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Abstract The vehicle routing problem with stochastic demands consists in designing
transportation routes of minimal expected cost to satisfy a set of customers with ran-
dom demands of known probability distributions. This paper proposes a simple yet
effective heuristic approach that uses randomized heuristics for the traveling salesman
problem, a tour partitioning procedure, and a set partitioning formulation to sample the
solution space and find high-quality solutions for the problem. Computational experi-
ments on benchmark instances from the literature show that the proposed approach is
competitive with the state-of-the-art algorithm for the problem in terms of both accu-
racy and efficiency. In experiments conducted on a set of 40 instances, the proposed
approach unveiled four new best-known solutions (BKSs) and matched another 24.
For the remaining 12 instances, the heuristic reported average gaps with respect to the
BKS ranging from 0.69 to 0.15 % depending on its configuration.
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1 Introduction

The vehicle routing problem with stochastic demands (VRPSD) can be defined on a
complete and undirected graph G = (V, E), where V = {0, . . . , n} is the vertex set
and E = {(v, u) : v, u ∈ V, v �= u} is the edge set. Vertices v = 1, . . . , n represent
the customers and vertex v = 0 represents the depot. A distance de is associated with
edge e = (v, u) = (u, v) ∈ E , and it represents the travel cost between vertices
v and u. Each customer v has a random demand ξv for a given product. Customer
demands are met using an unlimited fleet of homogeneous vehicles with capacity Q
located at the depot. The exact quantity demanded by each customer is not known
until the vehicle arrives at the customer location. It is assumed, however, that each
customer’s demand follows an independent and known probability distribution and that
all demand realizations (actual quantities) are nonnegative and less than the capacity
of the vehicle.

Different frameworks can be applied to model and solve the VRPSD. In general,
these frameworks are classified into dynamic or static approaches [24]. Routing deci-
sions in dynamic approaches are made in multiple stages and are based on demand
realizations. Given the remaining vehicle capacity and the set of unvisited customers,
the routes are re-optimized at each stage. On the other hand, routing decisions made
in static approaches remain unchanged regardless of the demand realizations. While
dynamic strategies produce more accurate solutions, static strategies are preferred
from the computational point of view since the problem, known to be computationally
intractable, is solved only once [15]. Static strategies are also particularly useful when
a stable solution is sought [4] or when re-optimization during route execution is impos-
sible because of the lack of information. Among static frameworks, the most widely
used in the literature, and the one selected for this research, is two-stage stochastic
programming.

As the name suggests, in two-stage stochastic programming the problem is solved
in two stages. In the first stage, a set R of planned routes is designed. Each route
r ∈ R is a sequence of vertices r = (0, v1, . . . , vi , . . . , vnr , 0), where vi ∈ V\{0}
and nr is the number of customers serviced by the route. During the planning
phase, each route is designed so that the total expected demand does not exceed
the capacity of the vehicle (i.e.,

∑
v∈r\0 E[ξv] ≤ Q ∀ r ∈ R) and every cus-

tomer is visited by exactly one route. In the second stage, each route is executed
until a route failure occurs, that is, the capacity of the vehicle is exceeded. A
recourse action is then applied to recover the feasibility of the failing route. The
recourse action is classically defined as a return to the depot to reload the vehi-
cle, followed by a trip back to the customer location to complete the service. The
route is then resumed from that point as originally planned. It is worth noting
that the literature includes more sophisticated recourse actions (see for instance
[1,9,27]). We decided to retain the classical policy because it is simple, suitable
for many practical applications, and allows a more direct comparison with previ-
ously published results. The second-stage solution is then the actual set of routes
traveled by the vehicles. The problem is to determine in the first stage the set of
planned routes R that minimizes the expected cost E [C] of the second-stage solution
given by:
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E [C] =
∑

r∈R
E

[
lr + Gr (ξ)

] =
∑

r∈R
lr +

∑

r∈R
E

[
Gr (ξ)

]
(1)

where lr is the planned length (planned cost) and E
[
Gr (ξ)

