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ABSTRACT 
In this paper we describe two neural network based algorithms for the Maximum Clique Problem. The 
developed algorithms provide discrete and continuos descent dynamics respectively to approximate the 
solution of the quadratic 0-1 formulation of the Maximum Clique Problem. The discrete approach 
performed better, maintaining computational competitiveness to greedy randomized search procedures. 
Experimental results on test graphs of size up to 3361 vertices and 5506380 edges are presented. 
 
Key words: Maximum clique problem, heuristics, neural networks, quadratric 0-1 problem, 
combinatorial  
                  optimization. 

 
RESUMEN 
 
Se describen dos algoritmos basados en redes neuronales para el Problema del Clique Máximo de un 
grafo. Los algoritmos desarrollados implementan dinámicas descendentes, en un caso continua y en el 
otro discreta, para aproximar la solución del problema planteado a partir de la formulación cuadrática 
del mismo. El algoritmo discreto presenta un mejor desempeño, alcanzando resultados similares a los 
obtenidos con otras heurísticas. Se discuten los resultados de la aplicación de los algoritmos en un 
conjunto de grafos de hasta 3361 vértices y 5506380 aristas. 
 
Palabras clave: Problema del clique máximo, heurística, redes neuronales, problema cuadrático 0-1,  
                           optimización combinatoria. 
 

1. INTRODUCTION 
 
 This paper describes two algorithms based on a neural network approach for solving the Maximum Clique 
Problem (MCP). Let G = (V,E) be an undirected graph where V = {1,2,...,n} is the set of vertices in G,n = |V| is 
the size of the set V, and E ⊆ V × V is the set of edges in V. The adjacency matrix of G is denoted by  
AG =(aij)n×n, where aij = 1 if (i,j) ∈ E, and aij = 0 if (i,j) ∉E. The vertex degree of vertex k is denoted by dG(k). 

The complement graph of G = (V,E) is denoted by G = E,V( ), where E = {(i,j)/ij ∈ V, i ≠ j, (i,j) ∉ E}. The 

adjacency matrix of G is denote by .)a(A nnijG ×= For a subset S ⊆ V we call G(S) = (S,E ∩ S×S) the 

subgraph induced by S. A graph G = (V,E) is complete if and only if for all i,j ∈ V, (i,j) ∈E. A clique C is a 
subset of V such that the induced subgraph G(C) is complete. A clique is maximal if no strict superset of it is a 
clique too. The MCP is the problem of finding a clique C of maximum cardinality in graph G. Denote the size 
of a maximum clique of graph G = (V,E) by ω(G). 
 
 All known exact algorithms for finding the maximum clique in a graph take exponential time in the worst 
case. This is not unexpected since the MCP is well known to be NP-hard (see Garey and Johnson [1979]). 
Hence, for practical purposes, these exact algorithms cannot solve very large problems. Since the problem is 
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NP-hard even to approximate, in order to obtain polynomial time complexity one must use heuristics, that is, 
algoritms without performance guarantee.  
 Beginning with the initial paper of Hopfield [1982] the resolution of several Combinatorial Optimization 
Problems (COP) has been approached by the neural network dynamics (see Takefuji [1990]). The MCP is 
one of these COP which has been studied using this heuristic, due to its computational complexity. The 
Jagota´s work (Jagota [1995]) is a representative example of this. In this paper we describe two algorithms for 
solving a MCP, based on a Hopfield neural network whose stable states are identified with maximal cliques. 
One algorithm provides a discrete descent dynamics and the second one follows a continuos descent 
dynamics to approach the solution of the quadratic 0-1 formulation of the MCP, described in section 2.Since 
our objective is to find the energy global minimum in the configuration space, our strategy attempts to avoid 
local minima, which correspond to maximal but not necesarily maximum cliques. 
 
