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Abstract

The present thesis addresses the automatic analysis of speech disorders resulting from Parkinson’s
disease and hearing loss. For Parkinson’s disease, the progression of speech symptoms are
evaluated considering speech recordings captured in the short-term (4 months) and long-term (5
years). Machine learning methods are used to perform three tasks: (1) automatic classification of
patients vs. healthy speakers, (2) regression analysis to predict the dysarthria level and neurological
state, and (3) speaker embeddings to analyze the progression of the speech symptoms over time.
For hearing loss, automatic acoustic analysis is performed to evaluate whether the duration and
onset of deafness (before or after speech acquisition) influences the speech production of cochlear
implant users. Additionally, articulation, prosody, and phonemic analyses are performed to show
that cochlear implant users present altered speech production even after hearing rehabilitation.

Automatic acoustic analysis is performed considering phonation, articulation, prosody, and
phonemic features. Phoneme precision is characterized using the posterior probabilities obtained
from recurrent neural networks trained in German and Spanish. The phonemic analysis considers
three main dimensions: manner of articulation, place of articulation, and voicing. This thesis also
proposes a methodology for automatically detecting voice onset time in voiceless stop consonants.

Furthermore, this thesis studies the acoustic cues that reflect changes in elderly people due to
the aging process. Regression analysis is performed to estimate a person’s age using the phonation,
articulation, prosody, and phonemic features. Additionally, the use of smartphones for health care
applications is considered here.



Zusammenfassung

Die vorliegende Dissertation befasst sich mit der automatischen Analyse von Sprachstörun-
gen infolge von Parkinson und Hörverlust. Bei der Parkinson-Krankheit wird der Verlauf der
Sprachsymptome anhand von Sprachaufzeichnungen bewertet, die kurzzeitig (4 Monate) und
langfristig (5 Jahre) aufgenommen wurden. Methoden des maschinellen Lernens werden verwen-
det, um drei Aufgaben zu erfüllen: (1) automatische Klassifikation von Patienten vs. gesunde
Sprecher, (2) Regressionsanalyse zur Vorhersage des Dysarthrie-Levels und des neurologischen
Zustands und (3) Sprechereinbettungen zur Analyse des Verlaufs der Sprachsymptome im Laufe
der Zeit. Bei den Patienten mit Hörverlust wird eine automatische akustische Sprachanalyse
durchgeführt, um zu beurteilen, ob die Dauer und das Einsetzen der Taubheit (vor oder nach dem
Spracherwerb) die Sprachproduktion von Cochlea-Implantat-Trägern beeinflusst. Darüber hinaus
werden Artikulations-, Prosodie- und Phonemanalysen durchgeführt, um zu zeigen, dass Träger
von Cochlea-Implantaten auch nach einer Hörrehabilitation eine veränderte Sprachproduktion
unterschiedlichen Ausmasses aufweisen.

Für automatischen akustischen Analysen werden wird Phonation, Artikulation, Prosodie
und phonemischen Merkmalen berücksichtigt. Die Phonempräzision wird durch die Posterior-
Wahrscheinlichkeiten charakterisiert, die aus rekurrenten neuronalen Netzen gewonnen werden,
die auf Deutsch und Spanisch trainiert wurden. Die phonemische Analyse fokussiert auf drei
Hauptdimensionen: Artikulationsart, Artikulationsort und Stimmgebung. Diese Arbeit schlägt
auch eine Methodik zur automatischen Erkennung der Stimmeinsatzes nach stimmlosen Stopp-
konsonanten vor.

Darüber hinaus untersucht diese Arbeit die akustischen sprachlichen Charakteristika, die
Veränderungen bei älteren Menschen aufgrund des Alterungsprozesses widerspiegeln. Eine Re-
gressionsanalyse wird durchgeführt, um das Alter einer Person unter Verwendung der Phonation,
Artikulation, Prosodie und phonemischen Merkmale zu schätzen. Darüber hinaus wird hier der
Einsatz von Smartphones für Anwendungen im Gesundheitswesen betrachtet.



Resumen

La presente tesis aborda el análisis automático de los trastornos del habla derivados de la en-
fermedad de Parkinson y la pérdida auditiva. En el caso de la enfermedad de Parkinson, el
progreso de los sı́ntomas del habla se evalúa considerando las grabaciones capturadas a corto (4
meses) y largo plazo (5 años). Métodos de aprendizaje automático son utilizados para realizar
tres tareas: (1) clasificación automática de pacientes contra a hablantes sanos, (2) análisis de
regresión para predecir el nivel de disartria y el estado neurológico, y (3) modelos de hablante para
análisis longitudinal del progreso de los desórdenes en la voz. En el caso de la pérdida auditiva,
se realiza un análisis acústico automático para evaluar si la duración y el inicio de la sordera
(antes o después de la adquisición del habla) influye en la producción del habla de los usuarios
de implantes cocleares. Además, se realizan análisis de articulación, prosodia y fonémicos para
demostrar que los usuarios de implantes cocleares presentan una producción del habla alterada
incluso después de la rehabilitación auditiva.

El análisis acústico automático se realiza considerando fonación, articulación, prosodia y
caracterı́sticas fonémicas. La precisión de la producción de fonemas se caracteriza mediante el
cálculo de las probabilidades obtenidas de redes neuronales recurrentes entrenadas en Alemán y
Español. El análisis fonémico considera tres dimensiones principales: forma de articulación, lugar
de articulación y sonorización. Esta tesis también propone una metodologı́a para la detección
automática del tiempo de inicio de la voz en consonantes oclusivas sordas.

Además, en este trabajo se analiza la influencia de la edad en el análisis acústico. El análisis de
regresión se realiza para estimar la edad de una persona utilizando las caracterı́sticas de fonación,
articulación, prosodia y fonética. También, en esta tesis se considera el uso de smartphones para
aplicaciones en el sector médico.
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Chapter 1

Introduction

1.1 Motivation

Oral communication of adults and children can be affected by developmental or acquired speech
disorders resulting from motor/neurological impairments (e.g., brain injuries, Parkinson’s disease)
or sensory/perceptual disorders (e.g., hearing loss)1. On the one hand, neurological diseases
such as Parkinson’s disease (PD) affect certain regions in the brain and the muscles involved
in the speech production process, leading to different motor speech-based impairments such as
imprecise articulation, slower speaking rate, monotonous speech, hoarse quality of voice, among
others (Ho et al., 1999; Trail et al., 2005). On the other hand, perceptual disorders such as
sensorineural hearing loss cause decreased speech intelligibility, changes in terms of phoneme
articulation, abnormal nasalization, slower speaking rate, and decreased variability in fundamental
frequency (Hudgins and Numbers, 1942; Langereis et al., 1997; Leder et al., 1987). One of the
aims of pathological speech processing is the development of technology to support the diagnosis
and monitoring of different medical conditions through speech (Gupta et al., 2016). This thesis
focuses on the automatic acoustic analysis of speech signals captured from PD patients and
people with hearing loss. Furthermore, as the speech of elderly people changes due to the aging
process, a clinical condition, or both, the description of acoustic cues in the speech that reflect
such differences is a topic that deserves special attention.

PD is a neurodegenerative disease characterized by the progressive loss of dopaminergic
neurons in the substantia nigra of the midbrain (Hornykiewicz, 1998). The primary motor
symptoms of PD include tremor, slowness, rigidity of the limbs and trunk, postural instability,
swallowing disorders, and speech impairments. Many of the symptoms are controlled with

1www.asha.org/Practice-Portal/Clinical-Topics/Articulation-and-Phonology

1



2 CHAPTER 1. INTRODUCTION

medication, however, there is no clear evidence indicating positive effects of those treatments
on the speech impairments (Skodda et al., 2010), but there is evidence showing that speech
therapy combined with the pharmacological treatment improves the communication ability of PD
patients (Schultz and Grant, 2000). The evaluation of PD requires the patient to be present at the
clinic, which is time-consuming and expensive for both, the patient and healthcare system (Yang
et al., 2020), however, the continuous monitoring of PD patients could help to make timely
decisions regarding their medication and therapy.

In the case of hearing loss, there are different treatments available for different types and
degrees of deafness. A Cochlear implant (CI) is the most suitable device for severe and profound
deafness when hearing aids do not improve sufficiently speech perception. A CI uses a sound
processor to capture audio signals and send them to a receiver implanted under the skin behind
the ear. The receiver transforms the signal into electrical impulses which are sent to electrodes
implanted in the cochlea. However, CI users often present altered speech production and limited
understanding even after hearing rehabilitation. Thus, if the deficits of speech would be better
known the rehabilitation might be properly addressed (Pomaville and Kladopoulos, 2013). CI
users require assistance before, during, and after surgery from audiologists, medical specialists in
Otorhinolaryngology, and speech-language pathologists 2; however, speech production quality is
seldom assessed in outcome evaluations, thus including speech technology could lead to a reliable
outcome evaluation contributing to the rehabilitation success.

This thesis addresses the automatic evaluation of speech production from PD patients and
CI users by combining signal processing techniques with machine learning methods. Such
methods are also considered to analyze the effect of age as another possible source of changes in
speech production. Additionally, since the use of smartphones for health care has become more
frequent, some of the speech processing techniques addressed in this thesis are implemented in
Android-based applications.

1.2 Speech disorders in selected populations

1.2.1 Parkinson’s disease

Clinical diagnosis

Parkinson’s disease is characterized by a combination of some symptoms regarding motor control.
Moreover, next to motor control, other symptoms such as mood changes, cognitive decline, and

2www.asha.org/Practice-Portal/Professional-Issues/Cochlear-Implants/
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sleep disorders might occur (Poewe, 2008). There is no standard method to diagnose PD. Doctors
rely on the clinical history and physical examination to assess the patients. Additionally, the
severity of the disease is evaluated by neurologist experts using different scales such as the
Movement Disorder Society–Unified Parkinson Disease Rating Scale (MDS-UPDRS) (Goetz
et al., 2008). This is a perceptual scale used to assess motor and non-motor abilities of the patients
with 65 items distributed in four sections:

• Section 1 (MDS-UPDRS-I, 13 items) concerns the non-motor experiences of daily living
such as cognitive impairment, depressed mood, and fatigue.

• Section 2 (MDS-UPDRS-II, 13 items) considers motor experiences of daily living such as
eating, dressing, handwriting, and tremor.

• Section 3 (MDS-UPDRS-III, 33 items) is used to evaluate the motor capabilities of the
patient including speech production, upper/lower limbs movement, postural stability, and
gait.

• Section 4 (MDS-UPDRS-IV, 6 items) concerns motor complications such as time spent
without medication (OFF state), time spent with dyskinesia (involuntary movements),
among others.

Speech production is evaluated by the neurologist during the patient’s visit to the clinic. The
patients are asked to talk about different subjects in order to assess several aspects including
speech’s volume, intelligibility, modulation of words, among others. The speech item of the
MDS-UPDRS scale considers the following categories for the evaluation (Table 1.1):

Table 1.1: Speech scoring system from the MDS-UPDRS-III.
Score Category Definition

0 Normal No speech problems
1 Slight Loss of voice intensity or modulation
2 Mild Some words are unclear
3 Moderate Speech is difficult to understand
4 Severe Speech is unintelligible

The MDS-UPDRS-III also includes the Hoehn & Yahr (H&Y) scale, which comprises a set
of five severity levels where 1 is associated with a minimal or no functional disability and 5 is
assigned to patients who are confined in bed or wheelchair unless aided. There are two variants of
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the scale, the original one with integer values for the stages from 1 to 5, and a modified one with
the addition of stages 1.5 and 2.5 for a total of 7 severity levels (Hoehn et al., 1998).

The MDS-UPDRS scale is suitable to assess the neurological state of the patients. However,
speech production is evaluated only in one item. Regarding the complexity of speech, a single
item summarizing different aspects such as voice, articulation, fluency, intonation, speaking rate,
and intelligibility is not sufficient. The symptoms of motor speech disorders caused by PD are
often associated with hypokinetic dysarthria, resulting from problems controlling the muscles and
articulators involved in the speech production process. A more suitable clinical scale to evaluate
speech impairments is the Frenchay Dysarthria Assessment–2 (FDA–2) (Enderby and Palmer,
2008), which is a perceptual scale used to evaluate dysarthria considering 34 items distributed
in eight sections. Table 1.2 shows the aspects considered in the FDA–2 scale. The patients are
asked to perform different tasks in each section. The category complementary refers to factors
that might influence speech production. All sections (excluding Complementary) are rated on a
9-point scale.

Table 1.2: List of items evaluated in the FDA–2 scale.
Category Item

Reflexes Cough, swallow, dribble/drool

Respiration At rest, in speech

Lips At rest, spread, seal, alternate, in speech

Palate Fluids, maintenance, in speech

Laryngeal Time, pitch, volume, in speech

Tongue At rest, protrusion, elevation, lateral,
alternate, in speech

Intelligibility Producing words, sentences, conversation

Complementary Hearing, sight, teeth, language, mood, posture,
speech rate, sensation (upper lip and tongue tip)

A modified version of the FDA–2 scale, i.e., the mFDA, was proposed by Orozco-Arroyave
et al. (2018) and was designed to be applied considering only the speech recordings of the
patient; therefore, the patient is not required to visit the clinic for assessment. The mFDA is
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administered considering different speech tasks including sustained phonation of the vowel /a/,
reading, monologues, and the alternating and sequential production of the syllables /pa-ta-ka/,
/pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, and /ka/. The scale has a total of 13 items and each one of them
ranges from 0 (normal or completely healthy) to 4 (very impaired), thus the total score of the
mFDA ranges from 0 to 52. Table 1.3 shows the details of the mFDA scale. The main limitation of

Table 1.3: List of items evaluated in the mFDA scale.
Category Item Speech task

Respiration Duration of the recording Sustained phonation of the vowel /a/
Breathing capacity Multiple repetition of /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/

Lips Strength of lip closure Multiple repetitions of the syllable /pa/
Lips control Reading, monologue

Palate Nasality Reading, monologue
Velar movement Multiple repetitions of the syllable /ka/

Larinx Phonatory capability 1 Sustained phonation of the vowel /a/
Phonatory capability 2 Reading, monologue
Monotonicity Reading, monologue
Effort to produce speech Reading, monologue

Tongue Velocity to move the tongue 1 Multiple repetition of /pa-ta-ka/ and /pa-ka-ta/
Velocity to move the tongue 2 Multiple repetitions of the syllable /ta/

Intelligibility Speech intelligibility Reading, monologue

the MDS-UPDRS or mFDA is the lack of precision, since the severity of the disease is evaluated
based on a perceptual score which depends on the experience of the clinician.

Speech production

PD affects the speech of the patients in different ways. For instance, stability and periodicity
problems are caused by an inadequate closing of the vocal folds, which is related to rigidity
in the muscle (Hanson et al., 1984). Thus, perturbations in the vibration of vocal folds can be
measured by estimating fundamental frequency (F0) based features from the sustained phonation
of vowels (Almeida et al., 2019; Skodda et al., 2013; Tsanas et al., 2010). Articulation-based
deficits are mainly related with reduced amplitude and velocity of lip, tongue, and jaw movements
causing a reduced articulatory capability in PD patients to produce vowels and continuous
speech (Ackermann and Ziegler, 1991; Skodda et al., 2011). Such reduction can be measured by
computing the triangular Vowel Space Area (tVSA) formed with the formant frequencies F1 and
F2 extracted from the vowels /a/, /i/, and /u/, while articulation-based problems in continuous
speech can be detected by analyzing the transitions from voiced-to-voiceless sounds (and vice
versa) and computing spectral-based fratures such as the Mel-Frequency Cepstral Coefficients
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(MFCCs) (Orozco-Arroyave, 2016; Skodda et al., 2011). PD can also influence speech at the
segmental (individual sounds/phonemes) and suprasegmental level (speech prosody). For instance
at the segmental level, some studies have found that the difficulties of PD patients to control
laryngeal movements affects the production of stop consonants e.g., /p/, /t/, /k/, /b/, /d/, /g/ (Fischer
and Goberman, 2010). Such difficulties are typically measured by means of the Voice Onset
Time (VOT), which is defined as the time interval between the initial burst of a stop consonant
and the onset of voicing for the following vowel. The changes in the duration of the VOT
produced by patients often differs when compared with respect to a group of age-matched healthy
speakers (Argüello-Vélez et al., 2020; Montaña et al., 2018; Novotný et al., 2015; Tykalova et al.,
2017). Speech deficits at the segmental level can also be detected by estimating the probability
of occurrence of phonemes in a speech sequence (phoneme posterior probabilities), which can
be achieved by training a deep neural network to learn the representation of several phoneme
classes grouped according to different phonological rules (Cernak et al., 2015; Vásquez-Correa
et al., 2019). Suprasegmental speech deficits include variation in intonation, reduced loudness,
variable speech rate, among others (Jones, 2009). These deficits can be measured by means of the
F0 contour, energy content of the signal, and the amount of speech units (words, voiced segments)
produced by the speakers. Chapter 2 contains more details about the relationship between PD and
the speech production system.

1.2.2 Hearing loss

Clinical diagnosis

Hearing loss can appear due to various reasons such as senescence, trauma, inflammation, aging,
and others, and often without a known cause. Hearing loss can be acquired or it can be congenital,
e.g. because of genetic alterations, intrauterine infections or malformations. The treatment for
hearing loss depends on the severity and cause. The grade of the impairment can be categorized
as normal, mild, moderate, severe, or profound depending on audiometry descriptors. Such
descriptors are usually obtained by a pure-tone audiometry test which consists of a threshold
search by reproducing sinusoidal waveforms (through speakers or headphones) at different
frequencies (125 Hz, 250 Hz, 500 Hz, and from 1000 Hz to 8000 Hz in steps of 1000 Hz) and
intensity levels. The patient is asked to indicate whether the sounds are perceived by raising a
hand or pressing a button. Figure 1.1 shows an audiogram indicating the degree of hearing loss for
different loudness and frequency values. For instance, a person that can only hear sounds between
40 dB and 60 dB might suffer from moderate hearing loss.
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Figure 1.1: Audiogram indicating the degree and type of hearing loss for different loudness and
frequency values. The hearing thresholds correspond to the range of values adopted by the World
Health Organization (Olusanya et al., 2019).

Although, the pure-tone audiometry test provides useful information about the hearing status
of a person, expert clinicians do not rely solely on such a test to determine the adequate treatment
of the patient. Treatment options are provided to the patient depending on the type of hearing loss
which can be conductive, sensorineural, or a mixture of both (Weber and Klein, 1999). On the
one hand, conductive hearing loss occurs due to a damage produced in the outer or middle ear
or by a malformation (e.g. ear canal, middle ear), causing the person to perceive sounds with
low intensity levels. Usually, hearing aids can be used as a treatment option because it amplifies
the sounds to improve audio perception. There are types of conductive hearing loss that can be
treated with medication or surgery. On the other hand, sensorineural hearing loss is related to
disorders in the inner ear (cochlea) or the auditory nerve system resulting in disabling hearing
impairment. Usually, therapy consists of the amplification of sounds by hearing aids which
are adapted to the hearing loss at different frequencies in the hearing range. In more profound
hearing loss and deafness (in the following summarized as deafness), amplification of sounds
is not enough to provide sufficient hearing for speech perception. In this case, CIs are the most
suitable devices for treatment. Contrary to hearing aids, a CI bypasses the damaged portions of
the ear and directly stimulate the auditory nerve. In the cochlea, frequencies are arranged from
high frequencies at the base to the deep frequencies at the top. The inserted implant in the cochlea
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follows this natural representation of the sounds called “tonotopy” and stimulates the nerves that
correspond to the region of excitation. Although hearing with a CI is quite different from normal
hearing, speech understanding can be restored (Lenarz, 2017; Pisoni et al., 2017). Regarding the
outcome after cochlear implantation, some aspects need to be considered. The time of occurrence
of sensorineural hearing loss also affects the speech perception and production of the CI users.
On the one hand, prelingual onset of deafness refers to people who lost their hearing capability
before the acquisition of spoken language, their speech production is affected because they have
never monitored their own speech (Smith, 1975). On the other hand, postlingual onset of deafness
refers to people who lost their hearing after speech acquisition, however, their speech production
might be affected by the lack of sufficient and stable auditory feedback (Leder and Spitzer, 1990).

Speech production

People suffering from severe/profound deafness may experience different speech production
disorders. At a segmental level, such disorders include voicing errors, phoneme misarticulation,
vowel errors, among others (Gold, 1980; Waldstein, 1990). Voicing errors might be caused due
to failed attempts to coordinate respiration, phonation (voicing), and articulation resulting in a
confusion of the voiced-voiceless distinction. Thus, similar to the PD patients, voicing errors
can be detected by automatic extraction of voiced sounds, i.e., speech segments with F0 values
different than zero. Phoneme production errors are caused by different reasons. For instance, the
studies reviewed by Osberger and McGarr (1982) revealed that there was a general trend of hearing
impaired people to better produce the most visible phonemes, e.g., phonemes produced with
the lips or/and teeth. Consonant errors can also occur due to incorrect timing of the articulators
e.g., causing nasalization of non-nasal speech sounds due to improper velar control (Kato and
Yoshino, 1988; Stevens et al., 1976). Such phoneme articulation errors might cause a decreased
speech intelligibility, which can be evaluated with Automatic Speech Recognition (ASR) systems,
phoneme posterior probabilities, among others. At suprasegmental level, the speech of severely
and profoundly hearing impaired speakers also exhibits deviation from normal speech in timing
and voice quality. On the one hand, people suffering from hearing loss have been reported to
speak slower than healthy people due to the prolongation of speech and non-speech segments
(consonants, vowels, pauses), and the insertion of pauses within sentences (Oster, 1990). On the
other hand, voice quality problems include abnormally high F0 values (particularly in adolescent
and adult males) and insufficient or excessive variations of F0 within a sentence (Gold, 1980).
Thus, similar to the speech of PD patients, some of the suprasegmental aspects of speech can
be evaluated by computing F0-related features, duration, speech rate, energy, among others.
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Chapter 2 contains more details about the role of auditory feedback on the speech production
system.

1.2.3 Aging

Speech of the elderly sometimes can be called “slurred” with comprises slight changes in voicing,
articulation and prosody. The changes in organs and tissues involved in voice production which
are associated with the aging process include facial skeleton growth (Israel, 1973), pharyngeal
muscle atrophy (Zaino and Benventano, 1977), tooth loss (Adams, 1991), reduced mobility of
the jaw (Kahane, 1981), tongue musculature atrophy, and weakening of pharyngeal musculature.
The precise nature of vocal resonance is unclear, however a consistent pattern seems to be
a vocal tract lengthening with age (Linville, 1996). These changes alter the phonation and
articulation dimensions of speech, for instance elderly people exhibit a significantly greater
frequency perturbation than the young speakers (Benjamin, 1981). There are also differences
in the stability of F0 and amplitude of vocal fold vibration relative to young and middle-aged
adults (Xue and Deliyski, 2001). Changes in F0 and the formant frequencies have been also
observed in longitudinal analyses. Particularly, changes in the first formant frequency are believed
to compensate the decline of F0 in order to maintain the auditory distance between F0 and
F1 (Reubold et al., 2010). The influence of some of these parameters on speech assessment have
been addressed before when measuring speech intelligibility by considering an Automatic Speech
Recognition (ASR) system. In the experiments performed by Vipperla et al. (2010) on adult and
older voices, the authors found that elderly people show increased jitter and shimmer and these
variations have an impact on average phoneme recognition.

1.3 Hypotheses

Since different factors influencing speech production are considered in this thesis, the following
hypotheses are investigated:

• It is possible to evaluate the speech production of PD patients, CI users, and elderly speakers
using similar signal processing techniques.

• Since PD is a progressive disease that also affects speech, it is possible to assess the
progression per patient from speech signals captured in different recording sessions.

• The duration and onset of deafness influences speech production of CI users in different
ways, thus, automatic acoustic analysis can be used to detect these changes.
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• It is possible to use smartphone applications to evaluate the speech production of PD patients
and CI users.

• Aging affects different aspects of speech production and such changes can be captured by
most of the features considered to analyze pathological speech.

1.4 Objectives

1.4.1 General objective

To propose a methodology for the monitoring of pathological speech signals combining different
signal processing techniques and machine learning methods.

1.4.2 Specific objectives

• To identify the contribution of different speech dimensions for the automatic assessment of
pathological speech signals.

• To analyze and select the most suitable features to detect changes in pathological speech
signals.

• To combine different speech processing techniques and machine learning methods for the
automatic assessment of pathological speech signals.

1.5 Contribution of this thesis

• Collection of a speech corpus from PD patients and CI users. The recordings were captured
in clinical settings and at-home of the patients using smartphones.

• A methodology for the automatic detection of VOT in voiceless stop sounds using a deep
neural network approach.

• A methodology to monitor the progression of PD patients over time using automatic acoustic
analysis.

• A methodology to quantify the phoneme production of CI users using a deep neural network
approach.
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• A methodology to evaluate the impact of age on different acoustic measurements.

• Implementation of signal processing techniques on smartphones to evaluate speech produc-
tion of PD patients and CI users.

• Participation in the development of the mobile applicationApkinson, used to collect speech
and movement data from PD patients.

• Participation in the the development of the mobile application CITA (Cochlear Implant
Testing App), which is intended to collect data from CI users in order to evaluate the speech
perception and production of the patients. The source code of CITA is based on Apkinson.

1.6 Structure of the thesis

Chapter 2 includes information about the physiological processes of speech production, the
influence of PD in speech motor control and speech disorders associated with the disease. This
chapter also gives an overview of the auditory system, cochlear implants, and the role of auditory
feedback in speech motor control.

Chapter 3 includes information about the contributions in the state-of-the-art methods related to
predicting the severity of PD from speech signals, automatic methods used for analysis of speech
production in CI users, and smartphone-based applications developed to evaluate PD and hearing
loss.

Chapter 4 describes the speech processing techniques and acoustic features used to model
speech disorders. Additionally, this chapter includes the machine learning methods used in this
thesis for classification, regression analysis, and speaker models.

Chapter 5 includes details about the PD patients, CI users, and healthy speakers considered
in this thesis. Additional databases used to support the training of models used for automatic
speech analysis are also described.

Chapter 6 includes the experiments and results obtained for the automatic analysis of PD patients
and CI users from speech signals, and the effect of aging in speech production.

Chapter 7 summarizes the addressed aspects about pathological speech analysis.



Chapter 2

Speech production process

2.1 Speech chain

In the speech chain model described by Denes and Pinson (1993), oral communication consists
of a sequence of events happening on three levels: linguistic, physiological, and acoustic. The
process to produce intelligible speech starts in the speaker’s brain, at the linguistic level (Fig-
ure 2.1). First, the speaker collects his/her thoughts, decides what words to say, and places these
words to form sentences according to language dependent rules. The speech production process
continues at the physiological level, with the neural activity inside the brain sending the necessary
instructions to activate the muscles that control the vocal folds, tongue, lips, jaw, among others.
The speech production is completed at the acoustic level, where the movements of the vocal
muscles (combined with the air coming from the lungs) generates speech sound waves. Once the
speech is produced it travels through the air activating the hearing mechanism of the listeners.
The auditory feedback plays a key role in oral communication because it helps the speakers to
continuously monitor the quality and intelligibility of their own speech.

2.1.1 Physiological processes of speech production

In general, the speech production process involves the complex coordination and activation of
different muscles and limbs in the respiratory, laryngeal, and oral motor system. The respiratory
system is essential to produce speech by generating air pressure from the lungs during the
expiratory and inspiratory phases. The airflow passes a small valve, the glottis, which is formed by
the two vocal folds. During respiration, the vocal folds are in a lateral position. During phonation,
the vocal folds are closing resulting in vibrations of the soft mucosal tissue as a result of the

12
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Figure 2.1: The speech production process starts in the brain, at the linguistic level, continues
with the neural and motor activity at the physiological level, and its completed with the generation
and transmission of sound waves at the acoustic level. The auditory feedback allows the speaker
to monitor its own speech. Based on Denes and Pinson (1993).

subglottal pressure and the airflow passing through the glottis (Van den Berg, 1958). During
oscillation, the vocal folds convert the air into a rapid sequence of airflow pulses generating audible
sounds (voice source sounds), which are perceived as a buzz whose frequency is proportional to
the vibration rate. During the production of the airflow pulses, the vocal folds have four main
stages: closed, opening, open, and closing (Figure 2.2). Speech sounds produced in this way are
commonly known as voiced sounds. If the vocal folds remain open, then the source of energy
for speech production is a stable stream of air coming from the lungs which is made audible by
other articulator (s) at some place in the vocal tract. The speech sounds that are not produced by
vibration of the vocal folds are commonly known as unvoiced sounds.

The oral motor system includes the articulatory mechanism necessary to modulate the voice
source which allows us to produce speech sounds with different acoustic properties. Such
properties depend on the shape of the vocal tract, which can be modified by moving the principal
articulators namely the tongue, lower jaw, lips, and velum. The oral motor system also includes
nasal, oral, and pharyngeal cavities which act as resonance chambers to transform the stream of
air into sounds with an additional acoustic characteristic (Benesty et al., 2007; Denes and Pinson,
1993; Fant, 1980). Figure 2.2 shows a diagram of the main articulators and resonators (oral, nasal
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pharyngeal cavities) involved in the speech production process. The air coming from the lungs
is the source to generate speech sounds. The muscles in the larynx act as a valve to control the
air stream coming from the lungs. The coordination and movements of the different articulators
together with the nasal, oral, and pharyngeal cavities provide the acoustic properties necessary
to generate different speech sounds. For instance, the vowel /a/ is commonly produced by a

Figure 2.2: Schematic views of the speech production system. (Left) Vocal folds vibration pattern
during the production of voiced speech segments. (Right) Components of the vocal tract used to
produce speech sounds. Based on Benesty et al. (2007) and Denes and Pinson (1993)

combination of tongue, jaw, and vocal folds movements. The vibration of the vocal folds creates
the voice source sound, which is then modulated by opening the mouth (lowering of the jaw) and
holding the tongue in a low position. Another example is the production of plosive sounds such as
/p/, which is produced by blocking (for a short period of time) the air stream with the lips building
enough air pressure to produce the sound when the closure is released. Generally, the vocal folds
remain open when producing the consonant /p/. Nasal cavities are also used to generate speech
sounds. For instance the nasal consonants /n/ and /m/ are produced during vibration of the vocal
folds and by blocking the air stream in the oral cavity with the lips (in the case of /m/) or the tip of
the tongue (in the case of /n/). Additionally, the velum partially blocks the air to the vocal cavity
and routes it to the nasal cavity.
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2.2 Impact of Parkinson’s disease on speech motor control

2.2.1 Neuropathophysiology of motor control related to Parkinson’s dis-
ease

Motor deficits in PD can be analyzed by considering the interaction of the basal ganglia, the
motor cortex, and the thalamus (Figure 2.31). The basal ganglia are a group of neural formations
(subcortical structures) including the striatum (putamen and caudate nucleus), the Globus Pallidus
and its internal (GPi) and external (GPe) segments, the subthalamic nucleus (STN), and the
substantia nigra pars compacta (SNpc) and pars reticulata (SNpr). Anatomically, the STN belongs
to the subthalamus and the substantia nigra to the midbrain, however, they play a key role in
the functioning of the basal ganglia. Motor impairments in PD are mainly caused due to a
degeneration of dopaminergic neurons in the SNpc located in the midbrain.

The main function of the subcortical structures in the basal ganglia is to send signals to the
thalamus which then influence the activity in the motor cortex. This interaction can be analyzed
considering the most basic circuit model of the basal ganglia proposed by Albin et al. (1989) more
than 30 years ago. Although, more complex connections in the basal ganglia have been discovered
since then (Bostan and Strick, 2018; Redgrave et al., 2010), the basic model proposed in the late
80s is still valid to understand some of the most important aspects of motor control related to
PD (Milardi et al., 2019). Figure 2.4 shows a diagram of the neural circuits and neurotransmission
mechanism involved in the communication between cerebral cortex and basal ganglia. Basically,
the circuit model involves two main parallel loops:

1. The first loop is a cortex-to-cortex circuit in which the motor cortex sends signals to the
striatum, from which neural projections travel to the globus pallidus and then continue to
the thalamus which in turn sends information to the motor cortex.

2. The second loop involves activity from the substantia nigra, which projects dopaminergic
neurons to the striatum causing two opposite effects on two different receptors, the D1 and
D2 dopamine receptors: excitation (in D1) and inhibition (in D2).

The excitation and inhibition of movements are regulated by the dopaminergic input to the striatum
(from the SNpc) and go to the basal ganglia via the direct and indirect pathways:

1These figures are adapted versions of https://commons.wikimedia.org/wiki/File:
Basal_ganglia_circuits.svg and https://commons.wikimedia.org/wiki/File:
Midbrainsection.svg
Last retrieved 02/02/2021; under the Creative Commons Attribution-Share Alike 3.0 Unported license.

https://commons.wikimedia.org/wiki/File:Basal_ganglia_circuits.svg
https://commons.wikimedia.org/wiki/File:Basal_ganglia_circuits.svg
https://commons.wikimedia.org/wiki/File:Midbrainsection.svg
https://commons.wikimedia.org/wiki/File:Midbrainsection.svg
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Figure 2.3: Schematic views of the motor cortex, the thalamus, and components of the basal
ganglia. (A) shows a lateral view of the left hemisphere of the human brain. The dashed vertical
lines represent two coronal cuts (B and C) of posterior sections of the brain. (D) shows a superior
view of the midbrain signaling the substantia nigra (with SNpc and SNpr) in a healthy (left) and
Parkinson’s disease (right) brain. GPi: Globus pallidus internal segment; GPe: Globus pallidus
external segment; STN: Subthalamic nucleus; SNpc: substantia nigra pars compacta; SNpr:
substantia nigra pars reticulata. Adapted from Häggström (2021) and Madhero (2021)

• Direct pathway: The main function of the direct pathway is to excite the motor cortex and
to facilitate movement. This pathway begins in the motor cortex, where the neural impulses
enter the basal ganglia through the striatum via glutamatergic neurons, which produce an
excitatory neurotransmitter called glutamate. Then, the neurons from the striatum send
their axons to the GPi and SNpr via GABAergic inhibitory projections. The neurons from
the GPi/SNpr communicate with the thalamus, also via inhibitory projections. Then, the
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thalamus excitatory pathways go to the motor cortex resulting in an increased motor activity.

• Indirect pathway: The main function is to inhibit motor activity by suppressing involuntary
movement. The pathway begins in the motor cortex by projecting glutamate to the striatum.
The neurons in the striatum send their axons to the GPe, then continue to the STN and the
GPi/SNpr, which in turn, suppress the activity of the thalamus on the motor cortex.

Figure 2.4: Diagram of the internal connections between motor cortex and basal ganglia. The
dashed red lines indicate inhibitory projections and the green lines indicate excitatory projections.
In the direct pathway the striatum communicates directly to the GPi and SNpr. In the indirect
pathway, the striatum communicates to the GPi and SNpr through the GPe and the STN. The
dopamine projected from the SNpc to the striatum causes excitatory and inhibitory effects on
D1 and D2 receptors, respectively. GABA: y-aminobutyric acid; GPi: Globus pallidus internal
segment; GPe: Globus pallidus external segment; STN: Subthalamic nucleus; SNpc: substantia
nigra pars compacta; SNpr: substantia nigra pars reticulata. Based on Obeso et al. (2000)

In summary, dopamine helps to regulate the excitability of the neurons in the striatum, which
is involved in the body movement. In a healthy brain, the signal that is forwarded from the motor
cortex (and continues to the body) is the result (in part) of a balanced activation of neurons in
the direct and indirect pathways. In PD patients, decreased dopamine levels cause an increased
inhibition in the GPe in the indirect pathway. In parallel, there is a decreased inhibition of the
GPi activity in the direct pathway. The result is an increased activity in the GPi/SNpr output of
the basal ganglia, which makes it difficult to the patients to control their movements (Obeso et al.,
2000).
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2.2.2 Motor speech disorders in Parkinson’s disease

The speech production disorders often associated with PD are known as hypokinetic dysarthria,
which is the result of a dysfunction in the basal ganglia internal pathways. As described by Duffy
(2000), hypokinetic dysarthria is characterized by a reduction in the range of movements, rigidity,
and slow repetitive movements affecting different dimensions of speech such as phonation,
articulation, and prosody. Phonation problems include tight breathiness, hoarse speech, voice
tremor, and bowing of the vocal cords. Phonatory deviations are usually evaluated during
sustained phonation of vowels. In the case of articulation, the reduced range of movements of
jaw, lips, and tongue results in prolongation of speech sounds, problems to initiate speech, and
imprecise articulation of sounds, which can be evident during speech tasks including conversations,
reading, alternating and sequential production of syllables (/pa/, /ta/, /ka/, and /pa-ta-ka/). In
the case of prosody, the most common speech disorders include a reduction in the variability of
pitch (monopitch) and loudness (monoloudness), rapid speech rate, reduced loudness. Prosodic
deviations are mainly detected during conversational and read speech tasks.

2.3 Auditory system and speech control

2.3.1 Overview of the auditory system

The auditory system is composed of the outer, middle, and inner ear (cochlea) and regions in the
brain including the auditory cortex. Figure 2.52 shows a diagram of the components in the ear.
Sound waves travel through the ear canal (an air-filled path) setting the eardrum into vibration.
The middle ear (an air-filled chamber) acts as a mechanical bridge between the eardrum and the
inner ear by means of three small bones (malleus, incus, and stapes). The movements of the
eardrum are transmitted by these bones to the oval window, which is the entrance to the inner
ear: the cochlea is a fluid-filled cavity (perilymphatic fluid) with three scales formed as a snake.
In the middle scale is the Corti organ on the basilar membrane which contains the hair cells. The
mechanical vibrations produced in the middle ear are transformed into electrical signals by hair
cells found in the basilar membrane within the cochlea (Figure 2.53). Specifically, when the
oval window is being push-in by the stapes, the fluids in the cochlea are moved towards the apex,

2This figure is an adapted version of https://en.wikipedia.org/wiki/File:Anatomy_of_the_
Human_Ear_cs.svg
Last retrieved 02/02/2021; under the Creative Commons Attribution-Share Alike 2.5 Generic license

3This figure is an adapted version of https://medienportal.siemens-stiftung.org/en/
cochlea-transparent-uncoiled-101976
Last retrieved 02/02/2021; under the Creative Commons Attribution-ShareAlike 4.0 international license

https://en.wikipedia.org/wiki/File:Anatomy_of_the_Human_Ear_cs.svg
https://en.wikipedia.org/wiki/File:Anatomy_of_the_Human_Ear_cs.svg
https://medienportal.siemens-stiftung.org/en/cochlea-transparent-uncoiled-101976
https://medienportal.siemens-stiftung.org/en/cochlea-transparent-uncoiled-101976
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generating pressure waves at different points in the basilar membrane, which in turn, bends the
hair cells releasing a neurotransmitter that fires auditory neurons that connect the ear with the
brain. There are two different hair cells - the inner hair cell that functions as a receptor and the
outer hair cell that amplify the incoming signal. A deviation of the basilar membrane leads
to a bending of the tiny hairs on the top of these cells that results in rhythmic elongation and
shortening of the outer cells according to the frequency representation at their location and by that
to an increased basilar membrane vibration. The flow of fluid inside the cochlea produced by
the inward movement of the oval window is accommodated by the round window at the other
end of the cochlea (Denes and Pinson, 1993).

