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Abstract

Peptides are chemical entities composed of natural and non-natural amino acids that have been used
successfully as drugs, vaccines, biomarkers, among others. However, these can be easily cleaved and
degraded by proteases, where their breaking of a chemical bond in peptides gives smaller molecules or
radicals, causing instability in some biological environments when we use peptides therapeutically or as
medicines. One possible solution is the use of peptides with non-natural amino acids (NNAA). In the
present study, we assessed the prediction of affinities in complexes between human Complement com-
ponent 3 (C3c) protein bound to multiple compstatin peptide analogs with NNAAs. We used molecular
dynamics simulations and six scoring functions to correlate the average score with the experimental bind-
ing data obtained from previous studies. Several correlation coefficients above 0.7 and one above 0.85
were detected, indicating an excellent correlation between these two variables. We found the highest
Spearman correlation for the Nnscore and Cyscore scoring function, suggesting that these are the most
adequate for ranking the binding of modified peptides to a protein target.
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1
Introduction

Peptides are biomolecules with chemical and physical properties associated with their amino acid com-
position. They have dominant roles in multiple molecular recognition and signalling events, especially in
living systems [1]. They are also used as drugs or diagnostics tools for several biomedical applications
[2]. However, working with peptides has a limitation: they can be cleaved and easily degraded. A po-
tential solution to this problem is the design of peptides using non-natural amino acids (NNAA). These
modified-peptides can mimic the mechanism of a peptide while being resistant to enzymatic degradation
and displaying a significant activity, for example against several pathogens [3, 4, 5]. Moreover, incorpo-
rating NNAA can enhance the affinity [6, 7], selectivity [8, 9, 10], and stability of drug leads [11], as well
as expand their applications in different fields in biochemistry [12, 13, 14, 15] and protein engineering
[16, 17, 18, 19, 20, 21].

Databases with information of NNAAs are available, in particular, the SwissSideChain database which
provides biophysical, structural, and molecular data for hundreds of commercially available non-natural
amino acid side chains, both in L- and D-configurations [22]. Moreover, there is a force field called
Forcefield NCAA, designed for the purpose of discovery and therapeutic design of proteins and peptides
with non-natural amino acids. This force field has information of multiple non-natural amino acids that
can be used in applications such as protein structure prediction and de novo protein design [23]. On the
other hand, a tool called PEPstrMOD is available for the prediction of the tertiary structure of peptides
including NNAAs. This tool is useful for performing mutations of natural amino acids to non-natural
ones, and it enables obtaining the topology of these mutated peptides to be included in molecular dynam-
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ics simulations [24].

For the purpose of drug screening, one would like to rank different modified peptides according to
their binding affinity to a protein target. Experiments are costly and time consuming and computational
methods offer a solution to estimate an initial rank. To evaluate the potential binding of the modified
peptides, receptor-ligand complexes have to be built, and their binding has to be evaluated. For this pur-
pose, molecular dynamics (MD) simulations enable sampling of the bound conformations. The obtained
conformations are evaluated with scoring functions, which are mathematical functions used to roughly
predict the binding affinity between two molecules. This method was used to classify natural peptide
binders to the major histocompatibility class II receptor [25], which was applied for the design of multi-
allele binding peptides [26]. However, few studies are available on complexes containing NNAAs since
most MD simulation force fields are not parameterized for novel chemical entities [27, 28, 29, 30, 31, 32].

This is why, in the present work, we studied the human complement component 3 (C3c) protein in
complex with the compstatin peptide and with different analogs of the peptide containing NNAAs. This
is possible due to the availability of C3c structures in complex with different compstatin peptide analogs.
The main goal of this work is to predict the rank of the experimental binding affinity of the modified-
peptides to the C3c protein. We considered a set of nine peptides with known binding affinity to the
target. We started from a C3c-compstatin crystal structure, and the peptide analogs were modelled by
modifying single-positions by the reported NNAAs. We generated parameters for each NNAA to subse-
quently submit all the protein-peptide complexes to MD simulations. The obtained conformations were
then scored using 6 different protein-ligand scoring functions. Finally, with the affinity scores for the
complexes obtained from the scoring functions, we correlated with the experimental data using Spear-
man’s correlation. A schematic of the workflow used is shown in the Figure 1.1.

1.1 HYPOTHESIS AND OBJECTIVES

1.1.1 HYPOTHESIS
NNAA can be parameterized using knowledge of amino acidic units, and the peptide bonds. These
can then be used in protein-peptide complexes with NNAA to predict the affinity of the complexes with
molecular dynamics sampling and binding affinity calculations.
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Figure 1.1: Schematic representation of the workflow used. First, we select a NNAA dataset. Second, generation
of topology parameters for different peptideswithNNAA from the selected data set. Third, the creation of complexes
of C3c with the compstatin peptide with the selected NNAA. Fourth, the sampling of the system using molecular
dynamics. Fifth, the punctuation of the trajectories obtained with the scoring functions. Finally, the Spearman
correlation of experimental and simulation data.

1.1.2 OBJECTIVES
GENERAL OBJECTIVE
Predict the affinity of modified peptides with single NNAAs to the human complement component 3
(C3c) protein by scoring conformations from molecular dynamics simulations.

SPECIFIC OBJECTIVES
• Parameterize non-natural amino acids found in the compstatin peptide analogs.

• Simulate the bound complexes using molecular dynamics.

• Score the affinities of the protein-peptide complexes to correlate the available experimental affini-
ties.
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1.2 DOCUMENT OUTLINE

This document has the following organization. First, in chapter 1, we have the introduction and the
objectives of the research. Secondly, in chapter 2, we introduce the theoretical concepts. Then, in chapter
3, we present the methods and results of the molecular dynamics and scoring of compstatin peptide with
NNAAs bound to human C3c protein. Finally, in chapters 4 and 5, we present the conclusions and
perspectives, respectively.
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2
Theoretical Background

Some key concepts for understanding this research are introduced below. We present basic concepts of
amino acids and peptides, followed by the introduction to molecular dynamics simulations, force fields,
scoring functions, and Spearman’s rank correlation.

2.1 NATURAL AND NON-NATURAL AMINO ACIDS (NNAA)

Amino acids are simple organic chemical entities having a common set of atoms that form the amino acid
backbone, including a carboxyl and amino groups [33]. Attached to the central carbon atom (the alpha
carbon), there are additional atoms that varies among the amino acids, making them different in terms
of their properties. This is called the R group or amino acid side chain [34], figure 2.1.

