose 2.5 g, Sodium 
Chloride 5.0 g and Dipotassium Phosphate 2.5 g) and 30% 
glycerol in 1.5 mL vials. The inoculum used for the reactor 
culture was prepared in 1 L Erlenmeyer flasks with a volume 
of TSB medium corresponding to 10% of the reactor work-
ing volume. Vials containing the cryopreserved cells were 
taken and brought to room temperature. Then, it was inocu-
lated in TSB medium and incubated in a shaker at 30 °C and 
150 rpm for 12 h. The culture medium used is a combina-
tion of sugarcane vinasses–molasses in a ratio 75/25%vol, 
respectively, as suggested by Ref. [15]. Batch experiments 
were carried out in a 5 L New Brunswick BioFlo/CelliGen 
115 bioreactor. The open loop fed-batch experiments were 
carried out in the same reactor as the batch experiments. 
The proposed closed loop strategy for the fed-batch fer-
mentations was implemented in a 500-L fermentor located 
at the Microbiology School at Universidad de Antioquia 
(Medellín, Colombia). All experiments included pH, tem-
perature and dissolved oxygen control at 7, 30 °C and 40%, 
respectively.

Analytical methods

Samples for cell dry mass, polymer and sugars quantifica-
tion were taken every four hours. Cell dry mass (CDM) was 
determined using a 1-ml culture which was centrifuged in 
a 1.5-mL vial for 10 min at 4722g. The supernatant was 
decanted into a new tube and stored in a freezer for subse-
quent sugars analysis. The vial containing the sediment was 
refilled with 1 mL distilled water for a second centrifugation. 
The second supernatant was discarded and the pellet was 
suspended in distilled water and poured into a pre-weighed 
vial. The tube was placed in an oven at 80 °C for 12 h (until 
constant weight) in order to determine biomass concentra-
tion [5]. For the analysis of the sugars, high-performance 
liquid chromatography (HPLC) Agilent Technologies 1200, 
model 61362A, with an ionic separation column Animex 
HPX-87H, 300 × 7.8 mm was used. Samples were centri-
fuged at 3615g for 5 min and aliquots of the supernatant 
were taken, which were diluted in mobile phase (sulfuric 
acid 0.008 N). Each diluted sample was run through 0.2 µm 
regenerated cellulose filters and injected under the follow-
ing conditions: 20 µL sample, 0.6 mL/min flow, 35 °C and 
12 min run time. All samples were analysed in triplicate. 
For the PHA quantification, a solvent extraction protocol 
was used as follows [22, 23]: Samples were centrifuged at 
5331g and 30 °C for 10 min. Biomass recovered was mixed 
with a hypochlorite (15%)–chloroform solution (2:1 ratio), 
at 30 °C, 120 rpm during 90 min, in shaker. The mixture 
was left in repose overnight and three phases were formed: 
hypochlorite, cellular debris and chloroform with dis-
solved polymer. The phase containing the chloroform with 

dissolved polymer was decanted and separated by rotoevapo-
ration. Finally, the polymer was dried in an oven at 60 °C for 
12 h and was weighed in analytical balance.

Polymer characterization

For characterizing the molecular structure and functional 
groups present on the obtained polyhydroxyalkanoate, Fou-
rier transform infrared spectroscopy (FTIR) was used. Sam-
ples were characterized in a spectrometer Shimadzu-Affin-
ity-1, by using KBr pellets in the range of 400–4000 cm− 1 at 
a spectral resolution of 4 cm− 1, where 15 scans per run were 
used. The obtained spectrum was compared with a com-
mercially available PHBV standard from Sigma (Poly(3-
hydroxybutyric acid-co-hydroxyvaleric acid), natural ori-
gin, PHV content 12 mol %- CAS number: 80181-31-3). 
Differential Scanning Calorimetry (DSC Q100 from TA 
Instruments) was used for determining the thermal charac-
teristics of the produced polymer. A standard method was 
adopted following the next described temperature program: 
samples were heated from environmental conditions (25 °C) 
up to 200 °C at a rate of 50°C/min. At 200 °C, temperature 
was kept constant for 2 min. Then, it was cooled to − 80 °C 
at a rate of − 20 °C/min, keeping this temperature for two 
minutes. Finally, the sample was heated again up to 200 °C 
at a rate of 10°C/min. The melting peak (Tm) and the glass 
transition temperature (Tg) were obtained from the second 
heating ramp. Additionally, NMR was used for the deter-
mination of the polymer structure. The NMR was carried 
out using a Bruker equipment (Ascend III HD 600 MHz) 
with deuterated chloroform as solvent. The obtained polymer 
was identified as a co-polymer P(3HB-co-3HV). Determina-
tion of the 3-hydroxyvalerate (3HV) content was carried out 
using Eq. (1), where area CH3(3HV) denotes the area under 
the peaks at 0.79 ppm (corresponding to the absorption of 
the methyl group from the 3-hydroxyvalerate), whereas area 
CH3(3HB) denotes the area under the peaks correspond-
ing to 1.2 ppm [absorption of the methyl group from the 
3-hydroxybutyrate (3HB)]:

