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ABSTRACT: In this work, we illustrate the application of a wide variety of
Operations/operational research (OR) tools in higher education through three case
studies based on practical applications conducted in the Engineering School of the
Universidad de Antioquia. These case studies focus, respectively, on capacity planning,
resource allocation, and performance measurement. In the first case study, we model
and predict the flow of students enrolled in the industrial engineering program through
the new curriculum using system dynamics and algebraic modeling of dropout rates,
finding the number of sections for the courses, and the corresponding number of faculty
positions needed to support the program structure. The second case study is a course
covering model for the new curriculum that considers preferences and capacities of the
teaching staff in an integer programming model, to find the uncovered courses of the
new curriculum. Finally, the third case study presents a data envelopment analysis tool
currently used to evaluate and rank the faculty of the Engineering School according to their
teaching performance. The case studies presented in this work showcase how helpful OR
tools are to rationalize the decision-making process in higher education institutions.

RESUMEN: En este trabajo presentamos la aplicación de diversas herramientas de
Investigación de Operaciones en educación superior a través de tres casos de estudio
desarrollados en la Facultad de Ingeniería de la Universidad de Antioquia. Estos casos
se enfocan en la planeación de la capacidad, la distribución de los recursos y la medición
del desempeño, respectivamente. En el primer caso, usamos dinámica de sistemas para
modelar y predecir el flujo de los estudiantes a lo largo del nuevo currículo del programa
de Ingeniería Industrial y modelamos algebraicamente las tasas de deserción de los
estudiantes, obteniendo el número de grupos necesarios para los cursos del currículo y la
cantidad de profesores necesarios para apoyar la oferta académica. El segundo caso es la
aplicación de un modelo de cobertura de cursos para el nuevo currículo, considerando las
preferencias y capacidades de los profesores vinculados al departamento de Ingeniería
Industrial en un modelo de programación lineal entera y cuyos resultados fueron la
cantidad de cursos no cubiertos por área académica. Finalmente, el tercer caso presenta
una herramienta basada en Análisis Envolvente de Datos que es usada actualmente
para evaluar y clasificar a los profesores de la Facultad de Ingeniería de acuerdo con
su desempeño docente. Los casos de estudio presentados en este trabajo muestran la
utilidad de las herramientas de Investigación de Operaciones para racionalizar la toma de
decisiones en instituciones de educación superior.

1. Introduction

United Nations recognizes that education is essential
to achieve sustainable development and has declared
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Figure 1 Chronological distribution of documents of OR applied to education (Search equation: TITLE-ABS-KEY ((”Operational
research” OR ”Operations research”) AND “Education”), Source: Scopus database)

it in 2015 as the 4th out of 17 goals in the 2030 agenda
for sustainable development [1]. This goal and all the
associated targets aim to ensure gender equity and
improve the quality of education from early childhood care
and pre-primary to college/university level. In addition,
United Nations proposes free access to quality education
for all boys and girls at primary and secondary education.
According to the United Nations, remote learning remains
out of reach for at least 500 million students, and the
COVID-19 pandemic exacerbates inequalities in education,
increasing the rate of students out of school by forcing
school closures [2]. Contributions from several disciplines,
including Operations Research, may have a significant
impact on society, helping to close gender and accessibility
gaps.

Operations/Operational Research (OR) helps managers
of public and private organizations rationalize
decision-making, system design, and other managerial
activities with the help of analytic thinking based on the
classical scientific method, models, and computers [3].
OR has been traditionally applied in profit-based systems,
such as production and logistics, mainly focused on
operational problems. However, the provision of services,
particularly related to the public sectors such as education,
was studied in the early beginnings of OR. For instance,
existing reviews of the application of operational research
to education show the early interest of the discipline to
use their models and tools on this type of system [4]. The
results of a basic search on Scopus combining the terms
“Operational research OR Operations research” AND
“Education” reveal a growing interest in this topic. The
chronological distribution of the references on OR applied
to education systems shown in Figure 1 illustrates how
this non-traditional application field is gaining relevance
and interest in the OR community. In general, people
follow a process in the educational system that has
similarities with industrial processes. In early childhood,
students begin education in kindergarten, followed by

primary school, secondary school, then additional stages
of higher education or vocational education including
undergraduate and postgraduate education. Some parts
of the process such as primary and secondary school
tend to be compulsory, while others are voluntary. Also,
each part of the education process can be financed either
with public or private resources, being public funding the
most common. Likewise, most education services are
non-for-profit, and classical objective functions aimed
at cost minimization/revenue maximization need to be
adjusted [5].

As pointed out in [5], OR is used to support decision
making in education systems at different levels,
including planning and resource allocation, efficiency
and performance measurement, and routing and
scheduling resources at the operative level. Planning
and resource allocation applications aim at assigning
human (e.g., faculty and administrative staff) and physical
resources (e.g., monetary budget and space) to the
different stages and units of the education process based
on the forecasted number of students. This planning
effort can be carried out at a nationwide level or within
education centers like universities. For instance, [6]
presents a comprehensive review of OR applications in
higher education administration that includes financial
planning and budgeting using goal programming and other
optimization tools. Similarly, performance measurement
of education systems is a rich application area for
data envelopment analysis (DEA) [7] and statistical
methods such as regression models as stochastic frontier
estimation [8]. At the operational level, school bus routing
[9, 10] , and (course/examination) timetabling [11, 12]
have received a lot of attention in the OR literature. Most
of these operative problems have been solved using
heuristics, metaheuristics, and hyper-heuristics. By
contrast, in [13], the authors state that applications in this
context have to embrace soft OR methodologies [14] since
decisions in education systems tend to be strategic and
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unstructured problems as defined in [15].