Amino acids are the basic building blocks to form peptides and proteins [35]. In nature, we find a finite
number of side chains (20) that conform to the natural amino acids. However, if non-natural side chains
are used, it is possible to have more chemical diversity and broaden applications in both peptides and
proteins in the field of biochemistry [15], protein engineering, and drug design [21]. For this purpose,
non-natural side chains are increasingly used in experimental studies [22].
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Figure 2.1: Amino acid structure [36].

2.2 PEPTIDES

A peptide is a short chain of natural amino acids, figure 2.2. The amino acids are connected with each
other through peptide bonds. Typically, peptides are distinguished from proteins by their shorter length,
although the cut-off number of amino acids to define a protein can vary (normally around 100 amino
acids). Peptides are generally considered to be short strings of 2 to 50 amino acids [37, 38].

Peptides have been used as alkaloids [39], antimicrobial agents [40] or hormones [41]. They can act
as growth factors [42], anti-oxidant agents [43], or can be used for clinical diagnosis [44]. Peptides can
undergo modifications in some parts of their sequences, in which a natural amino acid can be replaced by
a NNAA. Benefits such as improved affinity, selectivity, and stability of peptide drugs can be obtained
through the use of these NNAA.

These modified peptides are designed to overcome some limitations associated with traditional pep-
tides: stability against proteolysis and low bioavailability. Additional properties, such as selectivity or
receptor potency, could also be improved. Therefore, peptides with NNAAs have great potential in drug
discovery because they offer an opportunity to improve the drug design process.

2.3 PROTEIN STRUCTURE

Knowledge of the three-dimensional (3D) structures of proteins is relevant to understand how the pro-
tein works, predict which molecules bind to that protein, and understand various biological interactions
[45]. Generally, 3D structures are obtained using X-ray crystallography, nuclear magnetic resonance, or

15



Figure 2.2: Peptide.

cryo-electron microscopy techniques. The Protein Data Bank (PDB) is the main repository containing
experimentally determined 3Dmolecular structures [46, 47, 48], and its main purpose is to maintain a sin-
gle archive of macromolecular structural data, which is free to use and available to the global community.

This structural information is also relevant in the field of structure-based drug design [49]. Knowl-
edge of 3D structures is essential to understand how the molecular targets can interact with drug-like
molecules in order to rationally optimize their chemical structures. This is useful in many stages of drug
development, such as target validation, drug delivery, side-off effects, among others [50, 51]. Recently,
this 3D information have been used in the design of new proteins with desired functions [50, 52].

PROTEIN–LIGAND COMPLEX
A protein-ligand complex is a complex of a protein bound to a ligand through non-covalent interactions
such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π–π interac-
tions, or electrostatic effects [53]. The ligand can be any molecule that binds to the protein with high
affinity and specificity. Therefore, a detailed understanding of protein-ligand interactions is critical to
understand biology at the molecular level [54]. In addition, knowledge of the mechanisms responsible
for molecular recognition and protein-ligand binding also contributes to the discovery, design, and devel-
opment of drugs [55].
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HALF MAXIMAL INHIBITORY CONCENTRATION (IC50)
In order to measure the binding affinity between ligand-protein complexes, it is useful to use the IC50mea-
surement. This can be determined with functional assays or with competitive binding assays. The IC50
evaluates the ability of a substance or a drug to inhibit a biological process. It is the concentration of the
molecule or drug required to reduce the activity by 50%. This measure gives us an account of the capacity
of a drug, and the lower the value of this IC50 measurement, the more effective the substance will be [56].

2.4 MOLECULAR DYNAMICS

MD is a computational method used to simulate classical physical motions of atoms and molecules. This
movement depends on the simulation time and the chosen force field under different conditions, such
as temperature, and pressure, among others [57]. MD requires an initial conformation of the system of
study (either obtained from the PDB or by modelling tools like AlphaFold [58, 59]).

At time zero (t0) the initial conformation x(t0) has the position of all the atoms in the system. Then
each of the atoms is assigned an initial velocity v(t0), which is chosen from a thermostat distribution at
the temperature of study (see details about the thermostat in section 2.4.3). The force over each atom i
is calculated using a classical potential (V(⃗x)), or force field,

F⃗i =
−dV(x)
dx⃗i

, (2.1)

where F⃗i is the force and x⃗i denotes the coordinates of atom i. These forces are derived from potentials
that describe bond energies, valence angles, torsion angles, and Lennard-Jones interactions [60], details
in section 2.5.

The atoms then evolve by numerically solving the equations of motion with a given time step. Newton’s
laws of motion are used to predict the spatial position of each atom as a function of time. From Newton’s
second law, we can solve and obtain the acceleration a⃗i of atom i.

a⃗i =
F⃗i
mi

, (2.2)

wheremi is the atom’s mass. Next, an integration method is used to numerically integrate the equations of
motion. This integration is done numerically: every time step, one calculates the forces on each atom and
then uses those forces to update the position and velocity of each atom. We then evolve the system with
small-time steps (dt), where the new positions and velocities are obtained after numerically integrating
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Newton’s equations of motion over time. We can use the leapfrog algorithm, where Δt is the size of each
time step. At time step i+ 1, the velocities are

v⃗i+1 = v⃗i +
1
2
(a⃗i + a⃗i+1)Δt, (2.3)

and the positions are
x⃗i+1 = x⃗i + v⃗iΔt+

1
2
a⃗iΔt2. (2.4)

The configurations are stored, and the interatomic forces are recalculated at each time step. This algo-
rithm allows calculating velocities and positions in time steps as small as the vibratory motion of the
system, thus reducing integration errors [61]. Finally, the system’s evolution is a 3D trajectory that de-
scribes at atomic-level the configurations of the system at each point during the simulated time interval.

The importance of MD simulations stems from several reasons. One is that with MD it is possible to
know the position and movement of each atom at each time, which has a high degree of complexity with
respect to any experimental technique. On the other hand, the conditions of the simulation can be pre-
cisely known and can be controlled, such as, the initial conformation of a protein, what ligands are bound
to it, if it has mutations, what other molecules are present in its environment, temperature, pressure, and
many others. Therefore, by comparing simulations performed under different conditions, the effects of
a wide variety of molecular perturbations can be identified [62].