]
is the expected length of

the return trips to the depot, or the cost of recourse, caused by route failures for each
route r ∈ R. The planned cost of a route is the sum of the lengths of the arcs traversed
by the route. On the other hand, the estimation of the expected cost of recourse is
slightly more complicated. Under the selected recourse action, the expected cost of
the failures of a route is given by:

E
[
Gr (ξ)

] = 2 ×
nr∑

i=2

i−1∑

f =1

Pr

⎛

⎝
i−1∑

j=2

ξv j ≤ f · Q <

i∑

j=2

ξv j

⎞

⎠ × dvi ,0 (2)

where the probability term represents the probability of having the f th failure while
servicing customer vi . The expected cost of failures in (2) can be efficiently computed
when the customer demands follow a probability distribution Ψ with the following
property: the sum of two independent and Ψ -distributed random variables is also Ψ

distributed (as is the case for the normal, Poisson, and Gamma distributions). For the
details of the derivation of (2) the reader is referred to [6,15,25].

The two-stage stochastic programming formulation with the classic recourse action
presented above has been the main building block of solution methods for VRPs with
stochastic demands. Exact methods based on this formulation include that of Laporte
et al. [15] who proposed an implementation of the L-Shaped algorithm to solve a
formulation with an additional constraint on the maximum number of vehicles. Their
approach solved to optimality instances of up to 50 and 100 customers with normally
and Poisson distributed demands, respectively. Later, Christiansen and Lysgaard [6]
introduced a branch-and-price algorithm that reported optimal solutions for instances
of up to 60 customers with Poisson distributed demands. In the field of heuristic
approaches, Secomandi [23] proposed a rollout strategy built on top of the cyclic
algorithm introduced by Bertsimas [4] for the single-vehicle VRPSD (SVRPSD), a
variant in which a single route servicing all customers is to be designed. In addition
to a formulation with classical recourse, this author also considered recourse with
restocking, or preventive trips to the depot, introduced by Yang et al. [27]. Gendreau
et al. [11] proposed a tabu search (TS) algorithm, known as tabustoch, designed for
a VRPSD in which customers are present, or not, with a given probability (i.e., the
customers are also stochastic). In this case, the classical recourse is extended to avoid
customers that are not present. Mendoza et al. [16] generalized the formulation with
classical recourse to consider the case in which each customer demands several incom-
patible products that are transported in different vehicle compartments. By setting the
number of products and compartments to one, they obtain a classical VRPSD. More
recently, Goodson et al. [13] introduced a set of neighborhood schemes to perform
local search in the cyclic-order representation of a VRP solution [21]. They used
their neighborhood schemes to build an effective simulated-annealing heuristic for the
VRPSD which, to the best of our knowledge, finds the best-known solutions for most
of the instances proposed by Christiansen and Lysgaard [6].
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This paper introduces a new heuristic for the VRPSD that follows a two-phase
solution strategy. In the first phase it samples multiple solution representation spaces,
while in the second phase, it uses the sampled elements to build a solution to the
problem. To accomplish its mission, the proposed heuristic combines various com-
ponents from the literature, namely, a set of randomized heuristics for the traveling
salesman problem, a tour partitioning procedure, and a set partitioning model. The
paper also discusses computational experiments conducted on the 40-instance testbed
of Christiansen and Lysgaard [6]. The experiments showed that the proposed heuristic
is competitive with the state-of-the-art algorithm for the problem in terms of both
accuracy and efficiency: the approach unveiled four new best-known solutions and
matched another 24 in shorter execution times. In addition to accuracy and efficiency,
the approach also offers simplicity and flexibility. As observed by Cordeau et al. [7],
the latter two attributes foster the transfer of optimization technology to industry but
are often neglected in academic research. Our heuristic is simple to understand and
implement and can be extended to other vehicle routing problems. Last but not least,
the paper also presents a detailed analysis of the contribution of each component to the
overall performance of the method. We believe that this analysis provides the reader
with valuable insight into the proposed method and how its principles can be used to
design or enhance other vehicle routing heuristics.