Results and discussion

Fed‑batch open loop control strategy at 5 L

In this section, results obtained when applying open loop 
control by using two different strategies (1) offline optimizing 
control and, (2) exponential feeding, are compared. Since the 
optimizing control approach requires a model of the process 
in order to be implemented, the model used is introduced first. 

(1)

%3HV =
area CH3 (3HV)

area CH3 (3HV) + area CH3 (3HB)
× 100%.
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Then, a comparison between the applied open loop control 
strategies is shown.

Unstructured model

The developed model is based on the works by Amicarelli 
et al. [24] and Chatzidoukas et al. [25]. The model is described 
by Eqs. (2–8), where the dynamic equations describing the 
behaviour of the biomass (X), substrate (S) (as total sugars, i.e. 
fructose, glucose and sucrose in the vinasses-molasses mix-
ture), biopolymer (P), nitrogen-source (N), dissolved oxygen 
(O2L) and the volume are given. The specific growth rate (µ) 
is a function of carbon/nitrogen ratio and the dissolved oxygen 
concentration, following a sigmoidal relationship. F and Fair 
correspond to the feed flow rate of the substrate (sugars in the 
vinasses–molasses mixture) and air, respectively. Sin and Nin 
correspond to the sugars and nitrogen concentrations at the 
feed. Finally, V is the fermentation volume. Model parameters 
are described in Table 1.
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First three terms in Eq. (4) consider substrate consumption 
due to biomass synthesis, maintenance and polymer produc-
tion, respectively. Polymer production is represented by the 
first two terms in Eq. (5), accounting for a growth-associated 
and a non-growth-associated terms, respectively. Nitrogen-
source dynamic behaviour represented by Eq. (6) considers 
nitrogen consumption due to biomass synthesis and mainte-
nance. Finally, Eq. (7) shows the dynamic for the dissolved 
oxygen concentration where mass-transfer limitation phenom-
ena have been negligible. The oxygen uptake rate is calculated 
as the contribution of the oxygen consumption rate for residual 
biomass growth/and maintenance (third term), and for polymer 
production in the cells (fourth term) [25]. The model contains 
16 parameters. For identifying those parameters, a hybrid 
strategy combining the simulated annealing and the interior 
point method was used. The objective function for parameter 
identification is given by Eq. (9).

where SSWR represents the sum of squared weighted residu-
als, n and m are the total number of experimental data points 
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Table 1   Parameters for the 
unstructured model

Symbol Description Value

�m (h− 1) Maximum specific growth rate 0.803 ± 0.078
Ksr Saturation constant 6 × 10− 5

nk Dimensionless exponent 5.01 ± 3.822
Sm (gN/gS) Maximum value of substrate at which complete inhibition occurs 0.011
Kox (gO2/gX) Oxygen limitation constant 0.00118
Csx (gS/gX) Consumption coefficient for residual biomass synthesis 2.066 ± 0.772
Rcsx (gS/gX h) Substrate consumption rate for maintenance 0.00837
Csp (gS/gP) Consumption coefficient for polymer production 1.559 ± 2.081
K1 (gP/gX) Yield of product respect to biomass 0.028 ± 0.036
K2 (gP/gX h) Product consumption rate 0.045
Cnx (gN/gX) Nitrogen-source consumption coefficient for residual biomass synthesis 0.14792 ± 0.073
Rcnx (gN/gX h) Nitrogen-source consumption rate for maintenance 0.209 ± 0.165
K
L
 (h− 1) Aeration constant 0.05313 ± 0.05