As highlighted in [16], there is a need for data-driven
decision making in education to give education
administrators the required data to make informed
decisions helping to remove politics and ideology from the
process, among other benefits. Along this line of research,
this work illustrates the application of OR in higher
education for capacity planning, resource allocation, and
performance measurement through three case studies.
All cases are based on practical applications conducted in
the Universidad de Antioquia-UdeA (ranked 45th in Latin
America in 2020 and 4th in Colombia according to [17]).

The rest of the paper is structured as follows. The
next section presents the case studies addressing
managerial decisions and analysis at the Engineering
School of the UdeA. For the sake of self-containment,
each case includes the related literature, methodology,
and results. Finally, Section ?? extracts some conclusions
and outlines possible future research directions.

2. OR in higher education: three
case studies

The case studies presented in this work are practical
applications conducted in the Engineering School of the
UdeA, one of the largest engineering schools in Colombia,
with 8500+ undergraduate students, 500+ graduate
students, 17 engineering programs, 800+ graduates
yearly, and 157 permanent faculty as of 2019 [18]. In the
first case, we model and predict the students’ flow and
required capacities needed to support the new curriculum
design of the Industrial Engineering (IE) program using
system dynamics, algebraic modeling of (new) dropout
rates, and rough-cut capacity planning. The second case
study is a course covering model for the new curriculum
that considers the preferences and capacities of the
teaching staff in an integer programming model. Finally,
the third case study presents a data envelopment analysis
(DEA) tool that is used to evaluate and rank the faculty
of the Engineering School according to their teaching
performance.

2.1 Case study 1: System Dynamics for
predicting the flow of students and
allocating faculty staff

The IE Department at the UdeA is internally divided into
three academic areas, namely: Management and Finances
(Accounting, Management, Finance, and Economy related
courses); Quantitative Methods (Statistics and Operations
Research related courses); and Production, Logistics
and Quality (Supply chain, Productive Systems, Quality

Control and Process Management related courses). The
curriculum of the program is based on these academic
areas; in contrast, curriculum changes emerge over time
to adapt to new trends in the field, the labor market,
and the professional profile the program wants to offer
to society. These changes lead to a new design of the
program structure [19].

The IE curriculum is supported by two pillars: courses
developed by the IE Department and others developed by
the Engineering School. The Engineering School offers
the compulsory courses shared with other engineering
programs (e.g., Physics, Calculus, and English-related
courses), socio-humanistic and complementary elective
courses to give additional (soft) skills to the engineering
students. The IE Department manages basic courses
at the core of IE and other courses associated with the
aforementioned three areas of IE, including professional
electives.

At the time of this work, the IE curriculum had 56
courses distributed, as depicted in Figure 2. To operate
the program, the IE Department had 18 appointed full-time
faculty positions assigned to the academic areas according
to the general structure of the curriculum. A preliminary
analysis had shown that faculty positions should be evenly
distributed among the three academic areas within IE.
However, changes in the curriculum, failed recruitment for
vacant faculty positions, and generational shift motivated
this new analysis.

Considering this new curriculum, there are few historical
data to support the allocation of faculty positions to the
areas of the Department. It is worth noting that faculty
positions and their allocation is a controversial issue in
university departments, with different priorities and views
across universities. Moreover, resource scarcity adds
complexity to this subject [20]. Likewise, the change in
student enrollment and its impact on faculty allocation
is well known to be a political issue where political
forces within institutions try to favor some disciplines
and study areas [20]. The IE Department of the UdeA
is not an exception to these issues, so we designed a
decision support tool to enlighten the discussion on faculty
allocation and improve the objectivity of this decision.

Some administrative tools have been used to address
this problem, such as consultation between faculties
and administrators (e.g., deans or program directors)
as reported by [21], where minimum workloads are
defined based on some corporate governance policies,
which usually results in inefficient assignments of
teaching, research and outreach activities. Integer linear
programming is used in [22] to model the phenomenon,
using parameters defined through data mining. On the
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Figure 2 Courses distribution in the IE curriculum

other hand, [5] refers to the use of Markov chains and
discrete event simulation to improve the assignment.

In this paper, we use system dynamics (SD) to model
the flow of students through the new curriculum to
determine the number of sections needed for each course
and then how the full-time faculty should be distributed
in the areas to support the courses offered. We selected
this methodology because it requires little data and its
suitability for strategic (aggregate) decisions [23]. In
particular, in [24], the author highlights the large number
of applications of system dynamics in higher education.
Their taxonomy includes systems dynamics applications
in several areas: corporate governance, planning,
resourcing, and budgeting, teaching quality assessment,
teaching practice, microworlds, and enrollment demand
models. Moreover, there are a few works that use SD as a
(detailed) capacity planning tool [25]; our work follows this
direction enhancing the SD capabilities with other tools
like rough-cut capacity planning and algebraic modeling.