2.  QUADRATIC 0-1 FORMULATION 
 
 An unconstrained quadratic zero-one programming problem has the following form: 
 
min f(x) = xTAx,  x ∈ {0,1}

n
; 

 
where A is an n × n matrix. The MCP can be formulated as a global quadratic zero-one problem. To facilitate 
our discussion, define for a graph G = (V,E) a transformation T from {0,1}

n
 to 2V, 

 
T(x) = {i|xi = 1, i ∈ V }, ∀x ∈ {0,1}

n
. 

  
 Denote  the inverse of T by T1. If x = T1(S) for some S ⊂ V then xi = 1 if i ∈ S and xi = 0 if i ∉ S, i = l,...,n. 
Pardalos and Xue [1994] formulated the MCP as a minimization problem, as stated in the following theorem: 
 
Theorem 2.1: The MCP is equivalent to the following global quadratic zero-one problem: 
 

global min f(x) = 
2
1 xT ,x)IA( G −   x ∈ {0,1}

n
.             (1) 

 
 If x∗ solves (1) then the set C = T(x∗) is a maximum clique of G with ω(G) = |C| = - 2f(x). 
 
 Next, we obtain some characterizations of the solution to the quadratic 0-1 problem and prove some 
relations among the maximal subgraphs of G and the discrete local minima of the corresponding function f(x) 
from (1). Pardalos and Desai [1991] obtained similar results for the maximum weighted independent set 
problem. A vector x ∈ {0,1}

n
  is said  to be a discrete local minimum (d.l.m.) of f(x) if and only if f(x) ≤ f(y), for 

any y ∈ {0,1}
n 
adjacent to x.  

 
LEMMA 2.1:  If x´ is a d.l.m. of function f(x) then 0xx ji =′′  for all edges (i,j) ∉ E. 
 
Proof . Let  x´ be a d.l.m. of function f(x) and suppose there is some pair (i,j) ∉ E, such that  .1xx ji =′′

Let x´´ = x´- ei, where ei ∈ {0,1}
n
 is the ith unit vector. It is easily seen that:  

 

f(x´´) = 
2
1 (x´ - ei)T )IA( G − (x´- ei) = f(x´) +

2
1  - iG ´)xA(             (2) 

 

since  and 1x j =′ 1aij =  then 1´)xA( iG ≥ and f(x´´) ≤ f(x´) - 
2
1 < f(x´). Hence, x´ is not a d.l.m., which is a 

contradiction.    � 
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 While Theorem 2.1 relates the global minimum of the function f(x) to the solution of the MCP, the following 
Theorem proves a relationship among all discrete minima of f(x) and the maximal cliques of the graph G. 
Theorem 2.2. x´ is a d.l.m. of function f(x) if and only if the set C´ = T(x´) is a maximal clique of graph G. 
 
Proof.  Let C´ be a maximal clique of graph G and x´= T1(C´). Let y ∈ {0,1}

n
 be an adjacent vector to x´, that 

is, they differ in only one coordinate, for example in the ith coordinate. 
 
Case 1. = 1 and yix′ i = 0. That is, y = x´- ei. Since i ∈ C´, then ika = 0 for all k ∈ C´. Using (2) we obtain f(y) = 
f(x´) + ½  > f(x´). Hence, x´ is a d.l.m. 
 
Case 2. = 0 and yix′ i = 1. That is, y = x´+ ei and 

f(y) = 
2
1 (x´ + ei)T )IA( G − (x´+ ei) = f(x´) - 

2
1

iG ´)xA(              (3) 

 Since i ∉ C´, there is some j ∈ C´ such that (i,j) ∉ E and jijxa ′ = 1. Hence, iG ´)xA( ≥ 1 and f(y) ≥ f(x´) + ½, so 
that x´ is a d.l.m. 
 