The remainder of the paper is organized as follows. Section 2.1 reviews different
heuristic-search strategies commonly applied to vehicle routing problems and dis-
cusses how our heuristic relates to those strategies. Section 2.2 presents a detailed
description of our heuristic and its components. Section 3 discusses extensive compu-
tational experiments conducted on standard instances from the literature and presents
the analysis of the components. Finally, Sect. 4 concludes the paper and outlines future
research perspectives.

2 Multi-space sampling heuristic

2.1 Motivation

The ultimate goal of any vehicle routing heuristic is to find the best possible element
s in the set of all feasible solutions to the problem S. To accomplish this goal, routing
heuristics may search S directly or may search alternative spaces and then map the
result of the search to a solution in S. The alternative search spaces that are commonly
used in vehicle routing include: the set T of TSP-like tours (i.e., giant tours visiting all
customers that start and end at the depot); the set R of all feasible routes (i.e., routes
that verify all the side constraints of the problem); the set C of all clusters of customers
from which feasible routes may be built; and the set O of cyclic orders (i.e., circular
orderings of the set of customers).

Figure 1 depicts some examples of multi-space search strategies for vehicle routing.
For instance, cluster-first route-second approaches, such as the sweep algorithm [12],
select a subset of elements from C and then solve a series of TSP problems to map the
selected elements to a solution in S. In contrast, route-first cluster-second approaches
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Fig. 1 Multi-space search strategies for vehicle routing problems

[2] use a TSP heuristic to select a tour in T and then split it into feasible routes to map
it to a solution in S. The closely related cyclic-order heuristics, such as that of Ryan
et al. [21], build a cyclic order in O and then extract from it a solution by solving a
sequence of shortest path problems. Petal heuristics, such as that of Foster and Ryan
[10], build (one by one) feasible routes that are added to a set Ω ⊂ R and then solve
a set partitioning problem over Ω to map to a solution in S.

More elaborate approaches map elements between different spaces in an iterative
fashion; Fig. 1 also illustrates some of these approaches. One widely used strategy is
to explore S using a (meta)heuristic and to map elite solutions found during the search
(e.g., local optima) to a set Ω ⊂ R. The set Ω is later used in a post-optimization phase
to map to a solution in S following the principle of petal heuristics. Some successful
approaches that are based on this strategy include the TS for the capacitated VRP
(CVRP) by Rochat and Taillard [20] and that by Kelly and Xu [14], and the GRASP
for the truck-and-trailer routing problem by Villegas et al. [26]. A different strategy,
recently introduced by Goodson et al. [13], consists in performing the search in the
space of cyclic orders (i.e., O) while iteratively mapping cyclic orders to solutions in
order to obtain information that is used to guide the search. Other approaches not only
map elements between spaces iteratively but also simultaneously explore multiple
spaces. One good example is Prins’ well-known evolutionary algorithm for the CVRP
[18]. At each iteration, the algorithm selects two tours from T and applies a crossover
operator to obtain a new tour. The new tour is split to map to a solution in S, and then
local search is applied to that solution. When the local search is completed, the new
solution is mapped back to T using a concatenation procedure and the whole routine
starts over.
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The heuristic proposed in this paper takes advantage of existing procedures that are
able to effectively map elements between different sets in the context of the VRPSD;
it uses them to implement a new multi-space search strategy. The proposed approach
works in two phases. In the first phase (sampling), the algorithm uses a set of random-
ized TSP heuristics (henceforth called sampling heuristics) to draw a biased sample
from the set of TSP-like tours (i.e., T ). From each sampled tour, the approach extracts
every feasible route that can be obtained without altering the order of the customers,
and it uses these routes to build a set Ω ⊂ R. In the second phase (assembly), the
approach follows the principle of petal heuristics and maps set Ω to a solution s ∈ S
by solving a set partitioning formulation of the problem.