The IE program lasts ten semesters and admits between
85 and 92 new students per semester. As stated by [26],
at the time of this work, the dropout rate of the program
was 54% of the students. According to the analysis made
by [27], dropout rates per semester were equal for the
first two semesters and then between the third and tenth
semesters. Also, half of the total dropout of the program
occurred in the first two semesters. Moreover, as indicated
in [27], the failure rate was 25% for courses in the first
four semesters and 3% for courses in the following six
semesters. This process of dropout and retention can be
captured as follows:

tr21tr
8
2 = 1− d (1)

tr21 = 1− d

2
(2)

tr1 =

√
1− d

2
(3)

tr2 = 8

√
1− d

tr21
(4)

Where tr1 is the retention rate of students per semester,
for the first two semesters, tr2 is the retention rate of
students per semester, from the third to tenth semester,
and d is the total dropout rate. Equation 1 is a geometric
progression that calculates the retention rate along the
program differentiating the first two semesters from the
remaining eight. This calculation is based on the total
dropout rate. Then, knowing that the dropout in the first
two semesters corresponds to half of the total dropout
of the program, we can calculate tr21 as the complement
of the half of the total dropout rate (Equation 2), and,
since in tr21 the exponent represents the number of
semesters, we obtain the retention rate for semesters 1
and 2 in Equation 3. Replacing the value tr21 in Equation
1 and solving for tr2, it is possible to find the retention
rate for the remaining semesters (Equation 4). Once
we obtain retention rates, we also calculate the dropout
per semester as the complement of the corresponding
retention rate.

Figure 3 shows the system dynamics model representing
the students’ flow through the 10 semesters of the IE
curriculum. At the beginning, there is an acceptance
rate that determines the number of students admitted
to the program; those students are the input of the first
semester. Once the semester ends, according to its
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Figure 3 System dynamics model for the flow of students in the new curriculum

Table 1 Input data for the system dynamics model

Semester Initial scenario Scenario 1 Scenario 2

Courses’ failure rate
per semester (%)

1 25 23 25
2 25 22 25
3 25 22 25
4 25 17 25

5 to 10 3 3 3
Dropout rate per
semester (%)

1 and 2 14.56 11.97 13.25
3 to 10 5.61 4.20 4.86

Total dropout rate (%) 54.00 45.00 49.50
All scenarios consider an average of students admitted to the program between 85 and 92

retention and dropout rates, some students leave the
program, and some students remain. Within the number
of students that continue in the program, some of them fail
courses and stay in the same semester for the next period;
the rest are input for the next semester. We implemented
this model in the simulation software Powersim [28].

The main difference between semesters is the retention
rates, as explained before, for each of the first two
semesters, it is tr1 and for each of the remaining
semesters, it is tr2. Likewise, course failure rates are
also different among semesters, according to data of [27].
First, we run an initial scenario with the data of dropout
and course failure rates previously described; then we run
two more scenarios using as an input the data found in the
work of [27] where there is a complete analysis of dropout
and course failure in the Engineering School.

Scenario 1 is an optimistic approach where we assumed
that the total dropout rate would be lower than in the

initial scenario thanks to the new curriculum design. Also,
course failure rates were higher in the first four semesters
(where compulsory courses are the main load on each
semester). Still, this rate will decrease along this period
influenced by the adaptation of students to the university
and their migration between academic programs. From
the fifth semester, course failure rates remain the same
as in the initial scenario. Scenario 2 is a more conservative
approach in which we assumed a total dropout rate
higher than in the optimistic approach but lower than
in the initial scenario. This scenario assumes that the
course failure rate stays the same per semester as in
the initial scenario. In both scenarios, we calculated the
dropout rates per semester using the model from Equation
1 to 4. Table 1 shows the input data for the three scenarios.

After running the system dynamics model under the
three scenarios, we obtained the resulting number of
graduates (depicted in Figure 4). In the simulation
horizon, the number of graduates for scenario 2 stabilizes
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Figure 4 Total of graduates in the IE program obtained with the system dynamics model

before the rest of the scenarios, and results have less
variability. Likewise, according to the work developed
by Ingeniería y Sociedad research group [27], scenario
2 has a more realistic configuration and would predict
better the number of graduates of the IE program in the
following years. For these reasons, we decided to analyze
further results using this scenario as a base case. To plan
the teaching load generated by the new curriculum, we
analyzed the results of scenario 2 in two cases. The first
case considers compulsory courses (shown in Figure 5a).
Compulsory courses represent the core of the program
containing most of the courses in the IE curriculum,
followed by Quantitative Methods, Management and
Finances, and Production, Logistics and Quality courses.
Compulsory courses are managed by the Engineering
School, not depending on the IE Department. Elective
courses together are as representative as some of the
academic areas.

The second case does not consider compulsory courses
(shown in Figure 5b), only includes courses conducted
by the IE Department. These results allow us to see
the representativeness of every academic area in
the curriculum in the number of courses offered.
Furthermore, the electives are almost a quarter of the
curriculum; then, it is worthy to evaluate the capacity of
the Department to support them. The order of areas (in
percentage of course sections) remains the same as in
case 1.