 Now let x´ be a d.l.m. of f(x). From Lemma 2.1, jixx ′′ = 0 for all edges (i,j) ∉ E. Hence, C´= T(x´) represents a 

complete subgraph of G. If C´ is not maximal then there is some y adjacent to x´ such that for some i, ix′ = 0 
and yi = 1. Then f(y) = f(x´) - ½  < f(x´). Hence, x´ is not a d.l.m. of f(x), which is a contradiction. Thus, C´= 
T(x´) is a maximal clique of G.     � 
 
 Denote by g ∈ Z

n the gradient of the function f(x), x ∈ {0.1}
n
. 

 
gi = ∇if(x) = ( )[ ] ∑

≠

−=−
ik

ikikiG xxaxIA .             (4) 

 
Lemma 2.2:  Let x be a vector such that C = T(x) is a clique. Then the following conditions hold for C: 

a)  If i ∈ C then gi = -1 

b)  If i ∉ C and gi = 0 then the vertex i is adjacent to every vertex of C and the superset C ∪ {i} is therefore a 
clique. 

c)  If gi ≠ 0 for all i = l,…,n then the clique C is maximal. 
 
Proof 

a)  xi = 1. Since C is a clique 0aik =  for all k ∈ C. Hence, from (4) we obtain gi = - xi = - 1. 

b)  xi = 0 and gi = 0. From (4) we obtain 0aik =  for all k ∈ C. Hence, the vertex i is adjacent to every vertex  
k ∈ C. 

c)  xi = 0 and gi ≠ 0. From (4) we obtain gi > 0 and at least one vertex of C is not adjacent to vertex i. 
Therefore, if for all i such that xi = 0 we have gi ≠ 0 then there is not a vertex i ∉ C adjacent to every vertex 
of C. Hence, C is maximal.     � 

 
3.  NEURAL NETWORK APPROACH 
 
 The goal of the artificial neural network for solving COP is to minimize the fabricated computational energy 
function E. The energy function is constructed by considering all the constraints and/or the cost function from 
the given problem. The change of the network state at the time t is expressed by a differential equation 
system and the output of each neuron is given by the transfer function (Takefuji [1992]). 
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 It was considered a neural network model with n neurons, where n is the number of vertices in graph G. 
Each neuron is enlaced with all resting. The differential equation system that expresses state of the network 
at the time is 

( )[ ]
⎪⎩

⎪
⎨
⎧

=

=−−=−=

)u(Fx

n,,1kxIAg
dt

du

kTk

kGk
k L

                        (5) 

 
 In this system x ∈ {0,1}

n
 represents the vector state of neurons at determined time t. The vector u ∈ Rn in 

the input vector to neuron units. The function vector g is the gradient vector of the function f(x) from (1) and 
FT(uk) is the transfer function. Using a proper transfer function this system provides a parallel gradient descent 
method to minimize the energy function f(x) from (1). Applying first order Euler method to system (5) with  
Δt = 1, we obtain: 
 

t
k

t
k

1t
k guu −=+   k = 1,…n              (6) 

 
3.1. Discrete dinamics 
 
 Assume that the initial state of the system is x0 = ei, where ei is ith unit vector. Since the initial state vector 
can be interpreted as a clique which contains only one vertex i, we can use as initial input vector the vector  
u0 = g0; which has zero components for all vertices adjacent to vertex i, and introduce a transfer function 
which adds only one vertex to a clique in each step until a clique becomes maximal . Using the results of 
Lemma 2.2, the transfer function can be defined as follows: one and only one neuron among all neurons with 

 and is encouraged to fire in each step t+1. The neurons with input  are not changed. 
The input to the kth neuron is calculated using (6). 

0gt
k = 0u 1t

k =+ 0u 1t
k ≠+

 
Lemma 3.1: From an initial state x0 = ei, the neural network converges to a maximal clique of G containing 
the vertex i in a number of iterations equal to or less than ωi(G) ≤ ω(G) ≤ n, where ωi(G) is the size of the 
maximum clique containing the vertex i. 
 