The information about frequencies of the acoustic signals are encoded by the auditory system
by locating the places of the basilar membrane in which the pressure waves produce the maxi-
mum displacement (vibration) amplitude. For instance, the place of maximum displacement for
high frequencies occurs near the base (stiffest part), while for lower frequencies, the place of max-
imum vibration displacement occurs towards the apex (Loizou, 1999). After the sound waves are
transmitted and transformed into electrical impulses in the inner ear, the receptor neurons transmit
the signals over a pathway of nerves (passing through regions of the medulla and the midbrain)
connected to the auditory cortex. The phenomenon of frequency-localization-organization called
“tonotopy” persists from the cochlea over the neurons to the cortex.

Figure 2.5: (Left). Schematic view of the outer, middle, and inner ear. (Right). portion of the
cochlea in the inner ear. Sound waves are transformed into electrical signals by the bending of
the hair cells inside the basilar membrane. Adapted from Brockmann (2021).
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2.3.2 Cochlear implants (CIs)

As described in Section 1.2.2, sensorineural hearing loss is caused by disorders in the inner ear
occurring at birth, due to a disease, as the result of an infection, among others. For instance,
Meningitis is an infection that can destroy the hair cells within the cochlea. Thus, without the
hair cells, the connection between the ear and the central nervous system is broken (Weber and
Klein, 1999). CIs bypass the damaged parts by triggering the hearing nerves via a direct electrical
stimulation through electrodes inserted in the cochlea (Figure 2.64). In general, a CI consists of
an external speech processor, which captures, preprocesses, and transforms the speech signals
into electrical impulses which are sent to an array of electrodes implanted inside the cochlea of
the patient. Commonly, the insertion of the electrodes is performed through the round window.
The insertion depth depends on the size of the cochlea and can reach distances close to the
apex (Carlson, 2020; Lenarz, 2017). The implants may have 12 or 22 (only half of them are active)
electrodes along the cochlea. There are a number of factors that can influence the frequency
resolution of the sounds perceived with help of a CI (Brant and Eliades, 2020; Loizou, 1999).
Some factors are:

1. The distance between the electrode contacts and the auditory neurons. Neural activation
decreases as the result of a decreased strength of the electrical stimulation in the targeted
neuron region.

2. The spread of the electrical stimulation. The propagation of the electrical current in the
electrodes, is spread by the perilymphatic fluid along the cochlea, thus, the electrical
excitation is not focused on a single region and might excite the surrounding neurons.

3. The number of auditory neurons available for electrical stimulation is limited. In order for
the CI to work properly, there has to be neural tissue left to receive electrical current.

4. The insertion by the surgeon sometimes is difficult resulting in a diminished number of
activated electrodes.

Considering what is mentioned above, it is clear why a CI user may notice differences between the
sounds perceived and the sounds produced, even after cochlear implantation (Lane et al., 1995).

4This figure is an adapted version of https://www.embopress.org/doi/full/10.15252/emmm.
201911618
Last retrieved 02/02/2021; under the Creative Commons Attribution 4.0 license

https://www.embopress.org/doi/full/10.15252/emmm.201911618
https://www.embopress.org/doi/full/10.15252/emmm.201911618
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Figure 2.6: (Left). Schematic view of a cochlea (and cross-section) with normal hearing. (Right).
Schematic view of a cochlea (and cross-section) with implant. Commonly, the electrode array is
implanted through the round window. The electrical stimulation of the electrode contact is spread
in a region of the target neurons. Adapted from Dieter et al. (2020).

2.3.3 Auditory feedback and speech control

Auditory feedback is the precondition of constant survey and correction of our own speech and by
that for the development and maintenance of speech movements. As described by Tourville et al.
(2008), speech motor control is characterized by feedback and feedforward control. On the one
hand, in feedback control the performance of the movements is evaluated during execution and
any deviation is corrected according to sensory information. On the other hand, in feedforward
control the performance of the movements depends on previously learned commands without
relying on sensory information. These mechanisms of speech control are often examined and
include different aspects. Some examples of the impact of auditory feedback on these two
processes include:

• Voice control, when a speaker raises his/her voice because the self-perceived loudness is
too low or simply to overcome background noise (Lombard effect; Lombard (1911)).

• Speech disfluency caused by delayed auditory feedback (Stuart et al., 2002)

• Adaptation of formant frequencies when a speaker hears persistent shift of formants of their
own speech (Purcell and Munhall, 2006; Tourville et al., 2008).

Normally, speech production is constantly monitored and compared to an internal speech model
in the brain which is acquired and maintained with the use of auditory feedback (Perkell et al.,
2000). In the Directions Into Velocities of Articulators (DIVA) model of speech production
proposed by Guenther (1994), the speech movements are planned considering a speech sound
map (in the motor cortex) that is activated to: (1) learn speech sound targets and (2) to control
the necessary articulatory movements to achieve different acoustic goals (Guenther and Hickok,
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2016). With ongoing hearing loss the speech sound map can slightly change, but moreover, the
sensory-motor control is decreasing as one tends to use only as much force and effort for all
movements as necessary (Guenther et al., 2004; Perkell et al., 2007). This has a considerable
impact on speech of people with hearing impairment. For instance, when hearing loss occurs after
speech acquisition (post-lingual onset of deafness), at first somatosensory feedback maintains
precise speech production. If there is a persistent lack of auditory feedback, speech production
may eventually deteriorate due to a diminished precision of articulation.

Summary

The speech production process requires the complex coordination of regions in the brain, vocal
tract, and auditory system. Depending on the clinical condition, different aspects of speech can be
affected, and thus, it is possible to detect these changes using automatic acoustic analysis. The
following chapter describes the techniques and methods used to model pathological speech signals
and detect speech production changes by analyzing aspects related to phonation, articulation, and
prosody.



Chapter 3

State-of-the-art

3.1 Severity estimation of Parkinson’s disease from speech

Typically, the assessment of the neurological state of PD patients from the speech is performed
using regression analysis, which consists of training a model to learn the relationship between
acoustic features (extracted from the speech signals) and the clinical score of the patient.

Several studies have addressed the prediction of clinical scores of PD patients. Asgari and
Shafran (2010) proposed a methodology to predict the UPDRS-III score (motor sub-score) from
speech recordings of 61 PD patients and 21 Healthy Controls (HC). Phonation, articulation, and
prosody analyses were performed by extracting acoustic features from the sustained phonation of
the vowel /a/, the rapid repetition of /pa-ta-ka/, and the reading of three standard texts. The set
of features considered are F0, jitter (cycle-to-cycle variation of pitch), shimmer (cycle-to-cycle
variation of the glottal waveform), spectral entropy (entropy of the log power spectrum), cepstral
coefficients (shape of the spectral envelope), the number and duration of voiced and unvoiced
frames, among others. A feature vector was formed for each speaker, and a Support Vector
Regressor (SVR) was trained to predict the patients’ UPDRS scores. The authors reported that
it is possible to estimate the UPDRS-III with a Mean Absolute Error (MAE) of 5.66 using an
ε-SVR with a cubic polynomial kernel. Tsanas et al. (2010) performed regression analysis to
estimate the UPDRS scores from 42 PD patients (28 male, 14 female). Speech recordings with
the sustained phonation of vowels were captured once per week for six months. However, the
neurological state of the patients was assessed only three times during that period: at the beginning,
three months later, and at the end. Thus, the authors used a piece-wise linear interpolation in
order to obtain the missing UPDRS scores. Speech signals were modeled considering acoustic
features based on pitch/amplitude perturbation, noise, and entropy. Regression analysis was
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performed using least squares, Least Absolute Shrinkage and Selection Operator (LASSO), and
Classification And Regression Trees (CARTs). Additionally, the MAE was used to evaluate the
proposed approach’s performance to estimate the total UPDRS and the scores from the motor
section (UPDRS-III). The authors reported that the CARTs approach was the best approach with
an MAE of 7.5 points in the evaluation of the total value of the UPDRS scale. The scores of
the motor section in the UPDRS were estimated with an MAE of 6 points. Skodda et al. (2013)
presented a study where the speech deterioration was evaluated over time. The speech of 80 PD
patients (48 male, 32 female) was recorded from 2002 to 2012 in two recording sessions. The
time between the first and second sessions ranged from 12 to 88 months. A control group of 60
healthy persons (30 male, 30 female) was also considered. The participants were asked to read
a text and to produce a sustained phonation of the vowel /a/. In both sessions, the patients were
assessed by neurologist experts according to the UPDRS-III. The audio signals were perceptually
evaluated considering four aspects of speech: voice, articulation, prosody, and fluency. Acoustic
analysis was performed to describe these speech aspects. Voice was modeled with a set of
features, including jitter, shimmer, and pitch average. The Vowel Articulation Index (VAI) and
the proportion of pauses within polysyllabic words were considered for articulation. Prosody
is analyzed with the estimation of the standard deviation of the pitch. In addition, fluency was
evaluated considering the speech rate and the pause ratio. To assess the progression of speech
and voice impairments, the authors compared the extracted features in the first and the second
session. The authors found significant differences for shimmer, speech rate, pause ratio, and
VAI when features extracted from the first session were compared to the same features extracted
from the second session. However, as the authors stated, the results were not conclusive due to
methodological limitations, like a long time between the two recording sessions. Bayestehtashk
et al. (2015) considered three regression techniques to predict the UPDRS scores, including
ridge regression, LASSO regression, and linear SVR. Speech recordings of 168 patients were
collected in a single recording session. Automatic methods for acoustic analysis of PD was also
addressed in the Parkinson’s Condition sub-challenge, which was part of the INTERSPEECH
2015 Computational Paralinguistic Challenge (Schuller et al., 2015). The challenge consisted
on predicting the MDS-UPDRS-III score, using recordings of 50 patients (25 male, 25 female)
included in the PC-GITA database (Orozco-Arroyave et al., 2014) were considered to form the
train and development subsets. The test set included a total of 11 new patients recorded in non-
controlled noise conditions, i.e., not using a sound-proof booth. A total of 42 speech tasks were
considered. The neurological state of the patients was assessed by a neurologist expert according
to the MDS-UPDRS-III subscale. The winners of the challenge (Grósz et al., 2015) reported
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a Spearman’s correlation of 0.65 between the real MDS-UPDRS-III scores and the predicted
values using deep rectifier neural networks and Gaussian processes. Orozco-Arroyave et al.
(2016) presented a methodology to estimate the neurological state (MDS-UPDRS-III) of 158 PD
patients: 50 Colombian (25 male), 88 Germans (47 male), and 20 Czech (all male). The regression
process was performed using a linear ε-SVR. The speech tasks considered are reading isolated
words, sentences, a standard text, and a monologue. In order to model articulation problems, the
authors extracted the energy in the transitions from unvoiced to voiced (onset) and from voiced to
unvoiced (offset) segments considering different frequency bands distributed according to the Bark
and the Mel scales. Speech intelligibility was evaluated using an automatic speech recognition
system. According to the authors, the neurological state of the patients (MDS-UPDRS-III) can
be estimated with a Spearman’s correlation of up to 0.74 when several speech tasks are modeled
considering the fusion of articulation and intelligibility measures. The openSMILE toolkit was
considered for feature extraction, which allows computing more than 6000 descriptors (Eyben
et al., 2010). The authors reported that the neurological state of the patients could be assessed with
an MAE of 5.5. A study for the monitoring of PD progression was also presented by Gómez-Vilda
et al. (2017). The authors considered speech recordings from 8 male patients captured twice
for four weeks between sessions. Speech recordings of 100 healthy speakers were considered
as a baseline. The participants were asked to perform the sustained phonation of the vowels /a/,
/e/, /i/, /o/,/u/, and read a short sentence and a standard text. The authors used two methods to
estimate the features: (i) vocal tract inversion using an adaptive lattice filter and (ii) biomechanical
inversion of a 2-mass model of the vocal folds. The features include jitter, shimmer, harmonicity,
vocal fold body mechanical stress, and tremor during vibration of the vocal folds. During the
recording sessions, the patients continued their pharmacological treatment and received speech
therapy. Each patient was evaluated according to the H&Y scale. The relationship between the
neurological scale and the acoustic features was evaluated using hypothesis testing based on
Bayesian Likelihood. According to the authors, the tremor and biomechanical features evolve
differently with the treatment. The authors suggest defining different time intervals between
evaluations to obtain more conclusive results. Sztahó et al. (2017) proposed a method to estimate
the severity of PD using rhythm-based features. The authors considered speech recordings of 51
PD patients (25 male) and 27 healthy speakers (14 male) from Hungary. All of the patients were
evaluated according to the H&Y scale. The speech tasks consisted of a monologue and the reading
of a standard text. The set of rhythm features includes the standard deviation of the duration of
consonants and vowels, the average duration of the speech/pauses, the pause ratio, percentage of
consonants/vowels, the articulation rate, and the raw and normalized Pairwise Variability Index
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(rPVI, nPVI) of the consonants and vowels. Regression analysis was performed to estimate the
severity of the disease using linear regression, SVR, Artificial Neural Networks (ANN), and Deep
Neural Networks (DNN). The authors obtained Spearman’s correlation coefficient of up to 0.744
(SVR, reading task) between the predicted and the target H&Y scores. Hemmerling and Wojcik-
Pedziwiatr (2020) estimated the severity of PD by extracting acoustic features from the sustained
phonation of the vowels /a/, /e/, /i/, /o/, and /u/. The set of features includes average F0, jitter,
shimmer, energy, spectral moments, MFCCs, Perceptual Linear Prediction (PLP) coefficients,
among others. For this, speech recordings of 27 PD patients from Poland were captured five times
for 180 minutes after taking levodopa medication. Additionally, a neurologist expert estimated
the UPDRS score of the patients in the five recording sessions. The motor UPDRS scores of
the patients were estimated using multiple linear regression, Random Forest (RF) regression,
and SVR. The authors reported that the lowest error between predictions and clinical scores was
obtained for the vowel /a/ (MAE=1.85) when the regression analysis was performed with RF.

Other studies have also considered regression analysis to estimate the dysarthria level of
PD patients. Cernak et al. (2017) evaluated the changes in the voice quality of the speakers by
considering the mFDA score related to larynx deficits (Table 1.3). The authors trained an SVR
with phoneme posterior probabilities extracted from recordings of 50 PD patients and 50 HC
speakers from Colombia. The speech tasks include the rapid repetition of /pa-ta-ka/, the reading
of a standard text, and a monologue. The authors reported Spearman’s correlation coefficients of
up to 0.57 between the predicted scores and the larynx mFDA score. Garcı́a et al. (2017) predicted
the neurological state and dysarthria level of 50 PD patients according to the MDS-UPDRS-
III and mFDA scores, respectively. Acoustic analysis was performed by considering different
pitch, loudness, duration, and filterbank analysis parameters. These features were extracted from
4 speech tasks, including the rapid repetition of syllables (e.g.,/pa-ta-ka/), a monologue, and
reading a text and different sentences. Then, the i–vector approach was considered to obtain
the speaker models (or embeddings) of 50 PD patients and 50 HC speakers from Colombia
(See Chapter 4). The authors reported that it was possible to predict the MDS-UPDRS-III with
a Spearman correlation of 0.63 when phonation and articulation features extracted from the
sentences were considered to train the i–vectors. Additionally, the mFDA was predicted with
a Spearman correlation of 0.72 when considering the rapid repetition of /pa-ta-ka/ modeled
with phonation, articulation, and prosody features. Vásquez-Correa et al. (2018) estimated the
dysarthria level of 68 PD patients and 50 HC speakers from Colombia. The set of speech tasks
included the sustained phonation of Spanish vowels, the reading of 10 sentences, a standard
text, a monologue, and the rapid repetition of /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, and /ka/.
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Automatic acoustic analysis was performed with i–vector speaker models obtained from phonation,
articulation, prosody, and intelligibility-based features. Additionally, three variations of ridge
regression (linear, kernel, bayesian) and two variations of SVR were considered to estimate the
mFDA scores of the patients and the HC controls. The authors reported that the higher Spearman’s
correlation coefficient was 0.69 for articulation features extracted from continuous speech. Karan
et al. (2020) combined F0 and Hilbert’s spectral features to estimate the mFDA score of 70 PD
patients. The authors considered speech recordings with the sustained phonation of the vowels /a/,
/e/, /i/, /o/, and /u/ and the reading of 10 isolated words. Regression analysis was performed with
an ε-SVR. The authors reported Spearman’s correlations of 0.75 (for the vowel /o/) and 0.77 (for
the word reina; “Queen”).

Table 3.1 summarizes the studies related to the severity estimation of PD. In general, the
sustained phonation of vowels and the reading of a standard text are the most frequently used
speech tasks to assess the patient’s neurological state. As described in Section 1.2.1, such a
task allows detection of speech problems. In the case of the reading task, the acoustic analysis
allows evaluating articulation and prosody problems. The most common biomarkers considered
to model speech problems include pitch (F0, jitter), harmonicity, e.g., harmonics-to-noise ratio,
and the spectral energy of the signal. Furthermore, the SVR has been suitable for modeling the
relationship between the acoustic features and the clinical score.

3.2 Speech analysis of cochlear implant users

Oral communication skills of severely and profoundly hearing-impaired speakers can be improved
by cochlear implantation. Such an improvement has been observed by a better contrast to produce
consonants, a decreased production of average F0 values, loudness, and duration of speech
segments. Nevertheless, the speech production of CI users is affected even after rehabilitation
by cochlear implantation. Plant and Oster (1986) investigated pitch, duration, and articulation
changes on the speech of one female speaker recorded in two sessions: before and after cochlear
implantation. The speech tasks consisted of the reading of a text and a list of words. Pitch and
duration were evaluated from the reading of the text by computing the average and standard
deviation of the F0 contour, the total phonation time, the average duration of the pauses, and an
estimated value of articulation rate (the number of syllables divided by the total phonation time).
Articulation was evaluated by extracting the vowels from the list of words and computing the
ratio between the first and second formants (F1/F2) to detect shifts in the vowel space area. The
authors reported that after implantation, the speech parameters from the CI uses moved towards
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Table 3.1: Summary of works related to the severity estimation of PD. Longitudinal analysis refers
to studies that consider several speech recordings captured in different sessions from the same
patients.

Authors Subjects Acoustic Method Clinical Longitudinal
parameters (best result) scale analysis

Asgari 2010 61 PD/21 HC Loudness, duration SVR UPDRS-III No
entropy, harmonicity
pitch, spectral energy

Tsanas 2010 42 PD Pitch, harmonicity CART Total UPDRS Yes
nonlinear analysis UPDRS-III

Skodda 2013 80 PD Pitch, articulation Shapiro-Wilk UPDRS-III Yes
fluency, harmonicity statistical test

Bayestehtashk. 2015 168 PD Loudness, duration SVR UPDRS-III No
entropy, harmonicity
pitch, spectral energy

Grósz 2015‡ 61 PD/ 50 HC Articulation Gaussian MDS-UPDRS-III No
processes

Orozco-Arroyave 2016 158 PD∗ Articulation, SVR MDS-UPDRS-III No
intelligibility

Gómez-Vilda 2017 8 PD/ 100 HC Pitch, harmonicity Bayesian H&Y Yes
vocal folds tremor, likelihood
body mass features

Sztahó 2017 51 PD/27 HC Speech rate, SVR H&Y No
duration, rhythm

Cernak 2017 50 PD/ 50 HC Phoneme posterior SVR mFDA (Larynx) No
probabilities

Garcı́a-Ospina 2017 50 PD/ 50 HC Pitch, loudness i–vectors mFDA No
articulation, duration MDS-UPDRS-III

Vásquez-Correa 2018 68 PD/ 50 HC Speaker embeddings SVR mFDA No
with i–vectors

Hemmerling 2020 27 PD Pitch, loudness, SVR UPDRS-III No
spectral energy,
filterbank features

Karan 2020 70 PD Pitch, Hilbert SVR mFDA No
spectral features

∗ This study includes speakers from Colombia (50), Germany (88), and Czech republic (20)
‡ Winners of the Parkinson’s Condition sub-challenge (Schuller et al., 2015)

“normality” values, which were obtained by performing the same analysis on the recording of an
age-matched typical hearing speaker. As stated by the authors, the main limitation of that study was
that only one speaker was considered. Furthermore, the authors believe that speech improvement
by the CI users may be the result of training. Perkell et al. (1992) performed acoustic analysis
considering speech recordings of four postlingually deafened CI users. The recording sessions
were performed pre- and post-activation of the speech processor. Post-activation recordings were
captured at different week intervals. The features considered for analysis were F0, F1, F2, Sound
Pressure Level (SPL), duration, and amplitude difference between the first two harmonic peaks
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in the log-magnitude spectrum. The speech tasks consisted of reading nine vowels (included in
predefined words) spoken in a carrier sentence. The authors reported that, after activation, many
of the acoustic parameters moved toward values reported in previous studies, which considered
healthy speakers. However, these results were based on the outcome of only four speakers. Lane
et al. (1995) measured the VOT in stop-initial syllables produced by five CI users. Short-term and
long-term analyses were performed. For the short-term analysis, the recordings were captured
after turning off the speech processor of the patients for 24 hours, then turned on, and then off
again. For long-term analysis, speech recordings were captured before and after activation of the
speech processor in intervals of 0, 4, 12, 26, 52, 104 weeks. The speech task consisted of the
reading of the six English stop consonants embedded in a carrier sentence. The measurements
for the VOT were performed manually. The authors examined the effect of processor activation
and found increased VOT measurements in the voiced stop consonants for the short-time analysis
and increased VOT values for the long-term analysis. The authors suggest that changes in voiced
stops are related to concurrent changes in pitch and SPL. For the case of voiceless stops, the
changes are linked to auditory validation of phonemic settings. One limitation of this study is
the reduced amount of speakers considered for the experiments. Gould et al. (2001) examined
speech intelligibility of four postlingually deafened adults before and after 6 and 12 months of
activation. The participants were instructed to produce ten repetitions. Speech intelligibility
was measured for vowels and consonants individually using a metric called the percentage of
transmitted information. The authors reported an overall improvement in word intelligibility;
however, such an improvement was not consistent for individual consonants or vowels. Blamey
et al. (2001) analyzed the speech production of nine children for six years after implantation.
Speech intelligibility was assessed by considering phonetic transcriptions of conversational speech.
The transcriptions were used to measure the percentage of correctly produced words. The authors
observed an increase in speech intelligibility, length, and phonemic accuracy during the six years.
However, the rate of improvement was considerably slower than that observed in normally-hearing
children who developed their linguistic skills at a younger age. Hassan et al. (2012) evaluated
speech nasalization considering 25 postlingual CI users and 25 age-matched HC from Saudi
Arabia. The patients were divided into three groups according to the duration of hearing loss
before implantation: (1) less than three years (7 patients), (2) between 3 and 6 years (8 patients),
and (3) more than six years (10 patients). For evaluation, percentage scores of nasalance were
obtained from two sentences read by participants. The scores were obtained with a nasometer
which measures the acoustic output from the oral and nasal cavities. Nasalance scores were
obtained for each patient before implantation and after 6, 12, and 24 months of CI activation.
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The authors reported that for the three groups of patients, there is a tendency from the nasalance
scores to decrease over time; however, the level of nasality was still higher than in the control
group. Furthermore, the authors found that the degree of nasality and the improvement over time
depend on hearing loss duration. In the study presented by Ubrig et al. (2011) deviations in the
phonation of CI users were investigated. For this, the authors considered speech recordings of 40
postlingual CI users and 12 postlingually hearing-impaired adults without implants from Brazil.
Two recording sessions were performed for the CI users: before implantation and 6-9 months
after activation of the device. Acoustic analysis was performed by computing the average and
standard deviation of the F0 contour obtained from the recordings of the sustained phonation of
the vowel /a/ and the reading of a standard text. The authors found a significant reduction of F0
variability when comparing the first to the second recording session.

Other works have investigated the impact of the onset of hearing loss in the speech of CI users,
i.e., pre-/post-lingual hearing loss. Vowel articulation of pre- and post-lingual deafened CI users
was evaluated by Neumeyer et al. (2010). Speech recordings of 10 CI users (5 prelingual) and ten
age-matched normal hearing speakers from Germany were considered for the test. Articulation
analysis was performed by computing the vowel space of /a/, /e/, /i/, /o/, and /u/ which are extracted
from target words included within 20 standard sentences. The acoustic parameters extracted from
the vowels include the first and second formant frequencies. The authors reported a reduction of
the vowel space area for the CI users compared to normal hearing speakers; particularly, such
a reduction is mainly caused by the misarticulation of back vowels (/o/, /u/). One reason the
authors give is that such vowels are produced with tongue movements that are not visible to the
CI users. Additionally, the authors did not report differences between pre- and post-lingual CI
users. The authors suggest that since postlingual CI users spent years without sufficient hearing
and auditory feedback before implantation, their articulatory capability was diminished. Pre- and
post-lingual CI users have been found to have limited production contrast of sibilant sounds, e.g.,
/s/ and /S/. Todd et al. (2011) analyzed speech recordings from 33 CI children (all prelingual)
and 43 age-matched HC English native speakers from the United States. All children were asked
to read 18 words with the sibilant sound (/s/ or /S/) in the initial position. The target phonemes
were manually transcribed and evaluated by trained native speakers. The acoustic analysis was
performed by computing the energy in the Bark scale from a Hamming window of 40 ms located
in the middle of the sibilant sound. Then, only the Bark band with the highest energy was selected
for evaluation. From the transcription analysis, it was observed that CI children produced the /s/

with less accuracy than /S/. Furthermore, the children produced these two phonemes with less
accuracy than the HC. Regarding the acoustic analysis, the authors found that CI children produced
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the sibilant sounds with less energy than the control group, which results in a reduced contrast
between /s/ and /S/. The authors suggest that such a diminished contrast may be caused by a
poor frequency resolution in the implant. Similarly, Neumeyer et al. (2015) analyzed the German
sibilant sounds /s/ and /S/ produced by 48 CI users (24 prelinguals) and 48 HC speakers. The
patients were divided into four groups depending on the onset of hearing loss (pre-/post-lingual)
and the time between hearing loss and cochlear implantation (before/after language acquisition).
The study participants were asked to read a carrier sentence containing two words that differed
only in one consonant and with different meanings: Tasche (bag) and Tasse (cup). Acoustic
analysis was performed by manually segmenting the sibilant sounds from the recordings and then
computing the first spectral moment. From the results, the authors concluded that the sibilant
production of CI users deviates from normal speech, that onset of deafness plays a role in the
degree of the deviation, but that the duration between onset of hearing loss and implantation has
no significant effect impact on the sibilant production. The authors explained that such deviations
might occur because the spectral resolution of the implant is lower in higher frequencies; thus, CI
users shift the production of the sibilant sounds into the frequency range perceived by them. The
speech intelligibility of pre- and post-lingual CI users can also be affected in different ways. Ruff
et al. (2017) performed the automatic evaluation of the speech production intelligibility using an
ASR system. The authors considered recordings of 50 CI users (14 prelingual, 36 postlingual) and
50 HC German native speakers for the experiments. The patients were divided into three groups:
(1) prelingually deafened CI users with more than two years before surgery, (2) postlingually
deafened CI users with less than two years before surgery, and (3) postlingually deafened CI users
with more than two years before surgery. The study participants were asked to read a total of 97
words that contain every phoneme of the German language in different positions within the words.
Then, the Word Recognition Rate (WR) was computed from the automatic transcriptions obtained
from the ASR. The system was trained with 27 hours of speech recordings using the 97 words from
the test as the vocabulary. The authors found that CI users with the postlingual onset of hearing
loss and short duration of deafness (< 2 years before surgery) have higher WR than postlingual
with a long duration of deafness and prelingual. Furthermore, the postlingual CI users with a
short duration of deafness showed WR similar to the HC speakers. Gautam et al. (2019) presented
a review of more than 25 studies (from 1983 to 2017) related to speech and voice changes due
to hearing loss and the effect of CI in adults and children. The acoustic parameters evaluated in
those works include pitch, loudness, consonant contrast, speech duration/rate, vowel articulation
(VSA), and VOT. Changes in speech and voice due to hearing loss include: (1) increased pitch,
loudness, and duration of speech, (2) reduced VSA and VOT, and (3) slower speech rate. The
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studies in the literature have reported that most of these parameters move towards normality after
cochlear implantation; however, speech and voice deviations are still present.

Table 3.2 shows a summary of the works reviewed in this section. Although speech production
of CI users has been addressed before, the number of studies considering automatic methods for
acoustic analysis is limited. From the works reviewed, it can be observed that speech and voice
parameters such as pitch and loudness deviate from normality values even after implantation.
Furthermore, poor contrast to produce some phonemes such as /s/ and /S/ has been associated
with the limited resolution of the CI to provided good perception to the patients.

Table 3.2: Summary of works related to acoustic analysis of speech production of CI users.
Authors Subjects Acoustic Method Effect of Automatic

parameters hearing loss analysis
Plant 1986 1 CI/1 HC Pitch Mean and variation of F0 Reduced F0 No

Duration Voiced segments Longer duration
Vowel articulation Formant frequencies Reduced VSA

Perkell 1992 4 CI Pitch Mean F0 Reduced F0 No
Duration Vowel duration Longer duration
Loudness Mean SPL Reduced loudness
Vowel articulation Formant frequencies Reduced VSA

Lane 1995 5 CI Duration Voiced and voiceless Reduced VOT No
VOT

Gould 2001 4 CI Intelligibility Percentage of information Poor speech No
transmitted intelligibility

Blamey 2001 9 CI Intelligibility Percentage of correct Poor speech No
words intelligibility

Neumeyer 2010 10 CI Vowel articulation Formant frequencies to Reduced VSA No
estimate the VSA

Todd 2011 33 CI Consonant articulation Bark energies to evaluate the Poor contrast No
production contrast between
the phonemes /s/ and /S/

Ubrig 2011 40 CI/12 HI∗ Pitch Mean and standard deviation Higher variation No
of F0 of F0 No

Hassan 2012 25 CI/ 25 HC Nasality Nasometer to estimate Higher level of No
the nasality level nasality

Neumeyer 2015 48 CI Consonant articulation Spectral moment to evaluate the Poor contrast No
production contrast between
the phonemes /s/ and /S/

Ruff 2017 50 CI/ 50 HC Intelligibility Word recognition rate Lower word Yes
using an ASR system recognition rate

Gautam 2019 NA† Pitch Mean F0 and jitter Increased pitch -
Loudness Mean SPL and shimmer Increased loudness
Duration Word/syllable duration, VOT Longer durations
Speech rate Speaking rate Slower rate
Vowel articulation Formant frequencies, VSA Reduced VSA
Consonant articulation /s/ vs /S/; /r/ vs /l/ Poor contrast

∗HI: Hearing impaired.
†Information about the number of speakers not available.
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3.3 Aging and speech

Some studies have analyzed the impact of aging in speech. Xue and Deliyski (2001) considered
sustained phonations of the English vowel /a/ and computed fifteen phonation measures of the
Multi-Dimensional Voice Program. The set of measures includes F0, jitter, Pitch Perturbation
Quotient (PPQ), Relative Average Perturbation (RAP), variability of F0, Amplitude Perturbation
Quotient (APQ), shimmer, Noise to Harmonics Ratio (NHR), among others. A total of 44
speakers (21 male and 23 female) aged between 70 and 80 years were considered and compared
with respect to the norms for young and middle-aged adults published by Deliyski and Gress
(1998). The authors performed statistical analyses and reported that the voice of elderly people is
significantly different (usually poorer) than the voice of young and middle-aged adults. Goy et al.
(2013) considered several phonation measures to assess the stability of vocal fold vibration and to
quantify the noise in the voice of 159 younger speakers at ages between 18 and 28 years, and 133
older adults with ages between 63 and 86 years. The authors concluded that the instability of the
vocal fold vibration increases with age. The dysphonia severity index was also measured and only
older females exhibited higher values than those in younger females. No statistical differences
were observed between younger and older males. Another study that evaluates the influence of
aging in the speech of elderly people considering phonation and articulation analyses is presented
by Torre and Barlow (2009). A total of 27 young speakers with mean age of 25.6 years and 59
older people with mean age of 75.2 years were considered. Each participant was asked to read
a set of 22 consonant-vowel-consonant words. The vowels and oral stops of each word where
extracted and analyzed using Praat (Boersma and Weenink, 2001). The authors analyzed several
acoustic properties including F0, the first three formant frequencies and the VOT. According
to the results, there was a decrease of F0 with age for women and a increase of F0 with age
for men. This finding is consistent with the results reported by Benjamin (1981). The authors
highlighted also that older men showed shorter VOTs than both younger men and younger women,
which is also reported by Benjamin (1982). A greater variability in F0, the three formants, and
the VOT is systematically observed in the speech productions by older adults compared to their
younger same-sex counterparts. As the natural aging process in humans carries several alterations
in speech production and perception, the impact of aging in the detection of voice disorders is
still an open problem and its relevance in the clinical practice was studied by Pernambuco et al.
(2017). The relationship between age and speech production was investigated by Tremblay et al.
(2018). Speech recordings of 60 adults at ages ranging from 18 to 83 years were considered for
the experiments. The participants were asked to read meaningless non-words aloud as quickly
and accurately as possible. Acoustic parameters included the error rate, vocal reaction time,
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vocal raction time variability, vocal response duration, and vocal response duration variability.
The authors reported an overall increase in error rate, vocal response duration, and in duration
variability with age. The authors concluded that there is an age-related decline in the planning
and execution of speech movements of cognitively healthy adults. Gollan and Goldrick (2019)
investigated the influence of the aging process in the production and self-correction of errors
during connected speech. Speech recordings of 35 cognitively healthy adults and 56 younger
speakers were considered for the tests. The speech task consisted of the reading of 6 paragraphs
in three conditions with increasing difficulty: normal, nouns-swapped, and reversing the order
of adjacent words every two sentences. Reading times and errors increased with task difficulty,
but self-correction rates were lowest in the nouns-swapped condition. The authors observed
that elderly speakers read aloud more slowly, produced more speech errors, and self-corrected
their errors less often than the young speakers. The authors concluded that aging speakers can
compensate for aging-related decline in control over speech production with their vocabulary
knowledge and attention to speech planning in more difficult speaking conditions, which suggest
that a there is a model of speech production in which planning of speech is relatively automatic,
whereas monitoring and self-correction are more attention-demanding, which keeps the speech
production relatively intact in aging. Differences in speech and voice were examined by Taylor
et al. (2020) which considered speech recordings from 169 speakers across 18 families, with ages
ranging from 17 to 89 years. Acoustic analysis was performed by computing pitch, duration, and
spectral features including fricative spectral moments, the proportion of time spent speaking, mean
speaking fundamental frequency, semitone standard deviation, and cepstral peak prominence. The
speech task consisted of the reading of two passages. The authors found significant age effect for
fricative spectral center of gravity, spectral skewness, and speaking semitone standard deviation.

3.4 Smartphone-based applications for health care

3.4.1 Applications for Parkinson’s disease

Linares-Del Rey et al. (2019) reviewed 125 mobile phone applications reported in the literature
between 2011 and 2016. However, only 29 of those apps were identified as assessment apps
specifically developed to evaluate PD, and only 2 of those considered speech. Dubey et al. (2015)
presented a smartwatch-based system to monitor speech and voice impairments of PD patients. The
system consists of a tablet and a smartwatch to perform the data collection. Speech impairments
were analyzed considering the sustained phonation of vowel /a/. The speech recordings were
sent to a cloud-based server to store and perform the speech analyses; however, those analyses
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were limited to only phonation measures. Tao et al. (2016) presented a portable system for the
automatic recognition of the syllables /pa-ta-ka/. The proposed approach consists of a tablet and
a headset to capture the speech signals. The system was trained using speech recordings from
two groups of speakers: patients with traumatic brain injuries and PD patients. The automatic
recognition of /pa-ta-ka/ was performed in the mobile device using an ASR system. Speech
impairments were assessed using a single metric, which consists of the syllable error rate. Another
platform to monitor PD using a smartphone was presented by Zhan et al. (2016). The application
includes several tests to evaluate different PD symptoms related to dysphonia, postural instability,
bradykinesia, and tremor. The monitoring and assessment of PD symptoms were performed with
a defined protocol to measure different motor impairments in voice, gait, dexterity, and balance.
Later, Zhan et al. (2018) used the same app to collect data from 129 PD patients over the internet
and used a ranking algorithm (Dyagilev and Saria, 2016) to assess the severity of the disease.
However, only one aspect of speech (phonation) was considered to evaluate the patients.

3.4.2 Applications for hearing loss

To the best of my knowledge, there are no smartphone applications reported in the literature that
consider both speech perception and production to assess hearing-impaired people. There are,
however, some applications developed to assess hearing perception. There are two types of mobile
phone-based applications for hearing screening: tone-based audiometry test and speech-in-noise
tests (De De Wet Swanepoel et al., 2019). In a clinical setting, pure-tone testing is performed by
reproducing sinusoidal waveforms (tones) at different frequencies through speakers or headphones.
One of the main difficulties in adapting this kind of test to mobile phones is that the hardware
has to be calibrated. For instance, the mobile phone application presented by Abu-Ghanem et al.
(2016), was developed to evaluate hearing loss using pure-tone testing. The app, called uHear
(only available on iOS), was validated with a standard audiometric in a clinical setting. For the ex-
periments, the authors considered 26 healthy controls older than 65 years. The patients were asked
to put on earphones in order to perform the experiments. The results obtained from uHear and the
standard audiometric evaluation agreed to 24 out of 26 subjects; however, the hearing thresholds
obtained with the app were less accurate than the standard pure-tone test. The authors suggest
that the quality of the earphones influences the obtained results. The multinational technology
company Apple Inc. released the app hearingOS, which includes a standardized audiometry test
module. Since Apple has standard hardware embedded in its devices, the application comes with
calibration values. However, due to the high costs of Apple devices, such an app has low usability
in low-income countries. The Speech-in-noise test assesses speech perception and understanding
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of hearing-impaired people in noisy environments. Contrary to the pure-tone test, speech-in-noise
does not require device calibration, which allows adapting such tests to different mobile phones
and headphones. In 2019, the World Health Organization developed a mobile (iOS and Android)
application for hearing screening called hearWHO1. The app includes a digits-in-noise test
which plays pre-recorded digit triplets reproduced only through headphones. The recordings are
played with background noise (white noise) to determine the signal-to-noise ratio where a person
can identify 50% of triplets correctly (Potgieter et al., 2016).