MD applications are extensive. It is valuable for evaluating the mobility or flexibility of various re-
gions of a biomolecule. In particular, by examining an MD simulation it is possible to quantify how many
regions of the molecule move and what types of structural fluctuations they experience, thus complement-
ing the determination of the 3D structure of biological systems. Furthermore, with MD simulations, it
is possible to determine the dynamic behavior of water molecules and salt ions, which are often critical
for protein function and ligand binding, thus improving structural models of biological systems. Another
utility of MD is to test the accuracy of a modeled structure, or even refine it. MD is often used to test
modeled binding poses of ligands because a pose that is stable in the simulation is more likely to be more
accurate than one that is unstable [63]. Additionally, MD simulations can yield information about ligand
binding to proteins and other macromolecules. This application is very useful in this study because it is
the objective of this investigation.

Widely used programs for MD are GROMACS [64] (GROningen MAchine for Chemical Simula-
tions) - package mainly designed for simulations of proteins, lipids, and nucleic acids, CHARMM [65]
(Chemistry at HARvard Molecular Mechanics) – originally developed at Harvard, widely used for both
small molecules and macromolecules, AMBER [66] (Assisted Model Building and Energy Refinement)
– widely used for proteins and DNA, among others programs.
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In the following, there are some relevant concepts for MD simulations:

2.4.1 PERIODIC BOUNDARY CONDITIONS
Periodic boundary conditions are necessary during MD simulations to preserve thermodynamic proper-
ties such as temperature, pressure, and density. In other words, with periodic boundary conditions, it
is possible to approximate an infinite system using a unit cell or a periodic box. To implement them,
the unit cell is surrounded by copies of the unit cell in all directions to approximate an infinitely large
system. When a molecule diffuses across the simulation box boundary, it reappears on the opposite side.
Therefore, each molecule always interacts with its neighbors, even though they may be on opposite sides
of the simulation box [67].

2.4.2 CANONICAL ENSEMBLE (NVT) AND (NPT)
A canonical ensemble represents the possible states of a mechanical system in equilibrium with a heat
bath at a fixed temperature. To simulate the canonical ensemble in the field of MD simulations, we couple
the system to a thermostat (an infinite heat bath), and it has no particle exchange with this bath [68].

For the canonical ensemble, the amount of substance (N), the volume (V), and the temperature (T)
are conserved. In NVT, the energy of endothermic and exothermic processes is exchanged with a ther-
mostat. Besides, the amount of substance (N), volume (V), and temperature (T) are kept constant. In
the isothermal–isobaric ensemble, the amount of substance (N), pressure (P), and temperature (T) are
conserved.

2.4.3 TEMPERATURE AND PRESSURE
At the molecular level, the temperature of a system is defined by the average kinetic energy of all the
particles (atoms, molecules) that make up the system. In MD simulations to maintain a constant tempera-
ture, thermostat algorithms are used to allow energy to enter and leave the simulated system. In practice,
thermostats do this by modifying the velocities of subsets of particles. The objective of controlling the
temperature is to control the speed of the particles[69]. Temperature coupling is usually done with a
Berendsen thermostat [70, 71, 72], which is an algorithm for rescaling particle velocities in molecular
dynamics simulations to control the simulation temperature. Nose-Hoover thermostat [73], uses a Nose-
Hoover extended ensemble. And, Andersen thermostat [74] is based on the reallocation of the speed of
a chosen atom or molecule. The new speed is given by the Maxwell-Boltzmann statistics for the given
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temperature.

In barostat algorithms, the goal is to keep the pressure in the simulation system constant or to apply
external stress to the simulated system. The pressure is kept at a constant value by adjusting the volume
of a periodic simulation system [75]. Pressure coupling is usually done with a Berendsen barostat [70],
this uses exponential relaxation pressure coupling with a time constant. Parrinello-Rahman barostat [76],
uses an extended-ensemble pressure coupling, where the box vectors are subject to an equation of motion.
And Martyna-Tuckerman-Tobias-Klein barostat [77, 78], is similar to Parrinello-Rahman. In the present
study, we use the Berendsen thermostat and Parrinello-Rahman barostat.

2.5 FORCE FIELDS

A molecule can be described as a series of charged points (atoms), which are held together by springs
(bonds), in the field of classical MD. Specifically, a force field is used to describe bond lengths, bond an-
gles, and twists, as well as non-bonding van der Waals interactions and electrostatic interactions between
atoms. They are a collection of equations and associated constants designed to reproduce the molecular
geometry and selected properties of tested structures [62]. Since each structure refers to a configuration
in the conformational space of proteins, the force field gives us a complete description of the potential
energy surface of proteins. Force fields help us to describe the energy of the protein in terms of its atomic
coordinates [79].

Force fields consist of two components, Figure 2.3, the bond terms, and the non-bond terms. Bonding
terms are those that describe interactions of bonds (stretching or compression of a pair of bonded atoms),
angles (increase or decrease in bond angle), and dihedral (rotation of the dihedral angle), while non-
bonding terms represent distant interactions, and describe electrostatics (modeled by Coulomb’s Law)
and Van der Waals interactions (modeled by the Lennard-Jones potential).

There are multiple force fields with different approaches. In the present study, we use the AMBER03
force field [81]. The Assisted Model Building with Energy Refinement (AMBER) is a force field for
molecular dynamics. It is used to describe organic molecules and biological molecules, and it was devel-
oped primarily for the investigation of protein and nucleic acid systems [82].

In our particular case, for the C3c protein where all the amino acids are natural, the AMBER03 force
field was used directly from the MD Gromacs program to generate the topology file. Additionally, in the
case of the compstatin peptide ligand containing NNAA, it was not possible to execute the same proce-
dure, in this case, we obtained the topology file through the PEPstrMOD server, but using the same force
field.
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Figure 2.3: Typical force fieldmodel [80]. The atomic forces that governmolecular motion can be divided into those
caused by interactions between atoms that are chemically bonded to each other and those that are not bonded.
Bond terms are those that describe bond interactions: angles, dihedral. While the non-bonding terms represent
distant interactions, they describe electrostatic interactions and Van der Waals interactions.

The force field parameters implemented in the PEPstrMOD server are adopted from Forcefield NCAA
(Force Field for Noncanonical Amino Acids) [23], Forcefield PTM (Force Field for Post-Translational
Modifications) [83], and SwissSideChain [22]. Importantly, the parameters derived from the PEPstr-
MOD are compatible with the ff03 force field in AMBER software package, which is the force field we
used.