K3 (L/gX) Kinetic constant 76.421 ± 0.533
K4 (L/gP) Kinetic constant 55.268 ± 26.866
O2,loeq (g/L) Dissolved oxygen concentration at saturation 0.002 ± 0.001
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and variables, respectively. Wj is a normalization factor for 
each variable. Δij is the difference between the predicted 
and experimental data. The estimated model parameters are 
given in Table 1. Figure 1 shows a comparison between the 
model predictions and the experimental data taken during 
fed-batch operation following the feeding profile given in 
Fig. 1d. As it can be observed, model predictions are in good 
agreement with the experimental data.

Experimental results for open loop control: offline 
optimizing control vs. exponential feeding

As it was mentioned, two open loop control strategies were 
implemented in order to compare their effect on the process 
dynamic behaviour and on the characteristics of the final 
obtained polymer. For implementing the offline optimizing 
control, a Dynamic Optimization (Dyopt) problem was solved 
in order to calculate the feeding profile required for increasing 

the process productivity, while fulfilling the constraints. For 
solving the Dyopt problem, the control vector parameterization 
approach was used [26]. A piecewise constant parameteriza-
tion for the feed flow rate was used, which is described by 
Eqs. (10–11).

where m = 6 is the number of steps pre-defined. umax and umin 
correspond to the maximum and minimum values for each 
step (magnitude of each step in L/h). The aiok is the vector 

(10)F =

m∑
j=1

aiok�
(
ti−1, ti

)(
umax − umin

)
+ umin,

(11)𝜑
�
ti−1, ti

�
=

⎧
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1, ti−1 ≤ t < ti
0, t ≥ ti

,

Fig. 1   Comparison: Unstructured model predictions vs. experimental data for fed-batch PHA production at 5 L scale. Results for the main state 
variables: a substrate, b biomass, c polymer concentration and d feeding profile
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of parameters that defines the control vector profile, and 
is, therefore, the vector of decision variables of the Dyopt 
problem.

The dynamic optimization (Dyopt) problem is described 
in Eq. (12):

where tf is the final process time. Constraint (12a) denotes 
the maximum and minimum values allowable for F. Con-
straint (12b) imposes an upper limit for the substrate concen-
tration, in order to avoid inhibition, whereas constraint (12c) 
restricts the maximum working volume. Finally, constraint 
(12d) represents the model Eqs. (2)–(8).

On the other hand, for applying the exponential feeding 
strategy, Eq. (13) was used.

where

The exponential feeding profile is assumed to allow cells 
to grow at a constant specific growth rate [27]. X0 and V0 
represent the biomass concentration and the volume at the 
beginning of the fed-batch phase, respectively. Sin is the sub-
strate concentration in the feed stream. YX∕S is the cell yield 
on substrate, whereas � is the desired specific growth rate 
for the microorganism. Table 2 shows the experimentally 
determined parameters (from previous batch experiments) 
used in the calculation of the exponential feeding profile.

Figure 2 compares the experimental results obtained for 
the fed-batch production of PHAs from the vinasses–molas-
ses mixture when applying the two described feeding pro-
files. Furthermore, for the sake of comparison, batch experi-
mental results are also shown.

As it can be seen in Fig.  2, the fed-batch-optimiz-
ing control strategy resulted in the highest polymer 
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concentration by using the carbon source in a more effi-
cient way (the exponential strategy resulted in highest 
substrate accumulation). Table 3 summarizes the results 
of applying the three different fermentations strategies, 
in terms of the reaction yield, product yield, productiv-
ity and maximum PHA content obtained during 24 h of 
total operation. As it can be seen, the fed-batch optimiz-
ing control strategy resulted in the highest reaction yield 
(mass of polymer produced per mass of substrate added to 
the reactor), highest PHA content and highest productiv-
ity. However, the attained product yield obtained (mass 
of polymer produced per mass of substrate consumed by 
the microorganism) is not satisfactory. Furthermore, the 
fed-batch-exponential strategy resulted in the lowest reac-
tion yield (even lower than the batch), showing that this 
strategy is not suitable at all. Therefore, it is clear that 
the yield (both the reactor and product yields) and the 
productivity must be improved in order to really claim 
the advantages of fed-batch operation over batch for the 
case analysed.