Table 3.3: Mobile-based applications considering the assessment of PD and hearing loss
Author Operative Description Speech Target users

system analysis
Dubey 2015 Android Smartwatch and tablet to No PD patients

collect speech data
Tao 2016 Android ASR to compute the Yes PD patients

syllable error rate
Zhan 2018 Android Evaluation of voice, gait Yes PD patients

dexterity, and balance
Abu 2016 iOS Pure-tone audiometry test No Hearing impaired
Apple Inc. iOS Pure-tone audiometry test No Hearing impaired
WHO 2019 iOS/Android Digits-in-noise test No Everyone

Table 3.3 shows a summary of iOS and Android based applications to evaluate PD and hearing
loss. In the case of PD, the evaluation of speech production only focuses on one dimension
(mostly the sustained phonation). In the case of hearing loss, there is a limited number of mobile
applications used to evaluate the hearing status. The pure-tone audiometry test is generally used
to have an initial evaluation of the hearing status, however, the equipment necessary to perform
the test must be properly calibrated.

Summary

Several contributions in the literature have provided evidence that it is possible to detect changes
in speech due to PD. Furthermore, those studies have addressed the prediction of the neurological
state or dysarthria level of PD patients using speech signals; however, a limited amount of works
have considered monitoring the disease over time, which is essential to have more control over

1https://www.who.int/health-topics/hearing-loss/hearwho
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the disease progression. Regarding the speech production of CI users, analysis has been focused
on articulation, prosody, and intelligibility distortions caused by hearing loss; however, a limited
amount of those works have considered automatic methods for acoustic analysis, which in the
long term may help the patient to have a personalized rehabilitation. Additionally, in the design of
automatic systems for speech analysis, it is also essential to consider that speech changes may
occur due to the natural aging process. Finally, integrating acoustic analysis into smartphone
devices can increase the individual monitoring of the patients.



Chapter 4

Automatic analysis of pathological speech
signals

4.1 Speech processing techniques-an overview

4.1.1 Short-time analysis

Speech sounds result from fast interactions of different areas in the brain, the respiratory system,
and several elements of the vocal tract. During speech production, sudden changes in the vocal
tract lead to abrupt variations in the temporal structure of the signal. The standard approach
to detect and analyze these fast changes is to split a speech signal into a sequence of frames
St = {s0, s1, ..., sT} with t = 0, 1, 2, . . . T − 1, where T is the number of frames extracted from
the speech recording.

Usually, the frame length K is short enough to keep constant measurements within speech
segments (e.g., vowels, consonants) and long enough to guarantee measurable parameters (e.g.,
pitch, energy). Typical values for K are 25 ms and 40 ms, but these values may change depending
on the application. The influence of the frame duration will be examined in Section 4.1.2. The
distance between consecutive frames Q (frame rate or hop size) is chosen to ensure that abrupt
changes in speech can be detected. In general, a value of Q = 10 ms is used. For any speech
recording, the number of frames T can be estimated as:

T =
(D −K)

Q
(4.1)

where D is the duration (in seconds) of the recording. T is approximated to the closest integer

38
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value. In order to handle discrete-time signals (e.g., speech recordings), the length of the frame
in samples is defined as N = Kfs, where fs is the sampling frequency of the speech recording.
Figure 4.1 shows an example of a short-time transformation of a speech signal. One problem with

Figure 4.1: Short-time transformation of a speech signal. The sequence of speech frames “S” are
formed with segments of duration “K”, which are taken every “Q” time steps.

the short-time analysis is that splitting a speech signal into frames results in discontinuities at the
borders of each frame. A common approach to reduce the impact of such discontinuities is to
apply a window function to each frame. For instance, by multiplying a Hann window with each
speech frame, the discontinuity goes to zero. The Hann window is defined as

w[n] = 0.5

(
1− cos

(
2πn

N − 1

))
,with n = 1, 2, . . . , N (4.2)

where N is the number of samples in st. Figure 4.2 shows the result of applying a Hann window
to a speech frame. In general, the final sequence of frames can be expressed as

st[n] = w[n]s[n+ tH],with n = 1, 2, . . . , N (4.3)

where H = Qfs is the hop size measured in samples.
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Figure 4.2: Example of a windowed speech frame st using the Hann window. The “×” represents
a point-wise multiplication.

4.1.2 Time-frequency analysis

Short-Time Fourier Transform

In many speech and audio applications, the most common time-frequency analysis is performed by
means of the Short-Time Fourier Transform (STFT) due to its simplicity and low computational
cost. The reason is that the spectrogram (time-frequency representation) of an audio signal
describes how the energy of the signal is distributed in the frequency domain and how it changes
over the time. The STFT is obtained by computing the Discrete Fourier Transform (DFT) from
sliding windows. For each speech frame st with size N , the STFT is computed as

F (t, b) =
N−1∑
n=0

st[n]e−i2πnb/N (4.4)

where st[n] is calculated using Equation 4.3, b is the frequency or bin index (Benesty et al., 2007).
The frequency at the b-th index is defined as

f =
b

N
fnyquist (4.5)

where fnyquist = fs/2 is the Nyquist frequency. The result of the DFT is an array of complex
numbers. Commonly, the logarithm of the power spectrum log(|F (t, b)|2) is used for time-
frequency analysis. Figure 4.3 shows the result of computing the power spectrum and the log-
power spectrum of a windowed speech frame. Note that calculating the STFT with Equation 4.4
results in N2 operations. In practice, the Fast Fourier Transform (FFT) algorithm, proposed by
Cooley and Tukey (1965), is used to reduce the number of operations from N2 to N log2N by
exploiting symmetries and dividing the DFT operations into two smaller pieces of size N/2 at
each step: One piece to compute even-numbered samples and the other for odd-numbered samples.
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Figure 4.3: Power spectrum and log-power spectrum of a windowed speech frame. The two peaks
in the power spectrum indicate that there are two components in st[n] with high energy in two
different frequency points.

Using the FFT algorithm, Equation 4.4 becomes

F (t, b) =

N/2−1∑
m=0

st[2m]e−i2πmb/(N/2)︸ ︷︷ ︸
Even values

+e−i2πb/N
N/2−1∑
m=0

st[2m+ 1]e−i2πmb/(N/2)︸ ︷︷ ︸
Odd values

(4.6)

Thus, with the FFT algorithm only half of the operations are computed for the even and odd
values, resulting in a faster computation of the STFT. Note also that splitting the DFT into two
pieces limits N to be a power of two. In order to meet this condition, the speech frame st is
usually padded with zeros such that the number of samples in the frame is a power of two.

Figure 4.4 shows a schematic of the process to compute the power spectrum of the sentence
“it’s impossible to deal with bureaucracy” uttered by an English native speaker. In the final STFT,
the time is given in the horizontal axis, the frequency in the vertical axis, and the energy of
the signal (given by log(|F (t, b)|2)) is represented by the color scale. High energy values are
represented by yellow and low energy values are represented by blue.

Wide-band and narrow-band spectrograms

The resolution of the STFT is a trade-off between time and frequency. On the one hand, in a wide-
band spectrogram the temporal resolution is higher at the expense of a lower frequency resolution.
On the other hand, in a narrow-band spectrogram the frequency resolution is higher at the expense
of a lower temporal resolution. Whether a spectrogram is wide- or narrow-band can be controlled
with the length of the selected speech frame. Figure 4.5 shows the power spectrograms of a speech
recording windowed with speech frames with selected lengths of K = {40 ms, 25 ms, 15 ms}.
The signal has a sampling frequency of fs = 16 kHz and a hop size of Q = 10 ms. Furthermore,
in order to have a better comparison, the resolution of the STFT is set to N = 1024 for all K. The
distribution of energy in the frequency domain is more detailed in the narrow-band spectrogram
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Figure 4.4: Power spectrum for the sentence “it’s impossible to deal with bureaucracy”. The
energy is represented by the color scale: yellow for high energy and blue for low energy.

(K = 40 ms). The transition from one speech segment to another is more clear in the wide-band
spectrogram (K = 15 ms). For the spectrogram with K = 25 ms, the trade-off between temporal
and frequency resolution is more balanced.
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Figure 4.5: Wide-band and narrow-band spectrograms of a speech recording with K =
{40 ms, 25 ms, 15 ms}

4.1.3 Filterbank analysis

As described in Section 2.3.1, the human ear can decompose an audio signal into several fre-
quencies by locating the places of maximum displacement in the basilar membrane produced
by pressure waves. However, rather than localized points, the basilar membrane is divided into
regions or bands that encode the frequency information non-linearly across the audio spectrum
(from 20 Hz to 20 kHz). This non-linearity is produced because the bandwidth of these bands (and
the space between them) increases non-uniformly as the frequency increases. Figure 4.61 shows
a diagram of the basilar membrane indicating the base, the apex, and the bands of maximum
displacement in response to sinusoidal waves with different frequencies. As shown in the figure,
low frequency tones are detected near the apex, where the basilar membrane is wider and more
flexible than at the base (which is narrow and stiff), where high frequency tones are detected.
The sensitivity of the basilar membrane to detect different tones can be modeled as an array of
overlapping band-pass filters and the bandwidth of these filters is commonly known as critical

bands (Fletcher, 1940; Havelock et al., 2008). The critical band scale is divided into 24 bands
known as Bark scale, which is a psycho-acoustic scale proposed by Zwicker (1961). The aim
of filterbank analysis is to provide a time-frequency representation of speech that encodes the
frequency components in a similar way to the basilar membrane in the human ear.

Mel-scale filterbank

Mel is a perceptual scale proposed by Volkmann et al. (1937) to measure how different tones are
perceived by the human ear. In the Mel-scale, a set of triangular filters is applied to the log-power

1This figure is an adapted version of http://bibliotecadigital.udea.edu.co/bitstream/
10495/18789/4/PerezPaula_2021_SpeechNaturalLanguage.pdf
Last retrieved 05/04/2021; under the Creative Commons Attribution-ShareAlike 4.0 license

http://bibliotecadigital.udea.edu.co/bitstream/10495/18789/4/PerezPaula_2021_SpeechNaturalLanguage.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/18789/4/PerezPaula_2021_SpeechNaturalLanguage.pdf
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Figure 4.6: Basilar membrane and the position of maximum displacement in response to sinusoidal
waves with different frequencies.

spectrum in order to obtain the Mel-spectrum, a “compressed” and nonlinear representation of the
STFT. It can be considered as a compressed time-frequency representation, because it reduces the
size of the STFT from N frequency bins to M filters. It is also non-linear, because the bandwidth
and the spacing between the filters increases non-uniformly as the frequency increases. Center
frequencies (in the Mel scale) of the filters are obtained by using

m = 1125 ln(1 + fHz/700) (4.7)

where fHz is the frequency in Hertz. Converting from Mel back to Hertz

h(m) = 700(em/1125 − 1) (4.8)

The process to obtain a Mel-spectrum is as follows:

• Compute the STFT of a speech signal as described in Section 4.1.2.

• Select the number of filters M . Typical values are M = {32, 64, 128}. This parameter also
controls the frequency resolution of the Mel-spectrum i.e., the higher the number of filters,
the higher the resolution.
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• Choose a lower and upper frequency. For speech recordings with fs ≥ 16 kHz, a value of
8 kHz is preferred for the upper value. Speech signals with fs = 8 kHz are limited to an
upper frequency of 4 kHz. A typical value for the lower frequency is 50 Hz.

• Construct the triangular filter bank with

FB(k) =



0 k < f(m− 1)

k − f(m− 1)
f(m)− f(m− 1)

f(m− 1) ≤ k < f(m)

f(m+ 1)− k
f(m+ 1)− f(m)

f(m) ≤ k ≤ f(m+ 1)

0 k > f(m+ 1)

(4.9)

where k = 1, 2, . . .M , f(m) = (N + 1)h(m)/fs, and N is the number of frequency bins
of the STFT.

• Apply the triangular filterbank to the STFT.

Figure 4.7 shows the power spectrum of a speech signal with N = 512 frequency bins, 32
triangular filters, and the resulting Mel-spectrum. The output of each triangular filter represents
the log-energy distribution in the frequency domain scaled according to Mel (Equation 4.7).

Figure 4.7: Mel-spectrum of a speech recording resulting from applying a 32 triangular filterbank
to the STFT of the signal with a frequency resolution of 512 points (frequency bins).
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Gammatone filterbank

Similar to Mel, the Gammatone filterbank can be considered as a nonlinear and compressed
time-frequency representation of the STFT. However, there are two main differences with respect
to Mel: (1) the frequency scale is based on the Equivalent Rectangular Bandwidth (ERB), which
is related to the critical bands and (2) the shape of the filterbank is obtained as the multiplication
of sine and gamma functions, instead of triangular filters.

The Gammatone filterbank is based on the cochlear model proposed by Holdsworth et al.
(1992). The time-frequency representation that results from applying a Gammatone filterbank to
the STFT is often called a Cochleagram. As defined by Glasberg and Moore (1990), the center
frequencies fc in the ERB scale can be obtained as

ERB(fc) = 24.7 + 0.180fc (4.10)

If the number of filters M is known (e.g. M = 128), the center frequencies can be calculated as
proposed by Slaney et al. (1993):

fc = −α + (fH + α)em(− log(fH+α)+log(fL+α))/M , with α = EarQ*minBW (4.11)

where m is an M -dimensional array of integer values m = {1, 2, 3 . . .M}, fL is the lower
frequency (e.g. fL = 50 Hz), fH is the upper frequency (e.g. fH = 8 kHz), and the parameters
EarQ = 9.26449 and minBW = 24.7 can be changed if another ERB scale is desired (Glasberg
and Moore, 1990). The shape of the filters is defined as

g(t) = atp−1 exp(−2πbt) cos(2πfct+ φ) (4.12)

with a =
π(2p− 2)!2−(2p−2)

(p− 1)!2
(4.13)

and b =
ERB(fc)

a
(4.14)

where φ is the phase of the carrier in radians, a is the amplitude, p is the order of the filter (typically
p = 4), b is the bandwidth in Hz, and t is the time.

Figure 4.8 shows the log-power spectrum of a speech signal with N = 512 frequency bins,
M = 32 Gammatone filters, and the Cochleagram. The output of each Gammatone filter represents
the log-energy distribution in the frequency domain scaled according to the ERB.
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Figure 4.8: Cochleagram of a speech recording resulting from applying a 32 Gammatone filterbank
to the STFT of the signal with a frequency resolution of 512 points (frequency bins).

Discrete Cosine Transform: The cepstral coefficients

In many speech and machine learning applications it is not always suitable to use the complete
Mel-spectrum/Cochleagram. For instance, in some cases the classification method has to be
implemented with a reduced number of features in order to reduce the computational complexity
or to eliminate redundant features.

The Discrete Cosine Transform (DCT) is a technique that allows decomposing a signal into its
more fundamental components. Formally, when using the DCT, the input signal (e.g. filterbank
log-energies) is represented as a linear combination of weighted basis functions that are related
to the frequency components (Ahmed et al., 1974). The motivation of the DCT is to provide a
good approximation to an orthogonal transformation of the input signal, i.e., to transformX in
order to have a compressed representation of the signal and to reduce feature redundancy. There
are different versions and types of DCT. In this work the normalized version of the DCT-II is
considered 2:

DCT[t, c] = 2α
M−1∑
m=0

X[t,m] cos

(
π(2m+ 1)c

2M

)
(4.15)

where c = 0, 1, 2, 3, . . . C are the desired coefficients,X is the Mel-spectrum/Cochleagram, M
is the number of filters, t is the t-th speech frame, and α is a scaling factor that makes the DCT
orthonormal

α =


√

1/(4M) if c = 0√
1/(2M) otherwise

Typically, the number of coefficients ranges from C = 12 to C = 24. When the DCT is applied on
the Mel-spectrum, the resulting feature space is commonly known as Mel-Frequency Cepstral Co-

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html
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efficients (MFCCs) (Davis and Mermelstein, 1980; Mermelstein, 1976). Similarly, Equation 4.15
can be used on the Cochleagram to obtain Gammatone-Frequency Cepstral Coefficients (GFCCs).
Applying the DCT to the filterbank log-energies has some advantages:

1. From Figures 4.7 and 4.8 it can be observed that the filters are overlapped. This means that
there are frequency components that are considered more than once when computing the
log-energies. Thus, according to the motivation of the DCT, using MFCCs or GFCCs helps
to reduce feature redundancy.

2. Since the cepstral coefficients are a compressed representation of the filterbank spectrogram,
then the computational cost and processing time is lower than using the completed log-
energy space.

Using cepstral coefficients also comes with a cost:

1. The coefficients are a compressed representation of the Mel-spectrum/Cochleagram, thus,
when using a classification or regression scheme, it is expected to have a lower performance
than when the complete spectrogram is used.

2. Interpretation of the feature space is lost due to the DCT transformation. For instance, each
MFCC is a linear combination of all the log-energies in the Mel scale.

Nevertheless, the DCT is widely used because it provides a good representation of the feature space
and because it helps to reduce the computation cost when the resources are limited. Also, note
that the DCT is not restricted only to be used in the Mel-spectrum or Cochleagram decorrelation.

4.1.4 Voice Activity Detection

An energy-based Voice Activity Detection (VAD) algorithm is implemented to automatically
detect pauses and to compute some acoustic features (Section 4.2.4). The procedure of the VAD
algorithm is as follows:

1. The intensity of the signal is computed from speech frames of 15 ms taken every 1 ms.
Short-time frames are used in order to have a better temporal resolution, which is suitable
to detect the speech and silence onsets (Section 4.1.2). The intensity of sequence of speech
frames St = {s0, s1, ..., sT} can be computed as

Et = 10 log10

(
1

N

N∑
n=0

st[n]2

)
dB (4.16)
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where Et is a sequence of energy values Et = {e0, e1, . . . , eT} computed for every t-th
frame in St, N = 0.015 × fs is the number of samples in st, and fs is the sampling
frequency of the speech recording.

2. The DC level of the sequence Et is removed:

Et ← Et −
1

T

T∑
t=0

et

3. The new sequence is smoothed by convolving Et with a Gaussian window of 10 ms. This
procedure is performed in order to eliminate “energy spikes” in the signal.

Et ← Et ~ e−
1
2(Wσ )

2

where ~ represents the convolution operation, W = 0.01× fs is the length of the Gaussian
window, and σ = 0.05×W is the width of the window, which is set to be 5% of the length
in order to ensure that only small portions are smoothed (the energy spikes) and not the
speech or silence onsets.

4. After convolution, the sequence Et is re-scaled to have values between -1 and 1

5. DC removal, smoothing, and re-scaling are performed in order to calculate a threshold that
(in theory) will work independent of the signal. The main hypothesis is that even if there is
additive noise in the signal, the energy content of the speech segments is still higher than
in the silence regions. These silence segments have the lower energy in the signal, which
after DC removal should be a negative value; thus, the threshold (ETHR) is calculated as
the median of the negative values in Et. The median is used because it is a measure more
robust against outliers than the mean.

6. Finally, the t-th speech frame with energy values higher than ETHR (et > ETHR) is labeled
as a speech segment, and the rest as silence/pauses.

An energy-based VAD is considered due to its simplicity and efficiency when combined with a
noise reduction algorithm.
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4.2 Pathological speech modeling

The techniques previously described are the foundations for the analysis of pathological speech
signals. The acoustic features considered in this section are computed using short-time analysis of
the speech signals, i.e., St = {s0, s1, ..., sT−1} where T is the number of frames extracted from
the speech recording. Additionally, Hann windowing is applied to such a sequence before feature
extraction (Equation 4.3). The acoustic analysis of the pathological speech signals is divided into
phonation, articulation, prosody, and phonemic analysis.

4.2.1 Phonation analysis

Voice production problems are mainly associated with abnormal vibration of the vocal folds and
disturbances in respiration (Section 2.1.1). Such deviations can be measured by computing pitch,
loudness, and perturbation features from the sustained phonation of vowels.

Pitch

This parameter is analyzed by means of the fundamental frequency, which is estimated based on
the periodicity detector algorithm implemented in the software Praat (Boersma et al., 1993)3. The
method uses the autocorrelation in order to detect periodic-like signals, such as the voiced speech
sounds produced by the vibration of the vocal folds (Chapter 2). For every speech recording, the
pitch is computed from speech frames of duration K. Furthermore, each frame must contain at
least 3 pitch periods:

K =
3

minF0
(4.17)

where minF0 is the minimum pitch that can to be detected (minF0 = 75 Hz). For each speech
signal, a sequence of F0 values are computed for every t-th speech frame. Figure 4.9 shows
the F0 contour computed from the sustained phonation of the vowel /a/ produced by a healthy
speaker and a PD patient.

Loudness

The Sound Pressure Level (SPL) is considered to measure the amount of acoustic energy produced
by a speaker (Švec and Granqvist, 2018). For every speech frame in St, the SPL (measured in dB)

3https://www.fon.hum.uva.nl/praat/
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Figure 4.9: F0 contour (blue lines) computed from the sustained phonation of the vowel /a/
produced by a healthy speaker (left) and a PD patient (right)

is computed as

SPLt = 20 log10

(
pt
p0

)
dB (4.18)

where p0 is the reference sound pressure of the air expressed in Pascal (p0 = 20µPa) and pt is the
sound pressure computed as the root mean square value of the t-th speech frame:

pt =

√∑N
n=0 st[n]2

N
(4.19)

where N is the number of samples in st. Figure 4.10 shows the SPL contour computed from the
sustained phonation of the vowel /a/ produced by a healthy speaker and a PD patient.

Figure 4.10: SPL contour (blue lines) computed from the sustained phonation of the vowel /a/
produced by a healthy speaker (left) and a PD patient (right)
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Perturbation measures

Pitch and amplitude variations during phonation are measured considering 6 perturbation features.
The Jitter, the PPQ3 and the PPQ5 are considered in order to measure short and long term F0

variations (Teixeira and Gonçalves, 2016):

Jitt(%) = 100× T

T − 1

∑T−1
t=1 |F0t − F0t−1|∑T

t=1 F0t
(4.20)

PPQ3(%) = 100× T

T − 1

∑T−1
t=1 |F0t −

(
1
3

∑t+1
i=t−1 F0i

)
|∑T

t=1 F0t
(4.21)

PPQ5(%) = 100× T

T − 1

∑T−1
t=1 |F0t −

(
1
5

∑t+2
i=t−2 F0i

)
|∑T

t=1 F0t
(4.22)

where T is the total number of speech frames. The short and long term amplitude perturbation
measures include the Shimmer, the APQ3, and APQ5:

Shim(%) = 100× T

T − 1

∑T−1
t=1 |SPLt − SPLt−1|∑T

t=1 SPLt
(4.23)

APQ3(%) = 100× T

T − 1

∑T−1
t=1 |SPLt −

(
1
3

∑t+1
i=t−1 SPLi

)
|∑T

t=1 SPLt
(4.24)

APQ5(%) = 100× T

T − 1

∑T−1
t=1 |SPLt −

(
1
5

∑t+2
i=t−2 SPLi

)
|∑T

t=1 SPLt
(4.25)

where SPL is computed used Equation 4.18.

4.2.2 Articulation analysis

Articulation is defined as the ability to physically move the tongue, lips, teeth and jaw to produce
sequences of speech sounds. In this thesis, articulation is analyzed using formant frequencies and
the transitions from voiced-to-voiceless sounds and vice-versa.

Vowel formants

Formants are acoustic resonances produced in the vocal tract. The first and second formant
frequencies (F1 and F2) are considered in this thesis, because of their relationship to the position
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of the tongue when producing front (e.g. /i/), central (e.g. /a/), and back (e.g. /u/) vowels: Front:
low F1 and high F2; Central: high F1 and low F2; and Back: low F1 and low F2. Commonly,
the location of formants is estimated from the filter coefficients obtained with the Linear Prediction
Coding (LPC) analysis, which in this thesis is performed with Burg’s algorithm.

Triangular Vowel Space Area

A reduction of the articulation can be measured with the triangular Vowel Space Area (tVSA),
which is constructed using the F1 and F2 of /i/ (F1/i/ and F2/i/), /a/ (F1/a/ and F2/a/), and /u/
(F1/u/ and F2/u/). The tVSA is computed as

tVSA =
|F1/i/(F2/a/ − F2/u/) + F1/a/(F2/u/ − F2/i/) + F1/u/(F2/i/ − F2/a/)|

2
(4.26)

A reduction of the tVSA is associated with a reduction of the vowel articulation, which can result
from the normal aging process or a speech disorder. Usually, the logarithm of the tVSA (LntVSA)
is also considered for analysis.

Figure 4.11: Triangular vowel space from Parkinson’s disease patients, elderly healthy controls,
and young healthy speakers.

Formant Centralization Ratio

The Formant Centralization Ratio (FCR) was introduced by Sapir et al. (2010) to analyze changes
in the vocal formants with a reduced inter-speaker variability. The FCR was designed so it will
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increase when the vowel space area decreases. The FCR is defined as:

FCR =
F2/u/ + F2/a/ + F1/i/ + F1/u/

F2/i/ + F1/a/
(4.27)

Onset/offset transitions

The transitions from voiceless-to-voiced sounds (onset) and voiced-to-voiceless sounds (offset)
are considered to model difficulties of the speakers to start and stop the vibration of the vocal
folds during continuous speech (e.g., reading of a text). The transitions are extracted by detecting
voiced segments based on the presence of pitch. Speech segments of 80 ms duration are taken to
the left and right of the border between the voiced and voiceless sounds, forming speech segments
of 160 ms (Orozco-Arroyave, 2016). Filterbank analysis is applied to the transitions in order to
compute MFCCs and GFCCs (Section 4.1.3), which contain information about the changes of
energy (in different frequency bands) when moving from a sound to the other (Figure 4.12). It is
hypothesized that the transitions can capture the abnormal articulation movements of disordered
speech because filterbank analysis can encode the time-frequency information of different sounds.

Figure 4.12: Onset (/k-a/) and offset (/o-s/) transitions extracted from a sentence read by a healthy
speaker.
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4.2.3 Phonemic analysis

Phoneme posterior probabilities

The method considered in this thesis to measure phoneme articulation precision consists of
converting a sequence of speech frames St = {s0, s1, ..., sT−1} into a sequence of phoneme
posterior probabilities Yt[z] = {y0[z],y1[z], ...,yT−1[z]}, where z = 1, 2, . . . , z, . . . , Z are all
the possible phoneme groups (Cernak et al., 2015); thus, yt[z] is the probability of occurrence of
the z-th phoneme class in the t-th speech frame. In this thesis, phoneme precision is evaluated
considering three main dimensions:

1. Manner of articulation: Refers to the way the speech articulators are set so that different
consonants and vowels can be produced.

2. Place of articulation: The point of contact where an obstruction occurs in the vocal tract in
order to produce different speech sounds

3. Voicing: Activity of the vocal folds, i.e., whether a phoneme is voiced or voiceless

Figure 4.13 shows an example phoneme posterior probabilities computed for the German word
“Giesskanne” uttered by a normal hearing speaker and a CI user. If the phonemes are grouped
according to manner of articulation, the correct sequence of phoneme is Stop (/G/)-Vowel (/i:/)-
Fricative (/s/)-Stop (/k/)-Vowel (/a/)-Nasal (/n/)-Vowel (/e/). Note that for the CI user the system
detects a nasal sound in the middle of the emission of the first vowel.

Figure 4.13: Phoneme posterior probabilities (colored lines) computed from the German word
“Giesskanne” uttered by a normal hearing speaker (left) and a cochlear implant user (right).
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Table 4.1 shows the phoneme groups considered in this thesis. The table is not complete as the
phoneme clusters for German, Spanish, and English are different, thus, the phoneme provided in
the table are the most representative (and common) for these three languages. Note that a single
phone may belong to more than 1 class, e.g., /p/ belong to the class stop, bilabial, and voiceless.
Moreover, coarticulatory characteristics are summarized in each phoneme representation; e.g. /i/
as in “Bier” (German word for Beer) and “bitte” (German word for “please”) are pronounced
slightly different but are both included in /i/. The posterior probabilities are computed using a

Table 4.1: Phoneme classes considered in this study.
c Dimension Class Phonemes Brief description
0 - Silence - Non-speech segments
1 Manner Stop /p/, /t/, /k/, /b/, /d/, /g/ Total oral closure with rapid release
2 Nasal /n/, /m/, /N/ Airflow through the nasal cavity
3 Trill /r/, /R/ Turbulent airflow
4 Fricative /s/, /S/, /z/, /f/ Hissing sounds due to turbulent airflow
5 Approximants /j/ Hissing sounds without turbulent airflow
6 Lateral /l/ The air passes at the sides of the tongue
7 Vowel /a/, /e/, /i/, /o/, /u/ Vibration of the vocal folds
8 Place Labial /p/, /b/, /m/, /f/, /v/ Lips and teeth
9 Alveolar /t/, /d/, /n/ Tip of the tongue and alveolar ridge
10 Velar /k/, /g/, /N/ Back of the tongue and soft palate
11 Palatal /j/ Front of the tongue and hard palate
12 Postalveolar /S/ Blade of the tongue
13 Central /a/, /a:/ Tongue halfway the mouth
14 Front /i/, /e/ Tongue on the front of the mouth
15 Back /u/, /o/ Tongue on the back of the mouth
16 Voicing Voiceless /p/, /t/, /k/, /S/, /s/ No vibration of the vocal folds
17 Voiced /m/, /n/, /b/, /d/, /g/, /a/ Vibration of the vocal folds

multilabel recurrent network (Sections 4.3.3 and 4.3.5), which can be used for the automatic
recognition of phoneme sequences based on probability of phone occurrence. The details about
the system trained in this thesis will be discussed in Chapter 6; Section 6.1.1. The phoneme
articulation precision is evaluated computing 3 fundamental parameters for each one of the 17
classes in Table 4.1:

• MaxPh: Average of the maximum phoneme posteriors.
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• LLRPh: Average posterior log-likelihood ratio computed as

LLRPh = log

(
p[c]

1− p[c]

)
(4.28)

with p[c] =
1

T

T∑
t=0

yt[c] (4.29)

where p[c] is the average posterior probability of the c-th phoneme group (Diez et al., 2014;
Vásquez-Correa et al., 2019).

• durPH: Average phoneme duration.

Voice Onset Time

Voice Onset Time (VOT) is defined as the interval between the initial burst of a stop consonant and
the onset of voicing for the following vowel. VOT has been used as an acoustic cue to understand
several aspects of speech production and language development. This work considers the VOT
segments extracted from the voiceless plosive sounds /p/, /t/, and /k/ produced during the rapid
repetition of the syllables /pa-ta-ka/. Figure 4.14 shows an example of the VOT for /p/, /t/, and
/k/ extracted from the sequence /pa-ta-ka/. In general, stop consonants are characterized by three

Figure 4.14: VOT labels (blue shadowed segments) of /p/, /t/, and /k/ from the sequence
/pa-ta-ka/.

stages: closure, release, and aspiration. In the closure stage, a silence region is created due to
an obstruction of airflow by the articulators (e.g., the lips to produce the /p/ sound). During the
release stage, the articulators move away from each other producing an explosive burst of air
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with energy spread across the audible spectrum. After the burst, the air pressure (generated by
obstruction of the articulators) is decreased, which results in turbulent airflow with energy values
no longer spread across the spectrum. In other cases, however, the production of the voiceless
stops is affected by different acoustic factors that occur at intermediate positions in an utterance:

1. Voicing: Is characterized by the presence of glottal pulses during the closure and release
stages. Figure 4.15 shows an example of voicing in a speech segment with the transition
from /ka/ to /pa/.

Figure 4.15: Voicing effect present in the speech transition from /ka/ to /pa/. The vertical lines in
the time domain signal (top) are the glottal pulses extracted with Praat.

2. Partial voicing: It can identified by the presence of glottal pulses during the closure stage of
the plosive sound but not in release and aspiration stages. Figure 4.16 shows an example of
a partially-voiced /t/ sound. The glottal pulses are present during the closure stage, but not
during the VOT.

3. Consonant weakening: Is characterized by the absence of the burst. As a result, the stop
sound is weaker and can be perceived as its voiced counterpart e.g., a /p/ may be perceived
as a /b/. Figure 4.17 shows an example of the weakening effect in a /p/ sound.

4.2.4 Prosody analysis

Speech prosody includes the pitch, loudness, and duration that contributes to production and
perception of intonation, rhythm, lexical tone, and stress. These parameters are important for the
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Figure 4.16: Partially voiced /t/ sound extracted from a transition from /pa/ to /ta/. The vertical
lines in the time domain signal (top) are the glottal pulses extracted with Praat.

Figure 4.17: Consonant weakening of the /p/ sound in an intermediate position. The vertical lines
in the time domain signal (top) are the glottal pulses extracted with Praat. Note the absence of
the burst in /p/.

expression of emotions and also to provide linguistic information (Hardcastle et al., 2012).

Pitch and loudness

The F0 is computed using the same method as for the phonation analysis. Additionally, the mean
(meanF0) and standard deviation (stdF0) are computed in order to measure voice quality and
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monotonous speech during the reading of a standard text. Loudness is measured only on speech
segments (VAD algorithm; Section 4.1.4) by computing the mean (meanSPL) and standard
deviation (stdSPL) of the SPL (Equation 4.18).

Duration

Duration and ratio of speech are modeled by considering speech, segments, voiced sounds and
pauses. The speech rate (rSpeech) is measured as the number of non-silence segments (VAD
algorithm; Section 4.1.4) produced per second. The average duration of the detected speech
segments is also considered (dSpeech). The voiced sounds are extracted by selecting the speech
frames with F0 6= 0. The sequence of pitch values is computed using speech frames of 40 ms
duration. Then only voiced segments longer than 40 ms are considered for feature extraction.
The set of voiced features includes the number of voiced segments per second (rVoiced) and the
average duration of voiced segments (dVoiced).

The set of pause features includes the number of pauses per second (rPause) and the average
duration of pauses (dPause) within the speech recording. The silence regions at the start and end
of the signal are not considered for feature extraction. Note that voiceless sounds can be derived
by selecting the segments of the signal that are not labeled as voiced nor pause segments.

Figure 4.18 shows the pitch, loudness, and duration parameters computed for a speech
recording.

Timing

Grabe and Low (2002) and Ramus et al. (1999) have proposed metrics that are related to speech
rhythm4, by considering timing information extracted from vowels and consonants. Three main
descriptors are considered:

1. The raw and normalized Pairwise Variability Index (rPVI and nPVI, respectively) proposed
by Grabe and Low (2002) to measure the duration variability of successive vowel and

4Some authors question the validity of these metrics for speech rhythm analysis. See Arvaniti (2009); White and
Malisz (2020)
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Figure 4.18: Pitch, loudness, and duration parameters computed automatically for the Spanish
sentence “Mi casa tiene tres cuartos” (My house has three rooms). The non-shaded regions are
voiceless speech sounds.

consonant intervals:

rPVI =
1

D − 1

D−1∑
i=1

|di − di+1| (4.30)

nPVI =
100

D − 1

D−1∑
i=1

∣∣∣∣ di − di+1

0.5(di + di+1)

∣∣∣∣ (4.31)

where D are the number of vowel (or consonants) in a speech signal and di is the duration
of the i-th vowel (or consonant).

2. The Global Proportions of Intervals (GPI) proposed by Ramus et al. (1999) to measure the
proportion of vowels (vowel produced per second/vowel rate)

GPI =

∑D
i=1 di
L

(4.32)

where L is the total duration of the signal

3. Ramus et al. (1999) also proposes to use the standard deviation of the vowel/consonant
(dGPI) duration intervals to measure speech rhythm.
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Note that computing these features requires phonetic segmentation. Thus, the same system used
to computed the phoneme posterior probabilities (Section 4.2.3) is used to obtain the phoneme
labels. Furthermore, the GPI is extended to compute the phoneme rate (GPI−y[k]) and variability
(std− y[k]) for the groups described in Table 4.1.
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Summary of features

Table 4.2: Summary of the features considered to model speech disorders.
Dimension Task Feature Description
Phonation Sustained vowel meanF0 Average F0

Sustained vowel StdF0 Standard deviation of F0
Sustained vowel Jitter F0 variation
Sustained vowel PPQ3 F0 variations in 3 pitch periods
Sustained vowel PPQ5 F0 variations in 5 pitch periods
Sustained vowel meanSPL Average SPL
Sustained vowel StdSPL Standard deviation of SPL
Sustained vowel Shimmer SPL variation
Sustained vowel APQ3 SPL variation in 3 pitch periods
Sustained vowel APQ5 SPL variation in 5 pitch periods

Articulation Vowels /a/, /i/, /u/ F1 and F2 Average formant frequency
Vowels /a/, /i/, /u/ tVSA Vowel space area
Vowels /a/, /i/, /u/ LntVSA Logarithm of the vowel space area
Vowels /a/, /i/, /u/ FCR Formant centralization ratio

Reading text, /pa-ta-ka/ MaxPost Maximum phoneme posteriors (Average) (x17)
Reading text, /pa-ta-ka/ LLRPost Average posterior log-likelihood ratio (x17)
Reading text, /pa-ta-ka/ durPH Average phoneme group duration (x17)
Reading text, /pa-ta-ka/ CepsOn MFCC/GFCC from onset transitions
Reading text, /pa-ta-ka/ CepsOff MFCC/GFCC from offset transitions

/pa-ta-ka/ VOT Voice Onset Time
Prosody Reading text, monologue meanF0 Average F0

Reading text, monologue stdF0 Standard deviation of F0
Reading text, monologue meanSPL Average SPL
Reading text, monologue StdSPL Standard deviation of SPL
Reading text, monologue rSpeech Speech segments per second
Reading text, monologue dSpeech Average duration of speech segments
Reading text, monologue rVoiced Voiced segments per second
Reading text, monologue dVoiced Average duration of voiced segments
Reading text, monologue rPause Pauses per second
Reading text, monologue dPause Average duration of pauses
Reading text, monologue rPVI− V ow Vowel raw PVI
Reading text, monologue rPVI− Con Consonant raw PVI
Reading text, monologue nPVI− V ow Vowel normalized PVI
Reading text, monologue nPVI− Con Consonant normalized PVI
Reading text, monologue GPI− y[k] Phoneme rate (x17)
Reading text, monologue GPI− Con Consonants rate
Reading text, monologue std− y[k] Phoneme duration variability (x17)
Reading text, monologue std− Con Consonant duration variability
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4.3 Machine learning methods

In pathological speech signals, machine learning methods are used for the automatic detection
of speech disorders (classify patient vs. healthy) or to predict a clinical score (e.g., the MDS-
UPDRS/mFDA) based on a set of acoustic features extracted from speech recordings. This section
describes the methods considered in this thesis for the automatic classification, regression, and
modelling of pathological speech signals.

4.3.1 Support Vector Machine for classification

The general idea of the Support Vector Machine (SVM) algorithm (Vapnik, 1995) is to apply a
nonlinear transformation φ(x) of the input space and map it into a higher dimensional feature
space in which a linear decision boundary (centred on the training data) is used to divide the two
classes. Such a transformation is performed in order to simplify the construction of the decision
boundary. In the case of linearly separable classes, the SVM in commonly known as hard-margin
SVM. When the two groups are overlapped, the decision boundary is constructed by allowing
certain amount of errors and the SVM in called a soft-margin SVM.