Following a rough-cut-capacity planning approach
[29], after knowing the number of course sections, we
determine how many full-time faculty positions should be
assigned to each area. Table 2 shows the results for both
scenarios, only considering the set of courses managed
by the IE Department. In allocation 1, we assumed that

professional electives were equally supported by the areas,
while in allocation 2, electives were included in a separate
way to analyze the number of positions needed to support
those courses. The results show that Management and
Finances and Quantitative methods needed approximately
6 faculty positions to support their courses, Production,
Logistics, and Quality needed around 4 positions, and the
remaining of the available positions should be distributed
to professional electives.

Based on the results of this model, the IE Department
opened the discussion of redistributing faculty
positions to face a new curriculum guided by objective
recommendations without bias of political views or
assumptions in favor of some knowledge areas. That kind
of discussion was part of the curriculum design phase
that concluded with a new approved curriculum. One of
the decisions made after this discussion was to assign one
more faculty member to the Quantitative Methods area.

Comparing these results to other works allows us
to identify that the use of quantitative methods to
measure the efficiency of universities, including courses
assignment as decision variables [30], achieves robust
results that support decision-making based on objective
data. Consequently, this outweighs the effectiveness of
intuitive course assignment mechanisms based on the
agreement traditionally used by some universities. Works
that use fuzzy logic as an analysis scheme [31] also obtain
efficient results that support decision-making and identify
other ways of addressing course assignments, creating
more flexible environments for the incorporation of new
rules and variables.

However, in all the cases referred to, it is agreed that
universities should improve the organization of their
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(a) Case 1 (b) Case 2

Figure 5 Course sections per area for allocation 2

Table 2 Full-Time faculty per area

Academic areas
Course sections
per area (%)
Scenario 1

Number of
faculties
Allocation 1

Course sections
per area (%)
Allocation 2

Number of
faculties
Allocation 2

Management and Finances 36 6.5 33 6.0
Quantitative Methods 38 6.9 35 6.3
Production, Logistics, and
Quality

25 4.6 23 4.2

Professional Electives – – 8 1.5
Total 100 18 100 18

information records and data processing when feeding
these kinds of allocation approaches. Some other works,
such as [32], address the teaching assignment with an
advanced approach, projecting the needs of the academic
departments in training and taking into account teaching
mobility. They use genetic algorithms considering
different ways to occupy faculty positions as assistants,
visiting, or part-time professors.

As a side result that validates our system dynamics
model, we compared the graduates projected by our
model with real data published by the UdeA yearly [33]
(that were not available at the moment of our analysis).
After 2012, the results produced by our model under
scenario 2 are very similar to the reality (as can be seen
in Figure 6 that shows an average yearly number of 90
graduates). This is an outstanding outcome showing
how helpful is the use of operational research tools
in the planning, tactical and operative stages of the
decision-making process, even in non-traditional settings
such as higher education.

A possible extension of our models includes a more
detailed modeling of dropout rates by considering not
two but three tiers (including in this way the different
dropout behaviors of freshman, sophomore, and senior

students). Likewise, the main assumption of this work
is the one-to-one relationship of course sections and
instructors; however, a current trend in the IE Department
(and worldwide) is the modularization of courses (with
different faculty in charge of each module), something that
should be included in future models.

2.2 Case study 2: Course Covering Model

The new IE curriculum had novel and modified versions
of some courses. This situation requires careful resource
planning to guarantee the proper implementation of the
program. We proposed the application of OR to know if
the program had enough capacity (in terms of quantity
and academic area of study) in their faculty to support this
new academic offer. To address this question, we used
a mathematical model inspired on the double standard
model [34, 35] and other maximal covering extensions
used in (ambulance) location [36].

Although facility location applications address mostly
facility siting for product and service provision [37, 38],
they have also been used for other non-location decisions.
For instance, [39] presents a medical application where
a double vision problem is formulated and solved as a
p-median/p-center problem on a line. An early review
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Figure 6 Number of graduates of the IE program by year. Source:
http://www.udea.edu.co/wps/portal/udea/web/inicio/institucional/data-udea/formacion/graduados

of applications of the maximal covering location problem
(MCLP) in machine learning (e.g., data abstraction,
clustering, classification, discriminant analysis) and other
non-location applications (cognitive process modeling,
mail marketing optimization, etc.) is presented in [40]. The
interested reader is referred to [41] for an updated review,
including applications of the MCLP for product design,
image processing, color selection for dental prosthesis,
among others. Likewise, in [42] an integer programming
model is used to assign employees to tasks with the
option of employee firing and hiring. In their model, the
authors consider employee skills and task requirements
in a so-called ability space to minimize distances as in
facility location models. Similarly, in [43], the authors
present a multiobjective integer linear model to assign
a task to employees according to their abilities. This
model minimizes the distance between the employee
and the task while avoiding boredom and minimizing
inequities in the workloads at minimum cost. They use the
weighting method to find the set of solutions and apply
this formulation to a real problem in a company owned by
the Pontificia Universidad Católica de Chile.