TOPOLOGY FILE
To begin an MD simulation of the biological systems, two things are necessary. The first thing is to know
the atomic connectivity information (to tell the MD program that one atom is linked to another). The
second is to know the stiffness and equilibrium length of the bonds, angles, etc.These terms are described
by a topology file [84].
Sometimes, one finds the need to simulate molecules for which topology and parameter information

do not exist. In these cases, it is necessary to generate the topology file separately. For example, working
with NNAA we find this limitation. This is why we use an alternative computational tool to generate the
topology file, called PEPstrMOD server.

The PEPstrMOD server [24, 85] predicts the tertiary structure of small peptides, having a sequence
length between 7 and 25 residues. In addition, it handles peptides having various modifications such as
NNAAs, terminal modifications (acetylation/amidation), cyclization (N-C, disulfide bridges), conversion
of L- to D-amino acids, and post-translational modifications. In the end, the resulting structure is further
refined with energy minimization and molecular dynamics simulations. With this tool it is possible to
make mutations of a natural amino acid by a NNAA, extracting the topology files of the new system
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obtained with the AMBER force field.

2.6 SCORING FUNCTIONS

The scoring functions (SF) are an additive function that includes representations of various interactions
between a ligand and a target receptor. These representations generally describe the electrostatic, hy-
drophobic, solvation, and hydrogen-bonding interactions between receptor and ligand [86]. Scoring func-
tions assess their performance and effectiveness with various metrics, ”scoring power”, ”ranking power”,
”docking power” and “screening power”. The ”scoring power” measures the ability of a SF to produce
binding scores in a linear correlation with experimental binding data. The ”ranking power” is the ability
of a SF to correctly rank known ligands of a given target protein by their binding affinities, where the
precise binding poses of those ligands are given. The ”docking power” refers to the ability of a SF to
identify the position of native ligand binders between computer-generated decoys, and, the ”screening
power” refers to the facility of a SF to identify the true binders to a given target protein among a pool of
random molecules [87].
Typically, scoring functions have been created to evaluate the interaction of protein-protein complexes

[88] and protein-ligand complexes [89] [90]. They can be used to determine the binding modeof a ligand,
predict binding affinities, and identify potential drugs for a given target protein [91]. Scoring functions
are essential for modern in silico drug discovery, but accurate prediction of binding affinity using these
programs remains a difficult task. Besides, the performance of the scoring functions vary depending on
the different target classes [92].

There are different types of scoring functions with diverse approaches, the most common are:

• FORCE-FIELD BASED SF

Force-field scoring functions generally quantify the interaction energy between the receptor and the
ligand, and the internal energy of the ligand [93]. Similarly to the MD force field of a molecular
system, atomic interactions are typically broken down into bond stretching energies, bond angle
bending energies, bond torsion energies, hydrogen bond energies, van der Waals energies and elec-
trostatic Coulomb energies.
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• EMPIRICAL SF

Empirical scoring functions are developed to replicate experimental affinity data on the assump-
tion that binding free energy can be correlated with a set of unrelated variables [94]. By regression
analysis using known binding affinity data of experimentally determined structures, it is possible to
obtain the coefficients associated with the functional terms. Empirical scoring functions evaluate
each system for specific terms that explain intermolecular interactions, such as van der Waals and
electrostatic potentials [95].

• KNOWLEDGE-BASED SF

Knowledge-based scoring function is also known as statistical potentials. It employs energy poten-
tials that are derived from structural information embedded in experimentally determined atomic
structures [96]. In other words, they are based on the statistical analysis of interacting atom pairs
of protein-ligand complexes with available three-dimensional structures [95].

• MACHINE LEARNING BASED SF

Scoring functions that use machine learning to predict receptor-ligand binding affinity do so by
implementing multiple algorithms to predict affinities, rather than using just one. Furthermore,
from complex structures with known binding affinities, these SFs can predict binding affinities for
unknown molecules [97].
Due to a large amount of data in biology, including protein structures, gene sequences, and binding
data, the use of scoring functions with this approach is possible [98], as well as being useful for
extracting features and learning patterns from complex data [99].

2.6.1 DETAILS OF THE SCORING FUNCTIONS
The scoring functions used in this work are from various categories such as empirical, knowledge-based,
and machine learning-based. Below are some details of the scoring functions and the specific versions
used.
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• DLIGAND2 (VERSION 2) SF

It is an improved energy function from the first version (Dligand) based on knowledge of protein-
ligand interactions using the distance-scaled finite ideal-gas reference state. This SF has improve-
ments in implementing a recently updated dataset containing 12,450 monomeric protein chains
for training. Furthermore, it has a consistent improvement over the first version of Dligand in
predicting binding affinities for native complex structures or docking-generated poses [100].

• CYSCORE SF

Cyscore is an empirical scoring function. It is composed of hydrophobic free energy, van der
Waals interaction energy, hydrogen bond interaction energy and ligand’s conformational entropy.
Those terms follow the classic approaches, except the hydrophobic free energy. This SF has signif-
icant improvements in prediction accuracy through the use of a new curvature-dependent surface
area model, which is able to distinguish convex, planar, and concave surfaces in the calculation of
hydrophobic free energy [101].

• DLSCORE SF

The Dlscore scoring function takes a deep learning approach. Its main goal is to accurately predict
the binding affinities between a receptor and a ligand. It consists of a set of neural networks, trained
with the PDBBind (v2016) [102] database. Dligand uses a wide data set to improve the accuracy
of its predictions. This SF is better than others in the consistency of its results, since it has less
variability and fewer differences in terms of predicted affinity and experimental data [98].

• NNSCORE (VERSION 2.0) SF

It is the second version of the NNScore scoring function. It is used to characterize the potency of
receptor-ligand complexes. Furthermore, it is based on neural networks and computational models
that simulate the microscopic organization of the brain [103, 104]. With this SF, better results
could be obtained than with others, due to the use of different neural networks, and the implemen-
tation of various algorithms for affinity calculations, instead of having only one.

• VINA (VERSION 1.1.2) SF

The scoring function is based on a combination of knowledge-based potentials and empirical scor-
ing functions. It extracts empirical information both from the conformational preferences of the
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receptor-ligand complexes and from the experimental affinity measurements. Its main goal is to
predict bound conformations and binding affinity [105]. This SF has a significant improvement in
speed and accuracy of binding mode prediction over its previous versions.