2.2 Detailed algorithm description

Algorithm 1 outlines the general structure of the proposed heuristic. The procedure
starts by entering the sampling phase (lines 4–17). At each iteration t ≤ T , the
algorithm selects a sampling heuristic from a set H (line 6) and uses it to build a TSP
tour pt (line 7). Then, the algorithm makes a call to a procedure known as s-split (line 8)
to retrieve a tuple 〈Ω t , st 〉, where Ω t is the set of all feasible routes that can be obtained
from pt without altering the order of the customers, and st ∈ S is the best VRPSD
solution that can be built using routes from Ω t . The routes in Ω t join Ω (line 9), while
st is used to update an upper bound f (s∗) on the objective function of the final solution
(lines 10–14). In the assembly phase (line 18), the heuristic invokes a procedure called
SetPartitioning to solve a set partitioning formulation over Ω using f (s∗) as an upper
bound. The resulting solution R is that reported by the heuristic (line 19).

Figure 2 illustrates the operation of the proposed heuristic with H = {h1, h2}
and T = 2. In the first iteration of the sampling phase (top of the leftmost
frame) sampling heuristic h1 builds p1 = (0, 1, 2, 3, 4, 5, 0). From p1, the
s-split procedure extracts a set Ω1 made up of nine routes and a VRPSD solution
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Fig. 2 Multi-space sampling heuristic: example of an execution with H = {h1, h2} and T = 2

s1 = {(0, 1, 0), (0, 2, 3, 0), (0, 4, 5, 0)}. Similarly, in the second iteration, heuristic
h2 builds p2 = (0, 1, 3, 2, 4, 5, 0) from which s-split extracts a set Ω2 made up of
nine routes and s2 = {(0, 1, 3, 0), (0, 2, 4, 0), (0, 5, 0)}. In the assembly phase (right-
most frames), the set partitioning selects from Ω = Ω1 ∪ Ω2 the subset of routes
R = {(0, 2, 0), (0, 4, 5, 0), (0, 1, 3, 0)} to assemble the final solution. The remainder
of this section presents the components employed by the heuristic to accomplish each
task.

2.2.1 Sampling heuristics

To sample T (line 7 in Algorithm 1), our heuristic uses randomized versions of four
TSP constructive heuristics: randomized nearest neighbor (RNN), randomized nearest
insertion (RNI), randomized best insertion (RBI), and randomized farthest insertion
(RFI). We chose these heuristics based on their trade-off between implementation sim-
plicity, accuracy, and computational performance [3]. Our implementation is based on
the description of the original TSP heuristics presented in [19]. Although the strategies
we used to generate the randomized versions of the four heuristics are rather intuitive,
for the sake of completeness we briefly describe them here.

Let pt be an ordered set representing the TSP tour being built by a given sampling
heuristic at iteration t, W the set of vertices visited by pt , and N = V\W an ordered
set of non-routed vertices. For the sake of simplicity, we assume that sets W and N
are updated every time a customer is added to pt . Let us also define three metrics
for every customer v ∈ N , namely, dmin(v) = min{d(v,u)|u ∈ W}, dmax (v) =
max{d(v,u)|u ∈ W}, and �min(v) = min{d(u,v) + d(v,w) − d(u,w)|(u, w) ∈ p}.
Finally, let k be a random integer in {1, . . . , min{K , |N |}}, where parameter K denotes
the randomization factor of each heuristic. The four sampling heuristics operate as
follows:
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1510 J. E. Mendoza, J. G. Villegas

– RNN: set pt = (0) and u = 0. At each iteration: identify the vertex v that is the
kth nearest vertex to u, append v to pt , and set u = v. Stop when |N | = 0 and
append 0 to pt to complete a tour.

– RNI: initialize pt as a tour starting at the depot and performing a round trip to a
randomly selected customer (henceforth we will refer to this procedure simply as
initialize pt ). At each iteration: sort N in non-decreasing order of dmin(v). Insert
v = Nk (i.e., the kth element in the ordered set N ) in the best possible position in
the tour pt (i.e., the position generating the smallest increment in the cost of the
tour). Stop when |N | = 0.

– RFI: initialize pt . At each iteration: sort N in non-decreasing order of dmax (v)

and insert v = Nk in the best possible position in the tour pt . Stop when |N | = 0.
– RBI: Initialize pt . At each iteration: sort N in non-decreasing order of �min(v)

and insert v = Nk in the best possible position in the tour pt . Stop when |N | = 0.