Proof. Let x0 = ei be an initial state and C0 = T(x0) is a clique containing only the vertex i. Let's calculate gt for 
each iteration t = 1,2,... For each t we select only one neuron to fire among all neurons with and input 

Once for t = t
0gt

k =

.0u 1t
k =+

1 we have then from Lemma 2.2 we have that the vertex k was incorporated to 

a clique in the previous iteration C
,1gt

k −=
t = Ct-1 ∪ {k}. Thus we obtain for all t > t,0u 1t

k >+
1. On the other hand, once 

for t = t2 we have (the vertex k cannot be incorporated to the current clique), we obtain for all 

t < t
0g 1t

k >+ ,0u 1t
k <+

2. Hence, if for t = t3 we have for all k = 1,...,n, then the network has reached the stable state x0g 1t
k ≠+ t 

which is a maximal clique containing a vertex i. Since in each iteration we incorporate only one vertex to a 
clique, the number of iteration is equal to the size of the maximal clique found, which is equal to or less than 
ωi(G) .     � 
 
 As may be noticed, in each iteration we need to update only those inputs  which were equal to zero in 
the previous iteration and represent the candidate neurons to be fired in the current iteration. Suppose the 
mth neuron was fired in the previous calculation, then for all neurons such that and (k ≠ m), the 
input value can be calculated using (6) as follows:  

1t
ku +

0xt
k = 0ut

k =

 

kmkm
1t

k
t
mkm

1t
j

mj
kj

kj
t
j

kj
kj

t
k

t
k

t
k

1t
k aagxaxaxagguu −=−=−−=−=−=−= −−

≠
≠≠

+ ∑∑          (7) 

 
 Since finding large clique is our objective, we shall improve the process of selection of the neuron to be 
fired in order to find a stable state as large as possible. We shall select among candidate neurons that one 
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which guarantees the largest number of candidates in the next iteration. Let Nt be the number of candidates 
in the previous iteration and the number of candidates if we chose x1i

mN +
m to be fired. Using (7) we have: 

∑∑
≠≠

++ −=+=
mk

km
t

mk

1t
k

t1t
m aNuNN               (8) 

 
where the index k runs only for those neurons such that Hence, we must select the neuron, which has 

the maximum value of Using this modified transfer function and starting from initial state x
.0ut

k =

.N 1t
m
+ 0 = ei we are 

trying to find the largest clique which contains the vertex i. It is described as follows: 
 
 
1) t ← 0, x0 ← ei, u0 ← g0, C0 ← {i}, N0 ← dG(i).,  

2) while (Nt ≠ 0) do 

3)  Nt+1 = 0 

4) For all k such that  do  update  using (7) 0ut
k = 1t

ku +

5) For all m such that   do  update  using (8) 0u 1t
m =+ 1t

mN +

6) select neuron l such that = max1t
lN +

m ( )1t
mN +  

7) xt+1 ← xt + el 

8) Ct+1 ← Ct ∪ {l} 

9) Nt+1 ←  1t
lN +

10) t ← t+1 

11) end 
 
 This algorithm, referred as discrete neural network algorithm (DNNA), provides a discrete descent 
dynamics to approximate the MCP in the subgraph Gi ⊆ G that contains vertices, that are adjacent to the 
vertex i. In order to find the largest clique of graph G, the algorithm is used for each vertex, which does not 
belong to a clique found before and has vertex degree dG greater than the size of the largest clique found. 
 
3.2. Continous dynamics 
 
 In this case we used as initial input to the neural network the vector u0, which components were randomly 
generated in the interval (-1, 1). The McCulloch Pitts function: 

xk = FT(uk) =                 (9) 
⎩
⎨
⎧ ≥

otherwise0
0uif1 k

was used as a transfer function, which guarantees the convergence of the networks. The obtained iterative 
scheme was used until the state of neurons corresponds to a clique, not necessarily maximal. It can be 
notices that this network works over all the vertices of the graph, and once a neuronal state represents a 
clique it is only necessarily to update the states of neurons corresponding to the vertices that are adjacent to 
the current clique found. From condition a) of the Lemma 2.2, it can be seen that the state of neurons xt 
correspond to a clique if and only if t

GxA  is a vector with zero components. As soon as this condition is met, 
we only update by the equation (6) the inputs to candidate neurons which correspond to adjacent vertices of 
the current clique, i.e inputs to neurons which hold the conditions  = 0 and = 0. In the following 
iterations we use a maximum transfer function, it means we select among candidate neurons the one which 
has the greatest input. In this case the selection is different in comparison with the algorithm described above, 

t
kx t

kg
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because we are not firing the neuron which guarantees the largest number of candidates in the next iteration. 
The neuron selected with this dynamics in each iteration depends of the initial state of the network, which is 
randomly generated, hence the obtained algorithm is not deterministic. It may be noticed that from the 
moment when the network reach a state corresponding to a clique, the Lemma 3.1 is hold. 
  