Hard-margin SVM

For classification problems in which the two groups could be divided by a linear decision boundary,
i.e., non-overlapping samples. In this case, two perfectly separable groups with N input vectors
xn = {x1,x2, . . .xN} and targets tn ∈ {−1,+1}, can be divided by an optimal hyperplane of
the form

y(x) = wTφ(x) + b (4.33)

where n = 1, 2, . . . , N is the number of input/feature vectors that represent the samples in class 1
(tn = −1) and class 2 (tn = +1), y(x) is the predicted class label, and φ(x) is the feature space;
thus, there exists a vector w and scalar b such that

wTφ(xn) + b ≥ 1 if tn = +1

wTφ(xn) + b ≤ −1 if tn = −1

which can be written in the canonical representation as

tn(wTφ(xn) + b) ≥ 1 (4.34)
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and the optimal hyperplane is
wTφ(xn) + b = 0 (4.35)

In the SVM, the optimal decision boundary is found using the concept of margin, which is
defined by the support vectors i.e., the points/vectors xn for which tn(wTφ(xn) + b) = 1.
Figure 4.19 shows an example of two perfect separable classes, the linear decision boundary
(optimal hyperplane), the margin, and the support vectors. The distance of any input vector xn to

Figure 4.19: Example of a hard-margin SVM. The support vectors (marked with squares) are the
samples that define the margin. Based on Cortes and Vapnik (1995)

the separating hyperplane is given by

tn(wTφ(xn) + b)

||w||
(4.36)

The distance w and scalar b are optimized to maximize the margin, which is given by the
perpendicular distance to the support vectors: |1−b|||w|| for tn = +1 and |−1−b|||w|| for tn = −1. Thus, the
maximum margin is found by solving for

argmax
w

2

||w||
(4.37)
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This maximization problem is converted into a quadratic minimization problem as:

minimize
w,b

1

2
||w||2

subject to − tn(wTφ(xn) + b) + 1 ≤ 0

(4.38)

In order to solve this, we must ensure that the gradients of the objective function and the constrain
are pointing into the same direction by introducing Lagrange multipliers; thus, (4.38) becomes

L(w, b,α) =
1

2
||w||2 −

N∑
n=1

αn[tn(wTφ(xn) + b)− 1] (4.39)

where αn are the Lagrange multipliers with αn ≥ 0. The optimal solution is found by setting the
gradients of L(w, b,α) to zero:

∂L

∂w
= w−

N∑
n=1

αntnφ(xn) = 0

⇒w =
N∑
n=1

αntnφ(xn)

(4.40)

and
∂L

∂b
=

N∑
n=1

αntn = 0 (4.41)

Note that in Equation 4.40 only the vectors φ(xn) where αn > 0 contribute to find the margin,
i.e., the support vectors are the points in the feature space with αn > 0. Replacing (4.40) and
(4.41) in (4.39) gives the dual representation of the Lagrangian

LD(α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmtntmk(xn,xm) (4.42)

where k(xn,xm) = φ(x)Tφ(x′) is known as the kernel function. The dual problem (minimize
L(w, b,α) for w and b and maximize LD for α, can be solved by considering the Karush-Kuhn-
Tucker (KKT) conditions, which provide the necessary and sufficient conditions for a point to be
an optimum. The KKT conditions are:

• The primal constrains
tn(wTφ(xn) + b)− 1 ≥ 0
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• Complementary slackness

αn[wTφ(xn) + b)− 1] = 0, n = 1, 2, . . . , N

• The dual constrains
αn ≥ 0, n = 1, 2, . . . , N

Considering the above conditions and keeping in mind that the support vectors are the data points
that define the margin, then they satisfy

tn

(∑
m∈S

αmtmk(xn,xm) + b

)
= 1 (4.43)

where S denotes the set of indices of the support vectors. Now, b can be computed as

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

αmtmk(xn,xm)

)
(4.44)

Soft-margin SVM

In speech processing applications is rarely the case that the data can be linearly discriminated
without making errors, i.e., the classes are overlapped. In order to deal with this issue, Cortes
and Vapnik (1995) proposed an extension of the hard-margin SVM in which certain amount of
classification errors are allowed and penalized by introducing the slack variables ξn; thus, the
decision function has the form

tk(wTφ(xn) + b) ≥ 1− ξn (4.45)

Figure 4.20 illustrates the slack variables in a 2-dimensional feature space. Considering the class
tn = +1 as the reference, the slack variables take values of ξn = 0 for each data point that lies on
the margin or in the correct side of the margin. For the data points inside the margin and in the
correct side of the decision boundary, the slack variables take values in the range of 0 < ξn ≤ 1.
For those data points on the wrong side of the margin, the values of the slack variables are ξn > 1.
Now the goal is to maximize the margin while penalizing the data points for which ξn > 1.
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Figure 4.20: Example of a soft-margin SVM and its respective loss function. Based on a figure
found in Bishop (2006)

and

Therefore, we wish to minimize

minimize C
N∑
n=1

ξn +
1

2
||w||2 (4.46)

where the parameter C controls the trade-off between ξn and the margin. This is a convex
optimization problem where the goal is to minimize Equation 4.46 subject to the constrains
introduced in Equation 4.45. Similar to the hard-margin SVM, Lagrange multipliers are introduced
to solve the optimization problem

L =
1

2
||w||2 + C

N∑
n=1

ξn −
N∑
n=1

αn{tn(wTφ(xn) + b)− 1 + ξn} −
N∑
n=1

µnξn (4.47)

where αn ≥ 0 and µn ≥ 0 are Lagrange multipliers. For the soft-margin SVM, the set of KKT
conditions are expressed as:

1. Primal constrains
αn ≥ 0 (4.48)

tn(wTφ(xn) + b)− 1 + ξn ≥ 0 (4.49)

2. Complementary slackness

αn(tn(wTφ(xn) + b)− 1 + ξn) = 0 (4.50)
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µnξn = 0 (4.51)

3. Dual constrains
αn ≥ 0 (4.52)

µn ≥ 0 (4.53)

The partial derivatives of L are

∂L

∂b
=

N∑
n=1

αntn = 0

∂L

∂w
= w−

N∑
n=1

αntnφ(xn) = 0

∂L

∂ξn
= C − αn − µn = 0

(4.54)

Now the dual Lagrangian formulation is expressed as

LD =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmtntmk(xn,xm) (4.55)

Subject to
0 ≤ αn ≤ C (4.56)
N∑
n=1

αntn = 0 (4.57)

The support vectors for which αn > 0 should satisfy

tn(wTφ(xn) + b) = 1− ξn (4.58)

From (4.54) it can be observed that if αn < C then µn > 0. It follows from Equation 4.51 that
ξn = 0, which indicates that such data points lie on the margin. The data points where αn = C

can lie inside the margin and in this case the slack variables can be either ξn ≤ 1 or ξn > 1. The
support vectors for which 0 < αn < C have ξn = 0. Substituting in Equation 4.58, it follows that
those support vectors will satisfy

tn

(∑
m∈S

αmtmk(xn,xm) + b

)
= 1 (4.59)



70 CHAPTER 4. AUTOMATIC ANALYSIS OF PATHOLOGICAL SPEECH SIGNALS

To compute b, a numerically stable solution is obtained by averaging.

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

αmtmk(xn,xm)

)
(4.60)

where M and S represent the set of data points such that 0 < αn < C and the set of total support
vectors, respectively. The SM-SVM described before corresponds to the case of overlapped data
with a linear decision boundary. However, in many applications a linear decision function may
not exist or is not optimal to discriminate overlapped data. In those cases, kernel functions are
considered to build a nonlinear decision boundary. One of the most common kernel used in Pattern
Recognition is the Gaussian kernel, which is expressed as

k(xn,xm) = e
− 2
γ2
|xn−xm|2 (4.61)

where γ is the bandwidth of the Gaussian kernel. The parameters C and γ are optimized using a
grid-search scheme.

4.3.2 Support Vector Machine for regression

The goal of the Support Vector Regression (SVR) is to find a function y(x) that has at most ε
deviation from the targets tn ∈ R. The main idea is to minimize the prediction error |tn − y(xn)|
which can be above or below the target value and the margin is described by y(xn)− tn > ε and
tn − y(xn) > ε. In other words, the prediction error is tolerated if it’s less than ε. In the case of
linear regression, the optimization problem can be formulated as

minimize
1

2
||w||2 + C

N∑
n=1

|tn − y(xn)|ε (4.62)

where C is a penalty parameter which determines the amount of trade-off between the flatness
of y(x) (Equation 4.33) and the amount of error larger than ε which is tolerated. To formulated
Equation 4.62 as a constrained optimization problem, the slacks variables ξ and ξ∗ are introduced.
Assigning ξ to y(xn)− tn > ε and ξ∗ to tn − y(xn) > ε.
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The primal objective function can be expressed as

minimize
1

2
||w||2 + C

N∑
n=1

(ξn + ξ∗n)

subject to tn − y(xn) ≤ ε+ ξi

y(xn)− tn ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0

(4.63)

Figure 4.21 illustrates the situation. Only the points outside the shaded region (ε-insensitive tube)
contribute to the cost insofar, as the prediction errors are penalized in a linear fashion. Similar

Figure 4.21: Example of a Linear Support Vector Regressor and its corresponding loss function.
Based on a figure found in Smola and Schölkopf (2004)

to the classification approach, the optimization problem is solved by introducing Langrange
multipliers:

L =
1

2
||w||2 + C

N∑
n=1

(ξn + ξ∗n)−
N∑
n=1

(ηnξn + η∗i ξ
∗
n)

−
N∑
n=1

αn(ε+ ξn − tn + y(xn))−
N∑
n=1

α∗n(ε+ ξ∗n + tn − y(xn))

(4.64)
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where {αn, α∗n, ηn, and η∗n} ≥ 0. Setting the gradients of L to zero:

∇bL =
N∑
n=1

(α∗n − αn) = 0

∇wL = w−
N∑
n=1

(αn − α∗n)xn = 0

∇ξnL = C − αn − ηn = 0

∇ξ∗nL = C − α∗n − η∗n = 0

(4.65)

Substituting the previous results in 4.64, the dual optimization problem is expressed as

maximize − 1

2

N∑
n,m=1

(αn − α∗n)(αm − α∗m)φ(xn,xm)− ε
N∑
n=1

(αn + α∗n) +
N∑
n=1

tn(αn − α∗n)

subject to
N∑
n=1

(αn − α∗n) = 0 and αn, α∗m ∈ [0, C]

(4.66)

From the partial derivatives we have that w =
N∑
n=1

(αn − α∗n)xn. The regression function can be

rewritten as

y(x) =
N∑
n=1

(αn − α∗n)φ(xn,x) + b (4.67)

Now the weights w can be described as a linear combination of the training patterns xn. The KKT
conditions state that at the point of the solution the product between dual variables and constrains
has to vanish

αn(ε+ ξn − tn + wTφ(xn) + b) = 0

α∗n(ε+ ξ∗n + tn − wTφ(xn)− b) = 0
(4.68)

and
(C − αn)ξn = 0

(C − α∗n)ξ∗n = 0
(4.69)

From the previous result it can be concluded that only samples (xn, tn) with corresponding
αn = C and α∗n = C lie outside the ε-insensitive tube. Additionally, there is never a set of dual
variables αn, α∗n which are both simultaneously nonzero (αnα∗n = 0). From this we obtain that

b = tn − wTφ(xn)− ε for 0 < αn < C (4.70)
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and
b = tn − wTφ(xn) + ε for 0 < α∗n < C (4.71)

Finally, from 4.68 it follows that for all samples inside the ε-insensitive tube the Lagrange
multipliers αn, α∗n vanish for |y(xn)− tn| < ε.

4.3.3 Neural Networks

Neural Networks (NN) were developed in an attempt to find mathematical representations of the
way the biological neurons process information (McCulloch and Pitts, 1943; Rosenblatt, 1958).
One of the most successful NN model is the Multi-Layer Perceptron (MLP) (also known as
feedforward network), in which a nonlinear transformation φ(x) is adapted to the data points
during training, i.e., φ(x) is learned. This is in contrast to the SVM, where the nonlinear
transformation (e.g. a Gaussian kernel) is known and training is performed in order to center the
decision boundary on the data.

In general, a MLP consists of input, hidden(s), and output layers, however, only the last two
layers processes the input data and determine the properties of the network. In the basic model of
a neural network, the output is represented as a linear combination of nonlinear functions φ(x) of
the form

yk(x,w) = f

(
M∑
j=1

wjφj(x)

)
(4.72)

where yk(x,w) are the predicted targets, f(.) is a nonlinear activation function and w are the
learnable weights. The aim of the NN is to learn the functions φj(x) by adjusting its parameters
along with the weights (Bishop, 2006). For this, M linear combinations of the input vectors
xd = {x1,x2, . . .xD} are constructed in the first hidden layer using

aj =
D∑
i=1

w(1)
ji xi + w

(1)
j0 (4.73)

where D is the number of features, the superscript (1) indicates the corresponding layer index,
j = 1, 2, . . .M are the number of neurons in the hidden layer (1), and wj0 is the bias parameter.
For simplicity, let’s assume a two-layer network with a single hidden layer, where the superscript
(1) corresponds to the hidden layer and (2) indicates operations in the output layer. The activations
aj are transformed using a nonlinear activation function φ(.), which is generally chosen to be
the sigmoid function or the “tanh” function. The resulting quantities are known as the hidden
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units and have the form
zj = φ(aj) (4.74)

Using zj , the output units are computed in the second layer as

ak =
M∑
j=1

w(2)
kj zj + w

(2)
k0 (4.75)

where k = 1, 2, . . . , K are the number of outputs (targets) and wk0 is the bias parameter. The
predicted target labels yk(x) are computed by transforming the output units using an activation
function

yk(x,w) = f(ak) (4.76)

The choice of the output unit activation function (f(.)) depends on the problem to be addressed

• Bi-class/Multi-class: A softmax activation function is preferred because it converts each ak
into a probability (

∑K
k=1 f(ak) = 1); thus, a sample is assigned to the class with the highest

probability. The prediction of a class label using a softmax activation function has the form

yk(x,w) = Softmax(ak) =
eak∑K
k=1 e

ak
(4.77)

• Multi-label: A sigmoid activation function is used because it produces independent proba-
bilities for each ak, which is suitable when a sample may belong to more than one class.

yk(x,w) = σ(ak) =
1

1 + e−ak
(4.78)

• Regression: In this case, the nonlinear transformation is the identity, i.e., the predicted
values are computed simply as

yk(x,w) = ak (4.79)

Figure 4.22 shows an example of a feedforward network with a single hidden layer which is M
linear combinations of the input vector xd. Note that if there are several samples N , the input
layer is formed by a “matrix” with dimensions N × D, where N is the total number of input
vectors and D the number of features; thus, the operation on the hidden and output layers are
performed for every xnd , with n = 1, 2, . . . , N and d = 1, 2, . . . , D.
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Figure 4.22: Schematic view of a single-hidden layer feedforward network. The blue circles
represent the input vectors with D features, the green circles represent the hidden layer with
M neurons (hidden units), and the red circles represent the outputs with K target labels. The
variables x0 and Z0 represent the bias parameters of each layer, and W are the learnable weights.
Based on a figure found in Bishop (2006)

Training of the network

The previous equations described how the information flows from the input to the output layer
(forward propagation) in order to predict the class-label/real-value of an input vector. Now, it is
described how to compute the optimal value of the weight parameters. The aim is to determine the
weight matrix W that minimizes a loss function L(W) given a set of N input vectors and target
labels (xn, tn) = {(x1, t1), (x2, t2), . . . , (xN , tN)} with n = 1, 2, . . . , N . Note that each xn is a
D-dimensional feature vector and each tn is the target label of xn. The training process is based
on minimizing the empirical risk:

Ex,t∼p̂data(x,t)

[
L(W,x, t)

]
=

1

N

N∑
n=1

L(W,xn, tn) (4.80)

where N is the number of training samples, p̂data is the empirical distribution, and L(W,xn, tn) is
the loss function. Finding the optimal values of W means finding the minimum error between
the predicted labels yk(xn) (Equation 4.72) and the target labels yn for each xn. If L(W) is a
continuous function, then the smallest value of the lost function occurs at the point in the weight
space were the gradient vanishes, i.e., ∇L(W) = 0. The simplest approach to minimize the



76 CHAPTER 4. AUTOMATIC ANALYSIS OF PATHOLOGICAL SPEECH SIGNALS

lost is by means of the backpropagation, which is an iterative algorithm that uses the gradient
information to update the weights as

W(τ+1) = W(τ) − η∇L(W(τ)), (4.81)

where τ indicates the iteration step and η is the learning rate. After updating W, the gradient
is computed again for the new weight, and the process is repeated. The general method is
called backpropagation because the error is computed on the output layer, and the weights are
updated for the successive layers. This particular optimization method is known as Stochastic
Gradient Descent (SGD) because after each step the weight matrix is “moved” towards the
highest decreasing rate of the error function, i.e., the weight moves towards the direction of the
negative gradient. In many applications, it is necessary to adapt the learning rate η during training.
This can be achieved using the optimization Adaptive Moment Estimation (Adam), which allows
computing individual adaptive learning rates for the weight parameters from estimates of first and
second moments of the gradients (Kingma and Ba, 2014). Adam computes the parameters vτ and
rτ , which are moving averages included in Equation 4.81 as follows

W(τ+1) = W(τ) − η vτ + ε√
rτ + ε

�∇L(W(τ)) (4.82)

vτ = β1v
τ−1 + (1− β1)∇L(W(τ)) (4.83)

rτ = β2v
τ−1 + (1− β2)∇L(W(τ))�∇L(W(τ)) (4.84)

where β1 and β2 (typically β1 = 0.9; β2 = 0.999 ) are parameters used to control the decay rates
of vτ and rτ , ε is a floating number used to prevent divisions by zero, and � is the Hadamard
product.

Similar to the output activation function, the choice of the loss function L(W) depends on
the problem to be addressed:

• Bi-class/Multi-class: Cross entropy loss combined with softmax (Equation 4.77)

L(W) = − log(tn log(Softmax(an))) (4.85)

• Multi-label: The Binary Cross-Entropy (BCE) with logistic loss uses the sigmoid function
to compute the loss

L(W) = −tn log σ(an) + (1− tn) log(1− σ(an)) (4.86)
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• Regression: The L2-norm (Mean Square Error) is the most common lost function used for
regression

L(W) = ||tn − yk(xn)||22 (4.87)

In summary, the parameters of the NN are computed by first forward propagating the feature
vectors xn from the input to the output layer. Then, the error between the predicted and target
values (i.e., δk = yk(xn,w)− tn) is calculated for all the output units and back propagated in the
network. Afterwards the weights W of each input neuron are updated and the process is repeated
until finding the minimum value of the error function.

4.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) can capture the spatial and temporal dependencies of a
grid-like input (e.g., spectrograms) through the application of relevant filters (LeCun et al., 1999).
CNN has specialized layers (convolutional layers) that take advantage of the regularity in the
input data to extract the most relevant features. Rather than convolutions, the operation performed
in a CNN are cross-correlations where the input and a kernel (learnable weights) are combined
to produce an output tensor or feature map. A convolutional layer is defined as

H(i, j, h) =
C∑
k=1

M∑
j=1

N∑
i=1

X(k, i+M, j +N)Wh(k,M,N) (4.88)

where Wh is the kernel matrix,X is the input tensor with dimensions M ×N , which in speech
processing applications can be a STFT, a Mel Spectrum or a Cochleagram (Section 4.1.2). C is the
number of input channels. Figure 4.23 shows an example of a convolution operation performed
in a 2-channel spectrogram. The first channel is the Mel spectrum, and the second one is a
Cochleagram. In the example, four kernel matrices of size 3×3 are applied to each channel of the
input tensorX . The resulting feature maps are used processed by the hidden layers of a NN for
classification or regression. The kernel matrix can be applied using different methods. Commonly,
stride convolutions are applied to the input data in order to skip some elements ofX , instead of
multiplying the kernel at each position of the input data. The output of a convolution layer with
stride is defined as

[(V + 2p−M + 1)/(s+ 1)]× [(D + 2p−N + 1)/(s+ 1)]×H (4.89)
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Input data
2xMxN

Kernel
2x3x3

Feature map
4xM2xN2

* =

Figure 4.23: Convolutional layer with four kernel matrices of size 3×3 applied to a 2D-
spectrogram formed with a Mel spectrum and a Cochleagram. The resulting feature maps
highlight different patterns from the input.

where s is an integer value that defines the size of the stride, and p is the amount of padding that
can be applied to the input tensor. Typically, a CNN also includes a pooling layer which fuses
information of the input across spatial locations, decreases the number of parameters, and reduces
the computational costs and overfitting. The most common pooling operation is the max pooling,
which propagates the maximum value in a neighborhood to the next layer. Furthermore, a stride,
which is equal to the size of the pooling, is applied. Typical choices of pooling are 2× 2 or 3× 3

neighborhoods. During training, only one value contributes to the error, which is propagated
along the path of the maximum value. In the forward propagation from the input to the output
layer, it is common to keep track of the index of the max activation.

Figure 4.24 illustrates the max-pooling operation performed in a matrix of dimensions 4× 4.
The size of the pooling layer is a “filter” of size 2× 2 with a stride of 2. The resulting output is a
reduced version of the input data where only the highest value contained in the pooling “filter”
are included.

Figure 4.24: Max pooling operation with a 2× 2 filter and stride of 2.
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4.3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are specialized feedforward networks that process sequential
data by ‘giving” memory to the network. During the 70s, different NN architectures were proposed
to analyze time series. However, the recurrent networks used today are based on the idea proposed
by Elman (1990).

In order to understand how to give memory to a network, let us consider the case of a speech
signal converted into a sequence of feature vectors xt = {x1,x2, . . . ,xT} and used in the input
layer of a NN with a single hidden layer. The aim is to analyze the sequence at each time step t;
thus, at a time step t, the output of the hidden layer is computed and forward propagated to activate
the output layer. The outputs from the hidden layer are fed back into the network and used as
inputs to activate the hidden layer at the time step t+ 1. The variables that store the information
of a sequence up to t− 1 are called hidden states (or hidden variables) and are represented by Ht.
An RNN is simply a feedforward network with hidden states, where the calculation of the hidden
state of the current time step t is determined by the input of the current time step together with the
hidden state of the previous time step t− 1. Then, considering Equation 4.74 and changing zj by
Ht, the output of the hidden layer in an RNN is computed as

Ht = φ(XtWxh +Ht−1Whh + bh) (4.90)

where Xt ∈ RN×D is a minibatch (subset of training points) with N sequences and D in-
puts/features at time step t, Wxh ∈ RD×h is the weight parameter with h hidden units (neurons),
Ht−1 ∈ Rh×h is the hidden state of the previous time step, Whh ∈ Rh×h is the weight parameter
associated to the hidden state Ht−1, bh are the bias parameters, and φ is the activation function of
the hidden layer (commonly a tanh function). The output layer of an RNN is computed as

Yt = f(HtWhk + bk) (4.91)

where Y ∈ RN×K is the output with K predictions, N sequences, and f(.) is the output activation
function that can take the form of Equations 4.77, 4.78, 4.79 or other. Figure 4.25 shows an
schematic view of an “unfolded” RNN. Each unit passes the hidden state as additional input to
the successor, thus, previous input can influence current output and the parametersW are shared
across different parts of the model, which helps to compute the gradients (Graves, 2012).
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Figure 4.25: Schematic view of an “unfolded” RNN. The blue circles represent the input layer, the
green boxes are the hidden layers, and the red circles are the elements of the output layer. Based
on a figure found in Zhang et al. (2021)

Forward propagation in an RNN

Given a sequence of feature vectors xt = {x1,x2, . . . ,xT}, the input is propagated in an RNN
cell with hidden layer activation φ(.) = tanh(.) and output layer activation f(.) = σ(.) as shown
in Figure 4.26. Note that the activation function in the output layer can also be a Softmax function
(for multiclass) of the identity (for regression). Furthermore, according to Equations 4.90 and
4.91, the loss is computed for every t in the sequence.

Figure 4.26: Schematic view of the forward propagation procedure in an RNN cell. Based on a
figure found in Olah (2021)
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Backpropagation in an RNN

The weight parameters are updated by computing the gradients from the time step t = T through
the full sequence down to t = 0 (back in time). Considering a tanh as activation function in the
hidden layer, the gradients of the weights are computed as

∇Whh,t = ∇Ht · tanh′(XtWxh +Ht−1Whh + bh) ·Hᵀ
t−1

∇Wxh,t = ∇Ht · tanh′(XtWxh +Ht−1Whh + bh) · xᵀ
t

∇bh,t = ∇Ht · tanh′(XtWxh +Ht−1Whh + bh)

Since the RNN shares the weights, each gradient can be computed as the sum over all time steps,
for instance

∇Whh,t =
T∑
t=1

∇Ht · tanh′(XtWxh +Ht−1Whh + bh) ·Hᵀ
t−1 (4.92)

Note that one update of parameters requires backpropagation through a complete sequence, result-
ing in a high amount of computation time. One solution is to perform a truncated backpropagation
through time, which consists of adapting the parameters every δ time steps.

Long-Short Term Memory units

Although the hidden states of an RNN can capture historical information of the sequence up to the
current time step, for a relatively long sequence, the network has problems connecting relevant
past and present inputs. The reason is that the hidden state is overwritten at each time step, leading
to vanishing gradient problems, i.e., the network stops updating the parameters, even if the optimal
solution is not reached (Bengio et al., 1994). The Long-Short Term Memory (LSTM) units were
designed to solve vanishing gradient problems in a standard RNN cell and to help the NN to learn
long-term dependencies for larger sequences (Hochreiter and Schmidhuber, 1997). The main idea
of the RNN with LSTM units (or cells) is to introduce gates that control writing and accessing
“memory” in an additional cell state.

Figure 4.27 shows a schematic view of an LSTM unit. The elements of such a cell include the
input xt, the hidden stateHt/Ht−1, the cell state Ct/Ct−1, and the output yt. The internal gates
of the LSTM are updated in different steps:

• Cell state (Ct): Undergoes only linear changes, i.e. no activation function is used, thus, the
cell state can be constant for multiple time steps.
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Figure 4.27: Schematic view of a LSTM cell. The green boxes represent hidden layers and the
orange circles represent point-wise operations. Based on a figure found in Olah (2021)

• Forget gate (ft): Controls how much of the previous cell state is “forgotten”. Note that
Ct−1 is multiplied by ft, which can only take values between 0 and 1 (the output is a
sigmoid function), thus, Ct−1 is 0 if ft is 0.

ft = σ (Wf · [Ht−1,xt] + bf )

• Input gate (it): Combines the input and hidden state on two paths.

it = σ (Wi · [Ht−1,xt] + bi)

C̃t = tanh (WC · [Ht−1,xt] + bC)

where C̃t is the “candidate memory”. In the input gate C̃t is multiplied by it which can
only take values between 0 and 1. Thus, the amount of information that is added to the cell
state will depend on it.

• Updating the cell state: The new cell state is the sum of the “remaining information” from
Ct−1 and new information from input and hidden state (�: element-wise multiplication)

Ct = ft �Ct−1 + it � C̃t
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• Output gate (ot): The output yt directly depends on the hidden stateHt:

ot = σ (Wo[Ht−1,xt] + bo)

Ht = ot � tanh (Ct)

yt = σ (Ht)

Note also that the cell and hidden states are updated separately. Note that the operation
tanh (Ct) does not corresponds to an activation layer.

Gated Recurrent Units

Another alternative to learn long term dependencies and reduce vanishing gradient problems in
the standard RNN, is to use Gated Recurrent Units (GRUs), a variant of the LSTM. Cho et al.
(2014) proposed the GRU as a recurrent cell that controls the flow of “memory” only with the
hidden states; thus, removing the cell state, which simplifies the network by reducing the number
of trainable parameters. Figure 4.28 shows an schematic view of a GRU. The parameters of the

Figure 4.28: Schematic view of a GRU cell. The green boxes represent hidden layers and the
orange circles represent point-wise operations. Based on a figure found in Olah (2021)

GRU are updated in different steps:
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• Reset gate (rt): Determines the influence of the previous hidden state (similar to the “forget
gate” in the LSTM).

rt = σ (Wr · [Ht−1,xt] + br)

• Update gate (zt): Determines the influence of an “update proposal” on the new hidden
state:

zt = σ (Wz · [Ht−1,xt] + bz)

• Candidate update: Combination of input and “reset” hidden state (similar to the candidate
memory C̃t in the LSTM).

H̃t = tanh (Wh · [rt �Ht−1,xt] + bh)

• Computing the updated hidden state: The update gate controls the way that the old state
and the proposed update are combined:

Ht = (1− zt)�Ht−1 + zt � H̃t

The node output is computed as ŷt = σ(Ht)

Bidirectional RNNs (BRNN)

This variant of RNN connects two hidden layers of opposite directions to the same output Schuster
and Paliwal (1997). The idea of a BRNN is to split the hidden states into forward and backward
states. In the forward state, the hidden states are computed starting from t = 0 up to t = T (like
in the standard RNN). In the backward state, the hidden states are computed starting from t = T

up to t = 0. Figure 4.29 shows a schematic view of a BRNN. Note that the outputs of the forward
and backward states are concatenated in order to compute the output. Other operations include a
sum or multiplication of the forward-backward states in order to compute the output. Additionally,
note that the RNN cells can also be LSTM or GRUs. The sequence of feature vectorsX is fed to
the recurrent net with RNN cells, which computes the forward (

−→
H ) and backward (

←−
H ) hidden

sequences. The sequence
−→
H is computed by iterating Equation 4.93 from t = 1 to t = T . In the

case of
←−
H , the hidden states are computed by iterating Equation 4.94 from t = T to t = 1:

−→
H t = φ(XtWx

−→
h

+Ht−1W−→
h
−→
h

+ bh) (4.93)

←−
H t = φ(XtWx

←−
h

+Ht−1W←−
h
←−
h

+ bh) (4.94)
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Figure 4.29: Schematic view of a BRNN cell. The green boxes represent the forward states and the
orange boxes represent the backward states. In order to compute the output, the forward-backward
states are concatenated. Based on a figure found in Schuster and Paliwal (1997)

The output of the recurrent network is the sequence rT formed with the concatenation of
−→
H and

←−
H . For each time frame, the output is defined as

rt = (W−→
h r

−→
H t ⊕W←−

h r

←−
H t) + br (4.95)

Besides concatenation, other operations such as the sum can be used to combine the forward and
backward states.

4.4 Speaker models

4.4.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMM)-based systems are capable of representing arbitrary proba-
bilistic densities. GMMs are parametric probabilistic models represented as a weighted sum of M
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Gaussian densities (Figure 4.30). For a D-dimensional feature vector x a GMM is defined as:

p(x|λ) =
M∑
i=1

ωipi(x) (4.96)

The Gaussian densities pi(x) are parameterized by the mixture weights ωi, a D×1 mean vector µi,
and a D×D covariance matrixΣi (Reynolds et al., 2000). The parameters of the density models
can be denoted as λ = (ωi,µi,Σi) and the Gaussian densities as

pi(x) =
1

(2π)D/2|Σi|1/2
exp{−1

2
(x− µi)

TΣ−1
i (x− µi)} (4.97)

In speech processing GMMs are used to represent the distribution of feature vectors extracted

Figure 4.30: Graphical representation of a one-dimensional GMM. The solid black curve is the
weighted sum of the Gaussian distributions represented by the gray dashed curves.

from a single speaker or a group of speakers. If the GMM is trained using features extracted from
a large sample of speakers, the resulting model is called Universal Background Model (UBM).
Therefore, the UBM is trained to represent the entire space of possible speakers. For a given set of
speakers, the conditional probability p(XUBM |λ) is known as the maximum likelihood function
that better represents the population of speakers, where XUBM are the set of feature vectors
extracted from the group of speakers. The parameters λ of the maximum likelihood function can
be estimated using the Expectation Maximization (EM) algorithm. The EM approach is used to
increase the likelihood of the UBM, i.e., for iterations k and k + 1, p(X|λ(k+1)) > p(X|λ(k)).
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The steps of the EM algorithm are as follows:

• Initialize ωk,µk,Σk. This is commonly achieved with a clustering algorithm such as
K-means.

• Compute the new weights ωik with 1 ≤ i ≤ N and 1 ≤ k ≤M .

ωik =
pk(xi|λk)ωk∑M

m=1 pm(xi|λm)ωm
(4.98)

Where N is the number of feature vectors extracted from the speakers, M is the number
of Gaussian components in the GMM, ωk = Nk/N . Nk is the number of feature vectors
contained in each Gaussian component.

• Compute the new mean vector µk

µk =
1

Nk

N∑
i=1

ωikxi (4.99)

• Compute the new covariance matrixΣk

Σk =
1

Nk

N∑
i=1

ωik(xi − µk)(xi − µk)T (4.100)

Then ωik is computed again and the procedure is repeated until the convergence. In a GMM-UBM
system the single speaker model is derived from the population of speakers by adapting the
parameters of the UBM using the training data from the speaker to be modeled. There are different
approaches used to obtain the speaker model. One method is the Maximum A Posteriori (MAP)
adaptation which consist of a two step estimation process. In the first step the training vectors
from the speaker to be modeled are aligned into the UBM mixture components. That is, given a
UBM and the training vectors from the speakerX = {x1,x2, ...,xT}, for mixture i in the UBM,
we compute

Pr(i|xt) =
ωipi(xt)∑M
j=1 ωjpj(xt)

(4.101)

Then Pr(i|xt) and xt are used to compute the sufficient statistics of the weight, mean, and
variance

ni =
T∑
t=1

Pr(i|xt) (4.102)
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Ei(x) =
1

ni

T∑
t=1

Pr(i|xt)xt (4.103)

Ei(x
2) =

1

ni

T∑
t=1

Pr(i|xt)x2
t (4.104)

The second step of the adaptation process consists of using these sufficient statistics to update the
parameters of the UBM for the mixture i using the following equations

ω̂i = [αωi ni/T + (1− αωi )ωi]γ (4.105)

µ̂i = αmi Ei(x) + (1− αωi )µi (4.106)

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂2
i (4.107)

Where {αωi , αmi , αvi } are the adaptation coefficients used to control the balance between the old
and new estimates for the weights, means, and variances, respectively. The scale factor, γ, is
computed to ensure that the weights sum to unity. T is the number of feature vectors extracted
from the speaker. The resulting adapted model can be used to assess the progression of the disease
from the patients, considering the changes with respect to the UBM.

4.4.2 i–vectors

Speaker models obtained with the GMM-UBM may adapt not only to the the speaker-specific
features, but also to the channel conditions of the recordings. The i–vector approach is an
alternative way to obtain speaker models and at the same time other acoustic factors embedded
in the recordings. This approach is based on Joint Factor Analysis (JFA), which assumes that
a speaker model can be decomposed into a speaker independent, speaker dependent, channel
dependent, and residual components. Thus, in JFA a speaker model has the form

s = m+ V y +Ux+Dz (4.108)

where s is the speaker supervector,m is the speaker independent component (e.g. mean vector
from a UBM), V y is the speaker dependent component, Ux is the channel dependent component,
andDz are the residual components. The factors x, y, and z are obtained by first computing the
matrices V ,U , andD in the following way (Kenny et al., 2008):

• V is computed assuming that U andD are zero.
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• U is computed given V and assuming thatD is zero.

• D is computed given V and U , from the previous steps.

Dehak et al. (2011) proposed the i–vector approach after showing that channel factors in the JFA
model also contained information about the speakers and proposed combining the channel and
speaker spaces into a total variability space. In this approach the speaker supervector s is given
by:

s = m + T ω (4.109)

where m is the channel- and speaker-independent supervector (from UBM), T is the total
variability matrix which is trained in the same way as the matrix V , and the components of ω are
the total factors, and ω itself is known as the identity vector or i–vector. According to Dehak et al.
(2011), ω is defined by its posterior distribution conditioned to the Baum-Welch statistics. Given
a sequence of L frames {y1, y2, . . . , yL} and a UBM Ω composed of C mixture components, the
Baum-Welch statistics Nc and Fc of utterance u are given by:

Nc =
L∑
t=1

P (c|yt, Ω) (4.110)

Fc =
L∑
t=1

P (c|yt, Ω)yt (4.111)

where c = 1, . . . , C is the Gaussian index and P (c|yt, Ω) is the posterior probability of mixture
component c generating the vector yt. The first-order Baum-Welch statistic centralized around
the mean of the UBM mixture component c (i.e., mc) is given by:

F̃c =
L∑
t=1

P (c|yt, Ω)(yt −mc) (4.112)

Then, the identity vector ω for a given utterance u can be found as follows:

ω = (I + T tΣ−1N(u)T )−1T tΣ−1F̃ (u) (4.113)

where N(u) is a diagonal matrix whose diagonal blocks are Nc I , F̂ (u) is a supervector that
concatenates all of the first-order Baum-Welch statistics F̃c for a given utterance u, and Σ models
the residual variability not captured by the total variability matrix T .
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4.4.3 x–vectors

The GMM-UBM and i–vector approaches estimates the probability distribution of the speakers in
order to model their speech. An alternative approach proposed by Snyder et al. (2018) consists of
transforming the speech data by means of several hidden layers and using the output of one of
these layers as a speaker embedding or x–vector. Table 4.3 shows the configuration of the DNN
used to compute the speaker embeddings. The method considers a Deep Neural Network (DNN)

Table 4.3: DNN architecture for x–vectors. Layer: name of the hidden, pooling, or activation
layer. Layer context: Frames considered for analysis on each layer.

Layer Layer context Total context
frame 1 [t-2,t+2] 5
frame 2 {t-2, t, t+2} 9
frame 3 {t-3, t, t+3} 15
frame 4 {t} 15
frame 5 {t} 15

stats pooling [0, T) T
segment 6 {0} T
segment 7 {0} T
Softmax {0} T

to process a sequence of feature vectors xt = {x1,x2, . . .xT} where t = {1, 2, . . . , T} and T is
the total number of frames. The first five layers frame i (i = {1, 2, 3, 4, 5}) process the speech
signal at frame level (time steps), with a temporal context (Layer context) centered at the current
time step t. For example, the layer frame 1 has a temporal context of 5 speech frames (t − 2,
t− 1, t, t+ 1, t+ 2) for processing. The total temporal context of the second layer frame 2 builds
on the temporal context of the earlier layers: the input to frame 2 is the output of frame 1 (which
has a temporal context of 5 frames) and the layer context of frame 2 is {t − 2, t, t + 2}. The
statistics pooling layer computes the mean and standard deviation of all T frame-level outputs
from layer frame 5. These statistics are concatenated together and propagated through the rest
of the network. After training, the x-vectors are extracted from layer segment 6. The layers
segment 7 and Softmax are not considered as speaker embeddings because these are only used
as the classification layer during the training stage.
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Summary

Speech production involves the fast interaction of regions in the brain, the vocal tract, and the
respiratory system. Thus, when one of these areas is considerably affected by a clinical condition,
abnormal variations in speech can be detected and measured automatically for further analysis.
On the one hand, classification methods are suitable for the detection of speech disorders from
recordings. On the other hand, regression analysis allows predicting the progression of the
speech symptoms based on a clinical evaluation. Furthermore, speaker models include relevant
information about a person’s speech which can be helpful to detect changes through time. The
following chapter describes the datasets considered in this thesis to implement automatic methods
for acoustic analysis of speech signals of PD patients and CI users.