• SMINA SF

Smina is based on AutoDock Vina 1.1.2. This empirical scoring function was specially designed
to improve scoring and minimization. Additionally, it is optimized to support high-performance,
user-specified custom scoring functions. [106].

2.7 SPEARMAN’S RANK CORRELATION COEFFICIENT

In order to discover the strength of a link between two data sets, it is useful to use Spearman’s rank cor-
relation coefficient [107]. This measure is ideal when we use variables that are not normally distributed.
[108].

Spearman’s correlation coefficient is useful for measuring the strength and direction of the correlation
between two ranked variables [109]. To compute the coefficient, we assume that there are n pairs of
observations from continuous distributions. The observations are classified into two separate samples,
and ranked from smallest to largest. Let ui be the rank of the ith observation in the first sample, and let
vi be the rank of the ith observation in the second sample. Spearman’s rank correlation coefficient, rS, is
a measure of the correlation between ranks, calculated using the ranks instead of the actual observations
[110, 111]:

rS = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (2.5)

where di = ui − vi.

Spearman’s rank correlation coefficient, equation 2.5, can take values from +1 to -1. When rs takes
the value of +1 it means a perfect association between the ranks, in other words, the two variables have
the same behavior, when one quantity increases the other also increases, or when one quantity decreases
the other quantity also decreases. When rs = 0 it means that there is no association between the ranks.
Likewise, when rs takes the value of -1, it means a perfect negative association of the ranks, that is, when
one quantity increases, the other decreases, or when one quantity decreases the other increases. That is,
when the values of rs tend to 1 or -1, the correlation between variables is better.

The interpretation of the Spearman’s correlation coefficient values is described as a ”weak”, ”moder-
ate” or ”strong” relationship [112, 113], based on the following values reflected in the table 2.1.
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Table 2.1: Interpretation of Spearman’s Correlation Coefficient

Spearman’s correlation coefficient Interpretation
0.00 - 0.09 Negligible correlation
0.10 - 0.39 Weak correlation
0.40 - 0.69 Moderate correlation
0.70 - 0.89 Strong correlation
0.90 - 1.00 Very strong correlation
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3
Scoring and molecular dynamics to rank

compstatin peptide with NNAA bound to the
Human C3c protein

This chapter includes the description of the system under study and the dataset of peptides with NNAA.
It also includes, the results of the MD simulations and the scoring. Finally, the correlation between the
experimental data and those from the MD simulations are presented.

3.1 BACKGROUND

Complement component 3 (C3c) is a protein of the immune system. It plays a central role in the acti-
vation of the complement system, which is a part of the immune system and contributes to the innate
immune system. In humans, it is encoded on chromosome 19 by a gene called C3. Compstatin, is a
polypeptide with 13-residues, which has the following sequence ICVWQDWGAHRCT.

The compstatin peptide bound to protein C3c has been extensively studied, as well as compstatin
analogs including NNAAs [114, 115, 116, 117]. Various analogs of compstatin with NNAAs have been
analyzed both experimentally and computationally. The experiments have measured the experimental
half-maximum inhibitory concentration (IC50) of the modified peptides with the target.
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This complex was taken as a reference for the elaboration of a force field called the NCAA Force Field.
In this force field, more than 147 NNAAs are taken into account, and among them there are the ones used
in this study. The importance of this new force field lies in the inclusion of these non-canonical amino
acids because most force fields are designed to work with only natural amino acids [66, 118, 119, 120].

On the other hand, the family of compstatin peptides has been studied, which is made up of peptides
that bind to the C3 protein and inhibit the activation of the complement system. In situations where there
is inappropriate activation of the complement system, controlled inhibition with compstatin peptide is
useful. This is desirable in cases of various autoimmune, inflammatory and pathological diseases[121].
In addition, the C3c-compstatin complex has been characterized and used for the study of other diseases
[122], as well as, as a biomarker [123].

The purpose of this chapter is to run MD simulations of modified peptides bound to C3c and then to
assess theMD conformations with scoring functions, with the specific goal of predicting the binding affin-
ity between the complexes, following ideas from ref. [25]. To do this, we start from different analogs of
the compstatin peptide having single-point mutations of NNAAs, and with affinity values reported. We
ran the MD simulations with the complexes formed by the modified peptides bound to the C3c protein.
After that, we score the conformations using six small-molecule scoring functions. Finally, we evaluated
the performance in predicting the experimental rank of the peptides.

3.2 METHODS

3.2.1 BIOLOGICAL SYSTEM
The crystal structure of compstatin in complex with C3c (PDB id: 2QKI), is the system under study
[124]. We choose this complex because it has reported information on bioactivity data on the binding
of the C3c protein with analogs of the Compstatin peptide that contain non-natural amino acids [23]. It
has been studied both in clinical trials and computationally, which allows a detailed view of the binding
mode of the peptide compstatin with the protein, this being useful for the rational design of peptides and
mimetics with improved activity [125]. We also note that this complex has been used in various studies
because the peptide compstatin does not alter the conformation of C3c, while the peptide compstatin
does undergo a large conformational change when bound to the protein. Such information is relevant to
the development of compstatin for potential therapeutic use [126]. For these reasons, we were motivated
to choose this crystal structure.

Due to the large size of the original protein and the unresolved and missing residues in the crystal
structure, using the full structure of the C3c-compstatin complex could hinder calculations and add noise
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Figure 3.1: C3c protein structure bound to compstatin peptide. The PDB structure id is 2QKI. The in-
terface is characterized by the chain A of the C3c protein (green color), the compstatin peptide (red color), and
5-methyltryptophan (MTR) which is the NNAA (blue color).

to the simulations. For this reason, to facilitate the simulation, we only used the chain A of the protein in
complex with the chain G of the peptide compstatin. This is possible since the region where compstatin
binds to C3c is confined and localized to one site, so it is not necessary to use the entire complex [23]. The
chain linked to the compstatin peptide was taken as a template to model different peptides with NNAA,
Figure 3.1.

3.2.2 NNAA SELECTION AND PEPTIDE FORMATION
C3c protein is the selected structure in complex with the compstatin peptide. The compstatin peptide
has the original sequence ICVWQDWGAHRCT and this sequence is modified to form different com-
plexes. In this sequence, one natural amino acid is mutated by NNAA, thus forming the peptides with
NNAA. The selected NNAA (Figure 3.2) are: 1-methyltryptophan (OMW), introduced at position 4,
5-methyltryptophan (MTR), introduced at position 4, O-methyltyrosine (OMY), introduced at position
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Figure 3.2: Non-natural amino acids: (A) 1-methyltryptophan (OMW), (B) 5-methyltryptophan (MTR), (C) O-
methyltyrosine (OMY), (D) N-methylcysteine (NMC), (E) N-methyltryptophan (NMW), (F) N-methylarginine (NMR),
(G) N-methylaspartic acid (NMD).