In the Colombian context, location models have been
used conventionally. For instance, [44] addresses the
three-echelon uncapacitated facility location problem
that considers the flow of products from production
plants to warehouses and then to clients, minimizing the
cost of warehouses location and the cost of production
and distribution of the product. A literature review in
vehicle relocation for Emergency Medical Services (EMS)
is presented in [45]. The authors in [46] present two
multiobjective models to locate surveillance cameras in
public transportation systems, optimizing the expected
number of crimes detected and the image quality of the
surveillance system. An application to a social program
of food assistance in Colombia called Bienestarina is
presented in [47]. They evaluate the current supply chain
configuration of the program and propose improvements

related to location decisions through a mixed-integer
mathematical model. More recently, a location-routing
model is presented in [48] to collect waste electrical and
electronic equipment, locating the collection points, and
assigning them the type of devices to be collected; then
they design the routes to minimize costs. They also show
a case study in Bucaramanga, Colombia.

What distinguishes this application from other related
works is that we use location models as a capacity
planning tool in an academic context, including faculty
preferences. We face a tactical decision regarding the
characteristics of education as a service, where the
main resource to manage is people with specialized
backgrounds and specific training. Particularly, it is
important for this application to include the preferences
of faculty members for the courses in the new curriculum
and their commonalities with the academic areas because
courses should be led by someone interested in the topic
and whose abilities match the required knowledge. Also,
this application seeks to measure the current capacity but
also identify personnel needs to guide further decisions.
According to the aforementioned literature review, this
application of location models is a novelty, mainly in the
Colombian context and in higher education planning in
general.

The notation of the proposed course covering model
is stated as follows. Let S = {1, . . . , n} be the set of
courses of the curriculum that we need to cover. Likewise,
P = {1, . . . ,m} is the set of the department faculty. Each
professor j ∈ P has a preference cij for the course i ∈ S.
The teaching load that is the maximum number of courses
in charge per professor is denoted by b. The subset
Di represents the faculty that can cover a given course
i ∈ S. Finally, variable xij is equal to 1 when professor
j is assigned to course i and 0 otherwise. Likewise,
coverage variable yik is equal to 1 if course i is covered
by k professors and 0 otherwise. Using this notation, the
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course covering model is formulated as follows:

max
∑
i∈S

∑
k=1

kyik +

n∑
i=1

m∑
j=1

cijxij (5)

∑
j∈Di

xij ≥
∑
k=1

kyik ∀i ∈ S (6)

∑
i∈S

xij ≤ b ∀j ∈ P (7)

xij ∈ {0, 1} (8)

yik ∈ {0, 1} (9)

Equation 5 is the objective function that maximizes the
number of courses covered considering professors’
preferences for every course. The first term in the
objective function corresponds to the coverage of courses,
and the second term is the professors’ preferences,
following the structure of a lexicographic priority model.
Equation 6 to 9 are the constraints of the model. Equation
6 represents the coverage of the courses guaranteeing
that at least k professors could cover one course if it
is counted as k covered. Equation 7 are the maximum
capacity of coverage of each faculty, in number of courses.
Finally, Equation 8 and 9 define the decision variables as
binary.

To collect data for the mathematical model, we applied a
survey to the full-time faculty of the program, each one
choosing five courses from the new curriculum that they
were able to cover in descending order of preference. The
coverage was defined as the ability and the will of the
faculty to teach the course and manage it; this implies
mainly to verify the validity of course’ contents in time and
lead the teaching staff assigned to the different sections of
the course, especially in the consistency among teaching
plans for the semester. The new curriculum had 28
courses managed by the IE Department and 17 full-time
active faculties.

Results from the survey showed some professors
with some limitations to choose five courses of the new
curriculum, completing the list partially. Probably because
there are few courses in their academic area, the rest
of the courses are too specific, and professors were not
willing to cover them. Also, there are courses that were
less preferred, and they were never chosen in the favorite
courses to cover.

We implemented the mathematical model in IBM ILOG
CPLEX Optimization Studio [49]. We used the data from
the survey described previously, the maximum coverage
capacity was two courses (b = 2) and at least one professor
will cover each course (k = 1). We just considered courses

offered by the IE Department and the information about
the faculty of this department only. We did not consider
the number of sections per course.

We used the course covering model in two scenarios.
Scenario 1 considers all the faculty of the IE Department.
Scenario 2 does not consider the professors that were
about to retire. In both scenarios, we identified the
uncovered courses, the teaching assignment to the
courses of the new curriculum, and the academic areas
that had a lack of resources. Academic areas are the same
described in the previous case study. Table 3 contains the
results for both scenarios. The percentage of uncovered
courses is 10,7% for scenario 1 and 25% for scenario
2. It was expected that scenario 2 had more uncovered
courses because we were considering a smaller number
of professors.

In addition, Table 4 shows the uncovered courses per
academic area, where Quantitative Methods remains
with the same number of uncovered courses through
scenarios. By contrast, both Management and Finances
and Production, Logistics and Quality increased the
number of uncovered courses in scenario 2 because
the teaching staff about to retire belong to those areas.
In addition, uncovered courses have a lower frequency
of preference in the survey; therefore, as the model
maximizes the preferences of the teaching staff, these
courses have no opportunity to be covered unless there
is at least one professor that has chosen it with high
preference.