Chapter 5

Data collection

5.1 Parkinson’s disease

5.1.1 PCGITA (Spanish)

This dataset was collected by Orozco-Arroyave et al. (2014). It consists of speech recordings of
50 PD patients and 50 age/gender balanced healthy speakers. The speech tasks performed by the
participants are reported in Appendix A.1. The recordings were captured in a sound-proof booth.
The speech signals were captured at 44.1 kHz with 16-bit resolution. For this thesis, the signals
are down sampled to 16 kHz in order to match the sampling frequency of the trained models.
All of the PD patients were diagnosed by a neurologist expert and were labeled according to the
motor sub-scale MDS-UPDRS-III. None of the speakers in the healthy groups had symptoms
associated with PD or any other neurological disease. Additionally, the dysarthria level of the
patients and the healthy speakers was evaluated by speech therapists according to the m-FDA
(Table 1.3). Table 5.1 summarizes the information about the PD patients and HC speakers.

Table 5.1: Information about the PCGITA dataset
PD patients Healthy speakers

Male Female Male Female
Number of speakers 25 25 25 25
Age [years] 60.5±11.6 61.4±7.0 61.6±11.6 60.8±7.6
Range of age [years] 33-81 49-75 31-86 49-76
MDS-UPDRS-III 9-92 19-71 - -
mFDA 17-41 13-51 0-29 0-25

92



5.1. PARKINSON’S DISEASE 93

5.1.2 PD At-home (Spanish)

This dataset was captured during the Third Frederick Jelinek Memorial Summer Workshop at
Johns Hopkins University1. Seven PD patients were recorded four times per day (every two hours),
once per month during four months. Thus, there is a total of 16 recording sessions per patient. As
it was not possible to have a neurologist expert during all day long with each patient, the at-home
test set does not have MDS-UPDRS-III scores. The speech recordings of this set were evaluated
according to the m-FDA scale. Table 5.2 summarizes the information of the m-FDA scale of the
patients in the at-home test set.

Table 5.2: Dysarthria scores of the at-home test set.
m-FDA (At-home)

ID Age Gender H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
P1 68 Male 20 23 21 12 21 18 17 16 17 20 25 20 27 23 22 20
P2 59 Female 35 35 35 35 33 35 34 34 36 37 39 39 42 42 42 42
P3 55 Female 19 15 20 19 14 19 18 16 20 20 17 17 24 23 23 23
P4 63 Male 20 25 24 23 28 26 25 25 29 29 29 27 28 28 28 28
P5 70 Male 25 24 26 25 24 30 27 28 28 25 28 28 25 24 24 25
P6 59 Female 26 32 31 30 32 30 31 31 33 33 30 34 37 38 37 34
P7 69 Male 40 35 38 36 37 34 35 34 33 28 37 37 36 36 37 38

5.1.3 PD Longitudinal (Spanish)

Speech recordings of the same 7 PD patients from the At-Home dataset were recorded in at least
four sessions from 2012 to 2017: In 2012 (June), 2014 (June), 2015 (February), 2015 (August),
2016 (February), and 2017 (February). The speech recordings of this set were evaluated according
to the m-FDA scale. Table 5.3 summarizes the information from the patients.

Table 5.3: Dysarthria scores of the longitudinal test set.
m-FDA

ID Age Gender 2012 2014 2015-1 2015-2 2016 2017
P1 62 Male 31 15 21 19 - 18
P2 55 Female 29 29 27 26 34 27
P3 51 Female 15 37 10 14 20 23
P4 59 Male 22 22 19 19 22 26
P5 66 Male 13 28 23 24 28 27
P6 55 Female 24 42 21 23 21 31
P7 67 Male - 40 31 38 - 33

1https://bit.ly/3pYrGGY

https://bit.ly/3pYrGGY
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5.1.4 Apkinson (Spanish)

This dataset was collected with the Android application Apkinson 2, which was designed for motor
evaluation and monitoring of PD patients (Orozco-Arroyave et al., 2020). The speech protocol
includes the sentences and DDK exercises described in Appendix A.1. Additionally, the protocol
includes the sustained phonation of vowels /a/, /i/, and /u/, the rapid and sequential repetition of /si-
fa-schu/, and the description of a picture. The dataset considered in this thesis consists of speech
recordings of 37 PD patients (17 females) and 37 healthy speakers (17 females) captured with a
sampling frequency of 16 kHz in different acoustic environments and with different smartphones.
The age (average±standard deviation) of the patients and healthy speakers are 68±11 and 65±7,
respectively. None of the speakers in this dataset has mFDA nor MDS-UPDRS-III scores.

5.2 Cochlear implants

5.2.1 LMU TAPAS (German)

This dataset was collected during the development of this thesis, as part of the TAPAS project3.
It consists of speech recordings of 72 CI users and 72 NH German native speakers. The speech
protocol followed by the speakers is reported in Appendix A.2. The recordings were captured
in a quiet room at the Clinic of the Ludwig-Maximillians University in Munich (LMU) and in
a retirement home (Augustinum Seniorenresidenz München-Neufriedenheim4) with a sampling
frequency of 16 kHz and a 16 bit resolution. Table 5.4 summarizes the information of the German
speakers considered in this experiments. Only postlingually deafened CI users were considered in
this dataset.

Table 5.4: CI: postlingually deafened CI users. NH: normal hearing speakers.
CI NH

Male Female Male Female
Number of speakers 36 36 36 36
Range of age [years] 51-83 50-80 50-75 50-78
Age [years] 66±9 66±9 61±8 60±9

2https://bit.ly/3iM031u
3https://www.tapas-etn-eu.org/
4https://augustinum.de/muenchen-neufriedenheim/

https://bit.ly/3iM031u
https://www.tapas-etn-eu.org/
https://augustinum.de/muenchen-neufriedenheim/
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5.2.2 LMU Onset (German)

This is a subset of the datasets collected by Ruff et al. (2017). It consists of speech recordings
of 60 CI users and 20 NH German native speakers. The CI users are divided into three groups
of speakers: 20 prelingual (PRE), 20 postlinguals with long duration of time between onset of
deafness and implantation (LONG), and 20 postlinguals with short duration of time between
onset of deafness and implantation (SHORT). Note that the prelinguals are younger than the other
two groups of postlingually deafened CI users. That is because cochlear implantation has been
performed since the late 80’s of the last century, and congenital deaf children who were implanted
are much younger than postlinguals.

The speech signals were captured in noise-controlled conditions at the Clinic of the LMU,
with a sampling frequency of 44.1 kHz and a 16 bit resolution. The speech signals were re-
sampled to 16 kHz. All of the patients were asked to read 97 words (Fox-Boyer, 2002), which
contain every phoneme of the German language in different positions within the words (See
Appendix A.2.3). Additionally, all of the participants were asked to read 5 sentences extracted
from the Heidelberger Rhinophoniebogens (See Appendix A.2.2). Table 5.5 summarizes the
information of the German speakers considered in these experiments.

Table 5.5: PRE: prelingual CI users. LONG: Postlingual CI users with long duration of deafness
before cochlear implantation (> 2 years). SHORT: Postlingual CI users with short duration of
deafness before cochlear implantation (< 2 years). NH: normal hearing speakers.

PRE LONG SHORT NH
Number of male/female 4/16 6/14 4/16 11/9
Range of age [Years] 12 - 71 51 - 82 51 - 79 31 - 62
Age [years] (µ ± σ) 32± 18 67± 9 64± 8 44± 9

5.3 Supporting datasets

5.3.1 Young healthy controls (Spanish)

This dataset contains recordings of 25 male and 25 female Spanish native speakers from Colombia.
The age of the yHC group ranges from 17 to 38 (mean 22±4). The recordings were captured in a
sound-proof booth using a professional audio-card and a dynamic omni-directional microphone.
The speech signals were captured at 44.1 kHz with 16-bit resolution. The speech signals were
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re-sampled to 16 kHz. None of the speakers had symptoms associated with any neurological
disease or other clinical conditions that may result in speech disorders.

5.3.2 PhonDat 1 Corpus (German)

This dataset was extracted from the Bavarian Archive For Speech Signals (BAS), which is freely
available for European academic users5. The complete corpus contains speech recordings of 201
(100 male/101 female) German speakers captured at four different sites in Germany (University of
Kiel, University of Bonn, University of Bochum, University of Munich). All speakers were older
than 20 years at the moment of the recordings. No information about the age is available, however,
there was a rough classification into “old” (78) and “young” (123) speakers. The recordings were
performed in controlled conditions at a sampling rate of 48 kHz at 16 Bit resolution. The speech
signals were filtered with a low-pass filter with 8 kHz cutoff frequency and downsampled to 16
kHz.

5.3.3 Verbmobil subset (German)

This dataset is a subset of the speech recordings collected by Wahlster (2013). The Verbmobil sub-
set considered in this thesis consists of speech recordings from 586 German native speakers (308
male, 278 female). The database contains about 29 hours of dialogues with their corresponding
phonetic transcriptions. The data was captured in controlled acoustic conditions with a close-talk
microphone at a sampling frequency of 16 kHz and a resolution of 16-bit. The age of the speakers
ranges from 20 up to 40 years.

5.3.4 TEDx Spanish Corpus - TSC (Spanish)

This dataset consists of a program of self-organized events that bring people together to share
experiences. The TSC contains 24 hours and 29 minutes of speech recordings manually segmented
and transcribed, however, phonetic transcriptions were not available for this dataset. It consists
of spontaneous speech of 142 Mexican-Spanish native speakers (102 male, 40 female) which
were recorded during different TEDx events6. The audio files were captured at a sampling
frequency of 16 kHz and a resolution of 16-bit. This dataset is freely available under a Creative
Commons Attribution-Non-Commercial-No-Derivatives 4.0 International license and can be
found at http://www.ciempiess.org/downloads.

5http://hdl.handle.net/11858/00-1779-0000-000C-DAAF-B
6https://www.ted.com/watch/tedx-talks

http://www.ciempiess.org/downloads
http://hdl.handle.net/11858/00-1779-0000-000C-DAAF-B
https://www.ted.com/watch/tedx-talks


Chapter 6

Experiments and results

6.1 Models for speech analysis

This section presents the methods, experiments, and performance results of the machine learning
models that are used later for analysis of pathological speech signals (Sections 6.2 and 6.3) and the
influence of aging in speech (Section 6.4). Particularly, two systems are presented here: automatic
phoneme recognition (used for phonemic analysis) and automatic detection of VOT.

6.1.1 Phoneme posterior probabilities

Aim: To train a RNN-based model for the automatic classification of phonemes grouped according
to voicing, manner, and place of articulation.

Hypothesis:

• Automatic detection of phoneme is possible without the use of a language model.

Two automatic phoneme recognition systems were trained in German and Spanish to measure
the phoneme articulation precision (Section 4.2.3). Only two languages were considered because
of the data available for PD patients (Colombian Spanish) and CI users (German). For Spanish
data, recordings of Mexican speakers were used because, to the best of my knowledge, there is
not a database of recordings from Colombian speakers big enough to train a system like the one
proposed here.

97
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Data

German data: The Verbmobil dataset described in Section 5.3.3 is considered to train the RNN
model for the automatic recognition of phonemes classes in the German language. The data is
divided into train, validation, and test sets. The train set is used to update the model’s weights, the
validation set is used to compute the loss, and the test set is used to evaluate the performance. The
number of hours on each set is 26 for train, 1.5 for validation, and 1.5 for test.

Spanish data: The TEDx Spanish Corpus (Section 5.3.4) is considered for evaluation. This
dataset does not include phonetic transcriptions. Thus, all of the phonemes in the TEDx corpus
were labeled automatically using the BAS CLARIN web service1, which allows performing forced
alignment using an ASR system. The web platform returns the transcriptions in the TextGrid
format, including the time stamps for the words and phonemes represented in the SAMPA format.
The number of hours on the train, validation and test sets are 21, 1.5, and 1.5, respectively.

Methods

Regardless of the language, the following network architecture is considered to train the German
and Spanish models (Figure 6.1). The speech recordings are divided into 500 ms sequences, which
are extracted every 250 ms. Then, Mel-spectrograms are computed for each sequence considering
a 64 triangular filterbank. The filterbank energies are extracted from Hanning windows of 25 ms,
taken every 10 ms. Thus, the size of each input tensor to the network is 50×64 (50 speech frames
and 64 Mel-filters).

Each sequence is time-aligned with its corresponding phonetic transcription. Thus, each
speech frame is labeled according to the 18 phoneme classes (including silence) described in
Table 4.1 (Section 4.2.3). Since each phoneme can belong to more than one class (e.g. the
phoneme /p/ belongs to the classes Stop, Labial, and Voiceless), a multilabel RNN with sigmoid
activation function and BCE logistic loss was considered for training. Two convolution layers
process the input tensors with ReLU activation functions, two max-pooling layers, and dropout.
The output of the first and second convolution layers are 8 and 16, respectively. The convolution
operation is performed in both frequency and time axis with a kernel size of 3×3. In order to keep
a one-to-one relation between the length of the input (speech sequences) and the output (phoneme
prediction), padding of 1 is included in the time-axis. The max-pooling operation is performed
with a kernel size of 1×2 (only in the frequency axis).

1https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
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After convolution, the resulting feature maps are concatenated to form the sequence of feature
vectors processed by two stacked bidirectional recurrent layers. The Adam optimization algorithm
with a learning rate of η = 10−4 is considered for training (Section 4.3.3). Class weights are
also computed and used in the loss function to account for class unbalance. Such weights are
computed as the total number of samples (for each phoneme class) in the training set. The batch
size is set to 100 and an early stopping strategy is used to end the training of the network when the
training loss does not decrease for 7 consecutive epochs. The performance of the multilabel RNN
is measured at frame level in the test set using the precision, recall, and unweighted F1-score.

Figure 6.1: General architecture of the automatic phoneme recognizer. The green boxes represent
the forward states and the orange boxes represent the backward states. The “CELL” boxes can
be either standard RNN, GRU, or LSTM cells.

Results: German model

Table 6.1 shows the results obtained for the German model. The recurrent networks were trained
with 512 hidden units and three variations of recurrent cells: standard RNN, GRU, and LSTM.
In general, the best performance was obtained with the LSTM cells. Although the performance
of the GRU and LSTM were very similar, in this thesis, the RNN with LSTM cells is preferred
to extract phoneme-based features. Figure 6.2 shows the results of predicting the sequence of
phonemes with the German model for the sentence “Peter spielt auf der Strasse” (Peter plays on
the street). The results are presented for the manner of articulation, the place of articulation, and
voicing. The silence/pause segments are also displayed. Phoneme prediction errors are inevitable
when using fully automatic methods. However, it is still possible to use such systems to find
patterns in pathological speech signals compared to a proper baseline e.g., healthy speakers in the
same age group, language, and others. On the one hand, the prediction labels (shaded regions)
can be used for automatic segmentation of phonemes, which allows evaluating duration, rate, and
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Table 6.1: Performance of the RNN models trained for automatic recognition of phoneme classes
from the German language. The values highlighted in bold indicates the highest recognition
performance.

Dimension Class RNN GRU LSTM
Prec Rec F1 Prec Rec F1 Prec Rec F1

Silence 0.90 0.86 0.88 0.89 0.86 0.88 0.90 0.87 0.88
Manner Stop 0.85 0.81 0.83 0.85 0.80 0.82 0.86 0.81 0.83

Nasal 0.84 0.84 0.84 0.83 0.84 0.83 0.84 0.83 0.84
Trill 0.86 0.64 0.73 0.83 0.68 0.75 0.85 0.70 0.76
Fricative 0.89 0.87 0.88 0.88 0.87 0.88 0.89 0.88 0.88
Approximant 0.88 0.74 0.80 0.86 0.77 0.81 0.84 0.81 0.83
Lateral 0.82 0.61 0.70 0.78 0.65 0.71 0.79 0.68 0.73
Vowel 0.87 0.89 0.88 0.87 0.88 0.88 0.88 0.89 0.88

Place Labial 0.86 0.80 0.83 0.85 0.82 0.83 0.85 0.83 0.84
Alveolar 0.87 0.86 0.87 0.87 0.86 0.86 0.88 0.86 0.87
Velar 0.86 0.76 0.81 0.86 0.78 0.82 0.86 0.80 0.83
Palatal 0.87 0.81 0.84 0.88 0.81 0.84 0.88 0.83 0.85
Postalveolar 0.87 0.84 0.85 0.86 0.86 0.86 0.86 0.87 0.87
Central 0.82 0.82 0.82 0.83 0.81 0.82 0.84 0.82 0.83
Front 0.85 0.77 0.81 0.82 0.79 0.81 0.83 0.81 0.82
Back 0.84 0.81 0.83 0.83 0.82 0.82 0.83 0.84 0.84

Voicing Voiceless 0.89 0.90 0.89 0.90 0.88 0.89 0.91 0.88 0.90
Voiced 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.96 0.95
AVG 0.87 0.81 0.83 0.86 0.82 0.84 0.86 0.83 0.85

AVG: Average performance. Prec: Precision. Rec: Recall. F1: F1-score. RNN: Recurrent
Neural Network. GRU: Gated Recurrent Units. LSTM: Long-Short Term Memory

timing parameters (Section 4.2.4). On the other hand, the sequence of probabilities (colored lines)
generated by the network can evaluate phoneme precision.



6.1. MODELS FOR SPEECH ANALYSIS 101

Figure 6.2: Sequence of phoneme posterior probabilities (colored lines) and predictions (shaded
regions) for the German sentence “Peter spielt auf der Strasse” (Peter plays on the street).

Results: Spanish model

As described before, phonemic transcriptions were not available for the Spanish data. Thus,
phoneme alignment was performed using an ASR system. This automatic alignment is prone to
labeling errors, especially at the transitions from one phoneme to the other; thus, it is expected
to have relatively lower performance for the Spanish model compared to the system trained in
German. Since manual correction was not an option (the dataset is too large and it would take
too much time), a transfer learning approach was implemented: the parameters learned by the
German model were used as starting point for the Spanish model. Furthermore, it was observed
that the best way to perform training is by stopping the network in the epoch where the F1-score
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Table 6.2: Performance of the LSTM models trained for automatic recognition of phoneme classes
from the Spanish language. The values highlighted in bold indicates the highest recognition
performance.

Dimension Class Spanish-Spanish German-Spanish
Prec Rec F1 Prec Rec F1

Silence 0.87 0.91 0.89 0.90 0.89 0.90
Manner Stop 0.77 0.68 0.72 0.82 0.68 0.74

Nasal 0.79 0.72 0.75 0.83 0.71 0.77
Trill 0.63 0.54 0.58 0.73 0.51 0.60
Fricative 0.82 0.78 0.80 0.85 0.76 0.80
Approximant 0.70 0.50 0.58 0.68 0.50 0.57
Lateral 0.71 0.58 0.63 0.76 0.59 0.67
Vowel 0.85 0.85 0.85 0.87 0.87 0.87

Place Labial 0.73 0.68 0.71 0.80 0.69 0.74
Alveolar 0.79 0.74 0.76 0.83 0.73 0.78
Velar 0.74 0.64 0.69 0.82 0.63 0.71
Palatal 0.74 0.59 0.66 0.73 0.61 0.67
Postalveolar 0.86 0.68 0.76 0.88 0.71 0.79
Central 0.81 0.80 0.80 0.83 0.81 0.82
Front 0.82 0.76 0.79 0.84 0.78 0.81
Back 0.79 0.75 0.77 0.85 0.75 0.80

Voicing Voiceless 0.82 0.76 0.79 0.85 0.75 0.80
Voiced 0.95 0.95 0.95 0.94 0.96 0.95
AVG 0.79 0.72 0.75 0.82 0.72 0.77

AVG: Average. Prec: Precision. Rec: Recall. F1: F1-score.

drops. Two different training strategies were used for the Spanish models: 1) the Spanish model
is trained without considering the pre-trained German model as initialization and 2) the German
model is used for initialization, but the training is performed until the F1-score does not improve
anymore. Table 6.2 shows the results for the Spanish model trained with the proposed training
strategies. On average, the performance of the Spanish model improved from 0.75 up to 0.77
(F1-score) using the German model as weight initialization.

Figure 6.3 shows an example of the sequence of phoneme predictions and posterior probabili-
ties computed by the network for the sentence “Laura sube al tren que pasa” (Laura gets on the
passing train) uttered by a Spanish speaker. One of the prediction errors made by the network
occurs in the Stop-Vowel syllable “que” (IPA: kE), which is detected as a vowel by the Spanish
model. However, in this particular case, the Spanish speaker does not produce any pause during
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Figure 6.3: Phoneme posterior probabilities (colored lines) and predictions (shaded regions) for
the Spanish sentence “Laura sube al tren que pasa” (Laura gets on the passing train).

the utterance, which is more likely to result in the voicing of the closure stage (obstruction of
airflow resulting in a silence region) or “consonant weakening” during the release stage (absence
of the burst after the closure stage) of the stop sound.
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Conclusions

The output of a recurrent network can be used to evaluate segmental aspects such as phoneme
duration (using the predicted labels) and phoneme precision (using the posterior probabilities). One
limitation is that fully automatic methods are prone to labeling errors. Thus, it is recommended to
include healthy speakers when analyzing pathological speech signals to have a proper baseline for
comparison.

The main limitation of the Spanish model is the low performance achieved compared to the
German model. Using the latter as an initialization improved the accuracy of recognizing phoneme
groups in the Spanish language. It was also shown that the best way to use the pre-trained German
model for parameter initialization is to train the Spanish model until the F1-score drops and not
until the early stopping criterion is met. The reason is that the latter causes the network to modify
the network entirely, thus, losing the advantage of having a relatively well-trained model as the
starting point.

Another strategy would be to merge both German and Spanish data to have a language-
independent model and thus have a better performance. The reason to keep two separated models
for German and Spanish is that merging the data may cause biased results for the analysis of
speech production, i.e., instead of speech deviations produced by a clinical condition, there
will be variations due to the language. There are other approaches such as the connectionist
temporal classification loss (Graves et al., 2006) which allows performing phoneme alignment by
considering the transcriptions of the audio signals without further annotation.
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6.1.2 Automatic detection of voice onset time

Aim: To train a RNN-based model for the automatic detection of VOT in voiceless stop sounds
produced during the rapid repetition of the syllables /pa-ta-ka/.

Hypotheses:

• It is possible to perform automatic recognition of VOT using recurrent networks.

• VOT that can be automatically detected in speech signals of people with PD.

In this section PD patients are included to observed the influence of dysarthric speech in the
automatic detection of VOT. Further analysis on speech problems related to PD will be addressed in
Section 6.2. Speech recordings of CI users are not included here because there are not annotations
of VOT available to compare with recordings of normal hearing speakers.

Data

The 50 PD patients and 50 healthy speakers (HC) described in the PC-GITA database (Sec-
tion 5.1.1) are considered for the experiments. In the case of the healthy controls, only the
dysarthria score is available. The speech task considered for the analysis is the alternating and
sequential repetition of /pa-ta-ka/ (DDK). The labeling procedure of the VOT was performed by
an expert in linguistics. Manual labels are placed at the initial burst of the consonants and vowel
onsets using the software Praat.

Methods

A similar architecture to the one presented in Section 6.1.1 was used for detection of the VOT.
The speech recordings are divided into sequences of 500 ms,which are extracted every 250 ms.
Then, Mel-spectrograms are computed for each sequence considering a 64 triangular filterbank.
The filterbank energies are extracted from Hanning windows of 25 ms, taken every 1 ms. Thus,
the size of each input tensor to the network is 500×64 (500 speech frames and 64 Mel-filters).

Each sequence is time-aligned with their corresponding phonetic transcription, thus, each
speech frame is labeled according to 5 classes: VOT, /p/, /t/, /k/, and non-VOT. The non-VOT
class consists of speech frames that are either vowels, silence, or stop sounds without VOT (stop
sounds characterized by the absence of the burst).

A multi-label LSTM with sigmoid activation function, 512 hidden units, and BCE logistic
loss was considered for training. The input tensors are processed by two convolution layers (with
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8 and 16 output channels) with ReLU activation functions, two max-pooling layers,and dropout.
The convolution operation is performed in both frequency and time axis with a kernel size of 3×3.
In order to keep a one-to-one relation between the length of the input (speech sequences) and the
output (VOT prediction), a padding of 1 is added to the time-axis. The max-pooling operation is
performed with a kernel size of 1×2 (only in the frequency axis). After convolution, the resulting
feature maps are concatenated to form the sequence of feature vectors processed by two stacked
bidirectional recurrent layers. The Adam optimization algorithm with a learning rate of η = 10−4

is considered for training. Additionally, class weights are computed and used in the loss function
in order to account for class unbalance. Such weights are computed as the total number of samples
(for each phoneme class) in the training set. The batch size is set to 100 and a early stopping

strategy is used to end the training of the network when the training loss does not decrease for 7
consecutive epochs.

Note that the number of recordings available to train the model is very limited; thus, the
following data augmentation techniques were performed:

• The pitch was shifted up and down by 200 cents.

• Noisy speech signals (Gaussian noise) with signal-to-noise ratios (SNR) of 10 dB, 20 dB,
and 30 dB were included.

• Reverberation of 30% was applied to the speech signals.

The data is divided into 80 speakers for the train set (40 HC and 40 PD), 10 for validation (5 HC
and 5 PD) and 10 for the test (5 HC and 5 PD). A median filter mask of 3 ms is applied to the
sequence of predicted VOTs in order to interpolate the missing values. The performance of the
multi-label LSTM is measured at frame level using the precision, recall, and unweighted F1-score.

Results: Prediction of VOT

Table 6.3 shows the classification results for the automatic detection of VOT. The model’s
performance to detect VOT speech frames is higher for healthy speakers (F1=0.78) than for
PD patients (F1= 0.73). This result is expected considering the reduced range of articulatory
movements associated with PD (Section 2.2.2). Regarding the detection of stop consonants,
the lowest performance was obtained for /p/, followed by /t/, and then /k/. These results can be
explained considering the consonant weakening phenomena described in Section 4.2.3. Consonant
weakening occurs when there is an absence of burst during the release stage when producing stop
sounds. It can be produced by both healthy and PD patients in intermediate positions during the
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Table 6.3: Performance of the LSTM models trained for automatic detection of VOT.
Class HC PD

Prec Rec F1 Prec Rec F1
VOT 0.73 0.84 0.78 0.73 0.74 0.73
Non-VOT 0.97 0.97 0.97 0.94 0.97 0.96
/p/ 0.72 0.60 0.65 0.58 0.36 0.44
/t/ 0.71 0.73 0.72 0.71 0.52 0.60
/k/ 0.83 0.84 0.84 0.74 0.55 0.63
AVG 0.79 0.80 0.79 0.74 0.63 0.67
AVG: Average. Prec: Precision. Rec: Recall.
F1: F1-score.

DDK tasks, e.g., in the transition between /ka/ and /pa/. Figure 6.4 shows the bar plots with the
number of VOT and Non-VOT stop consonants produced by patients and healthy speakers. These
measurements correspond to the manual annotations made by the human expert. The patients
produce the highest number of Non-VOT segments (due to consonant weakening). Additionally,
consonant weakening segments are higher when speakers produce the stop sound /p/, followed by
/t/, and then /k/. Thus, the information given in Figure 6.4 can clearly explain the results reported in
Table 6.3. The time errors between the manual annotations and predicted VOT of the initial burst
(EBurst) and the vowel onset (EVowel) were: (1) EBurst = 4.3±1.9 ms and EVow = 3.4±1.4 ms for

Figure 6.4: Number of VOT (left) and Non-VOT (right) measurements (labeled by a human expert)
in the HC and PD groups. In some cases the VOT can not be measured due to the absence of burst
in the release stage when producing stop consonants.
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the healthy controls and (2) EBurst = 5.0± 1.5 ms and EVow = 5.1± 1.7 ms for the PD patients.
These deviations are acceptable considering that another human annotator might have consider
different time stamps for the VOTs.

Figure 6.5 shows an example of the predicted VOT and non-VOT segments from the recording
of a PD patient. The shaded regions represent the VOT segment manually annotated by the expert,
the dashed black lines are the predictions of the system (after post-processing with a median filter),
and the colored straight lines are posterior probabilities of the /p/, /t/, and /k/. Note that for the
last syllable (a transition from /ta/ to /ka/), the posterior probability of the stop sound /k/ is greater
than zero, but neither the human expert nor the system predicted such a segment as a VOT. In this
case the /k/ is weakened and perceived as a /g/ due to the absence of burst. Thus, the posterior
probability can also be use as an indication of consonant mis-articulation.

Figure 6.5: The shaded regions represent the VOT segment manually annotated by the expert, the
dashed black lines are the predictions of the system (after post-processing with a median filter),
and the colored straight lines are posterior probabilities of the /p/ (red), /t/ (green), and /k/ (blue).

Results: Prediction of VOT with noisy speech

Figure 6.6 shows the classification results for the automatic detection of VOT with noisy speech
signals. The model’s performance increased when noisy recordings were used for testing, indi-
cating that the model was over-fitted. For healthy speakers, the F1-score increased when noisy
and reverberated speech were considered for the test. For patients, the model’s performance was
lower for signals with an SNR of 10 dB than for the original signals; however, there are slight
improvements for recordings with SNRs of 20 dB, 30 dB, and reverberation. Besides overfitting,
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Figure 6.6: F1-scores for the automatic detection of VOT speech frames and the consonants /p/,
/t/, and /k/. The model is tested using clean signals (original), noisy signals with SNRs of 10 dB,
20 dB, and 30 dB and reverberation of 30%.

another reason for the mixed results between HC and PD is that the noise component appears
to remove part of the acoustic property that characterizes the stop consonants resulting in two
different situations: On the one hand, the reduced phoneme precision of the patients combined
with the Gaussian noise affects the model’s performance to predict the correct sequence of conso-
nants. On the other hand, the noise component improves the detection of vowels’ onset, leading to
higher F1-scores for the HC because they do not produce as many misarticulations as the patients,
e.g., weakened consonants. Figure 6.7 shows the VOT prediction of two recordings from the
same PD patient: the original version and a noisy version with an SNR of 20dB. In the clean
version, the model can predict the correct phoneme sequence. Additionally, the burst of energy
that characterizes the stop consonants can it is visible in the spectrum. In the case of the noisy
signal, the energy burst is weaker (and in some cases disappears), leading to more mistakes from
the system to detect the correct sequence of phonemes. Finally, Table 6.4 shows the time error to
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Figure 6.7: Prediction of VOT using a clean and noisy signal (SNR 20dB) from a PD patient. The
corresponding Mel-spectrograms are shown in the bottom.

predict the initial burst (EBurst) and the vowel onset (EVowel). Since the prediction of the onsets
is more accurate with noise (especially for the vowel), the number of speech frames that were
correctly classified increased the performance of the model to predict the VOT.

Table 6.4: Time error to predict the initial burst (EBurst) and the vowel onset (EVowel). The time
errors are reported in milliseconds.

Group Error Original SNR 10dB SNR 20dB SNR 30dB Reverb
HC EBurst 4.3 ± 1.9 4.1 ± 1.3 3.3 ± 0.8 3.0 ± 0.6 3.4 ± 0.9

EVowel 3.4 ± 1.4 2.2 ± 0.7 2.3 ± 0.6 2.3 ± 0.5 2.9 ± 1.0
PD EBurst 5.8 ± 2.4 5.7 ± 1.8 5.3 ± 2.2 4.3 ± 1.4 3.9 ± 1.2

EVowel 5.4 ± 2.1 3.0 ± 1.1 3.2 ± 1.2 3.6 ± 1.5 4.6 ± 1.9
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Conclusions

Automatic detection for VOT speech frames was possible with F1-scores of up to 0.78 for healthy
speakers and 0.73 for PD patients. The VOT segments were predicted with average time errors
of 3.8 ms for healthy speakers and 5.6 ms for PD patients. Regarding the detection of stop
consonants, the lowest performance was obtained for /p/, followed by /t/, and then /k/. This
decrease in performance was mainly caused by the consonant weakening which occurs more
frequently when the stop sound /p/ is produced in intermediate positions. This phenomenon can be
explained considering the speakers perform rapid movements of the articulators during the DDK
task, which results from difficulties in controlling the vocal folds’ movement when alternating
from vowels to voiceless stop sounds Louzada et al. (2011). PD patients produced more weakened
consonants than the healthy speakers, resulting in a lower performance to detect VOT segments.
It was also shown that the posterior probability calculated by the automatic model can provide
information about weakened consonants.

One limitation of this approach is that it might not be suitable for continuous speech tasks,
e.g., monologues, picture descriptions, conversations. However, as is going to be demonstrated
in Section 6.2, the DDK task might provide sufficient information for automatic detection and
prediction of the state of PD. Another limitation is the relatively low number of recordings
considered for training. One solution was to use data augmentation to increase the sample size.
However, the performance of the model was better using noisy versions of the original signals.
This result showed that the noise component improved the detection of vowel onsets and the
prediction of VOT speech frames for healthy speakers. On the contrary, the Gaussian noise
combined with phoneme imprecision resulted in the lower prediction of phoneme sequences
produced by PD patients.
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6.2 Parkinson’s disease patients

6.2.1 Automatic methods for the assessment of PD from speech

Aim: To evaluate the suitability of different features and speech tasks for the assessment of PD
from speech signals.

Hypotheses:

• Combining the information of different features sets and speech tasks improves the perfor-
mance of automatic methods to detect disordered speech in PD patients.

• The neurological state and the dysarthria level can be estimated using automatic methods.

Data

The 50 PD patients and 50 healthy speakers described in the PC-GITA database (Section 5.1.1) are
considered for the experiments. All of the PD patients were evaluated according to neurological
(MDS-UPDRS-III) and dysarthria (mFDA) scales. In the case of the healthy controls, only the
dysarthria score is available. The speech tasks considered for the analysis are the sustained
phonation of the Spanish vowels /a/, /e/, /i/, /o/, and /u/, reading of a text, a monologue, and the
alternating and sequential repetition of /pa-ta-ka/ (DDK).

Methods

Phonation features include pitch, loudness, and perturbation measures extracted from the sustained
phonation of the vowels /a/, /e/, /i/, /o/, and /u/. Furthermore, the vowels /a/, /i/, and /u/ are
considered to extract the first and second formant frequencies, the tVSA (and the logarithm) and
the FCR. The formants are extracted by removing 100 ms at the beginning and the end of each
recording. This procedure is performed in order to avoid the miscalculations of F1 and F2 at the
vowel onset and offset. Acoustic articulation is evaluated by extracting filterbank features (13
MFCC and 13 GFCC) from the onset/offset transitions extracted from the reading, monologue,
and DDK tasks. In the case of prosody analysis, the set of parameters considered are pitch,
loudness, duration, rate, and timing based features. Phonemic analysis is performed with the
LSTM model trained for the Spanish language (Section 6.1.1). Phonemic analysis is divided into
voicing, manner, and place of articulation (Table 4.1). For each dimension, the set of phonemic
parameters includes MaxPost and LLRPost (which are related to phoneme articulation) and the
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durPH and GPI − y[k] (which are related to speech prosody) (Table 4.2). Phonemic features
are extracted from the reading, monologue, and DDK speech tasks. In the case of the DDK task,
however, only the stop (/p/, /t/, and /k/), vowels (/a/), labial (/p/), alveolar (/t/), and velar (/k/)
phoneme groups were considered in the feature sets.

Automatic classification with a radial basis function SVM is considered for further analysis.
The margin C and kernel γ parameters are optimized through a grid search with 10−4 < C < 104

and 10−4 < γ < 104. The parameters are optimized as follows:

1. 10-fold cross validation strategy is considered to train and test the model.

2. An internal 9-fold cross validation strategy is used to select the best set of parameters for
testing.

3. After evaluating every fold, the medians of the resulting C and γ parameters are computed
and the 10-fold cross validation strategy was performed again with fixed parameters.

4. The performance of the bi-class SVM is evaluated by means of the accuracy, sensitivity,
specificity, and AUC.

Regression analysis is performed by means of a linear SVR in order to evaluate the suitability
of the selected features and speech tasks to estimate the dysarthria level and the neurological
state of the patients according to the mFDA and MDS-UPDRS-III, respectively. The parameters
are optimized with a similar approach than the classifier, however, the performance is measured
by means of the of the Pearson’s (r) and Spearman’s (ρ) correlation coefficients. Additionally,
5-fold cross validation is performed when predicting the MDS-UPDRS-III because only the PD
patients are evaluated. Figure 6.8 shows an schematic view of the methodology implemented in
this section.
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Figure 6.8: Schematic view of the methodology implemented in this section.

Results: Automatic classification of PD

Table 6.5 shows the classification results obtained for PD patients vs. HC speakers. Overall,
phonemic features contributed more to the automatic classification of PD patients. The highest
performance was obtained when combining phonation, articulation, and phonemic features from
the sustained vowels, DDK, and monologue tasks. The most relevant features to detect PD appear
to be the offset transitions (filterbank energies) and phonemic features. Transitions work better
in the monologue due to the amount of information obtained during this task. On average, the
speakers produced 83 onset/offset transitions in the monologue, 29 in the reading task, and 20 in
the DDK. Thus, the amount of variation in the transitions is likely to be the most relevant factor to
affect the classification. It is not clear, however, why offset transitions work better than onset in
the monologue. One possible reason is a process called “resyllabification”, which in the Spanish
language occurs when word-initial vowels are merged with the end of the previous word (Colina,
2009) e.g., in the reading task, the sentence “...ya sabemos que es...” (we already know what it
is) it’s syllabified as “pu.es.ya.sa.be.mos.ques”. This process produces misalignments between
word boundaries and syllable structures in both healthy and PD patients. However, it might be the
case that the “resyllabification” process affects more the patients. Further analysis is necessary to
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Table 6.5: Results for automatic classification of PD patients and HC speakers. C and γ are the
final parameters selected to evaluate the performance of the SVM. The values highlighted in bold
indicate the highest results obtained per speech task.