4, N-methylcysteine (NMC), introduced at position 2, and 12, N-methyltryptophan (NMW), introduced
at position 7, N-methylarginine (NMR), introduced at position 11, and N-methylaspartic acid (NMD),
introduced at position 6.
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Experimental background information (IC50) of compstatin peptide analogs with NNAAwas obtained
from Forcefield NCAA (Force Field for Noncanonical Amino Acids) [23], Table 3.1.

The list of complexes formed with the C3c protein and compstatin peptide with NNAA are:

• Complex 1: C3c protein-ICVWQDWGAHRCT

• Complex 2: C3c protein-ICV(OMW)QDWGAHRCT

• Complex 3: C3c protein-ICV(MTR)QDWGAHRCT

• Complex 4: C3c protein-ICV(OMY)QDWGAHRCT

• Complex 5: C3c protein-I(NMC)VYQDWGAHRCT

• Complex 6: C3c protein-ICVYQD(NMW)GAHRCT

• Complex 7: C3c protein-ICVYQDWGAH(NMR)CT

• Complex 8: C3c protein-ICVYQ(NMD)WGAHRCT

• Complex 9: C3c protein-ICVYQDWGAHR(NMC)T

3.2.3 MODELING OF PEPTIDES WITH NNAA BOUND TO HUMAN C3C RECEPTOR
Starting from the selected C3c-compstatin with NNAAs complexes, the first step is to take the original
peptide sequence of compstatin and mutate one of its natural amino acids for a NNAA, according to the
sequences selected in Table 3.1. With the PEPstrMOD server, we performed these mutations. Then, the
same program generates the topology files and initial conformation that will be used in the MD simula-
tions. This process is similar to adding a ligand to a protein.

3.2.4 MOLECULAR DYNAMICS SIMULATIONS
Each C3c-compstatin with NNAA complex was subjected to 100 ns of MD simulations with previous
minimization and NVT/NPT equilibrating phases. GROMACS v2020 [64] was used to perform the sim-
ulations. The Amber03 protein forcefield [81] and TIP3P water model [127] were used for the protein
and solvent, respectively. The parameters for the NNAA were found with the PEPstrMOD server (as
described above). The protein was solvated in a cubic box of water with periodic boundaries at a distance
of at least 8 Å from any atom of the protein. After solvation, counterions of Na+ and Cl− were included
in the solvent to make the box neutral. The simulation was run using a modified Berendsen thermostat
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Table 3.1: List of selected peptides with NNAA, template peptide (bold sequence).

Full sequence IC50 [ μ M]
ICVWQDWGAHRCT 1.20

ICV(OMW)QDWGAHRCT 0.21
ICV(MTR)QDWGAHRCT 0.87
ICV(OMY)QDWGAHRCT 1.30
I(NMC)VYQDWGAHRCT 7.50
ICVYQD(NMW)GAHRCT 25.00
ICVYQDWGAH(NMR)CT 32.00
ICVYQ(NMD)WGAHRCT 44.00
ICVYQDWGAHR(NMC)T 154.00

[70, 71, 72] at 310K temperature-coupling, and the Parrinello-Rahman barostat [76] at 1bar pressure-
coupling. The electrostatic interactions were calculated using the Particle Mesh Ewald (PME) method
with 1.0 nm short-range electrostatic and van der Waals cutoffs [128]. The equations of motion were
solved with the leapfrog integrator [129] using a time step of 2 femtoseconds (fs).

3.2.5 SCORING FUNCTIONS
Six different scoring functions for protein-peptide with NNAA interactions were used to calculate scores
over the conformations from all of each molecular dynamics trajectory. The scoring functions used were
Cyscore, Dligand2, Dlscore, Nnscore, Smina, and Vina (see Section 2.6.1).

Scoring functions are used to assess the affinity between C3c-compstatin complexes with NNAA by
scoring the trajectories. Conformations were recorded every 500 ps. For the scoring functions, Cyscore,
Dligand2, Smina, and Vina give us an affinity result in molar units, in this case, the lower the result, the
more affinity the complex has. On the other hand, for Nnscore and Dlscore SF, the affinity results are
given in pKd units, that is, the higher the result, the better the affinity. For these two scoring functions,
we are going to multiply the result of the scores obtained by -1, to work all the SFs with the same metric.

3.2.6 SPEARMAN CORRELATION ANALYSIS
Spearman’s correlation coefficient, rs, measures the strength and direction of the association between
two ranked variables. In our case, it will be used to relate the following variables. The first variable is
the experimental IC50 values found in Table 3.1, and the second variable is the affinity scores obtained
by the scoring functions. Specifically, MD conformations were evaluated with 6 scoring functions. The
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conformations obtained were recorded every 500 ps, which would be a total of 200 structures for each
C3c-compstatin complex with NNAA.

To calculate the Spearman rank correlation, it is first necessary to separate the two variables under
study by ranks, from highest to lowest. Then, make sure that the variables under study follow a non-
normal distribution, as is the case with our variables. Finally, obtain the correlation coefficients.

3.3 RESULTS AND DISCUSSION

We generated topology parameters for the compstatin peptide analogs that include NNAAs. From these
modified peptides bound to the C3c protein, we formed complexes to be sampled with MD simulations
for a total of 100ns. Additionally, in order to corroborate the results, a replica of the system was made for
100 ns and the simulations were extended up to 200 ns. MD trajectories in the period 0 to 100 ns, 100 to
200 ns, and 0 to 200 ns were scored, different programs were used, and correlations against experimental
activities were calculated.

3.3.1 MOLECULAR DYNAMICS
The convergence of the simulations MD was checked by calculating the all-atom root-mean-square de-
viation (RMSD) of the protein and peptide with NNAA. Additionally, the root-mean-square fluctuation
(RMSF) of both the protein and peptide with NNAA. We found that the majority of the protein-peptide
complexes with NNAA remained stable during the MD simulation. We monitored the RMSD, RMSF,
and the distance between the receptor and ligand. As reference, we measured the distance between the
alpha carbon atom of proline 347 from protein C3c and the alpha carbon atom of the cysteine (residue
number 2) from the compstatin peptide, Figure 3.1. Further, figure 3.3, shows these observables for mod-
ified peptide (ICV(MTR)QDWGAHRCT), and C3c protein. The results for the additional complexes are
found in Appendix A.1, in Figure A.1 to A.8.