Characterization of the PHAs obtained

The polymer obtained in fed-batch mode by applying both, 
the optimizing control and the exponential feeding profiles, 
was characterized by FTIR, 1H-NMR and DSC. The spec-
troscopic analysis demonstrates the chemical structure of 
Poly(3-hydroxybutyrate) (P3HB) by reflecting the presence 
of the monomeric units predominantly present in PHA poly-
mers. This result is also similar to the IR spectrum strong 
absorption band obtained at 1714 cm− 1 corresponding to 
(C=O) ester carbonyl group, characteristics of P3HB [28].

Figure 3 shows FTIR analysis for the polymers obtained 
in fed-batch fermentation and for the standard from Sigma. 
FTIR spectra for the polymers obtained in this work show 
typical polyester substructures, which are very similar to the 
standard. The band at about 1730 cm− 1 corresponding to the 
extension of C=O is wider for the case of the biopolymers 
obtained, which is due to the presence of a higher amount 
of linked carbonyls, that is, they interact forming hydrogen 
bridges. A band at 3450 cm− 1 is observed corresponding to 
the symmetric stretching of the -OH group. The three bands 

Table 2   Parameters for 
calculating the exponential 
feeding profile

a Reported values are mean val-
ues of three previously devel-
oped experimental runs (data 
not shown)

Parametera (units) Value

Yx/s (gX/gS) 0.38
µ (h− 1) 0.15
Vo (L) 2.5
Xo (gX/L) 1.41



1029Bioprocess and Biosystems Engineering (2019) 42:1023–1037	

1 3

at 2980, 2931 and 2914 cm− 1 correspond to the symmetrical 
and asymmetric extensions of CH2 and CH3.

Figure 4 shows the 1H-NMR spectral data of the extracted 
biopolymer (optimizing control and exponential, respec-
tively) showing characteristic signals (600 MHz): d(ppm): 
0.79 (m, –CH3 HV side group), 1.21 (m, –CH3 HB side 
group), 1.59 (m, –CH2 HV side group), 2.42 (m, –CH2 HB 

bulk structure), 5.18 (m, –CH HB bulk structure), respec-
tively. The 1H-NMR spectra of the PHA samples indicate 
that extracted intracellular compounds are similar to PHB 
[28]. Results shown in Fig. 4 allow concluding that the 
chemical structure of the biopolymer obtained using the 
optimizing control feed profile corresponds to the copoly-
mer P (3HB-co-3HV). The copolymer obtained contains a 

Fig. 2   Comparison of batch, fed-batch optimizing control and fed-batch exponential strategies at 5 L scale for PHA production. Results for a 
biomass, b substrate, c polymer concentration and d feeding profile

Table 3   Productivity and yield comparison for the different strategies

Fermentation strategy Reaction yield (gP/gS added) Product yield (gP/gS 
consumed)

Maximum PHA content 
(% CDW)

Produc-
tivity (g/
(L h))

Batch 0.077 ± 0.0029 0.192 ± 0.0136 35% 0.088
Fed-batch-optimizing control 0.148 ± 0.0007 0.242 ± 0.0062 78% 0.27
Fed-batch-exponential 0.050 ± 1.79 × 10− 5 0.399 ± 0.4041 34% 0.13



1030	 Bioprocess and Biosystems Engineering (2019) 42:1023–1037

1 3

molar fraction of monomeric units of valerate of approxi-
mately 21.6% of the polymer extracted, estimated from the 
ratio between the integration areas of the group –CH3 for 

3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB). 
Similarly, the exponential feed profile resulted in a molar 
percentage of 3HV of approximately 36.3%.