Table 3 Number of uncovered courses for scenario 1 and 2

Scenario 1 Scenario 2
Covered courses 25 21
Uncovered courses 3 7
Total 28 28

Table 4 Number of uncovered courses per academic area

Academic Area Scenario 1 Scenario 2
Quantitative Methods 2 2
Management and Finances 1 3
Production, Logistics and
Quality

0 2

As mentioned in the previous case study, the Quantitative
Methods area received one faculty position, as an outcome
of the analysis presented with the system dynamics model.
The new faculty position was dedicated to supporting the
uncovered courses, revealed by the results of the courses
covering model. Moreover, identifying the specific courses
that would need a new professor to cover them is an
interesting and useful side result. These data revealed the
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need to hire more faculty members to cover other courses
of the same area that did not have anyone responsible for
leading and teaching them in any of the two scenarios.

This application could be extended to determine not
only the faculties’ capacity deficit, but also the optimal
number of sections and consequently the auxiliary
professors needed to cover the courses, including budget
or number of students per section as constraints. Also, it
would be useful to extend the model to balance faculties’
workload considering teaching, administrative, and
research activities following the preferences criteria.

2.3 Case study 3: A cross-efficiency model
for teaching performance measurement

In our third case study, we change the area of OR
application from planning and resource allocation to
performance measurement. In this section, we describe
the implementation of a DEA model for the teaching
ranking of full-time faculty of the entire Engineering
School. In their regulation, Colombia’s Ministry of
Education includes an annual incentive for the faculty
with the best teaching performance of the different
schools of public universities. This incentive must be
supported by a transparent evaluation mechanism with
criteria fixed in an objective form [50]. For years, for
the ranking process to select the faculty deserving this
recognition, the Engineering School of the UdeA used
an ad-hoc procedure that relies on subjectively assigned
weights. In 2016, the Engineering School Council and
its faculty agreed that enhancing this ranking procedure
was needed. After testing several alternative approaches
such as multidimensional scaling and data envelopment
analysis, the latter approach was tested and implemented
for this process.

Since its early beginnings, DEA emerged as a suitable
methodology for the measurement of the efficiency of
educational institutions and programs. In the seminal
application [51], DEA is used to evaluate the effectiveness
of Program Follow Through, a US Federal program
implemented in the 70’s for improving the education of
children in deprived communities. Likewise, education
is among the top-five economic sectors addressed in
DEA applications [52]. For an updated discussion of
DEA applications on education, the interested reader is
referred to [53] and [54] and for an in-depth discussion of
DEA concepts and application to [55].

Applications of DEA for performance measurement
in higher education range from countrywide evaluation
at the institutional level (e.g., public universities) to
academic departments and individual faculty [56].
Particularly, evaluating teaching performance is a

complex process involving objective and subjective
criteria. For instance, it involves subjective weight
assignment of the different criteria and subjective
student evaluation. However, recent studies tackle this
complexity in different ways. For instance, in [57], the
authors combine the analytic hierarchy process (AHP)
and DEA to transform student-declared preferences into
quantifiable information. Similarly, in [58] the authors
also derive weight restrictions based on AHP and use
conjoint analysis to derive quantifiable information from
stakeholders’ opinions. Likewise, in a course-centered
measurement, the authors of [59] combine a balanced
scorecard and DEA to evaluate the teaching performance
of single courses of the engineering school of a Colombian
university.

The weight used for teaching evaluation is also the
focus of [60]. In this study, the authors found that, in
some cases, small perturbations of weights may result
in many different rankings of the faculty. Alternatively,
to overcome this issue, we resort to cross-efficiency
DEA models, that allow each faculty to assign the best
set of weights to measure their teaching performance
but also use peers’ weights in the evaluation of each
professor. In the Colombian context, cross-efficiency DEA
models have been used to evaluate universities in their
research, teaching, and alumni employment aspects [61].
In [62], a cross-efficiency DEA model was also used for
the classification of research groups of the Engineering
School of UdeA. For a review of applications of DEA models
in the Colombian Higher Education system, the reader is
referred to [63]. To the best of our knowledge, this is the
first study using cross-efficiency DEA models for teaching
evaluation in higher education.

The Engineering School of UdeA uses five output
variables to measure teaching performance, namely:
o1: total number of courses sections taught in the year;
o2: total number of different courses taught in the year;
o3: total number of students in these courses; o4: total
number of teaching hours in the year; and o5: weighted
average evaluation of the quality of the teaching given
by the students. These outputs include courses both in
undergraduate and graduate programs. Since no input
is given, we include a dummy input for all faculty (i.e., a
notational 1 across all faculty). As pointed out by [53],
this approach is equivalent to a benefit-of-the-doubt
(BoD) composite indicator. BoD indicators offer several
benefits: invariance to measurement units and the fact
that the search for a ‘right’ set of weights is overcome
by generating flexible weights for each evaluated unit
(faculty in this case) [64, 65]. BoD and other DEA-based
models were compared in [65] for the evaluation of
faculty research effectiveness under a cross-efficiency
framework.
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In a similar approach, the proposed BoD model follows a
cross-efficiency methodology [66]. The cross-efficiency
evaluation procedure has three stages. In a first stage,
each faculty can assign optimal weights to his/her
outputs using a DEA model. Then in a second stage, the
cross-efficient DEA model evaluates the efficiency of all
faculty with the optimal weights of each faculty. Finally,
in a third stage, the teaching ranking of the faculty is
obtained by sorting them in decreasing order of cross
efficiency.