 In order to find the largest clique of graph G, we use this algorithm n times, one time for each vertex, trying 
to find in each trial a maximal clique which contains a current vertex. To achieve this we generated randomly 
the initial input vector and gave to corresponding component of the vector a great value. This algorithm is 
referred as continous neural network algorithm (CNNA). 
 
 In order to reduce computer time, when each one of the algorithms is attempting to find the maximum 
clique containing a particular vertex, the sum of the number of vertices already incorporated to a clique and 
the number of candidates is checked out in each iteration. If this value is less than the size of the largest 
clique previously found, the algorithm is interrupted without finding the maximal clique containing this vertex. 
In order to speed up the performance of the heuristics in large graphs, the neural network is used for a 
maximum of 10 vertices in graphs with density > 0.9, 100 vertices in graphs with density > 0.8 and 500 
vertices in graphs with lower density. 
 
4.  EXPERIMENTS AND RESULTS 
 
 The codes were written in FORTRAN and compiled using the FL32 compiler. All experiments were 
conducted using a Pentium Power P5 133 MHz PC. We tested our algorithm on a total of 66 graphs ranging 
in size from 28 to 3361 vertices and up to 5506380 edges. 
 
 We use 9 different classes of DIMACS benchmark graphs for the MCP. These problems are from the 
Second DIMACS Implementation Challenge at the NSF Science and Technology Center in Discrete 
Mathematics and Theoretical Computer Science in 1993. In the following tables the column headed with tDNNA 
and tCNNA contains the CPU time in seconds for the DNNA and CNNA algorithms respectively. We compare 
our results with the sizes found by DMCLIQUE heuristic, that are the best-reported results on these 
benchmark graphs. We obtained the code of DMCLIQUE program from the DIMACS public access directories 
and compiled it using the VisualC 4.0 software. We ran a few experiments using DMCLIQUE and determined 
a time conversion factor of approximately 0.8, that is, the times are slightly faster on our machine. In the 
following discussion tDM refers to the times reported in DIMACS file "results.dmclique" multiplied by 0.8. The 

terms speed-up refers to ⎥
⎦

⎥
⎢
⎣

⎢

DNNA

DM
t
t . The size of retrieved maximum clique is also compared with the results of 

CBH (Gibbons et al. [1996]) on these benchmark graphs. 
 
 The CFAT graphs arise in the Fault Diagnosis Problem (Hasselberg et al. [1993]). DNNA and CNNA found 
the maximum clique in all seven instances. For c-fat500-10 both algorithm found a clique with size of 126 
which matches the largest clique found by DMCLIQUE. For all seven instances tDM > tDNNA, the speed up 
ranged from a factor of 2 to a factor of 298 in the case of c-fat500-1. DNNA and CNNA found the 
maximum clique in all four instances of Johnson graphs (Hasselberg et al [1993]), and the algorithm DNNA 
performed with speed-up of 12, 3, 22 and 58 respectively. The performance of the DNNA and CNNA 
algorithms were similar to CBH on these benchmark graphs. 
 