2.2.2 S-split

To extract 〈Ω t , st 〉 from pt (line 8 in Algorithm 1), our heuristic uses an adap-
tation of the s-split procedure for the VRPSD proposed in [17]. S-split builds a
directed and acyclic graph G ′ = (V ′,A) composed of the ordered vertex set
V ′ = (v0, v1, . . . , vi , . . . , vn) and the arc set A. Vertex v0 = 0 is an auxiliary vertex,
while vertices v1, . . . , vn ∈ pt\{0}. The vertices in V ′ are arranged in the same order
in which they appear in pt . Arc (vi , vi+nr ) ∈ A represents a feasible route r with
expected cost E[Cr ] starting and ending at the depot and traversing the sequence of
customers from vi+1 to vi+nr . The leftmost frame in Fig. 2 depicts two examples of
auxiliary graphs G ′ built by s-split. To build the output, s-split adds to Ω t one route
for each arc in A. On the other hand, to retrieve st , the procedure finds the set of
arcs (i.e., routes) along the shortest path connecting 0 and vn in G ′. It is worth noting
that since G ′ is directed and acyclic, building the graph and finding the shortest path
can be done simultaneously using Bellman’s algorithm [16]. It is also interesting to
note that by transforming pt into a cyclic order (i.e., eliminating the depot at the start
and end of the tour) one could use the mapping procedure of Goodson et al. [13] to
obtain a tuple 〈Ω t ′ , st ′ 〉, where Ω t ′ ⊃ Ω t and f (st ′) ≤ f (st ). After some preliminary
experimentation, we discarded this variant because the gain in accuracy did not seem
to offset the loss of simplicity. Although s-split is not an original contribution of this
research, for the sake of completeness we have included a detailed pseudocode in
Supplementary material 1.

2.2.3 Set partitioning

In the assembly phase, our approach maps the set Ω = Ω1 ∪ . . . ∪ ΩT to a
solution in S by solving a set partitioning formulation of the VRPSD proposed in

[6]
(

minR⊆Ω

{∑
r∈R E[Cr ] : ⋃

r∈R = V; ri
⋂

r j = {0} ∀ri , r j ∈ R
})

. The objec-

tive is then to select the best subset of routes from Ω to build the set of planned routes
R (i.e., the final solution) guaranteeing that each customer will be visited by exactly
one route. Since Ω does not have the column-circular structure [5], the resulting set
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Table 1 Summary of results for the 40-instance testbed of Christiansen and Lysgaard

Performance metric T Goodson et al.

1,000 2,000 5,000 10,000 20,000

Avg. gap best (%) 0.36 0.26 0.14 0.09 0.05 0.01

Avg. gap (%) 0.67 0.49 0.31 0.23 0.15 0.33

Max. gap (%) 2.52 2.24 1.62 1.34 1.16 1.89

Avg. CPU (s) 12.90 22.75 50.19 93.43 180.78 268.66

Max. CPU (s) 45.00 82.05 179.61 314.09 782.77 603.80

Min. CPU (s) 0.69 1.00 1.90 3.29 5.91 9.00

Matched BKSs 12 15 18 22 24 37*

Improved BKSs 1 2 3 4 4 −
∗ 33 if the four new BKSs are considered

partitioning problem cannot be solved using a sequence of shortest path problems as
in [21] or the linear relaxation of the formulation as in [10]. We therefore delegate this
task to a commercial optimizer.

3 Computational experiments

We implemented the proposed heuristic in Java (jre V.1.6.0_22-b04) and used the
Gurobi Optimizer (version 4.5.1) to solve the set partitioning model. To test our
approach, we ran it on the 40-instance testbed proposed by Christiansen and Lysgaard
[6]. These instances range from 16 to 60 customers and assume Poisson distributed
demands. To assess the effectiveness of our heuristic, we compared our results to the
best-known solutions (BKSs) for the testbed which, to the best of our knowledge, were
by [6,13], or [17], or by all three. It is worth mentioning that [6] provided optimality
certificates for 19 of the 40 instances. For each instance, we executed ten runs with
five different values for parameter T : 1,000, 2,000, 5,000, 10,000, and 20,000. For the
2,000 runs (= 40 × 10 × 5) we set the value of K to six for RNI, RBI, and RFI and
to three for RNN. All the experiments were run on a PC with an Intel Xeon processor
running at 2.4 GHz under Windows Server 2008 (64 bits) with 12 GB of RAM.