Considering this methodology, in the first stage, we
evaluate the set of faculty F . Let uro be the weights of
each output and yrj the value of output r obtained by
faculty j ∈ F . This model uses weights denoted with uro

to specify that these are the optimal weights for the five
outputs obtained while evaluating professor o According
to the BoD approach, the structure of the proposed DEA
model follows.

maxho =

5∑
r=1

uroyro (10)

5∑
r=1

uroyrj ≤ 1, ∀j ∈ F (11)

uro ≥ 0, r = 1, . . . 5 (12)

Equation 10 represents the first-stage score obtained by
professor o (ho), which corresponds to the weighted sum
of the outputs in a BoD approach. Equation 11 corresponds
to the linearization of the classical DEA model in its ratio
form [55] in the special case where there is a dummy
input with a constant value (i.e., a notational 1). Finally,
Equation 12 defines the decision variables (i.e., weights of
each teaching output).

Then, in the second cross-efficiency stage, we solve
model (13) - (16) to maximize (in a benevolent approach
[66]), the aggregated scores of all the faculty of the School
(Equation 13) while keeping the value of the score obtained
by professor o equal to the optimal value h∗

o of the first
stage (Equation 14).

max

5∑
r=1

uro

∑
j∈F :j ̸=o

yrj (13)

h∗
o =

5∑
r=1

uroyro (14)

5∑
r=1

uroyrj ≤ 1, ∀j ∈ F (15)

uro ≥ 0, r = 1, . . . 5 (16)

Finally, Equation 17 defines the cross-efficiency (CEj )
for each professor j ∈ F as the average of the BoD
scores obtained with the weight of all their peers (the other
professors). These DEA models were run using the Matlab
optimization toolbox [67] and the DEA models developed in
[68]. The third stage ranks the faculty using this value to
assess their teaching performance.

CEj =
1

n− 1

∑
o∈F :o ̸=j

5∑
r=1

uroyrj (17)

The proposed DEA model is used to rank the faculty
and to assign the incentives since 2016. To collect
the data for each year’s execution we resort to the
university information system. After data cleansing and
calculation procedures over approximately one thousand
course-sections, we get the appropriate information for
the five outputs for a number of professors that range
from 113 to 140. Table 5 presents the descriptive statistics
for the five outputs from 2015 to 2019.

As can be seen in Table 5, output variables are measured
in different scales. For instance, o1 and o2 that count
the number of course sections, and different courses
range from 1 to a maximum of 15. On the other hand,
the number of students ranges from a few students
to several hundreds. Yearly, teaching hours are lower
bounded by 128 because a professor with o3 below this
threshold is not considered eligible for the incentive. By
contrast, professors focused on teaching have nearly half
their total charge (almost 800 of 1800h per year) devoted
to this activity. Finally, weighted average evaluation of
the teaching quality is measured on a scale from 1 to 5.
Professors with a low evaluation on this output tend to
have values near 3. As depicted in Table 5, 2018 exhibits
values for o3 and o4 that differ considerably from the other
periods because public higher education strikes in the
country allowed the completion of just a single academic
term in this year. A first benefit of using a DEA model is
the possibility to combine outputs measured in different
scales without any data normalization procedure that was
needed if weights were fixed in advance.

Table 6 presents the descriptive statistics of the cross
efficiencies obtained for the five years of analysis.
Remarkably the average and minimum values of the
cross efficiency remain relatively stable over the years.
Although their values are (by definition) in the interval
[0,1], minimum values are always around 0.6 and the
average cross-efficiency is approximately 0.88 in all years.
On the other hand, maximum values are very close to 1.0,
showing that there is at least a professor with outstanding
performance in all years, no matter the weights their peers
assign to the different outputs. Moreover, the average
of the cross-efficiency is always below the median. This
last result reveals that its distribution is left-skewed, as
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Table 5 Descriptive statistics of the output variables for the years 2015 to 2019

Year 2015 2016 2017 2018 2019
n (number of
professors)

116 113 114 135 140

o1: Course sections
Min 2.00 2.00 2.00 1.00 1.00
Max 11.00 7.00 9.00 6.00 15.00
Average 5.17 3.57 3.66 2.37 4.90
Std. Dev 2.21 1.40 1.53 0.94 2.04

o2: Different courses
Min 1.00 1.00 1.00 1.00 1.00
Max 7.00 5.00 5.00 5.00 7.00
Average 3.11 2.03 2.08 2.14 2.84
Std. Dev 1.38 0.93 0.98 0.87 1.34

o3: Number of students
Min 8.00 20.00 9.00 5.00 17.00
Max 322.00 323.00 323.00 153.00 243.00
Average 89.59 82.85 80.58 49.36 92.64
Std. Dev 51.44 48.68 49.29 23.71 47.38

o4: Teaching hours
Min 128.00 128.00 128.00 64.00 76.80
Max 736.00 460.80 512.00 320.00 729.60
Average 302.86 224.84 222.95 143.80 294.31
Std. Dev 131.76 90.22 90.11 51.18 130.55
o5: Weighted average evaluation of the teaching quality

Min 2.87 2.81 2.81 3.12 3.07
Max 4.89 4.81 4.81 5.00 4.95
Average 4.33 4.36 4.32 4.37 4.38
Std. Dev 0.35 0.35 0.36 0.36 0.38

depicted in Figure 7.