 The Keller graphs in Table 2 arise in connection with Keller´s conjecture on tilling using hypercubes 
(Hasselberg et al  [1993]). DNNA found the maximum cliques in two of the three instances with speed-up to  
18, 2 and 12. In 41766.40 seconds DMCLIQUE was able to find cliques with sizes larger than 51 in 78 out of 
1000 runs that were performed on keller6, including a clique of size 55 which was found exactly once. The 
algorithm CNNA was only applied to the keller4  instance and succeeded in finding the maximum clique. 
The performance of DNNA and CNNA algorithms on Hamming graphs, arising in Coding Theory Problems 
(Hasselberg et al [1993]), is also presented in Table 2. DNNA found the maximum cliques in five of the six 
instances and in all cases tDM > tDNNA with speed-up ranging from 2 to 136. However, DNNA could only find a 
clique of size 32 in  hamming10-4.DMCLIQUE found larger cliques, including a clique with a size of 40 that 
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was found in 1 out of the 1000 runs performed on this graph. CBH also found a larger clique of size 35 for this 
instance. The algorithm CNNA performed worst, finding the maximum clique only in two instances. 

Table 1. The CFAT and Johnson benchmark graphs. 
 

Graph Nodes Edges DNNA tDNNA CNNA tCNNA MaxClique 

c-fat200-1 
c-fat200-2 
c-fat200-5 
c-fat500-1 
c-fat500-10 
c-fat500-2 
c-fat500-5 

200 
200 
200 
500 
500 
500 
500 

1534 
3235 
8473 
4459 

46627 
9139 

23191 

12 
24 
58 
14 

126 
26 
64 

0.1 
0.3 
3.2 
0.2 

140.5 
0.7 

20.9 

12 
24 
58 
14 

126 
26 
64 

22.7 
27.1 
47.3 

385.1 
997.8 
420.0 
517.9 

12 
24 
58 
14 

≥ 126 
26 
64 

johnson16-2-4 
johnson32-2-4 
johnson8-2-4 
johnson8-4-4 

120 
496 
28 
70 

5460 
107880 

210 
1855 

8 
16 
4 

14 

0.6 
24.3 
0.1 
0.1 

8 
16 
4 

14 

15.4 
2604.9 

0.1 
2.8 

8 
16 
4 

14 
 

Table 2. The Keller and Hamming benchmark graphs. 
 

Graph Nodes Edges DNNA tDNNA CNNA tCNNA MaxClique 

Keller4 
Keller5 
Keller6 

171 
776 

3361 

9435 
225990 

4619898 

11 
27 
51 

0.7 
245.8 

3322.0  

11 
- 
- 

49.5 
- 
- 

11 
27 

≥ 59 
hamming10-2 
hamming10-4 
hamming6-2 
hamming6-4 
hamming8-2 
hamming8-4 

1024 
1024 

64 
64 

256 
256 

518656 
434176 

1824 
704 

31616 
20864 

512 
32 
32 
4 

128 
16 

99.1 
129.7 

0.01
0.1 
1.2 
1.2 

- 
- 

32 
4 

97 
13 

- 
- 
2.2 
1.0 

299.8 
166.5 

512 
 ≥40 

32 
4 

128 
16 

 
 The graphs in Table 3 were contributed by L. Sanchis [1992]. DNNA found maximum cliques in seven of 
the eleven instances of Sanchis graphs while CNNA failed in all instances, For san200_0.7_2, 
san200_0.9_2 and san400.0.7_3 DMCLIQUE found larger cliques in 11, 37 and 6 out of 1000 runs 
respectively. In the case of san400_0.9_3 DMCLIQUE did not find a maximum clique, finding a clique of 42 
only in 2 out of 1000 runs. For all the eleven instances DNNA found cliques larger than CBH. In the case of 
random Sanchis benchmark graphs, DNNA found a maximum clique only in one of the four instances and 
CNNA failed in all the four instances. DMCLIQUE found cliques of size 18, 41, 12 and 21 and CBH found 
cliques of size 18, 41, 12 and 20 respectively. In all eleven cases of Sanchis graphs and 4 instances of 
random Sanchis graphs, tDM > tDNNA. With speed-ups ranging from 2 to 38. The performance of DNNA on 
these instances was better than CBH, but the algorithm CNNA performed very poorly, finding stable states 
very far from the global optimum in several instances. 
 