Fig. 3   FTIR spectra for the 
polymers obtained at fed-batch-
optimizing control (top, solid 
line), fed-batch-exponential 
(middle, dashed line) and 
standard from Sigma (bottom, 
dotted-dashed line)

Fig. 4   1H-NMR spectra show-
ing peaks of 3HV and 3HB side 
groups of PHB obtained with 
fed-batch-optimizing control 
(top, solid line) and exponential 
feed (bottom, dashed line)
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Table 4 and Fig. 5 summarize the results obtained by 
DSC for the two polymers produced by fed-batch fermenta-
tion. The glass transition temperatures (Tg) of the samples 
indicate that the copolymers are soft, in both cases with 
Tg below 0 °C. This means that at room temperature, the 
polymers are always in rubbery state. The expected weight 
composition of the copolymer can be obtained using the Fox 
Equation [29]:

where w3HB and w3HV are the weight fractions of 3-hydroxy-
butyrate and 3-hydroxyvalerate comonomers, respectively, 
and Tg,3HB and Tg,3HV are the glass transition temperatures 
of the homopolymers in K. The estimated values of Tg for 
the homopolymers is obtained by fitting experimental data 
from the literature [29], resulting in: Tg,3HB = 281.3 K and 

(16)
1

Tg
=

w3HB

Tg,3HB
+

w3HV

Tg,3HV
,

Tg,3HV = 229 K. According to the Fox Equation, the polymer 
obtained using the optimizing control strategy resulted in a 
weight content of 3HV of 20.8%, corresponding to a molar 
content of 18.9%. Similarly, the polymer obtained using the 
exponential feed strategy resulted in a HV weight content of 
22.5%, corresponding to a molar content of 20.5%. Thus, the 
slightly lower Tg of the exponential profile is probably the 
result of a larger presence of 3-hydroxyvalerate (3HV) in the 
copolymer. A result consistent with the 1H-NMR analysis.

On the other hand, the melting temperature of the poly-
mers indicates that the polymer obtained by fed-batch opti-
mizing control had a lower melting temperature compared 
to the exponential feed, and both of them had lower melting 
points compared to that of pure PHB (~ 170–180 °C). The 
decrease in melting point is also the result of the presence 
of 3-hydroxyvalerate units in the copolymer. Interestingly, 
the decrease in melting point is expected to be larger for the 
exponential feed since the 3HV content is higher. However, 
the opposite is observed. Furthermore, the degree of crystal-
linity of the copolymers, determined as the ratio between the 
heat of fusion of the sample and the heat of fusion of pure 
PHB crystals, 146 J/g [30] indicates that the copolymer from 
the exponential feed presented a higher degree of crystallin-
ity (23.8%) compared to the optimizing control feed (21.5%). 
These results indicate that although the optimizing control 
feed profile resulted in a lower content of 3HV units in the 
copolymer compared to the exponential feed, their configu-
ration tend to be more random. The exponential feed, on 
the other hand, resulted in a more ordered structure with 
a higher degree of crystallinity, in spite of the higher 3HV 

Table 4   Comparison of the thermal properties of the polymer 
obtained by the different feeding strategies

Property PHA obtained by fed-
batch-optimizing control

PHA obtained by 
fed-batch-exponen-
tial

Tg (°C) − 4.57 − 5.6
Tm (°C) 155.07 162
ΔHf (J/g) 31.44 34.72
Degree of crys-

tallinity (%)
21.5 23.8

Fig. 5   DSC spectra indicating 
thermal stability (Tm and Tg) 
of PHB obtained in fed-batch 
by different feeding strategies: 
optimizing control (top, solid 
line), Exponential feed (bottom, 
dashed line)
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content. Probably some segments in the copolymer obtained 
by exponential feeding had some sort of block copolymer 
configuration.

Fed‑batch closed loop strategy at 500 L

As it was observed in the results shown in Table 3, although 
the fed-batch-optimizing control has shown better results 
in comparison to the batch process (as it was expected), the 
actual improvements did not outperform the batch results 
in terms of yield and productivity. Therefore, in an attempt 
to improve the process yield and productivity, the incor-
poration of a closed loop control strategy for keeping the 
substrate concentration at a constant value during fed-batch 
operation is proposed. The closed loop strategy relies upon 
online information for biomass and substrate concentra-
tions, which is provided by two soft-sensors developed in 
this work. The two sensors are simple models (software) 
that just require online measurements for O2 and CO2 at the 
exhaust gas (hardware). Therefore, implementation of these 
soft-sensors might be convenient for industrial implementa-
tion. In this section, it will be first shown the development 
of the soft-sensors. Then, results for the closed loop strategy 
applied in a 500-L fermenter are presented.