Task Feat ID Features Acc Sen Spe AUC C γ

Vowel V1 Phonation 70 60 80 0.75 1 0.01
V2 Articulation Vowel 67 54 80 0.71 10 0.01
V3 V1+V2 75 66 84 0.79 1 0.01

Read text R1 Articulation On 69 84 54 0.75 5.5 0.01
R2 Articulation Off 66 60 72 0.75 10 0.0001
R3 R1+R2 70 66 74 0.77 10 0.001
R4 Prosody 63 54 72 0.69 1 0.055
R5 Phonemic Manner 72 58 86 0.73 1 0.001
R6 Phonemic Place 81 82 80 0.82 1 0.01
R7 Phonemic Voicing 73 72 74 0.76 10 0.0055
R8 R5+R6+R7 78 76 80 0.82 1 0.01

Monologue M1 Articulation On 69 74 64 0.77 1 0.01
M2 Articulation Off 75 74 76 0.81 100 0.00055
M3 M1+M2 72 74 70 0.81 100 0.00055
M4 Prosody 61 50 72 0.64 100 0.001
M5 Phonemic Manner 65 50 80 0.75 1 0.001
M6 Phonemic Place 73 74 72 0.77 1 0.01
M7 Phonemic Voicing 63 66 60 0.64 550 0.001
M8 M5+M6+M7 66 58 74 0.75 0.001 0.001

DDK D1 Articulation On 65 62 68 0.69 1 0.01
D2 Articulation Off 62 58 66 0.68 10 0.01
D3 Phonemic Manner 82 76 88 0.81 1 0.01
D4 Phonemic Place 75 74 76 0.81 0.001 0.1
D5 Phonemic Voicing 75 66 84 0.80 100 0.0055
D6 D3+D4+D5 73 62 84 0.83 0.5005 0.01

Fusion F1 V3+D3+D4+M2+M6 84 82 86 0.89 10 0.00055
F2 F1+R6+R7 84 86 82 0.87 10 0.0001
F3 D3+D4+M2+M6 83 82 84 0.84 10 0.001
F4 F3+R6+R7 81 80 82 0.85 10 0.0001
F5 V3+R6+R7 81 78 84 0.86 1 0.0055

Fusion: Early fusion of features (top five highest performances). Acc: Accuracy[%].
Sen: Sensitivity[%]. Spe: Specificity[%]. AUC: Area under the ROC curve.

validate this hypothesis.
The results reported in this section also show the advantage of considering different tasks to

evaluate speech disorders. Combining similar features sets and tasks (e.g. phonemic place of
articulation from monologue and DDK) improves the automatic classification of PD patients and
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HC speakers. In the case of the DDK, the kinematic vocal movements performed by the speakers
highlight specific articulation deficits related to the production of stop consonants by generating
constrictions in the lips (/p/), alveolar ridge (/t/), and the velum (/k/). For the monologue and
read text, problems related to the place of articulation are more likely due to the imprecision
of the patients to produce a wider variety of sounds. The main limitation of the monologue
task is that there is no control of what the speakers say. However, using non-planned speech
tasks might evidence problems due to the relatively higher cognitive load (compared to reading)
required (Garcı́a et al., 2021, 2016).

Figure 6.9 shows the maximum posterior probability (MaxPost) for the place of articulation
produced in the reading, monologue, and DDK tasks. As described in previous chapters, the
MaxPost allows measuring the phoneme precision of the speakers. These parameters can only
take values between 0 and 1, where 1 represents the “perfect” production of speech sounds. In
this case, PD patients produced lower probabilities than the healthy speakers in all three tasks.
In the case of the DDK, only the three phoneme groups (labial, alveolar, and velar) stand out, as
expected. Note that postalveolar sounds appear to have a relatively low articulation precision,
even for the healthy controls. In Section 6.4 will be shown that imprecision of articulation may be
related to physiological and anatomical changes due to aging.

Figure 6.9: Radar plot of the phoneme place of articulation precision (MaxPost)
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Results: Regression analysis

The results obtained in the estimation of the dysarthria level and neurological state of the patients
are reported in Tables 6.6 and 6.7, respectively. Similar to the classification task, phonemic features
showed to be more relevant to assess the severity of the disease. All of the features resulted
in considerable high correlations between predicted values and mFDA scores (p-value<0.001).
The highest correlation was obtained with the combination of features from reading (phonemic),
DDK (phonemic), and sustained phonation of vowels. In the case of the neurological state, the
combination of articulation and phonemic features resulted in a better prediction of the MDS-
UPDRS-III. However, this estimation is relatively lower than the prediction of the mFDA, which
is not surprising considering that the MDS-UPDRS-III consists of the evaluation of other motor
aspects such as postural instability, gait, writing, and others. Nevertheless, two main patterns
consistently repeat for the prediction of mFDA and MDS-UPDRS-III: the DDK task and the
phonemic features strongly highlight motor speech problems in PD patients, not only in the
regression analysis but also in the classification task.

Figure 6.10 shows the regression plots of the best performances obtained for the estimation of
the dysarthria level (mFDA: r = 0.80; ρ = 0.78) and the neurological state (MDS-UPDRS-III:
r = 0.40; ρ = 0.53). The differences in the performances can be explained considering that
the mFDA is a scale completely focused on evaluating speech impairments. On the contrary,
the MDS-UPDRS-III only includes speech in 1 item from 33. Nevertheless, automatic speech
analysis shows a close relationship to the general clinical score.

Figure 6.10: Regression plots of the best performances obtained for the estimation of the mFDA
and the MDS-UPDRS-III
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Table 6.6: Estimation of the dysarthria level according to the mFDA. C and ε are the final
parameters selected to test the performance of the SVR. The values highlighted in bold indicate
the highest results obtained per speech task.

Task Feat ID Features r p-value ρ p-value C ε

Vowel V1 Phonation 0.49 <0.001 0.48 <0.001 0.1 10
V2 Articulation Vowel 0.40 <0.001 0.42 <0.001 1 0.55
V3 V1+V2 0.64 <0.001 0.64 <0.001 1 1

Read text R1 Articulation On 0.49 <0.001 0.47 <0.001 0.1 10
R2 Articulation Off 0.46 <0.001 0.45 <0.001 0.1 10
R3 R1+R2 0.53 <0.001 0.52 <0.001 0.1 10
R4 Prosody 0.37 <0.001 0.35 <0.001 1 10
R5 Phonemic Manner 0.59 <0.001 0.56 <0.001 1 10
R6 Phonemic Place 0.70 <0.001 0.67 <0.001 0.1 1
R7 Phonemic Voicing 0.60 <0.001 0.56 <0.001 1 10
R8 R5+R6+R7 0.69 <0.001 0.66 <0.001 0.1 1

Monologue M1 Articulation On 0.24 <0.05 0.25 <0.05 0.1 10
M2 Articulation Off 0.44 <0.001 0.43 <0.001 0.1 10
M3 M1+M2 0.34 <0.01 0.32 <0.01 0.1 10
M4 Prosody 0.43 <0.001 0.43 <0.001 1 0.55
M5 Phonemic Manner 0.60 <0.001 0.59 <0.001 0.1 1
M6 Phonemic Place 0.62 <0.001 0.58 <0.001 0.1 0.001
M7 Phonemic Voicing 0.49 <0.001 0.50 <0.001 100 10
M8 M5+M6+M7 0.59 <0.001 0.55 <0.001 0.1 0.1

DDK D1 Articulation On 0.41 <0.001 0.37 <0.001 0.1 10
D2 Articulation Off 0.42 <0.001 0.40 <0.001 0.55 10
D3 Phonemic Manner 0.67 <0.001 0.64 <0.001 10 5.5
D4 Phonemic Place 0.71 <0.001 0.67 <0.001 1 0.1
D5 Phonemic Voicing 0.60 <0.001 0.61 <0.001 1000 10
D6 D3+D4+D5 0.66 <0.001 0.66 <0.001 0.1 5.5

Fusion F1 V3+R6+D4+D3 0.80 <0.001 0.78 <0.001 0.1 1
F2 V3+R6+D4 0.79 <0.001 0.78 <0.001 0.1 1
F3 V3+R6 0.79 <0.001 0.77 <0.001 0.1 0.55
F4 V3+D4 0.75 <0.001 0.74 <0.001 1 1
F5 R6+D4+D3 0.74 <0.001 0.72 <0.001 0.1 0.0055

Fusion: Early fusion of features and tasks (top five highest performances).
r: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient.

Conclusions

The results obtained in both classification and regression tasks validated the first hypothesis. The
prediction of mFDA and MDS–UPDRS-III was better using phonemic features extracted from
the DDK task. However, combining different speech tasks improves the performance of the
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Table 6.7: Estimation of the neurological state according to the MDS-UPDRS-III. C and ε are
the final parameters selected to test the performance of the SVR. The values highlighted in bold
indicates the highest results obtained per speech task.

Task Feat ID Features r p-value ρ p-value C ε

Vowel V1 Phonation -0.25 0.084 -0.30 0.033 0.001 10
V2 Articulation Vowel -0.15 0.300 -0.13 0.370 0.1 10
V3 V1+V2 -0.25 0.085 -0.24 0.094 0.001 10

Read text R1 Articulation On 0.29 <0.05 0.37 <0.01 0.1 10
R2 Articulation Off 0.33 <0.05 0.43 <0.01 0.1 10
R3 Articulation All 0.36 <0.05 0.43 <0.01 0.1 10
R4 Prosody 0.10 0.494 0.14 0.334 1 10
R5 Phonemic Manner -0.18 0.212 -0.13 0.354 0.01 10
R6 Phonemic Place 0.17 0.242 0.07 0.639 0.1 10
R7 Phonemic Voicing -0.24 0.092 -0.22 0.124 0.001 10
R8 Phonemic All -0.01 0.943 -0.07 0.634 0.01 10

Monologue M1 Articulation On 0.38 <0.01 0.45 <0.01 0.1 10
M2 Articulation Off 0.38 <0.01 0.40 <0.01 1 10
M3 Articulation All 0.38 <0.01 0.46 <0.01 0.1 10
M4 Prosody -0.24 0.087 -0.24 0.098 0.001 10
M5 Phonemic Manner 0.20 0.169 0.12 0.418 0.1 10
M6 Phonemic Place 0.21 0.143 0.15 0.291 0.1 10
M7 Phonemic Voicing 0.00 0.999 -0.06 0.661 0.1 10
M8 Phonemic All 0.18 0.211 0.17 0.235 0.1 10

DDK D1 Articulation On 0.18 0.223 0.21 0.146 0.1 10
D2 Articulation Off 0.09 0.520 0.09 0.552 0.1 10
D3 Phonemic Manner 0.40 <0.01 0.39 <0.01 1 1
D4 Phonemic Place 0.14 0.340 0.10 0.490 0.1 10
D5 Phonemic Voicing 0.08 0.580 0.04 0.806 0.1 10
D6 Phonemic All 0.31 0.027 0.31 0.030 0.1 10

Fusion F1 R2+M1+D3 0.40 <0.01 0.53 <0.01 1 10
F2 R2+D3 0.41 <0.001 0.52 <0.001 0.1 10
F3 R3+D3 0.41 <0.01 0.47 <0.01 0.1 10
F4 M3+D3 0.40 <0.01 0.45 <0.01 1 10
F5 R3+M3 0.38 <0.01 0.48 <0.001 0.1 1

Fusion: Early fusion of features and tasks (top five highest performances).
r: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient.

automatic methods. For instance, the combination of articulation and phonemic features resulted
in the highest classification performance and estimation of the neurological state. Additionally,
phonemic features combined with phonation and articulation features from the vowels improved
the prediction of the mFDA.
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The estimation of the dysarthria level (regression analysis) was considerably higher than the
prediction of the general neurological state. There are several reasons for these results. First,
the neurological scales consider other motor skills than speech to estimate the severity of the
disease. It is highly optimistic to expect that only speech signals will capture all other motor
disorders. Thus, future work should consider the multimodal analysis of PD patients using other
bio-signals such as writing, movement of the limbs, gait, among others. Another reason for the
low performance might be the relatively low variability in the clinical score due to the number of
speakers available to perform regression analysis. For the mFDA evaluations, speakers without
any speech disorders and with different levels of impairments were available. Thus, the SVR can
model better the dysarthria level because of the variability in the training set. For the neurological
scale, only patients (with relatively low scores) have an MDS–UPDRS-III with low variability in
the clinical score.
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6.2.2 Speaker embeddings to monitor Parkinson’s disease

Aim: To evaluate the suitability of speaker embeddings to capture the progression of speech
symptoms over the time.

Hypotheses:

• It is possible to monitor the progression of speech symptoms considering recordings
captured in different sessions.

• The progression of the symptoms can be improved considerably when speaker embeddings
are combined with acoustic features.

Data

Three datasets were considered to validate the hypotheses of this section: one is used as the
baseline and the other two are considered to test the short- and long-term progression of PD.
The speech tasks considered for the analysis are the reading of a text, a monologue, and the
alternating and sequential repetition of /pa-ta-ka/. The sustained phonation task is not considered
here because only the vowel /a/ was recorded for the short-term dataset, thus, it is not possible
to compute all of the vowel articulation features. Additionally, only speech recordings that were
evaluated according to the mFDA were considered for the experiments. The reason is that not all
of the recordings were evaluated according to the MDS-UPDRS.

Short-term: This dataset include speech signals of 7 patients recorded in their house (Sec-
tion 5.1.2). The patients were recorded four times per day (every two hours), once per month
during four months; thus, there is a total of 16 recording sessions per patient. Each recording
session was assessed according to the mFDA.

Long-term: Speech recordings of the same 7 patients were collected in 6 recording sessions from
2012 to 2017 (Section 5.1.3). However, one patient was recorded in 5 sessions and another in 4
sessions. All of the patients were evaluated according to the mFDA.

Baseline: Speech recordings of 50 PD patients and 50 healthy speakers are considered for
the experiments (Section 5.1.1). Note that 6 of the patients in PC-GITA are also included in
the longitudinal datasets. Thus, the speech recordings of these patients were replaced with PD
patients from another dataset.
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Methods

The recording protocol and the acoustic conditions of the recordings vary from session to session.
For the short-term recordings, every patient was recorded with the same device in his/her house
during all sessions. For the long-term recordings, the recording sessions were performed in a
soundproof booth (2012) or the Parkinson’s foundation (2014-2017). However, the recording
devices varied for all sessions. Considering the previous information, the denoising system
presented in (Schröter et al., 2020) was used on all of the recordings to reduce the variability in
the acoustic conditions. The system uses a linear combination of complex-valued coefficients
applied in the frequency domain considering the current and previous time frames.

Speaker embeddings are extracted from the monologue task using pre-trained i-vector and
x-vector models (Section 4.4). Such models were pre-trained using the Vox-Celeb dataset 2.
Furthermore, the x-vector system was trained on augmented data i.e, speech recordings with
different noise and acoustic conditions. The i-vector embedding consists of a 400-dimensional
feature vector which is assumed to contain the necessary information to identify a speaker. The
x-vector embedding is a 512-dimensional vector formed with the output from a fully connected
layer.

The dysarthria level of the patients is evaluated using a linear SVR. The parameters C and ε
are optimized through a grid search with 10−4 < C < 103 and 10−4 < ε < 103. The parameters
are optimized as follows:

1. A Leave-one-speaker-out strategy is considered to train and test the model. All of the
recordings from one patient (from the short/long term datasets) are considered for testing
and the remaining speakers (including the ones in the baseline dataset) are considered for
training.

2. An internal 20-fold cross validation strategy is used to select the best set of parameters.

3. After evaluating every speaker from the longitudinal datasets, the medians of the resulting
C and ε parameters are computed and leave-one-speaker-out is performed again with fixed
parameters.

4. The performance is measured by means of the Pearson’s (r) and Spearman’s (ρ) correlation
coefficients.

Figure 6.11 shows a schematic diagram of the methodology implemented in this section. The

2https://kaldi-asr.org/models/m7

https://kaldi-asr.org/models/m7
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predicted mFDA scores are evaluated for each patient individually and the progression curves are
assessed using the Spearman’s (ρ) and the Mean Absolute Error (MAE).

Figure 6.11: Schematic view of the methodology implemented in this section.

Results

Table 6.8 shows the performance of the SVR to predict the mFDA score of the 7 patients recorded
in longitudinal datasets. The x-vector approach outperformed the i-vectors in the estimation of
the dysarthria level. This might be since the x-vector system was pre-trained with augmented
data. Other studies have shown that x-vectors exploit speaker’s information from a large amount
of data better than the i-vectors (Kelly et al., 2019; Snyder et al., 2018). Regarding the acoustic
analysis, phonemic features are the most suitable to predict the dysarthria level of the patients
in the short- and long-term datasets. Furthermore, the prediction of the mFDA scores improved
when phonemic features (from the DDK task) were combined with the x-vector embeddings.

The same experiments were performed for the original recordings i.e., without speech enhance-
ment. These results are reported in Table 6.9. From the table, it can observed that the performance
of the x-vector was not affected by the acoustic conditions: x-vectors without denoising: r = 0.67,
ρ = 0.65; with denoising: r = 0.66; ρ = 0.65. Additionally, in the same table, the performance
of the SVR trained with the acoustic features was considerably affected by the variability of
the acoustic conditions. For instance, without denoising the performance of the SVR trained
with phonemic manner of articulation features was r = 0.19; ρ = 0.14 (read text), whereas the
performance with denoised recordings was r = 0.50; ρ = 0.48. Figure 6.12 shows the dysarthria
progression curves obtained from the prediction of the mFDA score (x-vector+phonemic DDK
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Table 6.8: Estimation of the dysarthria level according to the mFDA in the short- and long-
term datasets (with speech enhancement). C and ε are the final parameters obtained to test the
performance of the SVR. The values highlighted in bold indicate the highest results obtained per
speech task.

Task Feat ID Features r p-value ρ p-value C ε

Speaker S1 i-vector 0.13 0.125 0.13 0.113 0.01 0.0001
embeddings S2 x-vector 0.66 <0.001 0.65 <0.001 0.1 0.1

S3 S1+S2 0.51 <0.001 0.51 <0.001 0.01 0.1
Read text R1 Articulation On -0.29 <0.001 -0.26 <0.01 0.1 10

R2 Articulation Off 0.04 0.653 0.06 0.493 0.1 10
R3 R1+R2 -0.01 0.894 -0.04 0.641 0.1 1
R4 Prosody 0.08 0.322 0.04 0.641 1 10
R5 Phonemic Manner 0.50 <0.001 0.48 <0.001 1 10
R6 Phonemic Place 0.27 <0.01 0.27 <0.01 0.1 1
R7 Phonemic Voicing 0.08 0.310 0.04 0.651 1 1
R8 R5+R6+R7 0.40 <0.001 0.37 <0.001 0.1 10

Monologue M1 Articulation On -0.05 0.583 -0.02 0.772 0.1 1
M2 Articulation Off 0.27 <0.01 0.27 <0.01 0.1 1
M3 M1+M2 -0.01 0.914 0.02 0.836 0.1 0.1
M4 Prosody 0.20 <0.05 0.16 <0.05 0.1 0.1
M5 Phonemic Manner 0.56 <0.001 0.52 <0.001 0.1 1
M6 Phonemic Place 0.46 <0.001 0.43 <0.001 0.1 0.1
M7 Phonemic Voicing 0.37 <0.001 0.33 <0.001 10 10
M8 M5+M6+M7 0.56 <0.001 0.54 <0.001 0.1 0.0001

DDK D1 Articulation On -0.22 <0.01 -0.28 <0.01 0.1 10
D2 Articulation Off 0.01 0.909 0.05 0.514 0.1 10
D3 Phonemic Manner 0.49 <0.001 0.44 <0.001 1 10
D4 Phonemic Place 0.43 <0.001 0.42 <0.001 1 10
D5 Phonemic Voicing 0.37 <0.001 0.39 <0.001 10 10
D6 D3+D4+D5 0.42 <0.001 0.42 <0.001 0.1 10

Fusion F1 S2+D6 0.75 <0.001 0.73 <0.001 0.1 0.1
F2 S2+D3+D5 0.74 <0.001 0.73 <0.001 0.1 0.1
F3 S2+D3 0.74 <0.001 0.72 <0.001 0.1 0.1
F4 S2+D5 0.72 <0.001 0.70 <0.001 0.1 0.1
F5 S2+M6 0.71 <0.001 0.70 <0.001 0.1 1

Fusion: Early fusion of features and speech tasks (top five highest performances).
r: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient.

features with speech enhancement) for each patient in short- and long-term speech recording
sessions. For the short-term sessions (At-home dataset), most of the estimated scores are in the
same range as the target values. There is a mismatch between the target and predicted values.
However, the progression curves follow a similar trend. For instance, the scores predicted for
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Table 6.9: Estimation of the dysarthria level according to the mFDA in the short- and long-term
datasets (without speech enhancement). C and ε are the final parameters selected to test the
performance of the SVR. The values highlighted in bold indicate the highest results obtained per
speech task.

Task Feat ID Features r p-value ρ p-value C ε

Monologue S1 i-vector 0.36 <0.001 0.36 <0.001 0.1 0.001
S2 x-vector 0.67 <0.001 0.65 <0.001 0.1 1
S3 S1+S2 0.48 <0.001 0.48 <0.001 0.01 1

Read text R1 Articulation On 0.03 0.680 -0.02 0.801 0.1 1
R2 Articulation Off 0.07 0.370 0.07 0.427 0.1 1
R3 R4+R5 0.08 0.305 0.05 0.521 0.1 1
R4 Prosody -0.13 0.116 -0.14 0.097 0.1 1
R5 Phonemic Manner 0.19 <0.05 0.14 0.085 0.1 1
R6 Phonemic Place 0.27 <0.01 0.26 <0.01 0.1 1
R7 Phonemic Voicing 0.10 0.224 0.02 0.838 1 0.1
R8 R5+R6+R7 0.25 <0.01 0.24 <0.01 0.1 1

Monologue M1 Articulation On 0.08 0.346 0.09 0.289 0.1 0.001
M2 Articulation Off 0.10 0.222 0.13 0.120 0.1 1
M3 M4+M5 0.02 0.803 0.05 0.552 0.1 1
M4 Prosody 0.19 0.022 0.15 0.060 0.1 1
M5 Phonemic Manner 0.51 <0.001 0.48 <0.001 0.1 0.1
M6 Phonemic Place 0.40 <0.001 0.38 <0.001 0.1 1
M7 Phonemic Voicing 0.33 <0.001 0.28 <0.001 1 1
M8 M5+M6+M7 0.46 <0.001 0.44 <0.001 0.1 1

DDK D1 Articulation On -0.12 0.155 -0.16 0.045 0.1 10
D2 Articulation Off -0.03 0.676 -0.04 0.659 0.1 10
D3 Phonemic Manner 0.31 <0.001 0.30 <0.001 1 10
D4 Phonemic Place 0.32 <0.001 0.34 <0.001 1 10
D5 Phonemic Voicing 0.14 0.084 0.17 <0.05 10 10
D6 D3+D4+D5 0.18 <0.05 0.17 <0.05 0.1 10

r: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient.

PD6 (short-term progression) are lower than the real mFDA. However, the estimation of the
clinical scores follows a similar trend to the targets. Thus, the system can capture the variations
in the speech signal similar to the speech therapist. In the case of the long-term progression
curves, the SVR has more difficulties to capture high variations between sessions (e.g. PD1, PD3,
PD6). However, the trend of the progression is similar to the target values. Overall, combining
speaker embeddings with acoustic features improved the performance of the SVR to estimate
the dysarthria level of the patients. Although it might be possible to improve the performance,
even more, we must keep in mind that the clinical evaluation is based on a perceptual score which
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Figure 6.12: Prediction of the dysarthria level in the short- and long-term recording sessions.

might change depending on the experience of the speech therapist, the number of patients (or
recordings) rated during the day, among others. Thus, rather than predicting the same values
as the human expert, automatic methods should focus on capturing the changes in speech with
sufficiently good accuracy to provide an objective second opinion to the medical expert.

Conclusions

Overall, it is possible to capture the progression of the speech symptoms over time. Speaker
embeddings provide the most relevant information to identify a person. However, it seems that it
is not sufficient to capture the level of speech impairments. Thus, combining both speaker embed-
dings with acoustic information results in a more accurate model to predict the progression of
the speech symptoms. The x-vector embeddings (from the monologue) combined with phonemic
DDK features improved the performance of the SVR considerably. Future work should consider
language, motor skills, depression, response to the medicament, among others.

Regarding the acoustic conditions of the recordings, speech enhancement considerably im-
proved the performance of the SVR for the acoustic features. In the case of the speaker embeddings,
the x-vector system was not affected by the variability in the acoustic conditions, and the main
reason is that the model used in this thesis was pre-trained on augmented data. Thus, the rec-
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ommendation is to include a pre-processing stage when using automatic methods to reduce the
influence of noise.

The influence of the interviewer in the speech protocol should also included (Pérez-Toro et al.,
2021). For instance, five different interviewers supervised the recordings of the At-home dataset
(short-term progression). However, it might be the case that the attitude of one of the patients
towards an interviewer resulted in a more familiar conversation during the monologue task. In
the controlled tasks (such as the DDK), the interviewer with more experience knows when the
exercise was successful.

The experience of the neurologist/speech therapist and the number of patients/recordings
assessed during the day play a key role in clinical evaluation (mFDA/MDS–UPDRS–III). Thus,
automatic methods should aim to capture the variations in speech over time to provide a second
opinion to the expert.
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6.3 Cochlear Implant users

6.3.1 Quantification of phoneme precision to evaluate onset and duration
of deafness

Aim: To evaluate the phoneme precision of CI users considering a RNN approach.

Hypotheses:

• Phoneme errors are more common in CI users compared with healthy speakers and such
errors can be quantified using a RNN.

• The duration and onset of deafness influence the phoneme precision of CI users.

Data

The speech recordings considered are from the 60 CI users and 20 NH German native speakers
described in Section 5.2.2. The CI users include 20 prelingually deafened CI users (PRE),
20 postlinguals with a long duration of time between the onset of deafness and implantation
(LONG), and 20 postlinguals with a short duration of time between the onset of deafness and
implantation (SHORT). The speech tasks considered are the 97 words from the PLAKSS test (See
Appendix A.2.3) and the 5 sentences extracted from the Heidelberger Rhinophoniebogens (See
Appendix A.2.2).

Methods

Phoneme precision is measured by computing phoneme posterior probabilities using the LSTM
model trained for the German language (Section 6.1.1). The MaxPh is computed for the classes
reported in Table 4.1 in order to validate the hypotheses. Automatic classification with a radial
basis function SVM is considered for further analysis. The margin C and kernel γ parameters are
optimized through a grid search with 10−4 < C < 104 and 10−4 < γ < 104. Due to the relatively
low amount of speakers on each class the parameters are optimized as follows:

1. Leave-one-speaker-out strategy is considered to train and test the model. The remaining
speakers are used to optimize the parameters of the classifier with an internal 19-fold cross
validation strategy so at least 1 speaker from each class is used during training-development
stage.
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2. After evaluating every fold, the medians of the resulting C and γ parameters are computed
and Leave-one-speaker-out is performed again with fixed parameters.

An omnibus test of normality based on the Shapiro-Wilk test is performed on the computed
acoustic parameters. If all of the parameters showed a normal distribution, then an ANOVA
statistical test is performed. However, if not all features have a normal distribution, then the
non-parametric Mann–Whitney U-test is considered to compare the groups. Furthermore, the
Null-hypothesis is accepted or rejected considering the p-values and the effect size, which in this
thesis is measured using Cohen’s d coefficient. According to (Cohen, 1988), the effect size can be
interpreted as small (d= 0.20), medium (d=0.50), or high (d=0.80). These values should be taken
with care; however, they are used here as a general guideline to understanding the results better.

The performance of the multi-class SVM is evaluated using precision, recall, and F1-score.
Figure 6.13 shows the general methodology implemented in this section.

Figure 6.13: Schematic view of the methodology implemented in this section. The LSTM trained
for phoneme recognition is used as feature extraction to analyze phoneme precision.

Results: Phoneme precision

Table 6.10 shows the mean and standard deviation (Avg ± Std) values for the maximum posterior
probabilities (MaxPh) computed from the reading of the PLAKSS words, and Figure 6.14 shows
the radar plots for such values to compare the speakers from the NH, SHORT, LONG, and PRE
groups.

In most cases, NH speakers produced higher phoneme precision than CI users, particularly
for manner and place of articulation. Regarding the manner of articulation, the MaxPh features
indicate that the CI users have more difficulties to produce stops (like /p/ or /g/), trills (/r/),
fricatives (/f/, /S/), approximants (/j/), and lateral (/l/) sounds. However, when comparing the
three groups of CI users (PRE, LONG, SHORT), there are no noticeable differences regarding the
manner of articulation. In place of articulation, CI users produced similar values to NH speakers
for labial and alveolar phonemes.



130 CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.10: Mean and standard deviation (Avg ± Std) values for the maximum posterior probabil-
ities (MaxPh)

Dimension Feature NH SHORT LONG PRE
Manner Stop 0.86 ± 0.03 0.82 ± 0.03 0.80 ± 0.03 0.81 ± 0.05

Nasal 0.73 ± 0.04 0.75 ± 0.04 0.74 ± 0.03 0.75 ± 0.04
Trill 0.81 ± 0.07 0.70 ± 0.12 0.69 ± 0.10 0.71 ± 0.15
Fricative 0.84 ± 0.04 0.80 ± 0.05 0.78 ± 0.05 0.79 ± 0.05
Approximant 0.75 ± 0.13 0.68 ± 0.11 0.67 ± 0.11 0.67 ± 0.10
Lateral 0.83 ± 0.05 0.77 ± 0.06 0.75 ± 0.07 0.77 ± 0.05
Vowel 0.86 ± 0.03 0.86 ± 0.03 0.84 ± 0.03 0.86 ± 0.03

Place Labial 0.77 ± 0.04 0.75 ± 0.04 0.74 ± 0.05 0.76 ± 0.04
Alveolar 0.78 ± 0.04 0.78 ± 0.03 0.77 ± 0.03 0.77 ± 0.04
Velar 0.82 ± 0.04 0.76 ± 0.05 0.73 ± 0.06 0.76 ± 0.05
Palatal 0.72 ± 0.10 0.68 ± 0.07 0.66 ± 0.06 0.68 ± 0.06
Postalveolar 0.94 ± 0.06 0.88 ± 0.09 0.83 ± 0.11 0.77 ± 0.22
Central 0.84 ± 0.04 0.81 ± 0.04 0.79 ± 0.05 0.81 ± 0.04
Front 0.78 ± 0.04 0.77 ± 0.04 0.76 ± 0.04 0.77 ± 0.03
Back 0.80 ± 0.05 0.77 ± 0.08 0.74 ± 0.08 0.76 ± 0.08

Voicing Voiceless 0.90 ± 0.03 0.88 ± 0.04 0.85 ± 0.03 0.87 ± 0.04
Voiced 0.85 ± 0.01 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02

As discussed in Chapter 1 (Section 1.2.2), one reason may be that hearing-impaired people
produce visible phonemes (sounds produced with the lips or/and teeth) with greater precision than
non-visible sounds produced, for instance, with the back of the tongue and the velum. Compared
to the NH speakers, CI users produced velar (like /k/), palatal (/j/), and postalveolar (/S/) sounds
with lower precision. Furthermore, there is a visible difference in the production of postalveolar
sounds; particularly, postlingually deafened CI users with long and short duration of deafness
produce higher posterior probabilities than the prelingually deafened CI users. This result is
consistent with findings from Neumeyer et al. (2015), which hypothesized that these changes are
produced due to a limited spectral resolution of the implant. Thus, CI users shift the production
of the sibilant sounds (postalveolar-fricative) into the frequency range perceived by them. This
frequency shift may also explain why the difference is more considerable between postlingually
and prelingually deafened CI users, since the latter lost their hearing before speech acquisition and
thus have always heard a “shifted” version of these sounds. On the contrary, postlingual CI users
had heard the standard way to produce the sound before losing their hearing. However, perception
(and production) may have changed over time due to hearing loss and the device.
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Figure 6.14: Radar plots of the phoneme precision (MaxPh) in the word list read by normal
hearing speakers, prelingual CI users, postlingual with long and short duration of deafness.

Results: NH vs. CI users

An omnibus test of normality based on the Shapiro-Wilk test was performed on the computed
acoustic parameters. The normality test results showed that not all of the features have a normal
distribution; thus, the non-parametric Mann–Whitney U-test is considered to evaluate differences
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Table 6.11: Mann–Whitney U-test to compare NH vs. CI users according to phoneme posteriors
(MaxPh) produced in the PLAKSS test. The values highlighted in bold indicate strong differences.

Feature NH vs. SHORT NH vs. LONG NH vs. PRE
U-test p-value E. size U-test p-value E. size U-test p-value E. size

Stop 311 <0.01 1.071 358 <0.001 1.796 324 <0.01 1.121
Nasal 147 0.156 0.489 155 0.229 0.336 151 0.190 0.434
Trill 315 <0.01 1.068 330 <0.001 1.312 280 <0.05 0.805
Fricative 282 <0.05 0.747 318 <0.01 1.204 311 <0.01 1.000
Approximant 249 0.190 0.520 264 0.086 0.600 261 0.102 0.598
Lateral 302 <0.01 0.986 329 <0.01 1.245 323 <0.01 1.226
Vowel 200 0.989 0.005 261 0.102 0.479 213 0.735 0.113
Labial 247 0.208 0.420 261 0.102 0.566 206 0.882 0.119
Alveolar 201 0.989 0.014 241 0.273 0.241 244 0.239 0.245
Velar 340 <0.001 1.341 357 <0.001 1.614 333 <0.001 1.314
Palatal 256 0.133 0.537 290 <0.05 0.784 257 0.126 0.535
Postalveolar 290 <0.05 0.762 319 <0.01 1.139 337 <0.001 1.011
Central 279 <0.05 0.731 313 <0.01 1.073 274 <0.05 0.645
Front 219 0.617 0.188 228 0.457 0.274 225 0.508 0.203
Back 257 0.126 0.467 293 <0.05 0.919 258 0.120 0.580
Voiceless 262 0.096 0.671 360 <0.001 1.706 286 <0.05 0.698
Voiced 107 <0.05 0.907 119 <0.05 0.675 123 <0.05 0.864

U-test: Mann-Whitney U statistic. E. size: Effect size.

between CI and NH speakers. Table 6.11 shows the obtained results of the statistical analysis.
The silence class is not considered for the analysis. Differences regarding phoneme precision
are more evident in stop, trill, fricative, lateral, velar, postalveolar, central vowels, and voiced
sounds. For pre- and post-lingually CI users (LONG), differences to NH speakers are also
found on voiceless consonants. Additionally, differences were found for palatal sounds between
postlingually deafened adults with a long duration of deafness and NH speakers.

Results: Onset and duration of deafness

Table 6.12 shows the results of the statistical analysis for the comparison of CI users regarding
onset (PRE vs. POST) and duration (LONG vs. SHORT) of deafness. For these experiments,
differences were only found for the production of voiceless sounds, which is surprising considering
that Figure 6.14 shows that, on average, CI users from the PRE class produces more phoneme
errors for postalveolar sounds compared to postlingually deafened CI users (LONG and SHORT).
These results can be explained considering that the speech of prelingually CI users shows a
high variability with relatively high standard deviation values for the speakers in the PRE group
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Table 6.12: Mann–Whitney U-test to compare onset (pre vs. post) and duration (long vs. short) of
deafness according to phoneme posteriors (MaxPh) produced in the PLAKSS test. The values
highlighted in bold indicate strong differences.

Feature PRE vs. SHORT PRE vs. LONG SHORT vs. LONG
U-test p-value E. size U-test p-value E. size U p-value E. size

Stop 212 0.756 0.265 149 0.172 0.274 131 0.064 0.668
Nasal 202 0.968 0.016 187 0.735 0.150 182 0.636 0.183
Trill 168 0.394 0.088 148 0.164 0.189 179 0.579 0.111
Fricative 226 0.490 0.242 173 0.473 0.170 145 0.140 0.417
Approximant 227 0.473 0.069 191 0.818 0.009 180 0.598 0.077
Lateral 228 0.457 0.053 157 0.250 0.277 142 0.120 0.290
Vowel 208 0.839 0.115 156 0.239 0.379 146 0.148 0.473
Labial 149 0.172 0.311 143 0.126 0.471 179 0.579 0.190
Alveolar 242 0.262 0.275 204 0.925 0.029 158 0.262 0.276
Velar 203 0.935 0.001 164 0.337 0.390 152 0.199 0.395
Palatal 190 0.797 0.047 179 0.579 0.352 164 0.337 0.267
Postalveolar 264 0.086 0.608 221 0.579 0.330 150 0.181 0.427
Central 175 0.508 0.035 143 0.126 0.454 157 0.250 0.452
Front 204 0.925 0.006 201 0.989 0.099 192 0.839 0.082
Back 199 0.989 0.131 168 0.394 0.259 158 0.262 0.410
Voiceless 209 0.818 0.101 107 <0.05 0.590 112 <0.05 0.793
Voiced 201 0.989 0.014 178 0.561 0.211 180 0.598 0.207
U-test: Mann-Whitney U statistic. E. size: Effect size.

(Postalveolar MaxPh [Avg ± Std]: NH 0.94 ± 0.06; SHORT: 0.88 ± 0.09; LONG: 0.83 ± 0.11;
PRE: 0.77 ± 0.22; from Appendix 6.10).

Results: Phoneme precision in connected speech

Multi-classification using an SVM is performed considering the PLAKSS words and the 5 Rhino
sentences individually. The aims of this experiment are: (1) to observe how many speakers
are correctly classified when the SVM is trained with the MaxPh posteriors and (2) to identify
which of the Rhino sentences is/are the most suitable to evaluate phoneme precision with the
MaxPh features. Rhino sentences are also included to evaluate whether phoneme precision is
worse on connected speech. As discussed before, not all CI users produce phoneme errors; thus,
misclassifications are expected. Table 6.13 shows the performance for each class and per speech
task. The speech task with the highest performance is the sentence Peter strasse (“Peter spielt

auf der Strasse”), followed by the PLAKSS words. Figure 6.15 shows the confusion matrices
obtained for the two speech tasks with the highest performance. Compared to the PLAKSS
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Table 6.13: Average precision, recall, and F1-score obtained from the multi-class SVM trained
with MaxPh features extracted from the PLAKSS and Rhino speech tasks. The sentences are
labeled according to the first word of each task in Appendix A.2.2.

Speech task Performance SVM parameters
Prec Rec F1 C γ

PLAKSS words 0.41 0.44 0.42 100 0.001
Nenne 0.12 0.08 0.09 1 0.01
Peter strasse 0.46 0.46 0.46 1 0.1
Pferd 0.12 0.08 0.09 0.001 0.0001
Schokolade 0.32 0.34 0.33 1 0.1
Vater 0.00 0.00 0.00 1 1
Prec: Precision. Rec: Recall. F1: F1-score.

task, the sentence is less accurate to differentiate between NH speakers and CI users. However,
identifying prelingually deafened CI users is better on single words than on connected speech.
Particularly for this sentence, phoneme precision might be worse due to the combinations of stop
(/p/, /t/), fricative-alveolar (/s/), and fricative-postalveolar (/S/) phonemes.

Figure 6.15: Confusion matrices obtained for the PLAKSS words (Left) and sentence “Peter spielt
auf der Strasse” (Right).
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Conclusions

The two hypotheses formulated in this section were partially confirmed. Posterior probabilities are
suitable to evaluate phoneme precision in CI users and speakers without hearing loss. The results
showed that CI users have lower phoneme precision than NH speakers. A statistical analysis
comparing NH speakers and CI users revealed that the differences were significant for stop, trill,
fricative, and lateral phonemes regarding the manner of articulation. Regarding the place of
articulation, the trend is that “non-visible” phonemes are the most affected (postalveolar, velar,
palatal). The main interest in performing this kind of analysis is the suitability to identify which
sounds are the most difficult for the CI users to produce. Thus, speech therapy can be more
personalized by targeting these particular phonemes.