From the RMSD plots for the protein and the peptide, (figure 3.3, and A.1), it is observed that of
the protein the C3c protein-ICV(MTR)QDWGAHRCT, and C3c protein-I(NMC)VYQDWGAHRCT
complexes are the most stable with variations of approximately 1Å. In the other complexes, the varia-
tions are up to 4Å. For the compstatin peptides with NNAA, in most plots, the complexes will remain
stable with variations of 1Å, except for the C3c protein-ICVYQDWGAH(NMR)CT and C3c protein-
ICVYQDWGAHR(NMC)T complexes which have variations of up to 4Å. In general, it is observed that
the complexes remain stable over time.

33



Figure 3.3: (A) RMSD of protein and peptide with NNAA. (B) Distance between the alpha carbon atom of proline
347 from protein C3c and the alpha carbon atom of the cysteine (residue number 2) from the compstatin peptide.
(C) RMSF of the protein. (D) RMSF of the peptide with NNAA. All of the above for the complex C3c protein-
ICV(MTR)QDWGAHRCT.

In order to validate the results, we ran one replica of each system for a period of 100 ns. The RMSD
and RMSF graphs of the replica of these systems can be found in figure A.9 to A.17. Further, due to
the low convergence of some complex systems and in order to validate the results, the simulations were
extended by 100 ns, for a total of 200 ns. The RMSD and RMSF plots for these systems are found in
Figure A.18 to A.26.
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From the results obtained, instability is found in some of these complexes, such as: C3c protein-
ICVWQDWGAHRCT and C3c protein-ICVYQD(NMW)GAHRCT. The potential reasons for these in-
stabilities are that the force-field parameterization is poor. Additionally, the MD simulations were not
performed with the original system of the C3c protein in complex with the peptide compstatin only chain
A and G was used; so it is possible that the part of the protein that we excluded is important and stabilizes
the system and/or that we are not using the exact environmental factors, for example, the temperature
that was in the experiments was 300 K, instead, we used 310 K, which could also destabilize the complex.

3.3.2 SCORING THE MOLECULAR DYNAMICS CONFORMATIONS
Six different scoring functions for protein-peptide interactions were used to calculate the scores over the
period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns. In the tables of Appendix A.2, the scores obtained
with each of the scoring functions are found. On average, we found that the best binding affinity results
are the complexes evaluated in the period from 0 to 100 ns, followed by 0 to 200 ns, and finally, the
complexes in the period from 100 to 200 ns.

3.3.3 SPEARMAN CORRELATION STATISTICAL ANALYSIS
Spearman’s rank correlation was used to compare the scores obtained from the MD conformations and
the experimental IC50 ranking. The ranks of the scoring functions versus the experimental ranks for all
the scoring functions in the period from 0 to 100 ns, figure 3.4. The points in blue color represent the data
by ranks and the orange line represents the best fit line, also called the trend line or linear regression. This
is a straight line that helps us see if there is a relationship or correlation between the two factors being
studied [130]. The orange lines show the best fit, following the general trend of the scoring functions
and the experimental data. As you can see, some points are on the line, while others are above or below.
The data that is closest to the line is the data that correlates best. From the graphs, we observe that the
Nnscore, and Cyscore function have the best predictive power. In addition, the graphs show lines with a
positive slope. Data with a positive slope means that when one of the variables increases, the other also
increases, or if one decreases, the other also decreases.

Once we have the data of the two variables under study, it is possible to calculate the Spearman rank
correlation, according to equation 2.5. Regarding the correlations obtained, the best correlations are the
data of the coefficients that are closer to 1. For the system, Table 3.2, the scoring functions Nnscore
and Cyscore that the data tend to be >0.75, it means that the affinity score prediction correlates with the
experimental data of IC50. i.e. a strong correlation is obtained [113, 112]. For the scoring functions
Dlscore, Smina, Vina and Dligand2, there is a moderate correlation.
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Table 3.2: Spearman’s rank correlation for each scoring function at 310K.

Scoring Functions Correlation 0 - 100 ns Correlation 100 - 200 ns Correlation 0 - 200 ns
Cyscore 0.783 0.733 0.733

DLIGAND2 0.833 0.333 0.667
dlscore 0.433 0.717 0.617
nnscore 0.866 0.783 0.799
smina 0.799 0.483 0.700
vina 0.799 0.483 0.799
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Figure 3.4: Experimental rank IC50 vs rank scoring function, in the period from 0 to 100 ns. (A) Cyscore SF. (B)
Dligand2 SF. (C) Dlscore SF. (D) Nnscore SF. (E) Smina SF. (F) Vina SF.
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4
Conclusions

In this study, we evaluated the binding affinity for various complexes formed from the C3c protein in
binding with the compstatin peptide using a computational approach.

We selected a small set of modified peptides to rank. The challenge was to include them in the MD
simulations, since most force field programs do not consider NNAAs. For this reason, it was necessary
to look for program alternatives for the generation of topology parameters, which define which atoms are
connected to each other through chemical bonds and how they interact in the MD simulations. With the
help of an online server called PEPstrMOD, we generated the topology files.

Based on the set of previously defined protein-peptide topologies with NNAA, we performed the MD
simulations. The convergence of the MD simulations was evaluated by calculating the RMSD and RMSF.
In general, the complexes remained stable, that is, the complex binding it does not drastically change in
time.

In order to evaluate the obtained MD conformations, we use the scoring functions to predict the bind-
ing affinity between the protein-peptide complex. The scoring functions we use are based on different
principles, such as empirical, knowledge-based, deep learning-based, and neural network-based, with the
intention of considering different approaches. In order to evaluate the entire space of conformations ob-
tained in the MD simulations, we calculated the average of each scoring function in the period 0 to 100
ns, 100 to 200 ns, and 0 to 200 ns. Additionally, to validate the results, we ran one replica of each system
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for a period of 100 ns, and the simulation time was extended to 200 ns. Finally, with the scores obtained
from the MD simulations and with experimental data obtained from other studies [23], it is possible
to correlate these two variables. We find the highest Spearman correlation for the Nnscore and Cyscore
scoring function, suggesting that these are the most adequate for ranking the binding of modified peptides.
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5
Perspectives

Here, we have implemented a computational methodology using the peptide-bound protein C3c comp-
statin to predict the binding affinity between protein-ligand complexes. VariousNNAAcontaining analogs
of the compstatin peptide were used to form the C3c-compstatin complexes. In future studies, it would be
worthwhile to expand the number of compstatin peptide analogs containing various experimental binding
values. This would be useful since it would broaden the spectrum of the experimental variables, providing
a better sampling of the affinity data. Moreover, optimizing the starting NNAA side chain conformations,
as done for natural amino acids in ref. [131].