Soft‑sensors development

It is well known that one of the main drawbacks in bio-
process operation is the absence of reliable and cheap sen-
sors that allow monitoring online important variables such 
as biomass, substrate or metabolites’ concentration [31]. 
Soft-sensors have been used as an alternative but they are 
usually based on complex models, or they require additional 
expensive tools (software and hardware) for their implemen-
tation. Generally speaking, a soft-sensor (or software sensor) 
is a model whose predictions combine the use of software 
(for simulating the model) with information from available 
sensor measurements. Soft-sensors are used for estimating 
in real time, process variables that are not available (or that 
are difficult) of being measured online. It is important to 
notice that the success of a soft sensor relies upon two main 
things. First, the traditional sensors (hardware) must provide 
reliable measurements of the output variables required for 
predicting the unmeasured variable. Second, the estimator 
(software) used should be a model able to predict online and 
with an expected accuracy, the actual values of the desired 
state variables [32].

In this section, the development of simple but effective 
soft-sensors for biomass and sugar concentration prediction 
is explained. The soft sensors developed use as online infor-
mation, only the O2 and CO2 values measured by a Blue-
InOne Cell exit gas analyzer (BlueSens, Herten, Germany).

Assuming that oxygen uptake is carried out for biomass 
growth and cell maintenance, from a total mass balance for 
oxygen, we have:

where ṁO2in
 and ṁO2out

 are the input and output mass flow of 
oxygen, respectively. ṁO2growth

 and ṁO2maint.
 represent the oxy-

gen uptake for cellular growth and maintenance, respec-
tively. Each term in Eq. (17) is given by:

where %O2in and %O2out are the oxygen percentage at the 
air and the oxygen percentage detected by the sensor at the 
exhaust gas. Fair is the air volumetric flowrate fed to the pro-
cess (which is kept constant), �O2

 and YX∕O2
 are the oxygen 

density and the yield coefficient for biomass from oxygen, 
respectively. V is the culture volume and Ym is the mainte-
nance rate for consumption of oxygen. Assuming that the 
oxygen concentration is kept constant at a predefined set-
point (i.e. thanks to a dissolved oxygen concentration control 
loop), we arise to the soft-sensor equation for predicting the 
changes in biomass concentration:

On the other hand, from a mass balance for the substrate, 
we have

where the first term corresponds to the mass flow of sub-
strate entering into the bioreactor by the feedflow, and the 
second term represents the substrate consumed. F is the 
substrate feed rate, Sin is the substrate concentration in the 
feed and rs is the substrate consumption rate. When sugars 
are consumed (for both biomass and polymer production), 
CO2 is produced. Therefore, the substrate consumption term 
will be related to the carbon dioxide detected at the exhaust 
gas, as follows:

(17)
d
(
VO2L

)
dt

= ṁO2in
− ṁO2out

− ṁO2growth
− ṁO2maint.

,

(18)ṁO2in
− ṁO2out

=

(
%O2in − %O2out

)
Fair 𝜌O2

YX∕O2

100% V
,

(19)ṁO2growth
=

1

YX∕O2

d(VX)

dt
,

(20)ṁO2maint.
=

X V Ym

YX∕O2

,

(21)

dX

dt
=

(
%O

2in
− %O

2out

)
F
air

�
O

2
Y
X∕O

2

100% V
− XY

m

−

[
X

V
+

O
2L
Y
X∕O

2

V

]
dV

dt
.

(22)
d(VS)

dt
= FSin − rsV ,
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where %CO2out is the CO2 percentage at the exhaust gas, �CO2
 

and YCO2∕S
 are the CO2 density and the yield coefficient for 

CO2 from substrate, respectively. Therefore, the soft-sensor 
equation for predicting the dynamic behaviour for the sub-
strate concentration is:

Table 5 reports the value for the parameters used in the 
soft-sensors calculations. Yield values were determined by 
minimizing the error between the experimental data and 
soft-sensor predictions.