Regarding the onset and duration of deafness, the phoneme precision for postalveolar sounds
was higher for NH speakers, followed by postlingual CI users with short and long duration of
deafness and prelingual CI users. This result reflects the role of auditory feedback in speech
production. However, to validate this hypothesis, hearing status and data from the implant should
be considered together with the speech analysis. There are no significant differences in the results
to support this claim entirely. However, this outcome should not be considered to reject the
hypothesis previously stated. It has to be considered that even though in average the phoneme
precision difference is visible, some CI users may still produce the sounds without difficulties,
which in turn affect the statistical outcome considering the relatively low amount of speakers in
each class. This claim is supported by the experiments performed with the sentences that showed
that difficulties in producing phonemes could be more evident on connected speech tasks.
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6.3.2 Segmental and suprasegmental speech analysis of postlingually deaf-
ened CI users

Aim: To perform automatic evaluation of speech prosody and acoustic articulation of postlingually
CI users during the reading of a standard text.

Hypothesis:

• Even after implantation, the speech of the postlingually deafened CI users is affected in
different dimensions namely prosody, acoustic articulation, and phonemic production.

Data

Speech recordings of 72 CI users (36 male, 36 female) and 56 NH German native speakers (26
male, 30 female) from Section 5.2.1 are considered for the experiments. In order to balance
the two groups, the remaining 16 NH elder speakers (10 male, 6 female) are extracted from the
PhonDat 1 dataset (Section 5.3.2). All participants read the “Der Nordwind und die Sonne” (The
North Wind and the Sun; Appendix A.2.1).

Methods

The analysis of speech prosody is divided into 5 main parameters: pitch (meanF0, stdF0),
loudness (meanSPL, stdSPL), duration (dVoiced, dUnvoiced, dPause, dSpeech), ratio (rVoiced,
rUnvoiced, rPause, rSpeech), and timing (nPVI− Consonants, nPVI− Vowels). The timing
features are extracted from the consonants and vowels detected by means of the LSTM model
trained for the German language (Section 6.1.1). Additionally, phoneme precision is evaluated by
computing the average of the maximum posterior probabilities (MaxPh) for manner, place, and
voicing phonemes. Acoustic articulation is evaluated by extracting filterbank features (13 MFCC
and 13 GFCC) from the onset/offset transitions (Section 4.2.2).

The non-parametric Mann–Whitney U-test is considered for statistical analysis. Furthermore,
the Null-hypothesis is accepted or rejected considering the p-values and the effect size using
Cohen’s d coefficient.

Automatic classification with a radial basis function SVM is considered to analyze the filter-
bank features extracted from the onset/offset transitions. The reason is the limited interpretability
of the cepstral coefficients (MFCC/GFCC) used for filterbank analysis. Thus, changes in articula-
tion are analyzed by investigating the suitability of automatic methods to detect speech articulation
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problems in CI users. The margin C and kernel γ parameters are optimized through a grid search
with 10−4 < C < 104 and 10−4 < γ < 104 as follows:

1. 10-fold cross validation strategy is considered to train and test the model.

2. An internal 9-fold cross validation strategy is used to select the best set of parameters for
testing.

3. After evaluating every fold, the medians of the resulting C and γ parameters are computed,
and the 10-fold cross-validation strategy is performed again with fixed parameters. The
performance of the bi-class SVM is evaluated with the accuracy, sensitivity, specificity, and
AUC.

Results: Speech prosody

Statistical analysis of speech prosody was performed for male and female speakers individually.
The reason is that parameters such as pitch highly depend on the gender of the speaker: generally,
male speakers produce speech sounds with lower F0 values than females. Table 6.14 shows the
mean and standard deviation (Avg ± Std) values for the speech prosody features computed from
the reading of the text “Der Nordwind und die Sonne”. Figure 6.16 shows the boxplots with the

Table 6.14: Mean and standard deviation (Avg ± Std) values for speech prosody features.
Parameter Feature Female Male

CI HC CI HC
Pitch meanF0 192.7 ± 24.4 195.9 ± 20.7 135.2 ± 24.6 126.3 ± 16.5

stdF0 37.1 ± 9.1 36.8 ± 6.9 27.8 ± 7.8 25.6 ± 6.5
Loudness meanSPL 70.7 ± 3.0 69.5 ± 4.0 68.8 ± 4.7 65.6 ± 4.8

stdSPL 2.9 ± 2.1 2.8 ± 1.7 4.4 ± 3.1 4.9 ± 3.4
Duration dVoiced 0.36 ± 0.14 0.32 ± 0.17 0.37 ± 0.19 0.25 ± 0.08

dUnvoiced 0.09 ± 0.03 0.08 ± 0.02 0.11 ± 0.03 0.12 ± 0.03
dPause 0.45 ± 0.07 0.41 ± 0.08 0.46 ± 0.09 0.45 ± 0.09
dSpeech 2.63 ± 0.65 2.16 ± 0.61 2.53 ± 0.62 2.36 ± 0.60

Ratio rVoiced 1.92 ± 0.44 2.23 ± 0.66 1.83 ± 0.51 2.20 ± 0.35
rUnvoiced 2.18 ± 0.50 2.51 ± 0.78 2.16 ± 0.54 2.54 ± 0.40
rPause 0.36 ± 0.08 0.44 ± 0.12 0.37 ± 0.11 0.39 ± 0.08
rSpeech 0.37 ± 0.04 0.42 ± 0.05 0.36 ± 0.11 0.37 ± 0.08

Timing nPVI− Con 76.1 ± 5.7 68.53 ± 5.4 75.7 ± 7.1 68.9 ± 6.4
nPVI− Vow 75.1 ± 5.9 68.28 ± 5.47 75.0 ± 7.6 66.8 ± 8.2

nPVI−Con: Consonant timing. nPVI−Vow: Vowel timing.
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prosody features computed for male and female speakers from the CI and NH groups.

Figure 6.16: Boxplots with the distribution of prosody-based features extracted from CI users
(light blue) and NH speakers (light grey).

Table 6.15 shows the results of the non-parametric Mann–Whitney U-test. In general, differ-
ences between CI users and NH speakers were found for all of the parameters except for “Pitch”.
However, lower loudness values were found only for the male speakers (Figure 6.16), but not for
female CI users, which produced loudness values in the same range as both male and female NH
speakers. The speaking rate of hearing-impaired people has been reported to be slower compared
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to NH speakers due to a prolongation of speech segments and insertion of pauses (Osberger and
McGarr, 1982). The results reported in Figure 6.16 and Table 6.15 are consistent with these
findings; however, differences between CI users and NH speakers are more considerable for some
features than others. Female CI users produced longer pauses and speech segments than female
NH speakers and slower voice rate, pause rate, and speech ratios. In male speakers, CI users
showed a prolongation of voiced segments and slower rates for voiced and unvoiced segments. In
addition to the duration and rate features, timing features based on the variability of consecutive
vowel and consonant duration (nPVI) were found to be higher for CI users compared to NH
speakers. Timing changes may be related to difficulties in controlling and coordinating the larynx
and oral gestures necessary to produce voicing contrast for an instant.

Table 6.15: Mann–Whitney U-test to compare postlingually deafened CI users vs.NH speakers
considering speech prosody features extracted from the reading text. The values highlighted in
bold indicate strong differences.

Parameter Feature Female Male
U-test p-value E. size U-test p-value E. size

Pitch meanF0 573 0.401 0.136 774 0.158 0.415
stdF0 609 0.665 0.031 740 0.303 0.297

Loudness meanSPL 720 0.421 0.287 903 <0.01 0.671
stdSPL 612 0.689 0.061 593 0.539 0.154

Duration dVoiced 821 0.052 0.278 940 <0.01 0.763
dUnvoiced 713 0.468 0.252 562 0.336 0.155
dPause 837 <0.05 0.592 699 0.570 0.120
dSpeech 883 <0.01 0.73 795 0.099 0.274

Ratio rVoiced 457 <0.05 0.532 374 <0.01 0.824
rUnvoiced 484 0.066 0.488 386 <0.01 0.791
rPause 392 <0.01 0.751 493 0.082 0.210
rSpeech 410 <0.01 0.724 514 0.133 0.175

Timing nPVI− Con 1102 <0.001 1.339 996 <0.001 0.989
nPVI− Vow 1024 <0.001 1.172 1024 <0.001 1.014

U-test: Mann-Whitney U statistic. E. size: Effect size. nPVI−Con: Consonant
timing. nPVI−Vow: Vowel timing.
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Results: Phoneme precision

Table 6.16 shows the mean and standard deviation (Avg ± Std) values for the maximum posterior
probabilities (MaxPh) computed from the reading of “Der Nordwind und die Sonne” and the
results of the Mann–Whitney U-test comparing CI users and NH speakers. Figure 6.17 shows radar

Table 6.16: Mann–Whitney U-test to compare postlingually deafened CI users vs.NH speakers
considering phoneme precision-based features extracted from the reading text. The values
highlighted in bold indicate significant differences.

Dimension Features CI NH U-test p-value E. size
Manner Stop 0.74 ± 0.08 0.84 ± 0.08 947 <0.001 1.246

Nasal 0.81 ± 0.06 0.88 ± 0.06 914 <0.001 1.278
Trill 0.68 ± 0.13 0.78 ± 0.11 1391 <0.001 0.857
Fricative 0.78 ± 0.07 0.87 ± 0.07 877 <0.001 1.326
Approximant 0.60 ± 0.16 0.55 ± 0.26 2874 0.261 0.247
Lateral 0.66 ± 0.08 0.75 ± 0.08 1161 <0.001 1.100
Vowel 0.90 ± 0.03 0.93 ± 0.03 1028 <0.001 1.188

Place Labial 0.76 ± 0.06 0.84 ± 0.07 1057 <0.001 1.184
Alveolar 0.81 ± 0.05 0.88 ± 0.06 903 <0.001 1.292
Velar 0.69 ± 0.08 0.79 ± 0.09 1062 <0.001 1.113
Palatal 0.66 ± 0.09 0.73 ± 0.11 1663 <0.001 0.721
Postalveolar 0.78 ± 0.21 0.88 ± 0.13 1741 <0.01 0.590
Central 0.81 ± 0.04 0.84 ± 0.04 1365 <0.001 0.916
Front 0.81 ± 0.04 0.86 ± 0.05 1124 <0.001 1.104
Back 0.78 ± 0.07 0.83 ± 0.07 1512 <0.001 0.749

Voicing Voiceless 0.81 ± 0.05 0.88 ± 0.06 972 <0.001 1.220
Voiced 0.94 ± 0.02 0.96 ± 0.02 1188 <0.001 0.967

CI/NH: Mean and standard deviation (Avg ± Std) values for the maximum posterior
probabilities (MaxPh). U-test: Mann-Whitney U statistic. E. size: Effect size.

plots with the MaxPh values computed for NH speakers and CI users. Statistical analysis shows
that postlingually deafened CI users produced lower values for most phoneme classes except for
“Approximants”. Compared to the PLAKSS words (Table 6.11), precision is lower for the reading
of a text (even for the “visible” phonemes). Thus, increasing the “complexity” of the task exposes
other articulation issues that are not evident when a single word has to be uttered. Nevertheless,
features extracted from the phoneme classes Nasal, Vowel, Alveolar, Central, Front, Voiceless,
and Voiced have more than 0.80 (80%) precision for both CI and NH speakers. Thus, even if CI
users (on average) produce such phonemes with lower precision, the overall intelligibility for
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Figure 6.17: Radar plots of the phoneme precision (MaxPh) in the reading task by the normal
hearing speakers and postlingually deafened CI users.

these classes may still be good enough for oral communication.
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Results: Onset/offset transitions

The automatic classification was performed to investigate the suitability of these features to
detect abnormal energy changes in the transitions produced by CI users. Table 6.17 shows the
classification results and Figure 6.18 shows the obtained confusion matrices. In general, the
performance of the classifier is similar for both onset and offset transitions and the concatenation
of both feature sets. In terms of sensitivity, the SVM can recognize better the CI users than the
NH. This result can be explained considering that not all of the CI users might develop speech
production problems. As discussed in Section 2.3.3, imprecise articulation may be caused due
to changes in the internal model used by the brain to plan the speech movements. Such a model
is acquired and maintain with the use of auditory feedback. Thus, with ongoing hearing loss,
the sensory-motor control decreases as one tend to use only as much force and effort for all
movements as necessary. Onset/offset transitions combined with filterbank features appear to be
suitable to capture such changes. However, it is necessary to include data from neural activity
(for instance, functional Magnetic Resonance Imaging- fMRI) during speech production and
perception in order to have more conclusive results (Guenther and Hickok, 2016).

Table 6.17: Results for automatic classification of CI users and NH speakers. C and γ are the final
parameters selected to evaluate the performance of the SVM.

Features Acc Sen Spe AUC C γ
Onset transitions 86 97 76 0.90 1 0.01
Offset transitions 84 93 75 0.87 1 0.01
Onset/offset transitions 86 97 75 0.88 1 0.001
Acc: Accuracy[%]. Sen: Sensitivity[%]. Spe: Specificity[%].
AUC: Area under the ROC curve.

Figure 6.18: Confusion matrices form the automatic classification of CI users and NH speakers
considering offset (left), onset (middle) and onset/offset (right) transitions.
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Conclusions

Speech production of postlingual CI users differs from that of age-matched NH speakers at the
supra-segmental (prosody) and segmental (phoneme precision, onset/offset transitions) levels.
Thus, even after rehabilitation by cochlear implantation, the speech of CI users deviates from
“normal” speech. For speech prosody, CI users produced higher variability in the duration of
vowels/consonants and read the text with a slower voiced rate than the NH speakers. On the
one hand, male CI users produced longer voiced segments resulting in a slower voiced rate. On
the other hand, a slow voiced rate in females was due to a prolongation of pauses and speech
segments within the text. Further research is necessary to determine whether these differences
affect the oral communication of CI users positively or negatively. For instance, speech prosody
deficits may negatively impact the expression of emotions and the intended linguistic information
provided, such as word focus and sentence stress to distinguish between questions and statements
and phrase boundary marking. On the contrary, a slow speaking rate may positively impact overall
intelligibility. However, this may not be the case for the CI users considered in this study. The
phonemic analysis shows that CI users produced lower phoneme precision even for “visible”
phonemes when reading a text. Furthermore, automatic classification of CI users vs. healthy
speakers using onset/offset transitions showed that there are difficulties of the patients to start/stop
movements like the vibration of the vocal folds.

Some limitations include the lack of longitudinal data to monitor speech production over time.
Additionally, specifics about the hearing state of the patients, ear side of implantation, insertion
depth, active electrodes, manufacturer, filter settings of the input filters, and duration of CI usage
should be taken into consideration, as well as possible influences on the acoustic parameters of
speech production.
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6.4 Aging and speech

Aim: To analyze the influence of aging in speech production in the context of PD.

Hypothesis

• Aging affects different aspects of speech production and such changes can be captured by
most of the features considered to analyze pathological speech.

Only PD patients are considered because with this data it is possible to compare phonation, vowel
articulation, prosody, and phoneme articulation precision of elderly and young speakers.

Data

Three groups of Spanish native speakers (from Colombia) are considered: 50 young, healthy
speakers (YHC), 50 elderly healthy speakers (EHC), and 50 PD patients (PD). Each group contains
speech signals from 25 males and 25 females. The recordings of the elderly speakers (EHC and
PD) were extracted from the PCGITA dataset, and the recordings of the young speakers were
presented in Section 5.3.1. All of the speakers were recorded in controlled noise conditions in a
soundproof booth. The speech tasks considered for the analysis are the sustained phonation of the
vowels /a/, /e/, /i/, /o/, and /u/, read text (Appendix A.1.3), and the repetition of /pa-ta-ka/.

Methods

Only standardized speech tasks are considered in this section for better group comparisons.
Phonation analysis was performed by estimating pitch, loudness, and perturbation features from
the sustained phonation of the Spanish vowels /a/, /e/. /i/, /o/ and /u/. Articulation analysis was
performed by constructing the vowel space of /a/, /i/, and /u/. Filterbank analysis was not included
in this section due to the limited interpretability of the cepstral coefficients (MFCC/GFCC).
Prosody analysis was evaluated by considering pitch, loudness, duration, ratio, and timing
parameters extracted from the reading task. Phonemic analysis was performed considering
voicing, manner, and place of articulation features extracted from the text and the repetition of
/pa-ta-ka/.

The non-parametric Mann–Whitney U-test was considered for analysis (a normality test was
performed before). The Null-hypothesis is accepted or rejected considering the p-values and the
effect size measured using Cohen’s d coefficient.
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Regression analysis was performed to estimate the age of a speaker using the selected feature
sets. For this, a linear SVR is considered for further analysis. The parameters C and ε were
optimized through a grid search with 10−4 < C < 103 and 10−4 < ε < 103. The parameters are
optimized as follows:

1. 10-fold cross-validation strategy is considered to train and test the model.

2. An internal 9-fold cross-validation strategy is used to select the best set of parameters for
testing.

3. After evaluating every fold, the medians of the resulting C and γ parameters are computed,
and the 10-fold cross-validation strategy is performed again with fixed parameters. The
performance is measured using Pearson’s (r) and Spearman’s (ρ) correlation coefficients.

Results: Phonation analysis

Table 6.18 shows the mean and standard deviation (Avg ± Std) values for the phonation features.
The corresponding boxplots are displayed in Figure 6.19. Male elderly speakers tend to produce
higher F0 values than the young speakers, whereas the elderly female speakers produced lower
F0 than the young speakers. Such deviations are even more significant in male and female PD
patients. The increased mean F0 in elderly males and decreased mean F0 in elderly females have
been reported to be related to changes in the larynx, mainly the length of the vocal folds (Titze
et al., 2016). However, the exact reasons are still unclear. For instance, it has been hypothesized
the menopause affects the larynx of the female, and these changes might account for deviations in
the fundamental frequency (D’haeseleer et al., 2009). In the case of PD, alterations in F0 have
been associated with increased rigidity of the laryngeal muscles (Chiaramonte and Bonfiglio,
2020; Miller, 2017; Ramig et al., 2001). Regarding the F0 variability (stdF0), elderly speakers
(especially the PD patients) produced higher values than the young speakers.

In the case of loudness, elderly speakers (especially from the PD patients) tend to produce
lower SPL levels (meanSPL) and higher variability (stdSPL) than the young speakers. Alteration
in vocal loudness of elderly speakers has been reported to be related to changes in the laryngeal
and respiratory mechanism (Baker et al., 2001; Linville, 1996). Particularly for PD, these changes
are often associated with rigidity of respiratory and laryngeal muscles (Colton et al., 2011).
Perturbation measurements do not appear to be related to aging. Only the female PD patients
showed high instability of the vibration of the vocal folds during the sustained phonation.

Tables 6.19 and 6.20 show the results of the statistical analysis performed for females and
males, respectively. Significant differences between groups were mainly found in the female
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Figure 6.19: Boxplots with the distribution of phonation-based features extracted from PD patients
(light blue), elderly healthy speakers (light gray), and young healthy speakers (dark gray).

speakers. In particular, phonation of the PD patients appears to deviate more from the healthy
speakers. In the case of male speakers, pitch and loudness produced by the patients seem to be

Table 6.18: Mean and standard deviation (Avg ± Std) values for phonation features from PD
patients, elderly healthy (EHC), and young healthy (YHC) speakers.

Parameter Feature Female Male
PD EHC YHC PD EHC YHC

Pitch meanF0 192.8 ± 36.3 210.4 ± 31.2 224.2 ± 24.4 157.1 ± 39.8 134.9 ± 22.3 123.9 ± 12.9
stdF0 22.1 ± 13.8 11.1 ± 8.1 7.7 ± 5.3 10.2 ± 7.1 5.9 ± 4.0 5.1 ± 5.9

Loudness meanSPL 80.5 ± 1.9 82.3 ± 1.5 83.3 ± 0.9 81.31 ± 1.0 82.1 ± 1.6 82.6 ± 1.4
stdSPL 3.8 ± 1.1 2.5 ± 0.8 2.5 ± 0.7 3.48 ± 1.12 2.84 ± 0.88 2.41 ± 0.86

Perturbation Jitter 0.54 ± 0.47 0.19 ± 0.12 0.19 ± 0.09 0.33 ± 0.27 0.22 ± 0.12 0.26 ± 0.22
PPQ3 0.49 ± 0.48 0.14 ± 0.14 0.15 ± 0.11 0.27 ± 0.30 0.16 ± 0.14 0.22 ± 0.27
PPQ5 0.84 ± 0.82 0.25 ± 0.23 0.26 ± 0.19 0.46 ± 0.49 0.25 ± 0.17 0.37 ± 0.46
Shimmer 0.30 ± 0.13 0.20 ± 0.07 0.18 ± 0.05 0.28 ± 0.10 0.24 ± 0.06 0.22 ± 0.07
APQ3 0.18 ± 0.09 0.12 ± 0.05 0.12 ± 0.03 0.18 ± 0.05 0.18 ± 0.07 0.18 ± 0.08
APQ5 0.33 ± 0.15 0.20 ± 0.07 0.20 ± 0.06 0.30 ± 0.09 0.25 ± 0.06 0.24 ± 0.07
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considerably different from the healthy controls. Some of the perturbation features also appear
to provide information about the presence of PD. However, the differences between patients and
healthy speakers were inconsistent for elderly and young, e.g., the PPQ5 of the male PD patients
is considerably higher than the elderly healthy speakers, but not higher than the young speakers.
Phonation analysis appears to account more for the presence of PD rather than changes caused
by aging (e.g., only the average SPL seems to be considerably lower in females from the EHC
group compared with young speakers). Nevertheless, for acoustic features such as F0 and SPL,
the voice of the patients, healthy elderly, and young speakers tend to be different.

Table 6.19: Mann–Whitney U-test to compare female PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering phonation features extracted from the sustained vowels.
The values highlighted in bold indicate significant differences.

Female speakers
Parameter Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Pitch meanF0 211 0.050 0.501 220 0.074 0.474 127 <0.001 0.977

stdF0 474 <0.01 0.945 394 0.116 0.479 527 <0.001 1.337
Loudness meanSPL 138 <0.01 1.007 201 <0.05 0.734 48 <0.001 1.783

stdSPL 503 <0.001 1.209 312 1.000 0.004 520 <0.001 1.249
Perturbation Jitter 515 <0.001 0.971 308 0.938 0.035 507 <0.001 0.995

PPQ3 504 <0.001 0.960 284 0.587 0.069 484 <0.01 0.949
PPQ5 502 <0.001 0.948 286 0.614 0.076 488 <0.01 0.933
Shimmer 494 <0.001 0.973 350 0.473 0.309 538 <0.001 1.238
APQ3 465 <0.01 0.844 254 0.260 0.102 447 <0.01 0.844
APQ5 501 <0.001 0.995 307 0.923 0.103 513 <0.001 1.077

U-test: Mann-Whitney U statistic. E. size: Effect size.

Results: Articulation analysis

Table 6.21 shows the mean and standard deviation of the articulation features extracted from
the sustained phonation of vowels. Figure 6.20 shows the vowel space formed with the first and
second formant frequencies extracted from the vowels /a/, /i/, and /u/. Tables 6.22 and 6.23 shows
the results of the statistical analysis performed with vowel articulation features. In the context of
sex and aging, changes in formant frequencies have been linked to the size and shape of the vocal
tract. In the case of PD, such changes have been related to the reduced amplitude of the speech
articulators (Sapir et al., 2010; Skodda et al., 2011).

For the vowel space, the elderly speakers (PD and EHC) appear to have a smaller area than
the young speakers, indicating a reduction in the articulatory movements. The statistical analysis
revealed that such a reduction was significant only for male speakers. Furthermore, the FCR
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Table 6.20: Mann–Whitney U-test to compare male PD patients, elderly healthy (EHC), and young
healthy (YHC) speakers considering phonation features extracted from the sustained vowels. The
values highlighted in bold indicate significant differences.

Male speakers
Parameter Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Pitch meanF0 429 <0.05 0.663 393 0.121 0.581 524 <0.001 1.081

stdF0 429 <0.05 0.716 381 0.187 0.144 471 <0.01 0.746
Loudness meanSPL 199 <0.05 0.609 249 0.222 0.331 131 <0.001 1.059

stdSPL 405 0.074 0.617 405 0.074 0.475 472 <0.01 1.035
Perturbation Jitter 378 0.207 0.501 296 0.756 0.206 371 0.260 0.278

PPQ3 391 0.130 0.473 244 0.187 0.261 330 0.742 0.192
PPQ5 425 <0.05 0.557 236 0.140 0.331 359 0.372 0.185
Shimmer 381 0.187 0.432 397 0.103 0.416 428 <0.05 0.729
APQ3 345 0.535 0.052 337 0.641 0.059 352 0.449 0.113
APQ5 402 0.084 0.531 368 0.286 0.248 430 <0.05 0.693

U-test: Mann-Whitney U statistic. E. size: Effect size.

appears to increase when the vowel space decreases, which is more notable in male PD patients.
There is an interesting pattern when phonation and vowel articulation features are considered

for the detection of PD. While phonation features appear to be more suitable for discriminating
between female PD patients and healthy speakers, the vowel space area appears to be more
suitable for highlighting deficits in male PD patients. However, there is no information about the
anatomical changes of the vocal tract and by that acoustic properties to have definitive conclusions.

Table 6.21: Mean and standard deviation (Avg ± Std) values for vowel articulation features from
PD patients, elderly healthy (EHC), and young healthy (YHC) speakers.

Feature Female Male
PD EHC YHC PD EHC YHC

F1/a/ 751 ± 102 768 ± 129 820 ± 83 672 ± 80 695 ± 84 729 ± 47
F2/a/ 1353 ± 129 1316 ± 103 1345 ± 168 1276 ± 106 1183 ± 105 1310 ± 129
F1/i/ 373 ± 65 425 ± 88 352 ± 61 339 ± 47 330 ± 58 304 ± 30.34
F2/i/ 1917 ± 446 2149 ± 276 1994 ± 454 1950 ± 211 2044 ± 163 2129 ± 178
F1/u/ 374 ± 58 416 ± 63 383 ± 48 351 ± 48 340 ± 36 325 ± 28
F2/u/ 789 ± 106 797 ± 110 809 ± 163 807 ± 150 732 ± 65 763 ± 48
tVSA [x105] 21.61 ± 12.05 23.99 ± 10.79 27.20 ± 8.92 18.62 ± 6.97 23.64 ± 7.09 28.32 ± 5.98
LntVSA 12.12 ± 0.59 12.23 ± 0.66 12.45 ± 0.37 12.05 ± 0.44 12.33 ± 0.30 12.53 ± 0.22
FCR 1.12 ± 0.21 1.03 ± 0.15 1.06 ± 0.27 1.07 ± 0.14 0.95 ± 0.09 0.95 ± 0.08



6.4. AGING AND SPEECH 149

Figure 6.20: Triangular vowel space area extracted from PD patients (light blue), elderly healthy
speakers (light gray), and young healthy speakers (dark gray). The vowel space area was also
extracted for all speakers (left), only females (center), and only males (right).

Table 6.22: Mann–Whitney U-test to compare female PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering articulation features extracted from the sustained
vowels. The values highlighted in bold indicate significant differences.

Female speakers
Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
F1/a/ 252 0.244 0.139 256 0.277 0.457 195 <0.05 0.708
F2/a/ 359 0.372 0.306 263 0.342 0.197 322 0.861 0.055
F1/i/ 198 <0.05 0.643 480 <0.01 0.931 376 0.222 0.332
F2/i/ 233 0.125 0.603 381 0.187 0.400 288 0.641 0.163
F1/u/ 196 <0.05 0.659 408 0.065 0.552 286 0.614 0.166
F2/u/ 279 0.522 0.068 356 0.404 0.083 320 0.892 0.137
tVSA 254 0.260 0.201 265 0.362 0.313 202 <0.05 0.509
log−tVSA 254 0.260 0.165 265 0.362 0.399 202 <0.05 0.641
FCR 394 0.116 0.483 294 0.727 0.158 380 0.194 0.222
U-test: Mann-Whitney U statistic. E. size: Effect size.

Results: Prosody analysis

Table 6.24 shows the mean and standard deviation (Avg ± Std) values for the speech prosody
features computed from the reading of the standard text, and Figure 6.21 shows the corresponding
boxplots. In general, young healthy speakers have higher ratio values than the elderly speakers
(PD and EHC) which is associated with a faster reading. Furthermore, PD patients produced
longer pause segments than the healthy controls (EHC/YHC), and there is a tendency from the
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Table 6.23: Mann–Whitney U-test to compare male PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering articulation features extracted from the sustained
vowels. The values highlighted in bold indicate significant differences.

Male speakers
Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
F1/a/ 290 0.669 0.277 177 <0.01 0.476 172 <0.01 0.839
F2/a/ 450 <0.01 0.855 141 <0.01 1.043 267 0.383 0.277
F1/i/ 354 0.426 0.162 403 0.081 0.546 454 <0.01 0.859
F2/i/ 228 0.103 0.476 229 0.107 0.484 157 <0.01 0.884
F1/u/ 364 0.322 0.238 378 0.207 0.436 433 <0.05 0.617
F2/u/ 406 0.071 0.623 217 0.065 0.518 347 0.509 0.379
tVSA 200 <0.05 0.689 182 <0.05 0.687 98 <0.001 1.439
logtVSA 200 <0.05 0.725 182 <0.05 0.743 98 <0.001 1.338
FCR 471 <0.01 0.962 297 0.771 0.021 467 <0.01 0.985
U-test: Mann-Whitney U statistic. E. size: Effect size.

patients to produce higher vowel duration variability (nPVI− Vow).
Similar to the phonation analysis, male elderly speakers produced higher F0 values than the

YHC group; however, PD patients do not exhibit higher F0 values than the age-matched healthy
speakers. Additionally, the pitch of the elderly male and healthy female speakers is higher during
the reading task compared with the sustained phonation. The statistical analysis reveals that
pitch values of male elderly speakers (PD and ECH) are considerably higher than the young men

Table 6.24: Mean and standard deviation (Avg ± Std) values for speech prosody features from
PD patients and elderly/young healthy speakers.

Paramater Feature Female Male
PD EHC YHC PD EHC YHC

Pitch meanF0 196.1 ± 36.3 220.1 ± 22.5 222.9 ± 19.3 150.0 ± 34.6 148.2 ± 25.3 128.3 ± 16.1
stdF0 39.3 ± 16.3 40.7 ± 8.9 36.8 ± 7.3 25.4 ± 12.5 28.7 ± 8.6 18.6 ± 5.8

Loudness meanSPL 66.7 ± 6.7 65.9 ± 4.9 66.1 ± 4.3 64.9 ± 6.9 65.3 ± 5.2 64.8 ± 3.4
stdSPL 4.0 ± 3.1 4.3 ± 2.8 3.8 ± 2.3 5.4 ± 4.0 5.3 ± 3.6 5.3 ± 2.8

Duration dVoiced 0.35 ± 0.11 0.35 ± 0.09 0.26 ± 0.05 0.50 ± 0.20 0.34 ± 0.07 0.27 ± 0.04
dUnvoiced 0.12 ± 0.06 0.11 ± 0.03 0.1 ± 0.02 0.15 ± 0.07 0.13 ± 0.04 0.12 ± 0.03
dPause 0.37 ± 0.10 0.34 ± 0.07 0.29 ± 0.05 0.38 ± 0.08 0.35 ± 0.07 0.30 ± 0.06
dSpeech 1.44 ± 0.30 1.48 ± 0.32 1.21 ± 0.18 1.45 ± 0.33 1.45 ± 0.37 1.22 ± 0.2

Ratio rVoiced 1.67 ± 0.53 1.69 ± 0.35 2.07 ± 0.24 1.23 ± 0.48 1.59 ± 0.36 1.87 ± 0.28
rUnvoiced 2.27 ± 0.53 2.24 ± 0.28 2.77 ± 0.31 1.84 ± 0.45 2.22 ± 0.39 2.58 ± 0.32
rPause 0.59 ± 0.13 0.59 ± 0.10 0.69 ± 0.11 0.58 ± 0.13 0.60 ± 0.12 0.68 ± 0.08
rSpeech 0.58 ± 0.11 0.57 ± 0.10 0.68 ± 0.10 0.57 ± 0.11 0.58 ± 0.13 0.67 ± 0.09

Timing nPVI− Con 69.5 ± 6.5 66.3 ± 9.8 65.5 ± 4.7 69.7 ± 8.4 66.7 ± 9.0 66.6 ± 6.4
nPVI− Vow 69.3 ± 9.7 62.6 ± 8.9 63.4 ± 7.9 73.4 ± 8.8 64.2 ± 8.7 62.9 ± 7.3

nPVI−Con: Consonant timing. nPVI−Vow: Vowel timing.
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Figure 6.21: Boxplots with the distribution of prosody-based features extracted from PD patients
(light blue), elderly healthy speakers (light gray), and young healthy speakers (dark gray).

and lower in female PD patients than the healthy elderly and young speakers. In the case of the
duration of voiced sounds, male PD patients produced longer segments, followed by the healthy
elderly controls and young speakers. However, there is not a clear difference between PD patients
and elderly healthy speakers for the female speakers.

Tables 6.25 and 6.26 shows the results of the Mann–Whitney U-tests comparing female
and male speakers, respectively. Significant differences were obtained for multiple parameters.
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Table 6.25: Mann–Whitney U-test to compare female PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering speech prosody features extracted from the reading
text. The values highlighted in bold indicate significant differences.

Female speakers
Paramater Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Pitch meanF0 153 <0.01 0.766 277 0.497 0.127 134 <0.01 0.888

stdF0 257 0.286 0.103 410 0.060 0.461 325 0.816 0.191
Loudness meanSPL 386 0.157 0.119 317 0.938 0.028 383 0.174 0.101

stdSPL 247 0.207 0.099 337 0.641 0.176 278 0.509 0.059
Duration dVoiced 339 0.614 0.055 501 <0.001 1.098 476 <0.01 1.012

dUnvoiced 306 0.907 0.250 385 0.162 0.419 371 0.260 0.537
dPause 359 0.372 0.321 464 <0.01 0.809 480 <0.01 0.961
dSpeech 300 0.823 0.112 490 <0.01 0.982 454 <0.01 0.890

Ratio rVoiced 310 0.969 0.054 109 <0.001 1.229 141 <0.01 0.955
rUnvoiced 331 0.727 0.060 72 <0.001 1.728 123 <0.001 1.125
rPause 292 0.698 0.003 155 <0.01 0.921 166 <0.01 0.813
rSpeech 311 0.985 0.060 134 <0.01 1.096 142 <0.01 0.981

Timing nPVI− Con 382 0.181 0.367 330 0.742 0.110 430 <0.05 0.684
nPVI− Vow 438 <0.05 0.688 278 0.509 0.084 418 <0.05 0.643

U-test: Mann-Whitney U statistic. E. size: Effect size. nPVI−Con: Consonant
timing. nPVI−Vow: Vowel timing.

However, the features that might differentiate between age and pathological-related speech
disorders are limited. For instance, the variability in the duration of vowels (nPVI− Vow) was
considerably higher in the PD group than in the EHC and YHC groups. However, such a difference
was not found between the healthy elderly and young speakers (EHC vs. YHC), which indicates
that this feature might exhibit abnormal values in the presence of the pathology but not due to age.
In the case of the meanF0, female PD patients read the standard text with an average lower pitch
than the healthy speakers (female: PD vs. EHC and PD vs. YHC), but there was no significant
difference between the group of healthy speakers (female: EHC vs. YHC).

Another pattern observed in the male speakers is longer production of voiced segments in
elderly speakers, which was even longer in the group of the PD patients. As discussed in Chapter 3,
changes related to speech rates with aging have been well documented. One possible reason
is the difficulty of controlling respiration during speech production (Linville, 1996). Evidence
that supports such an argument in this thesis is the production of long pauses in elderly speakers
(PD/EHC). However, this does not explain why PD patients have a higher duration variability in
the production of vowels (nPVI− Vow) compared to the healthy speakers (EHC/YHC). It seems
that this feature is more related to the patients’ difficulties in controlling the movement of the
vocal folds rather than problems controlling respiration.
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Table 6.26: Mann–Whitney U-test to compare male PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering speech prosody features extracted from the reading of
the text. The values highlighted in bold indicate significant differences.

Male speakers
Parameter Feature PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Pitch meanF0 299 0.801 0.056 452 <0.01 0.906 465 <0.01 0.775

stdF0 183 <0.01 0.291 528 <0.001 1.314 414 0.050 0.672
Loudness meanSPL 320 0.892 0.067 376 0.222 0.112 369 0.277 0.016

stdSPL 314 0.985 0.037 265 0.362 0.006 278 0.509 0.035
Duration dVoiced 473 <0.01 1.050 481 <0.01 1.092 565 <0.001 1.540

dUnvoiced 341 0.587 0.336 373 0.244 0.325 386 0.157 0.554
dPause 356 0.404 0.314 453 <0.01 0.696 491 <0.01 0.991
dSpeech 340 0.600 0.002 444 <0.05 0.734 455 <0.01 0.809

Ratio rVoiced 182 <0.05 0.829 165 <0.01 0.827 84 <0.001 1.578
rUnvoiced 163 <0.01 0.858 141 <0.01 0.988 58 <0.001 1.820
rPause 289 0.655 0.106 174 <0.01 0.776 160 <0.01 0.846
rSpeech 287 0.628 0.109 181 <0.05 0.763 142 <0.01 0.937

Timing nPVI− Con 351 0.461 0.339 332 0.712 0.012 371 0.260 0.408
nPVI− Vow 488 <0.01 1.008 336 0.655 0.151 507 <0.001 1.236

U-test: Mann-Whitney U statistic. E. size: Effect size. nPVI−Con: Consonant
timing. nPVI−Vow: Vowel timing.