On the other hand, regarding the scoring of the MD conformations, six scoring functions with different
approaches were used in this work. However, it would be convenient in future research to include scoring
functions with other approaches to more exhaustively sample the entire conformation space.

As a perspective, due to the use of NNAA in the study complex, it is possible to use this work as a
comparative evaluation of receptor-ligand complexes that include NNAA. Specifically, it is possible to
use this research as benchmarking in peptide design protocols, such as the PARCE protocol [132]. The
purpose of PARCE is to design peptides and proteins with better affinities toward a particular target,
including proteins. For this reason, the inclusion of this study as benchmarking in this protocol could
expand the set of binding molecule proposals and include NNAAs.
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A
Appendix

A.1 RMSDANDRMSF GRAPHS FOR ALL COMPLEXES OF PROTEIN C3 AND PEPTIDE COMPSTATINWITHNNAA

RMSD and RMSF graphs to observe the convergence of the MD simulations of the complex of C3c
protein and compstatin peptide with NNAA, during 100 ns.

Figure A.1: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVWQDWGAHRCT.
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Figure A.2: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMW)QDWGAHRCT.

Figure A.3: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMY)QDWGAHRCT.

Figure A.4: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-I(NMC)VYQDWGAHRCT.

42



Figure A.5: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQD(NMW)GAHRCT.

Figure A.6: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAH(NMR)CT.

Figure A.7: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQ(NMD)WGAHRCT.
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Figure A.8: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAHR(NMC)T.

Figure A.9: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVWQDWGAHRCT replica.

Figure A.10: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMW)QDWGAHRCT replica.
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Figure A.11: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(MTR)QDWGAHRCT replica.

Figure A.12: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMY)QDWGAHRCT replica.

Figure A.13: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-I(NMC)VYQDWGAHRCT replica.
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Figure A.14: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQD(NMW)GAHRCT replica.

Figure A.15: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAH(NMR)CT replica.

Figure A.16: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQ(NMD)WGAHRCT replica.
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Figure A.17: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAHR(NMC)T replica.

Figure A.18: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVWQDWGAHRCT, in the period of 100 to 200 ns.

Figure A.19: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMW)QDWGAHRCT, in the period of 100 to 200 ns.
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Figure A.20: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(OMY)QDWGAHRCT, in the period of 100 to 200 ns.

Figure A.21: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-I(NMC)VYQDWGAHRCT, in the period of 100 to 200 ns.

Figure A.22: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQD(NMW)GAHRCT, in the period of 100 to 200 ns.
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Figure A.23: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAH(NMR)CT, in the period of 100 to 200 ns.

Figure A.24: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQ(NMD)WGAHRCT, in the period of 100 to 200 ns.

Figure A.25: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICVYQDWGAHR(NMC)T, in the period of 100 to 200 ns.
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Figure A.26: (A) RMSD of protein and peptide with NNAA. (B) RMSF of the protein. (D) RMSF of the peptide with
NNAA. All of the above for the complex C3c protein-ICV(MTR)QDWGAHRCT, in the period of 100 to 200 ns.

A.2 SCORE OF C3C PROTEIN AND COMPSTATIN PEPTIDE COMPLEXES WITH DIFFERENT NNAA OF ALL SCORING
FUNCTIONS

Table A.1: Cyscore score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 -1,847 -2,053 -1,950
2 -1,672 -1,180 -1,426
3 -1,988 -2,153 -2,070
4 -1,355 -1,711 -1,533
5 -1,641 -1,410 -1,525
6 -1,797 -1,191 -1,494
7 -1,308 -1,162 -1,235
8 -1,337 -0,114 -0,726
9 -1,242 -1,077 -1,159
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Table A.2: Dligand2 score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 -18,756 -18,692 -18,728
2 -17,944 -17,024 -17,466
3 -18,880 -19,045 -18,958
4 -18,249 -18,258 -18,254
5 -17,863 -17,524 -17,696
6 -17,319 -14,705 -15,700
7 -17,350 -13,589 -15,018
8 -17,554 -19,296 -17,695
9 -15,327 -13,634 -14,566

Table A.3: Dlscore score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 7.400 7.307 7.354
2 6.837 6.587 6.712
3 7.130 7.185 7.158
4 6.950 6.854 6.902
5 7.287 6.881 7.084
6 6.628 5.997 6.312
7 7.328 6.525 6.926
8 6.686 5.688 6.187
9 6.460 6.063 6.261

Table A.4: Nnscore score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 7.616 7.884 7.750
2 6.768 5.928 6.348
3 7.056 7.317 7.186
4 6.307 6.613 6.460
5 6.716 6.004 6.360
6 6.617 5.822 6.220
7 6.304 5.893 6.099
8 5.886 4.255 5.071
9 6.105 5.519 5.812
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Table A.5: Smina score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 -6.925 -7,067 -6,996
2 -6.302 -4,736 -5,519
3 -6.949 -7,247 -7,098
4 -6.117 -6,160 -6,139
5 -6.372 -5,741 -6,056
6 -6.058 -4,537 -5,298
7 -6.288 -4,777 -5,533
8 -5.581 -0,402 -2,991
9 -5.404 -4,807 -5,105

Table A.6: Vina score in the period 0 to 100 ns, 100 to 200 ns, and 0 to 200 ns.

Complex Score 0 - 100 ns Score 100 - 200 ns Score 0 - 200 ns
1 -6.696 -6.833 -6.765
2 -6.095 -4.585 -5.340
3 -6.732 -7.018 -6.875
4 -5.936 -5.975 -5.956
5 -6.108 -5.504 -5.806
6 -5.800 -4.341 -5.071
7 -6.050 -4.597 -5.323
8 -5.339 -0.386 -2.862
9 -5.168 -4.597 -4.882
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