Validation of the soft-sensors was carried out using the 
data reported before for the fed-batch experiments at 5 L 
bioreactor. Figure 6a, b shows the comparison between the 
experimental data and the soft-sensor predictions for bio-
mass and substrate concentrations, respectively, for the case 
in which fed-batch fermentation was carried out by imple-
menting the feeding profile given by the optimizing control. 
Figure 6c, d shows the comparison between the experimental 
data and the soft-sensor predictions for the substrate concen-
tration for the case in which the exponential feeding profile 
was applied.

As it can be seen in Fig. 6a, c, biomass predictions by 
the soft-sensor proposed in this work (Eq. 21) results in a 
good agreement with the experimental data. The root mean 
square error (RMSE) obtained for the biomass predic-
tions is 0.611 g/L and 1.026 g/L, for the cases in Fig. 6a, c, 
respectively. On the other hand, substrate predictions by the 
soft-sensor (Eq. 24) presented a good agreement with the 
experimental data during the initial batch operation and the 
fed-batch stage. However, after starting the second and final 
batch stage, predictions presented considerable deviations. 
This last fact could suggest the need of re-tuning some of 
the soft-sensor parameters after finishing the fed-batch stage. 

(23)rsV =
%CO2out Fair �CO2

100% YCO2∕S

,

(24)
dS

dt
=

FSin

V
−

%CO2out Fair �CO2

100% YCO2∕S
V

−
S

V

dV

dt
.

Despite such deviations, it is worth emphasizing that sub-
strate predictions during the most important process stages 
has been successfully. The RMSE for the substrate predic-
tions is 6.27 g/L and 6.79 g/L for the cases in Fig. 6b, d, 
respectively.

Experimental implementation of a closed‑loop control 
strategy at 500 L scale

After validating the soft-sensors for online prediction of 
the biomass and substrate concentrations, a closed loop 
control strategy for keeping the substrate concentration at 
a pre-defined value during fed-batch operation was imple-
mented at 500 L scale. Figure 7 shows a block diagram for 
the closed-loop control strategy applied.

As it can be seen in Fig. 7, the implemented strategy is 
a feedback loop for keeping the substrate concentration at 
a desired set-point (Ssp). However, it must be noticed that 
this strategy is designed for being applied only during fed-
batch operation. The controller equation for calculating the 
flow rate required for keeping the substrate at the set-point 
has been derived from the unstructured model presented in 
Eqs. (2)–(8), specifically from Eq. (4), re-named here as 
Eq. (25).

where �X is taken from Eq. (3) as:

and the term dS
dt

 is approximated as

where Ssp and S(t − Δt) are the defined set-point for the sub-
strate concentration and the substrate concentration at the 
previous sample time, respectively. Furthermore, Δt is the 
sample time. Finally, replacing Eqs. (26) and (27) in Eq. (25) 
and solving for F, the controller equation is obtained:

As mentioned, the closed loop control strategy proposed 
intends to keep the substrate concentration at a constant 
value (Ssp), during fed-batch operation. In this work, the set 
point value was defined to be 15.2 g/L (2 g per liter under the 
initial substrate concentration). Furthermore, the fed-batch 
stage was started after allowing a batch period of 10 h. Fig-
ure 8 shows the dynamic behaviour of the main process state 

(25)

dS

dt
= −Csx�X − RcsxX − Csp

(
K1�X + K2X

)
+

F

V
Sin −

F

V
S,

(26)�X =
dX

dt
+

F

V
X,

(27)dS

dt
≈

ΔS

Δt
=

Ssp − S(t − Δt)

Δt
,

(28)

F =
V
[
dX

dt

(
Csx + CspK1

)
+ X

(
Rcsx + CspK2

)
+

(Ssp−S(t−1))
Δt

]

Sin − S − X
(
Csx + CspK1

) .

Table 5   Parameters used in the soft-sensors

a Reported values are mean values of three previously developed 
experimental runs (data not shown)

Parametera (units) Description Value

�O2
 (g/L) Oxygen density 1.331

Y
X∕O2

 (gX/gO2) Yield coefficient for biomass from 
oxygen

0.921

Ym (h− 1) Maintenance rate for consumption of 
oxygen

0.0415

�CO2
 (g/L) Carbon dioxide density 1.842

YCO2∕S
 (gCO2/gS) Yield coefficient for CO2 from substrate 1.240
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variables when the closed control loop for keeping constant 
the substrate concentration was implemented.