 The DNNA algorithm performed quite similar to CBH on Brockington graphs (Brockington and Culberson 
[1993]) in Table 4. Except for brock200_1, DNNA was unable to find any maximum clique. For 
brock800_1 DNNA found a clique of size 21, which matches the largest clique found by DMCLIQUE in 2 out 
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of 1000 runs performed on this graps. For all other 10 instances DMCLIQUE found cliques larger in one 
vertex, than those found by DNNA. In all twuelve cases tDM > tDNNA with speed-ups ranging from 2 to 78. 

Table 3. The Sanchis and random Sanchis benchmark graphs. 
 

Graph Nodes Edges DNNA tDNNA CNNA tCNNA MaxClique 
san1000 1000 25050 15 124.2 - - 15 

san200_0.7_1 
san200_0.7_2 
san200_0.9_1 
san200_0.9_2 
san200_0.9_3 
san400_0.5_1 
san400_0.7_1 
san400_0.7_2 
san400_0.7_3 
san400_0.9_1 

200 
200 
200 
200 
200 
400 
400 
400 
400 
400 

13930 
13930 
17910 
17910 
17910 
39900 
55860 
55860 
55860 
71820 

30 
15 
70 
53 
40 
13 
40 
30 
17 

100 

3.6 
2.3 

12.4 
6.7 
7.6 

11.1 
43.2 
33.2 
21.6 
48.7 

17 
14 
53 
42 
33 
8 

22 
18 
15 
55 

111.7
109.9
185.8
128.4
135.6
889.7

1448.9
1248.3
1147.2
2101.7

30 
18 
70 
60 
44 
13 
40 
30 
22 

100 

sanr200_0.7 
sanr200_0.9 
sanr400_0.5 
sanr400_0.7 

200 
200 
400 
400 

 13868 
17863 
39984 
55869 

17 
41 
13 
20 

2.0 
8.4 
7.3 

13.3 

16 
37 
11 
18 

92.5
135.7
811.1

1112.6

18 
≥ 42 

13 
≥ 21 

 

Table 4. The Brockington benchmark graphs. 
 

Graph Nodes Edges DNNA tDNAA CNNA tCNAA MaxClique 
brock200_1 
brock200_2 
brock200_3 
brock200_4 
brock400_1 
brock400_2 
brock400_3 
brock400_4 
brock800_1 
brock800_2 
brock800_3 
brock800_4 

200 
200 
200 
200 
400 
400 
400 
400 
800 
800 
800 
800 

14834 
9876 

12048 
13089 
59723 
59786 
59681 
59765 

207505 
208166 
207333 
207643 

21 
11 
13 
16 
23 
24 
24 
24 
21 
20 
20 
20 

3.1 
0.6 
0.9 
1.5 

21.5 
30.0 
22.6 
28.4 

108.4 
111.1 
109.6 
103.7 

19 
10 
12 
15 
21 
21 
21 
23 
- 
- 
- 
- 

100.1 
70.1 
79.4 
85.6 

1216.1 
1202.7 
1202.3 
1158.5 

- 
- 
- 
- 

21 
12 
15 
17 
27 
29 
31 
33 
23 
24 
25 
26 

 
 The Mannino graphs in Table 5 are obtained from Set Covering Problem. DNNA and CNNA found 
maximum clique only for mann_a9 graph. For mann_a27 DNNA found a clique with size 125, that is, a clique 
smaller in one vertex than the maximum one. In 16362.04 seconds DMCLIQUE found cliques of size larger 
than 342 in 70 out of 1000 runs performed on the graph mann_a45, including a largest clique of size 344 
which was found exactly once. On these two graphs CBH found cliques of size 121 and 336 respectively. In 
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the case of mann_a81, DMCLIQUE found in 26865.24 seconds a clique of size 1097 in 10 out of 1000 runs 
performed on this graphs. In all cases tDM > tDNNA with speed.ups in favor of DNNA of 27, 36, 2 and 150. 

Tabla 5. The Mannino benchmark graphs. 
 