Table 1 summarizes the results of the experiments: the first column describes the
performance metric, the following five columns report the results for the five differ-
ent algorithm configurations, and column six presents the results for the simulated
annealing approach of Goodson et al. [13] which to our knowledge is currently the
best-performing heuristic approach for the VRPSD. For columns 2–7, the table reports:
(1) the average gap between the best solution found for each instance and the BKS; (2)
the average and maximum gaps with respect to the BKS over the 400 (=40×10) runs
conducted for each configuration; (3) the average, maximum, and minimum running
times over the 400 runs; (4) the number of BKSs matched over the 40 instances; and
(5) the number of improved BKSs over the 40 instances. The gaps are computed as
( f (s) − f (re f )) / f (re f ), where f (s) is the objective function of a given solution s
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and f (re f ) is the objective function of the reference solution (e.g., the BKS). Detailed
results for each instance are reported in Supplementary material 2–6.

The results show that our approach is competitive in terms of both accuracy and
efficiency. In its most effective configuration (i.e., T = 20,000), our heuristic matched
24 of the 40 BKSs and improved another four (i.e., 10 % of the instances) while
delivering solutions with an average gap of 0.15 %. Moreover, the latter figure reduces
to just 0.05 % if we consider only the best solution found over the 10 runs for each
instance. The results show that the SA of Goodson et al. [13] finds a larger number of
BKSs (33 vs. 28) and reports a slightly better average gap when only best solutions are
considered (0.01 vs. 0.05 %). Nonetheless, the results for the average and worst-case
behavior over multiple runs (i.e., Avg. Gap and Max. Gap, respectively) suggest that
our heuristic is more stable (i.e., finds close-to-BKS solutions more often). The data
on the coefficient of variation of the objective function reported for the two approaches
in columns 5 and 11 of the detailed results (Supplementary material 2–6) support this
observation.

In terms of computational efficiency, the results suggest that our approach outper-
forms the state-of-the-art SA. In its most effective, but most expensive, configuration,
our heuristic reports CPU times that are comparable to those reported by Goodson et
al. [13]. In a faster configuration, i.e., T = 10,000, our algorithm is able to deliver
solutions of a similar quality while investing (on average) less than half of the com-
putational effort. Note that we did not scale the CPU times reported by Goodson et
al. [13] to account for differences in the testing environment (programming language,
operating system, processing power, etc.). However, their testing environment is in
theory at least as powerful as ours, so we believe that our conclusion is valid.

In practice, the two-stage stochastic programming formulation for the VRPSD mod-
els medium-term decisions (e.g., a set of routes that will be used repeatedly); thus,
rapid solution is desirable but not critical. On the other hand, in dynamic environments
(see for instance [22]) speed becomes an important factor. The computational perfor-
mance and stability exhibited by our heuristic, especially in fast configurations (i.e.,
T = 1,000 or T = 2,000), suggest that it could be embedded in methods that make
dynamic routing decisions.

3.1 Component analysis

To gain insight into our approach, we collected several statistics during our experi-
ments. These data allowed us to analyze the impact of the different components on the
performance of our heuristic. The first analysis focuses on the impact of each phase
on the effectiveness and efficiency of the approach. Figure 3a shows the average and
maximal improvement of the solution reported at the end of the assembly phase with
respect to the best solution found in the sampling phase (over the 400 runs conducted
for each value of T ). The results show that the ability of the assembly phase to improve
the best solution from the sampling phase (i.e., s∗) decreases as T increases. This result
is explained by the fact that drawing more samples during the sampling phase increases
the chances of finding a good solution. Nonetheless, as shown in Fig. 3a, even at the
largest value of T , the assembly phase is able to improve by about 3 % the best solu-
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Fig. 3 Component analysis: impact of the sampling and assembly phases on the performance of the
heuristic. Average values over the 400 runs conducted for each value of T

tion found during the sampling phase. The latter observation along with the results in
Table 1 shed some light on the synergy between the two phases of our heuristic. On
the one hand, an approach based only on drawing a large number of solutions using
the sampling heuristics would not be competitive enough. On the other hand, in order
to find better solutions, the assembly phase needs an extensive sampling phase that
provides a rich pool of routes (i.e., Ω) as input.