Results: Phonemic analysis

Phoneme precision is evaluated by means of posterior probabilities. Table 6.27 shows the mean
and standard deviation values obtained for PD patients, elderly, and young healthy speakers. Many
phonemic features (e.g., palatal, postalveolar) for the DDK task are zero or close to zero. The
reason is that only stop sounds and vowels are produced in this task. Figure 6.22 shows the
radar plots with the average phoneme probabilities computed for each group. Tables 6.28 and
6.29 shows the results of the statistical analysis. In general, the phoneme precision of the elderly
speakers (PD and EHC) was lower than young speakers. In the reading task, PD patients produced
lower articulation precision than the young speakers in all classes except for the approximants
(/j/) and the EHC produced lower phoneme probabilities in stop (/p/, /t/), nasal (/m/, /n/), fricative
(/f/), lateral (/l/), alveolar (/t/, /n/), velar (/k/, /g/), and postalveolar (/S/) sounds. In the case of
/pa-ta-ka/, elderly speakers produced lower phoneme precision than the young speakers in almost
all classes except for voiced sounds. This result can be explained considering the radar plots in
Figure 6.22 (Manner-DDK). In the figure, elderly speakers appear to have produced nasal, trill,
and lateral sounds during the DDK task. The system misclassified some speech segments into
phonemes that should not be in the signal (only stops and vowels are produced during this speech
task). Thus, the model is confident that such speech segments are voiced sounds but is not able
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Table 6.27: Mean and standard deviation (Avg ± Std) values for phoneme precision features from
PD patients, elderly healthy (EHC), and young healthy (YHC) speakers

Read text DDK
Dimension Features PD EHC YHC PD EHC YHC
Manner Stop 0.73 ± 0.08 0.80 ± 0.05 0.83 ± 0.05 0.82 ± 0.09 0.91 ± 0.05 0.94 ± 0.04

Nasal 0.71 ± 0.09 0.76 ± 0.08 0.85 ± 0.07 0.52 ± 0.21 0.42 ± 0.26 0.04 ± 0.15
Trill 0.64 ± 0.13 0.70 ± 0.12 0.78 ± 0.09 0.37 ± 0.28 0.31 ± 0.26 0.20 ± 0.26
Fricative 0.74 ± 0.13 0.82 ± 0.07 0.88 ± 0.06 0.35 ± 0.28 0.26 ± 0.31 0.27 ± 0.34
Approximant 0.66 ± 0.21 0.71 ± 0.14 0.75 ± 0.11 0.03 ± 0.10 0.03 ± 0.12 0.00 ± 0.00
Lateral 0.70 ± 0.10 0.77 ± 0.07 0.85 ± 0.08 0.25 ± 0.26 0.05 ± 0.15 0.02 ± 0.11
Vowel 0.91 ± 0.05 0.95 ± 0.03 0.95 ± 0.02 0.93 ± 0.04 0.96 ± 0.03 0.99 ± 0.02

Place Labial 0.71 ± 0.09 0.8 ± 0.07 0.83 ± 0.06 0.76 ± 0.15 0.87 ± 0.08 0.94 ± 0.05
Alveolar 0.75 ± 0.07 0.82 ± 0.06 0.86 ± 0.04 0.71 ± 0.10 0.80 ± 0.10 0.92 ± 0.07
Velar 0.59 ± 0.16 0.69 ± 0.11 0.76 ± 0.11 0.73 ± 0.19 0.89 ± 0.09 0.92 ± 0.08
Palatal 0.74 ± 0.14 0.81 ± 0.12 0.85 ± 0.10 0.05 ± 0.16 0.03 ± 0.12 0.00 ± 0.00
Postalveolar 0.45 ± 0.37 0.60 ± 0.37 0.88 ± 0.19 0.02 ± 0.11 0.00 ± 0.00 0.00 ± 0.00
Central 0.80 ± 0.10 0.89 ± 0.07 0.89 ± 0.06 0.84 ± 0.11 0.91 ± 0.08 0.97 ± 0.02
Front 0.81 ± 0.07 0.87 ± 0.05 0.88 ± 0.05 0.43 ± 0.25 0.27 ± 0.27 0.04 ± 0.14
Back 0.76 ± 0.09 0.85 ± 0.06 0.83 ± 0.07 0.35 ± 0.28 0.22 ± 0.30 0.14 ± 0.28

Voicing Voiceless 0.78 ± 0.07 0.84 ± 0.05 0.87 ± 0.04 0.85 ± 0.07 0.92 ± 0.04 0.96 ± 0.03
Voiced 0.97 ± 0.02 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

to identify if those sounds are vowels of voiced consonants. Furthermore, rather than an error
of the system, this phenomenon appears to be related to articulation imprecision due to aging
and PD. For instance, in the DDK task, elderly speakers have a high probability of nasal sounds.
However, the young speakers have a probability close to zero for nasals, which indicates that the
system is more confident in its prediction for the YHC group, probably due to higher precision in
phoneme articulation. Low phoneme precision due to aging may be related to alterations in the
temporal properties of the sounds (Benjamin, 1982). In the DDK task, acoustic properties of stop

PD EHC YHC

Manner -Text Place -Text Manner -DDK Place -DDK

Figure 6.22: Radar plots of the phoneme precision (MaxPh) in the reading task and the repetition
of /pa-ta-ka/ (DDK) by PD patients, elderly (EHC) and young (YHC) healthy speakers
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Table 6.28: Mann–Whitney U-test to compare male PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering phonetic features extracted from the reading of the
text. The values highlighted in bold indicate significant differences.

Phonetic - Read text
Dimension Features PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Manner Stop 669 <0.001 0.920 746 <0.01 0.667 389 <0.001 1.464

Nasal 810 <0.01 0.587 549 <0.001 1.093 298 <0.001 1.656
Trill 847 <0.01 0.485 792 <0.01 0.713 481 <0.001 1.225
Fricative 715 <0.001 0.805 684 <0.001 0.851 397 <0.001 1.406
Approximant 1060 0.191 0.322 1034 0.137 0.291 925 <0.05 0.564
Lateral 711 <0.001 0.776 499 <0.001 1.184 278 <0.001 1.756
Vowel 551 <0.001 1.004 1159 0.533 0.176 471 <0.001 1.157

Place Labial 545 <0.001 1.069 988 0.071 0.437 352 <0.001 1.529
Alveolar 559 <0.001 1.056 784 <0.01 0.669 269 <0.001 1.759
Velar 696 <0.001 0.741 836 <0.01 0.602 412 <0.001 1.238
Palatal 879 <0.05 0.499 976 0.059 0.412 676 <0.001 0.890
Postalveolar 948 <0.05 0.403 655 <0.001 0.927 384 <0.001 1.438
Central 540 <0.001 1.095 1327 0.598 0.043 528 <0.001 1.134
Front 613 <0.001 0.943 1177 0.617 0.114 563 <0.001 1.039
Back 482 <0.001 1.163 1473 0.125 0.262 632 <0.001 0.917

Voicing Voiceless 636 <0.001 0.922 726 <0.001 0.831 264 <0.001 1.682
Voiced 858 <0.01 0.637 1425 0.229 0.258 1005 0.092 0.428

U-test: Mann-Whitney U statistic. E. size: Effect size.

sounds may have been removed due to a prolongation of the preceding vowel, resulting in different
phenomena such as voicing or consonant weakening (See Section 6.1.2). Figure 6.23 shows the
bar diagrams of the average duration of consonants and vowels produced by the speakers of the
three groups. In both cases, the elderly speakers produced longer vowels than the young speakers.

Table 6.29: Mann–Whitney U-test to compare male PD patients, elderly healthy (EHC), and
young healthy (YHC) speakers considering phonetic features extracted from the /pa-ta-ka/ task.
The values highlighted in bold indicate significant differences.

Phonetic - /pa-ta-ka/
Dimension Features PD vs. EHC EHC vs. YHC PD vs. YHC

U-test p-value E. size U-test p-value E. size U-test p-value E. size
Manner Stop 472 <0.001 1.234 708 <0.001 0.727 222 <0.001 1.760

Vowel 688 <0.001 0.728 468 <0.001 0.940 166 <0.001 1.654
Place Labial 599 <0.001 0.843 552 <0.001 1.017 172 <0.001 1.527

Alveolar 633 <0.001 0.894 456 <0.001 1.283 148 <0.001 2.320
Velar 479 <0.001 1.042 944 <0.05 0.372 297 <0.001 1.263

Voicing Voiceless 508 <0.001 1.150 608 <0.001 0.953 192 <0.001 1.913
Voiced 1217 0.823 0.320 1071 0.218 0.130 1049 0.167 0.214

U-test: Mann-Whitney U statistic. E. size: Effect size.
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Figure 6.23: Bar plots with the average duration of consonants and vowels measured in the read
text (Top) and DDK (bottom) tasks. The numbers inside the bars indicate the average duration for
each group.

In the case of the DDK, the difference in consonant duration is more evident, which may indicate
that the elderly speakers remove the silence region during closure during this task.

Results: Regression analysis

The features previously analyzed are considered for the prediction of age. In the case of the
phonemic features, the average duration durPH, the phoneme rate, and the phoneme log-likelihood
(LLRPost) are also considered to train the SVR. Table 6.30 shows the results. Phonemic features
seem to be suitable for capturing speech disorders caused by PD and changes related to aging.
Once again, the DDK task proves to be suitable for detecting changes in speech, not only due
to PD but also for changes caused by aging. The conclusions of this section should be taken
carefully. One aspect not addressed in this thesis is the possible influence of the training set in
the phoneme recognition model. For instance, what would happen if the majority of the speakers
used for training were elderly people? Would the speech of the young speakers then appear to be
“disordered” to the model? Certainly, bias in this kind of model exists, which should be addressed
to avoid wrong conclusions. Nevertheless, the results appear to be consistent with the hypothesis
that changes in speech due to aging can be discriminated from changes due to a clinical condition
such as PD.
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Table 6.30: Estimation of the age of PD, EHC, and YHC. C and ε are the final parameters selected
to test the performance of the SVR.

Task Feat ID Features r p-value ρ p-value C ε

Vowel V1 Phonation 0.44 <0.001 0.42 <0.001 10 10
V2 Articulation vowel 0.33 <0.001 0.30 <0.001 1 10

Read text R1 Prosody 0.64 <0.001 0.61 <0.001 10 10
R2 Phonemic Manner 0.76 <0.001 0.73 <0.001 1 10
R3 Phonemic Place 0.74 <0.001 0.70 <0.001 1 1
R4 Phonemic Voicing 0.77 <0.001 0.73 <0.001 10 10
R5 R2+R3+R4 0.78 <0.001 0.71 <0.001 1 1

DDK D1 Phonemic Manner 0.83 <0.001 0.76 <0.001 10 10
D2 Phonemic Place 0.75 <0.001 0.69 <0.001 1 10
D3 Phonemic Voicing 0.83 <0.001 0.75 <0.001 10 10
D4 D1+D2+D3 0.83 <0.001 0.75 <0.001 1 10

Fusion F1 R5+D4 0.86 <0.001 0.76 <0.001 0.1 10
F2 V1+V2+R1+R5+D4 0.84 <0.001 0.76 <0.001 0.1 10

Fusion: Early fusion of features.
r: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient.

Conclusions

Aging influences phonation, articulation, and prosody aspects of speech. Although it is possible to
capture differences between healthy elderly and young speakers, the exact cause of deviations in
speech is unclear due to the lack of information about the physiological and anatomical changes
produced by the normal aging process. Furthermore, it is not possible to demonstrate (with the
data considered here) how these biological processes affect males and females. For instance,
Linville (1996) reviewed different studies addressing the incidence of glottal gaps with aging as a
result of changes in the laryngeal mechanism, which might account for differences in phonation
intensity. In those studies, laryngoscopy and video stroboscopy data reported a higher incidence of
glottal gaps in elderly male speakers compared to young men. In the case of the female speakers,
both elderly and young speakers showed frequent glottal gaps. However, the configuration of the
gaps seems to be different, e.g., anterior gaps for elderly females and posterior chinks for young
females. Nevertheless, it was shown that for the speakers considered in this study, the elderly
speakers exhibited deviations in some parameters such as F0, vowel space area, duration and ratio
of voiced sounds and pauses, and phonemic articulation precision. Such deviations were even
higher for PD patients. Furthermore, regression analysis showed the suitability of these features
(and speech tasks) to obtain an estimate of the age of a person.
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Another aspect not addressed in this thesis is the influence of such changes in automatic
recognition systems. Nowadays, smartphones and some home devices contain virtual assistant
technology that relies on automatic speech recognition to consult about the weather, get the news,
and make internet searches. Here, it was shown that the phonemic precision was lower even for
healthy elderly speakers. Thus, future work should consider analyzing the influence of phoneme
imprecision in virtual assistant technology.
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6.5 Smartphone-based applications for health care

One of the contributions of this thesis was the participation in the development of two Android
applications for health care: Apkinson and CITA.

6.5.1 Apkinson

Apkinson (Orozco-Arroyave et al., 2020)3 is an open-source application designed for motor
evaluation and monitoring of PD patients. The application includes numerous daily exercises
to capture gait, hand movement, dexterity, facial expression, and speech data. Apkinson was
developed in a joint project between the University of Antioquia (Colombia) and the Friedrich-
Alexander University of Erlangen-Nürnberg (Germany).

Figure 6.24: Screenshots taken from Apkinson.

Aim: To perform acoustic analysis on speech data captured with Apkinson.

Hypothesis

• It is possible to use smartphone applications to evaluate the speech production of PD
patients.

3https://bit.ly/3iM031u

https://bit.ly/3iM031u
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• The smartphone used to capture data has an influence on the acoustic analysis.

Data

Speech recordings from 37 PD patients (17 females) and 37 healthy speakers (17 females) were
considered for the experiments (Section 5.1.4). The recordings were captured in at the home of
the speakers, the workplace, and in the Parkinson’s foundation. Different smartphones were used
to capture the data. In the case of the patients, 30 of the of the 7 patients were recorded with the
same smartphone. For the healthy speakers, 10 different devices were used to capture the data. In
order to analyze the influence of the microphone in the acoustic analysis, two standard speech
tasks were considered: the repetition of /pa-ta-ka/ and the sustained phonation of the vowels /a/,
/i/, and /u/.

Methods

Phonation and vowel articulation analyses were performed from the sustained phonation of the
vowels /a/, /i/, and /u/. Articulation was also analyzed considering the onset/offset transitions
extracted from the repetition of /pa-ta-ka/. Phonemic analysis was also performed in the DDK
task by computing the average of the maximum phoneme posterior probability (MaxPost) of the
relevant voicing, manner, and place of articulation phonemes i.e., stop, vowel, labial, alveolar,
velar, voiced, and voiceless. Since the smartphone data was captured in different acoustic
conditions, the noise reduction system presented by (Schröter et al., 2020), was used on all of
the recordings to reduce the variability in the acoustic conditions. Automatic classification with
a radial basis function SVM was considered for further analysis. The margin C and kernel γ
parameters are optimized through a grid search with 10−4 < C < 104 and 10−4 < γ < 104. The
parameters are optimized as follows:

1. The Leave-One-Speaker-Out (LOSO) strategy was considered to train and test the model.

2. An internal 9-fold cross validation strategy is used to select the best set of parameters for
testing.

3. After evaluating every fold, the medians of the resulting C and γ parameters are computed
and LOSO was performed again with fixed parameters.

4. The performance of the bi-class SVM is evaluated using the accuracy, sensitivity, specificity,
and AUC.
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Results

The results of the automatic classification of PD patients vs. healthy speakers (with and without
denoising) are reported in Table 6.31. The highest classification performances were obtained using

Table 6.31: Results for automatic classification of PD patients and HC speakers using Apkinson’s
speech data. Original: Original speech recordings. Denoising: Denoised speech recordings.

Task Feat ID Features Original Denoising
Acc Sen Spe AUC Acc Sen Spe AUC

Vowel V1 Phonation 59 46 73 0.64 69 68 70 0.77
V2 Articulation Vowel 59 30 89 0.60 64 62 65 0.65
V3 V1+V2 62 43 81 0.64 70 78 62 0.71

DDK D1 Articulation On 85 81 89 0.91 77 76 78 0.83
D2 Articulation Off 81 81 81 0.83 61 62 59 0.71
D3 Phonemic Manner 64 65 62 0.70 73 59 86 0.73
D4 Phonemic Place 62 73 51 0.61 65 59 70 0.66
D5 Phonemic Voicing 41 38 43 0.38 72 62 81 0.73
D6 D3+D4+D5 66 76 57 0.66 73 81 65 0.72

Acc: Accuracy[%]. Sen: Sensitivity[%]. Spe: Specificity[%]. AUC: Area under the ROC curve.

the original recordings and the features extracted from onset/offset transitions (filterbank analysis).
However, using the same features, the performance decreases considerably when the denoised
signals are considered. On the contrary, the performance of the SVM improved when phonation,
vowel articulation, and phonemic features were extracted from the denoised signals. The results
indicate that acoustic analysis is affected by factors not related to the disease: noise and channel
(microphone/smartphone). To analyze the influence of different devices in the recordings, the
t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm was applied to the filterbank
features extracted from the onset/offset transition (Van der Maaten and Hinton, 2008). Figure 6.25
shows the resulting t-SNE plots. The color of the markers represents the group of speakers (blue
for PD and grey for HC), and the shape represents the type of smartphone. For instance, the
smartphone represented by the cross symbol “X” (Figure 6.25) was used to capture the data of
most patients and four of the healthy speakers. In the figure, it can be observed that there are small
clusters formed even after noise reduction, which indicates that filterbank features are sensitive to
channel conditions, i.e., the microphone of the device.

Figure 6.26 shows the triangular Vowel Space Areas (tVSA) and the radar plots obtained for
patients and healthy controls using the original recordings and the denoised signals. In general,
the healthy speakers have a higher tVSA and phoneme posterior probabilities than the PD patients,
which is consistent with the results obtained in previous sections of this thesis. Additionally,
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HC PD

Figure 6.25: Filterbank features (onset/offset transitions) distribution using t-SNE. Left: original
speech recordings. Right: Denoised speech recordings. The shape of the markers represent the
type of smartphone. The red circles indicate clusters formed by features extracted from the same
device.

the vowel space area of the patients appears to have decreased after applying denoising, which
indicates that the background noise influences formants; however, based on the results reported in
Table 6.31, the type of device appears to have almost no influence on the tVSA.

PD HC

Denoised-PlaceOriginal-PlaceOriginal-tVSA

1800 8001300

Denoised-tVSA

2000 8001400

Figure 6.26: Left: tVSA plots obtained from the sustained phonation tasks. Right: radar plots of
the phoneme posterior probabilities of the place of articulation from the DDK task.
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6.5.2 Cochlear Implant Testing App - CITA

CITA (Popp, 2021)4 is an open-source Android application developed to monitor speech perception
and production of people with hearing loss. Hearing is evaluated using two different minimal pairs
exercises: in the first one, the user has to repeat the word that he/she hears from the loudspeakers
of the device. In the second one, four words are displayed in the screen of the phone. Then, one of
them is reproduced trough the loudspeakers and the user should identify the correct one. Speech
is evaluated using the reading of sentences, words, description of a picture, and the repetition of
/pa-ta-ka/. Part of the source code of CITA is based on Apkinson.

Figure 6.27: Screenshots taken from CITA.

Aim: To perform acoustic analysis on speech data captured with CITA.

Hypothesis

• It is possible to use smartphone applications to evaluate the speech production of CI users.

Data

Due to the COVID-19 pandemic, only one CI user was recruited for data collection with CITA.
The patient is a 50-year-old male which used CITA in four occasions in one month. The time
between consecutive sessions were 1, 4, and 13 days. The baseline used for comparison is the
60 CI users (20 prelingual, 40 postlinguals) and 20 NH German native speakers described in

4https://bit.ly/3oX4SJm

https://bit.ly/3oX4SJm
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Section 5.2.2. The speech task considered was the reading of a subset from the PLAKSS test (See
Appendix A.2.3). Not all words were included due to the strategy used in CITA to capture speech:
every day, a random set of 10 words are included in the daily evaluation for the user to read. Thus,
only the following words were used to compare the CI users with the NH speakers. The subset
used in the four sessions were:

• Day 1 (Session 1): Brief, Baum, Springt, Strumpf, Zange, Schlange, Frosch, Vogel, Haus,
Fisch.

• Day 2 (Session 2): Anker, Eichhoernchen, Schiff, Unfall, Stuhl, Schuh, Schluessel, Spinne,
Schornstein, Bank.

• Day 6 (Session 3): Kaputt, Fisch, Eichhoernchen, Vogel, Stuhl, Spritze, Schlange, Eimer,
Schwein, Auto.

• Day 17 (Session 4): Erdbeere, Schiff, Hase, Heizung, Stuhl, Schlange, Schluessel, Spinne,
Sonne, Gras.

Methods

Phoneme analysis was performed by computing the average of the maximum phoneme posterior
probability (MaxPh) from the set of words. Due to the limited amount of data, no statistical tests
nor automatic classification methods were considered in this section. Thus, only radar plots were
used for analysis.

Results

Figure 6.28 shows the radar plots of the phoneme posterior probabilities from the manner and
place of articulation. For the place of articulation, the CITA user has a higher posterior probability
than the baseline CI users and lower than the NH speakers. However, the results obtained for
the manner of articulation indicate that the CITA user produces a similar phoneme precision
than the NH speakers, except for trills. By listening to the recordings, it was observed that the
CITA user puts more emphasis on the /r/ sound than most of the speakers in the baseline (NH
speakers and CI users). One possible explanation for this is the dialect. The baseline speakers
were recruited in Munich (Southern Bavaria), whereas the CITA user was recruited from Nurnberg
(Northern Bavaria), a region commonly known in Germany to “roll the /r/” more often. This
thesis does not intend to address the implications of the different dialects in automatic speech
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recognition systems; however, based on the results, it seems that certain dialects may appear to
sound “pathologic” when performing automatic analysis with speakers from different regions.

Manner Place

POST PRE CITANH

Figure 6.28: Radar plots of the average maximum phoneme posterior probabilities computed from
NH speakers, CI users (POST/PRE) and a CITA user.

Conclusions (Apkinson and CITA)

Collecting data with a smartphone allows monitoring the progression of the speech symptoms.
However, many of the acoustic features are affected by the acoustic conditions of the recordings.
For instance, the filterbank features extracted from the onset/offset transitions are sensitive to
the device used to capture the data and background noise. These results are not surprising,
considering that MFCCs and GFCCs are features used to obtain a compressed spectrum represen-
tation. However, features such as the formant frequencies (used to construct the tVSA) and the
phoneme posterior probabilities appeared to be more influenced by background noise. Thus, it is
recommended to avoid features based on spectral representations when the acoustic conditions
of the recordings are highly variable. Additionally, it is necessary to include a pre-processing
stage to reduce the background noise and normalize the recordings’ acoustic conditions. Future
work should also focus on the multimodal analysis using the data captured with the smartphone
to evaluate general motor impairments of the PD patients and the hearing status of the CI users.
Additionally, it is necessary to evaluate the sensibility of different feature sets to the variable
conditions of the data capture with different devices. One aspect not considered here is the
influence of the strategy used for data collection in the acoustic analysis. This might be an issue
when a patient does not receive clear instructions on how to perform every exercise or when the
exercise becomes repetitive and thus influencing the outcome of the automatic evaluation.



Chapter 7

Summary

This thesis addressed the automatic acoustic analysis of speech characteristics resulting from
Parkinson’s disease (PD), hearing loss, and natural aging. Furthermore, this work gives an
outlook to the suitability of data collected from smartphones for healthcare applications. The main
motivation of this thesis is to show machine learning and speech processing techniques suitable
for developing technology to support the clinical evaluation and the speech symptoms. The main
finding of this work are summarized in the following subsections

7.1 Automatic methods for speech analysis

In this work, speech production was evaluated considering four aspects: phonation, articulation,
prosody, and phonemic production. The speech tasks considered include a monologue, reading
words, texts, and sentences, and the sequential repetition of /pa-ta-ka/. Phonation analysis was
considered to capture voice production problems associated with abnormal vibration of the vocal
folds during the sustained phonation of vowels. The set of phonation parameters used were pitch,
loudness, and perturbation. Vowel articulation was used to measure the precision of movements
graphically demonstrate on triangular vowel space areas. Articulation in the continuous speech
was considered to detect problems to start or stop the movement of the vocal folds using the onset
and offset transitions. Prosody analysis is performed using pitch, loudness, duration, and timing
parameters that were computed from continuous speech tasks. Finally, phonemic analysis was
considered to evaluate precision, prolongation of speech sounds, phoneme rate, and Voice Onset
Time (VOT).

For phonemic analysis, an RNN-based model was trained to automatically classify phonemes
grouped according to three dimensions: voicing, manner, and place of articulation. Two automatic

166
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phoneme recognition systems were trained in German and Spanish. For the model trained with
German speech recordings, the average classification performance was an F1-score of 0.85. For
the model trained in Spanish, the average performance was F1-score=0.77. The performance of the
German model was higher than the Spanish model because the phonetic transcriptions for German
were manually corrected. In contrast, for the Spanish data, the phonetic transcriptions were
obtained with forced alignment using an automatic speech recognition system. It was observed
that using the German model as for weight initialization improved the accuracy of the Spanish
model. It was also shown that the best way to use the pre-trained German model for parameter
initialization is to train the Spanish model until the F1-score drops and not until the early stopping
criterion is met. The output of the trained models is used analysis of speech production: the labels
predicted were used to measure the average phoneme duration and rate and the probabilities of
occurrence of the predicted phonemes were used to measure the phoneme articulation precision,
i.e., the closer is the probability to 1, the better is the pronunciation.

A recurrent network was also considered for automatic detection of VOT in voiceless stop
sounds produced during the rapid repetition of /pa-ta-ka/. Speech data from PD patients and
healthy controls was considered to observe the influence of dysarthric speech on the model’s
performance. Automatic detection for VOT was possible with F1-scores of up to 0.78 for healthy
speakers and 0.73 for PD patients. On average, the predictions deviated by 3.8 ms for healthy
speakers and 5.6 ms for PD patients. The lower performance for PD patients was primarily
caused by the consonant weakening phenomenon, which results from difficulties in controlling
the vocal folds’ movement when alternating from vowels to voiceless stop sounds. Although
this phenomenon was also found in healthy speakers, the PD patients produced more weakened
consonants. Future work should consider the detection of VOT in continuous speech tasks to
analyze other acoustic phenomena. One of the limitations in this thesis is the relatively low number
of recordings considered for training. Data augmentation techniques were considered to increase
the sample size. However, the model’s performance was better using noisy versions of the original
signals. One reason might be that the noise component appears to remove part of the acoustic
property that characterizes the stop consonants resulting in two different situations: On the one
hand, the reduced phoneme precision of the patients combined with the Gaussian noise affects
the model’s performance to predict the correct sequence of consonants. On the other hand, the
noise component improves the detection of vowels’ onset, leading to higher F1-scores for the HC
because they do not produce as many misarticulations as the patients, e.g., weakened consonants.
Another limitation is that speech recordings of CI users were not included for automatic detection
of VOT because the manual annotations were not available.
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7.2 Parkinson’s disease patients

Speech disorders resulting from PD were analyzed with three main tasks: (1) automatic classifica-
tion of patients vs. healthy speakers, (2) regression analysis to predict the dysarthria level and
neurological state, and (3) speaker embeddings to analyze the progression of the speech symptoms
over time. The results showed that combining the information of different features sets and
speech tasks improved the performance of automatic methods to detect disordered speech in PD
patients. For the classification task, the highest performance (Accuracy: 84 %) was obtained with
the combination of phonation, vowel articulation, offset transitions (monologue), and phonemic
features (monologue and /pa-ta-ka/). For the regression analysis, two tasks were addressed: the
prediction of the mFDA (dysarthria level) and the MDS-UPDRS-III (neurological state). The
highest correlation between the predicted mFDA and the target scores was obtained with the
combination of features from reading (phonemic), DDK (phonemic), and sustained phonation
of vowels (Pearson’s r = 0.80; Spearman’s ρ = 0.78). In the case of the neurological state, the
combination of articulation and phonemic features resulted in a better prediction of the MDS-
UPDRS-III (Pearson’s r = 0.40; Spearman’s ρ = 0.53). The differences in the performances
can be explained considering that the mFDA is a scale entirely focused on evaluating speech
impairments. On the contrary, the MDS-UPDRS-III only includes speech in 1 item from 33. Thus,
future work should consider the multimodal analysis of PD patients using other bio-signals such
as writing, movement of the limbs, gait, among others. Nevertheless, automatic speech analysis
shows a close relationship to the general clinical score.

The progression of speech symptoms of seven PD patients was evaluated considering record-
ings captured in the short-term (4 months) and long-term (5 years). The mFDA scores of the
patients were predicted for every speech recording. For this, speaker embeddings, which are
commonly used in speaker recognition and verification tasks, were combined with phonation,
articulation, prosody, and phonemic features. Overall, it was possible to capture the progression
of the speech symptoms over time. The highest results was obtained when the embeddings were
combined with phonemic features extracted from /pa-ta-ka/ (Pearson’s r = 0.75; Spearman’s
ρ = 0.73) indicating that it is possible to monitor the speech symptoms using automatic methods.
However, this work did not consider other aspects such as medication intake, which may help
to understand the short-term (during the day or week) and long-term (during the month or year)
motor fluctuations. Another aspect that was not considered is the influence of the interviewer in
the recording of the speech protocol. For instance, it might be the case that the attitude of one of
the patients towards an interviewer resulted in a more familiar conversation during the monologue
task or the interviewer with more experience will know when certain tasks were successful.
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7.3 Cochlear implant users

Phonemic analysis was performed to evaluate the influence of the duration and onset of deafness
in speech production. The duration of deafness refers to the duration of time between the onset of
deafness and implantation: for a long duration, it was more than two years, and for a short duration,
it was less than two years. The onset of deafness refers to whether the hearing loss occurred before
(prelingual) or after (postlingual) the acquisition of spoken language. For automatic analysis,
phoneme precision was quantified using the posterior probabilities computed from the RNN
trained in German. The probabilities were computed from a list of 97 words containing every
phoneme in different positions within the words (PLAKSS test). Compared to the Normal Hearing
(NH) speakers, CI users produced velar (like /k/), palatal (/j/), and postalveolar (/S/) sounds
with lower precision (low posterior probability). Furthermore, there was a significant difference
(p-value<0.05) in the production of postalveolar sounds; particularly, postlingually deafened CI
users with long and short duration of deafness produce higher phoneme posterior probabilities
than the prelingually deafened CI users. Deviations in the production of postalveolar sounds such
as /S/have been linked to a limited spectral resolution of the implant in higher frequencies bands;
thus, CI users shift the production of the sibilant sounds into the frequency range perceived by
them. This frequency shift may also explain why the difference is more considerable between
postlingually and prelingually deafened CI users, since the latter lost their hearing before speech
acquisition and thus have always heard a “shifted” version of these sounds. On the contrary,
postlingual CI users had heard the standard way to produce the sound before losing their hearing,
but speech perception (and production) may have changed over time due to hearing loss and
the device. This result reflects the role of auditory feedback in speech production. However, to
validate this hypothesis, hearing status and data from the implant should be considered together
with the speech analysis. The phonemic analysis appear to be suitability to identify which sounds
are the most difficult for the CI users to produce. Thus, speech therapy can be more personalized
by targeting these particular phonemes.

Additionally, articulation, prosody, and phonemic analyses were performed to show that
cochlear implant users present altered speech production even after hearing rehabilitation. For
this, speech recordings of postlingually deafened adults were considered evaluated when reading
a standard text. For speech prosody, CI users produced higher variability in the duration of
vowels/consonants and read the text with a slower voiced rate than the NH speakers. On the one
hand, male CI users produced longer voiced segments resulting in a slower voiced rate. On the
other hand, a slow voiced rate in females was due to a prolongation of pauses and speech segments
within the text. Future work should analyze if speech prosody deficits have a negative impact in
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the expression of emotions and the intended linguistic information provided, such as word focus
and sentence stress to distinguish between questions and statements and phrase boundary marking.
On the contrary, a slow speaking rate may positively impact overall intelligibility. However, this
may not be the case for the CI users considered in this study. The phonemic analysis showed
that CI users produced lower phoneme precision even for “visible” phonemes when reading a
text. Furthermore, automatic classification of CI users vs. healthy speakers using onset/offset
transitions showed that there are difficulties of the patients to start/stop movements like the
vibration of the vocal folds. Some limitations include the lack of longitudinal data to monitor
speech production over time. Additionally, specifics about the hearing state of the patients, ear
side of implantation, insertion depth, active electrodes, manufacturer, filter settings of the input
filters, and duration of CI usage should be taken into consideration, as well as possible influences
on the acoustic parameters of speech production.

7.4 Aging and speech

The influence of aging in speech production was evaluated in the context of PD. For this, phonation,
articulation, prosody, and phonemic analyses were performed in a group of PD patients, healthy
elderly (EHC), and young speakers (YHC). Phonation analysis appears to account more for the
presence of PD rather than changes caused by aging (e.g., only the average SPL was significantly
lower in females from the EHC group compared with young speakers: p-value<0.05). However,
for acoustic features such as F0 and SPL, the voice of the elderly tends to be different from young
speakers. Vowel articulation analysis revealed that the vowel space of the male elderly speakers
(PD and EHC) has a smaller area than the young speakers, which indicates a reduction in the
articulatory movements. While phonation features appear to be more suitable for discriminating
between female PD patients and healthy speakers, the vowel space area highlights deficits in male
PD patients. However, the exact cause of these results is unclear due to the lack of information
about the physiological and anatomical changes produced by the normal aging process. The
results of the prosody analysis showed that young speakers have a higher ratio of voiced, unvoiced,
and pause segments than the elderly speakers (PD and EHC), which is associated with faster
reading. Furthermore, PD patients produced longer pause segments than the healthy controls
(EHC/YHC), and there was a tendency from the patients to produce higher vowel duration
variability (nPVI− Vow). Also, male elderly speakers produced higher F0 values than the YHC
group; however, PD patients exhibited higher F0 values than the age-matched healthy speakers. In
the case of the duration of voiced sounds, male PD patients produced longer segments, followed
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by the healthy elderly controls and young speakers. However, for female speakers, there was
no significant difference between PD patients and elderly healthy speakers. Phonemic analysis
was performed in the reading and /pa-ta-ka/ tasks. In general, the phoneme precision of the
elderly speakers (PD and EHC) was lower than young speakers. PD patients and healthy elderly
speakers produced lower posterior probabilities than the young speakers in most phonemes. Low
phoneme precision due to aging may be related to alterations in the temporal properties of the
sounds, such as the consonant weakening phenomena observed in the automatic detection of
VOT. Unfortunately, in this thesis, there was not sufficient data to analyze the aging process in
the context of hearing loss. Future work should consider speech recordings of elderly CI users,
age-matched healthy speakers, and young speakers to analyze phonation, articulation, prosody,
and phonemic production.

7.5 Smartphone-based applications for health care

Smartphones are suitable to monitor the progression of speech symptoms. The acoustic analysis
does not have to be done necessarily on the device. However, there is always the possibility
of exporting audio files to a cloud service and performing a better pre-processing of the data.
One of the main limitations is the variability in the acoustic conditions of the data captured
with smartphones. It was shown that, for instance, the filterbank features extracted from the
onset/offset transitions are sensitive to the device used to capture the data and to the background
noise. The reason is that MFCCs and GFCCs are features used to obtain a compressed spectrum
representation; thus, it is recommended to avoid features based on spectral representations when
the acoustic conditions of the recordings are highly variable. Additionally, features such as
the formant frequencies (used to construct the tVSA) and the phoneme posterior probabilities
appeared to be affected by the background noise; however, using a denoising technique helped
reduce its influence. Future work should also focus on the multimodal analysis using the data
captured with the smartphone to evaluate general motor impairments of the PD patients and the
hearing status of the CI users. Additionally, it is necessary to develop strategies for data collection
that allow capturing data without influencing the patient’s behavior. Some of them may learn the
speech task over time, and measurements could be biased by the users’ adaptability to the task,
rather than detecting the progression or improvement of the speech disorder. Thus, data should be
captured so that it is suitable for speech assessment, and at the same time, the user must not be
aware of what kind of task is being evaluated.
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Appendix A

Speech tasks

A.1 Spanish speech protocol

A.1.1 Vowel phonation

The speakers were asked to produced the Spanish vowels in a sustained manner: /a/, /e/, /i/, /o/,
/u/.

A.1.2 Sentences

The participants were asked to read the following sentences

• Rosita Niño, que pinta bien, donó sus cuadros ayer.

• Laura sube al tren que pasa.

• Mi casa tiene tres cuartos.

• Luisa Rey compra el colchón duro que tanto le gusta.

• Los libros nuevos no caben en la mesa de la oficina.

• Omar, que vive cerca, trajo miel.

• ¿Viste las noticias? Yo vi GANAR la medalla de plata en pesas. ¡Ese muchacho tiene
mucha fuerza!

• Juan se ROMPIÓ una PIERNA cuando iba en la MOTO.
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• Estoy muy triste, ayer vi MORIR a un amigo.

• Estoy muy preocupado, cada vez me es más difı́cil HABLAR!.

A.1.3 Read text

The participants were asked to read the following text:

Ayer fui al médico. ¿Qué le pasa? Me preguntó. Yo le dije: ¡Ay doctor! Donde pongo el
dedo me duele. ¿Tiene la uña rota? Sı́. Pues ya sabemos qué es. Deje su cheque a la salida.

A.1.4 Speech diadochokinesia

The participants were asked to produce the following syllable/words sequentially ( during 3 to 5
seconds):

• /pa-ta-ka/

• /pe-ta-ka/

• /pa-ka-ta/

• /pa/

• /ta/

• /ka/

A.1.5 Monologue

The participants were asked to describe their daily routine.
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A.2 German speech protocol

In this section are listed all the speech tasks considered to evaluate speech production from
German speakers.

A.2.1 Read text

The participants were asked to read the following text.

Der Nordwind und die Sonne

Einst stritten sich Nordwind und Sonne, wer von ihnen beiden wohl der Stärkere wäre, als ein
Wanderer, der in einen warmen Mantel gehüllt war, des Weges daherkam. Sie wurden einig,
dass derjenige für den Stärkeren gelten sollte, der den Wanderer zwingen würde, seinen Mantel
auszuziehen.

Der Nordwind blies mit aller Macht, aber je mehr er blies, desto fester hüllte sich der Wanderer
in seinen Mantel ein. Endlich gab der Nordwind den Kampf auf. Nun wärmte die Sonne die Luft
mit ihren freundlichen Strahlen, und schon nach wenigen Augenblicken zog der Wanderer seinen
Mantel aus.

Da musste der Nordwind zugeben, dass die Sonne von ihnen beiden der Stärkere war.

A.2.2 Rhino sentences

The participants were asked to read the following sentences

• Nenne meine Mami Mimi.

• Peter spielt auf der Strasse.

• Das Pferd steht auf der Weide.

• Die Schokolade ist sehr lecke.

• Der Vater liest ein Buch.
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A.2.3 PLAKSS words

The participants were asked to read the words in Table A.2.3 (not necessarily in that order).

Table A.1: List of words read by the German speakers
Anker Feder Kaputt Quak Stuhl
Apfel Fenster Katze Rad Tasche
Arzt Fisch Kiste Roller Tasse
Auto Flasche Kleid Rutsche Taucher
Ball Frosch Knöpfe Sack Telefon
Bank Gabel Korb Schere Teller
Baum Gespenst Krokodil Schiff Tiger
Berg Gießkanne Kuh Schlange Topf
Bett Gitarre Lampe Schlüssel Trecker
Bild Glas Löwe Schmetterling Unfall
Blume Gras Marienkäfer Schnecke Vogel
Brief Grün Milch Schornstein Wippe
Brille Hase Mond Schrank Wurst
Buch Haus Nagel Schuh Zange
Drachen Heizung Nest Schwein Zebra
Dusche Hexe Nuss Sonne Zitrone
Eichhörnchen Hund Pferd Spinne Zwerg
Eimer Jacke Pflaster Spring
Elefant Jäger Pilz Spritze
Erdbeere Kanne Punkt Strumpf
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