Table 6 Descriptive statistics of the cross efficiencies for the
years 2015 to 2019

Year 2015 2016 2017 2018 2019
Min 0.608 0.608 0.601 0.636 0.614
Max 0.985 0.983 0.980 0.996 0.999
Average 0.876 0.878 0.872 0.878 0.878
Median 0.893 0.901 0.894 0.890 0.891
Std. Dev 0.066 0.071 0.071 0.069 0.076

Finally, to analyze the stability of the rank from year
to year, Figure 8 depicts the ranking obtained by the 70
professors that have been evaluated for all the five years
of analysis. This heatmap uses the relative rank of the
professor calculated by dividing the rank obtained by the
professor between the total number of faculty evaluated
each year (n). In this figure, green values represent
higher ranks, whereas red values represent lower ranks.
Professors are presented in increasing order of their
average relative rank over the five years. This figure
shows that professors in higher and lower ranks tend to

be stable in their results. Very few exceptions occur; for
instance, the professor in position 35 obtained a low rank
in the last two years while his/her performance was better
in the first three years of analysis. On the contrary, the
professor in position 22 improved his/her results after
the first year of evaluation. Similarly, the professor in
position 40 greatly improved his/her results in the last
year of evaluation. An in-depth analysis of these specific
cases could be interesting for the administrators of the
Engineering School.

As an extension, other important teaching evaluation
criteria could be included (e.g., supporting material
creation and use, among others). Likewise, other factors
affecting the teaching evaluation should be included to
better understand the evaluation process (e.g.,: teaching
conditions such as class size, elective/required course,
course level, time of day, etc.; or faculty characteristics:
gender, rank, department affiliation, years of experience,
etc.) [57].
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Figure 7 Histogram of the cross efficiencies obtained for the year 2019. (Dashed line: CE average, solid line: CE median)

Figure 8 Heatmap of relative ranks of professors at the UdeA Engineering School from 2015-2019, (Pos: position in the average
relative ranking)

3. Conclusions

Paraphrasing [3], this paper illustrates (through three
case studies) how the analytic tools of OR can be used for
rationalizing decision making, particularly, forecasting
and planning, resource allocation, and performance
measurement in higher education (a non-traditional area
of application of this discipline). Moreover, the three tools
lead to decisions supported by quantitative analysis that
gave a deeper understanding of the system being modeled.

In the first two case studies, OR shed light on the
teaching demand and necessary capacity planning for a
university department facing a generational shift of its
faculty and a curriculum redesign simultaneously. While
in the third case study, an objective and consistent tool
for teaching evaluation and ranking has been proposed
and implemented. As a matter of fact, the School and IE
Department administrators made actual decisions based
on the results of these models. For instance, the profiles
of new open positions were highly influenced by the results
of the first two case studies. Likewise, the performance
measurement tool developed in the third case study has
been used consistently over the last five years. We also
want to highlight that decisions made using the tools
described in this work were mainly strategic and tactical.

A wide variety of OR tools were used in the different case
studies, namely: system dynamics, algebraic modeling,

rough-cut-capacity planning, facility-location-like models,
and data envelopment analysis. Other tools, without the
same success, were also proven. For instance, to model
the flow of students we tried a Markov chain approach [69].
However, the need for detailed information (not available
at that moment) and the complexity of this modeling option
(when compared against systems dynamics) hindered its
application. Nonetheless, OR tools of different nature,
from problem structuring methodologies to optimization
and simulation techniques, are available for their use in
the decision-making process of educational systems [5].

Promoting the use of OR tools in other schools of the
University is an interesting alternative. However, data
cleansing and processing should be automated since this
is the most time-consuming part of the process (mainly
in the first and third case studies). Currently, this data
collection is done manually by accessing the information
system of the University to gather and verify all the
necessary information.

The analytic tools used in the second case study have
the advantage of requiring data easy to collect and
process. This fact facilitates testing different policies
in the education system and evaluating them to make
more robust decisions. Depending on the context, the
size of the educational institution, and the availability of
data, other tools can be useful, such as machine learning
(ML) and artificial intelligence (AI). For instance, ML
has been used mainly in education to grade students
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by removing human bias, to help institutions to retain
students considering their needs, and predicting students’
performance by identifying weaknesses and suggesting
improving actions [70]. Combining traditional operational
research techniques with emerging ML/AI tools offers a
promising application possibility [71].

Additionally, technology influences education in
different aspects, such as the design of new pedagogic
strategies, different ways to access educational services,
technological platforms to provide the service, planning,
and assignment of resources. Face-to-face classes are
not the only approach to provide education services,
education has been evolving alongside technology, and
there is a constant need to have more efficient tools to
process and analyze information to manage and operate
education services. Currently, plenty of data are being
collected through different sources (education platforms,
information systems, (social) apps, etc.), giving this data a
decision-making value is also an opportunity for OR/AI/ML
tools. With this aim, modern data mining techniques
and technologies should be used to improve not only the
management of the education system, but the learning
process itself [72].

Moreover, the current situation related to the coronavirus
pandemic poses a real challenge to education systems,
in terms of rapid adaptation of face-to-face sessions to
virtual environments, accessibility to the services affected
by internet connectivity, and availability of technological
devices for teachers and students. Analytic tools like those
presented in this paper can also have a significant value to
face this new challenge.
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