Graph Node
s 

Edges DNNA tDNAA CNNA tCNAA MaxClique 

MANN_a27 
MANN_a45 
MANN_a81 
MANN_a9 

378 
1035 
3321 

45 

70551 
533115 

5506380 
918 

125 
342 

1096 
16 

19.2
444.4

18303.9
0.1

120 
- 
- 

16 

2488.5
- 
- 

0.8 

126 
345 

≥ 1100 
16 

 
 The DNNA and CNNA results on PHAT graph (Soriano and Gendreau [1993]) are presented in Table 6. 
DNNA found maximum cliques in six of the fifteen instances and CNNA found the maximum clique only in 
one out of the six instances with 500 or less vertices. For p_hat500-3 DNNA found a clique of size 49 which 
matches the largest size found by CBH and also by DMCLIQUE in 4 out of 1000 runs. DMCLIQUE found 
cliques larger in one vertex than those found by DNNA for graphs p_hat300-3, p_hat700-1, p_hat700-3 
and p_hat100-2. In the case of p_hat1500-2 and p_hat1500-3, DMCLIQUE found cliques of size 64 
and 94 respectively. In all cases tDM > tDnNA, with speed-ups ranging from 2 to 46. On this category of graphs 
CBH found larger cliques than those found by DNNA in six instances and cliques with less size in 2 instances. 
 

Tabla 6. The PHAT  benchmark graphs. 
 

Graph Nodes Edges DNNA tDNNA CNNA tCNNA MaxClique 
p_hat300-1 
p_hat300-2 
p_hat300-3 
p_hat500-1 
p_hat500-2 
p_hat500-3 
p_hat700-1 
p_hat700-2 
p_hat700-3 
p_hat1000-1 
p_hat1000-2 
p_hat1000-3 
p_hat1500-1 
p_hat1500-2 
p_hat1500-3 

300 
300 
300 
500 
500 
500 
700 
700 
700 

1000 
1000 
1000 
1500 
1500 
1500 

10933 
21928 
33390 
31569 
62946 
93800 
60999 

121728 
183010 
122253 
244799 
371746 
284923 
568960 
847244 

8 
25 
35 
9 

36 
49 
10 
44 
61 
10 
45 
64 
11 
62 
90 

0.6 
4.5 

18.3 
3.1 

33.1 
115.0 

7.4 
85.5 

328.2 
15.6 

170.8 
661.1 
38.6 

489.9 
1693.6 

7 
24 
32 

9 
32 
45 
- 
- 
- 
- 
- 
- 
- 
- 
- 

253.3 
440.7 
563.3 

1474.7
2971.0
3536.9

- 
- 
- 
- 
- 
- 
- 
- 
- 

8 
25 
36 
9 

36 
≥ 49 

11 
44 

≥ 62 
10 

≥ 46 
≥ 65 

12 
≥ 64 
≥ 94 

 
 The algorithm CNNA was only applied to instances with up to 500 vertices, because this algorithm 
performed very slowly for graphs with a great number of vertices. 
 
5. CONCLUDING REMARKS 
 
 We presented two neural network algorithms for the MCP. The discrete neural network algorithm (DNNA) 
performed well on many instance categories of benchmark graphs. In 34 of the 66 DNNA found cliques with 
equal size to the largest cliques found by DMCLIQUE. In 54 instances DNNA found cliques of equal or larger 
size than those found by CBH. The performance of the algorithm could be improved changing the selection 
scheme of the vertices to be used as initial input of the neural network. The continuos neural network 
algorithm (CNNA) performed worst than DNNA in almost all cases, finding maximal clique with less size than 
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the cliques found by DNNA. It is due to the use in the DNNA the transfer function which selects among 
candidate neurons, the neuron which guarantees the greater number of candidates in the next iteration. On 
the other hand, the CNNA transfer function selects among candidate neurons, the neuron with the maximal 
input and this value depends on the initial state of the networks, which was set randomly. The continuos 
algorithm also performed slower than DNNA, because the discrete algorithm starts with the state which is a 
clique of size 1 and only update the inputs to units corresponding to candidate neurons, while the continuos 
algorithms update all the imputs to units, until a clique is found. 
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