Figure 8a shows the substrate, both, predicted by the soft 
sensor and the actual experimental value. It is worth remind-
ing that the control law was applied only by using the soft-
sensor information and that the controller was set on only 
after 10 h of a batch period. At that time, the substrate con-
centration predicted by the soft-sensor was around 12 g/L 
(3 g/L under the set-point). Therefore, when the controller 
was set on, it calculated immediately the required feed flow 
for increasing the substrate concentration and kept doing so 
after the final process time (24 h). Figure 8b shows the feed-
ing profile calculated by the controller (Eq. 28). Although 
the online-predicted substrate concentration did not exactly 
match the set-point, it is possible to observe that the control-
ler has a good performance. For 14 h of fed-batch opera-
tion, the RMSE is 1.28 g/L, with a minimal error value of 

0.56 g/L and a maximal error of 3.17 g/L (this last value is 
the error at the first time instant when the controller was set 
on). On the other hand, Fig. 8c shows the biomass dynamic 
behaviour, where it is possible to observe a good agreement 
between the experimental data and the soft-sensor predic-
tions for around 15 h. Then, predictions start deviating from 
the actual value (something similar is observed for the sub-
strate predictions). The reason for such deviations is that in 
the derivation of the soft-sensors, all model parameters were 
considered as constants. However, it is known that some 
parameters (i.e. the specific growth rate and the yields) are 
time-varying parameters. Therefore, as mentioned before, 
this could suggest that some model parameters should be re-
identified after some time, in order to update such informa-
tion in the soft-sensors. Finally, Fig. 8d shows the dynamic 
behaviour for the polymer. As it is seen, polymer concen-
tration just reached around 1.2 g/L after 24 process hours. 

Fig. 6   Soft-sensor validation: comparison between experimental data and the soft-sensor predictions for biomass and substrate. a Biomass and b 
substrate at the fed-batch optimizing control case. c Biomass and d substrate at the exponential feeding profile case
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Fig. 7   Closed loop control 
strategy based on biomass and 
substrate soft-sensors

Fig. 8   Closed loop control strategy results: a substrate (predicted vs. actual), b feed profile, c biomass (predicted vs. actual) and d polymer
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Of course, this is not a good result because it is lower than 
the obtained at the batch process at 5 L scale. However, 
the main point here was to show the implementation of the 
closed loop control strategy based on the developed soft-
sensors. Currently, scaling factors that could have affected 
the polymer production at the 500-L scale are under analysis, 
in order to improve the process operation at this scale.

Conclusions

Process System Engineering Tools have been applied for 
both, laboratory (5 L) and pilot plant (500 L) scale fed-batch 
production of Poly(3-hydroxybutyrate-co-3-hydroxyvaler-
ate), using a vinasses–molasses mixture. On-line estimation 
for biomass and substrate was possible by applying the first-
principles-based soft-sensors developed in this work, which 
only require measuring the O2/CO2 content at the exhaust 
gas. Successful validation of the soft-sensors was carried out 
against experimental data at 5 L scale. On the other hand, 
a model-based closed loop control strategy for achieving a 
constant pre-defined substrate concentration (set-point) was 
derived and implemented at 500 L scale. Substrate concentra-
tion predicted by the soft-sensor was used as the “measured” 
process variable, for determining the feeding profile required 
for keeping constant the set-point. This implementation 
allowed the control of the substrate concentration during 14 h 
of operation. Results of the implemented control loop were 
confirmed by comparing against offline measurements of the 
sugars’ concentration. Although the concentration of polymer 
obtained in these experiments was relatively low compared 
to the best values reported in the literature, it can be con-
cluded that the proposed control loop strategy is worthy of 
implementation because, at a low cost, it can be used for 
keeping the substrate concentration at a predefined set point. 
On the other hand, it was shown that by applying different 
feeding strategies, the characteristics of the obtained product 
vary. Therefore, in order to assure the desired end-product 
characteristics, a control strategy combining the soft-sensors 
developed in this work, with soft-sensors capable of predict-
ing end-product properties, might be a powerful strategy for 
being implemented at industrial level in order to strengthen 
the economic feasibility of the biopolymers industry.
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