Figure 3b shows the total average CPU time for each value of T (over the 400 runs
conducted for each value of T ) and how the execution time is split between the two
phases of the heuristic. The results show that at any given value of T , the CPU time is
equally distributed between the sampling and assembly phases.

The second analysis focuses on the ability of the sampling heuristics to contribute
routes to Ω and to the final solution R reported by our approach. To measure this con-
tribution, we saved for each route in Ω a counter of the number of times that the route
was generated by each sampling heuristic (i.e., was extracted from a TSP tour built
by a given heuristic). Using these data, we calculated five metrics for each sampling
heuristic. The first metric, diversity ratio, measures the ability of a sampling heuristic
h to generate different routes; it is calculated as

(|�h |/|�h |) × 100, where |Ωh | is
the number of routes generated by h after we eliminate all duplicates, and |Ωh | is the
total number of routes generated by h. The second metric, total contribution to Ω =(|Ωh |/|Ω|) × 100, measures the contribution of the heuristic to the pool of routes.
Note that Ω = ⋃

h∈H Ωh but Ωh ∩ Ωh′ �= ∅ ∀ h, h′ ∈ H, h �= h′. The third metric,
exclusive contribution to Ω , measures the percentage of routes exclusively generated

by h. The metric is calculated as
(
|Ω ′

h |/|Ω|
)
×100, where Ω

′
h = Ωh\⋃

h′∈H\{h} Ωh′ .

The fourth metric, routes in R, measures the ability of sampling heuristic h to con-
tribute routes to the final solution. It is computed as

(|Rh |/|R|) × 100, where |Rh |
is the number of routes generated by h that appear in the final solution. Note that
Rh ∩ Rh′ for any h, h′ ∈ H, h �= h′ is not necessarily empty. Finally, the fifth metric,
exclusive routes in R, measures the percentage of routes in the final solution that were

exclusively generated by h. The metric is calculated as
(
|R′

h |/|R|
)

× 100, where
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Fig. 4 Component analysis: ability of the sampling heuristics to contribute routes to Ω and to the final
solution. Average values over ten runs for T = 10,000

R′
h = Rh\⋃

h′∈H\{h} Rh′ . Figure 4a and b present, for each metric, the average value
over the forty test instances for T = 10,000.

The results in Fig. 4a show that RNN is the sampling heuristic with the highest
diversity ratio (i.e., 34.00 %). In other words, RNN is the heuristic that is most sensitive
to randomization. A plausible explanation for this behavior is that RBI (22.76 %), RFI
(5.41 %), and RNI (5.62 %) always insert the selected node into its best possible
position in the TSP tour being built, which is often the same position regardless of
the state of the tour. The internal ability of the sampling heuristics to generate diverse
routes is reflected in the pool Ω . The data show that 62.71 % of the routes in the
pool were generated at least once by RNN while this figure is 38.07, 9.61, and 9.99 %
for RBI, RFI, and RNI, respectively. A close look at the data on the percentage of
routes exclusively generated by each heuristic reveals that the sampling heuristics
play a complementary role in the construction of a diverse pool of routes. According
to our observations, in a typical (average) pool 53.48 % of the routes are exclusively
generated by RNN, and 27.13, 3.14, and 2.95 % of the routes are exclusively generated
by RBI, RFI, and RNI, respectively. On the other hand, in a typical pool, only 13.30 %
of the routes are generated by more than one sampling heuristic. In summary, this
analysis shows that including different randomized heuristics in the sampling phase
leads to a pool of routes that is more diverse than the pools built independently by
each heuristic.

The results in Fig. 4b reveal that although RFI, RBI, and RNI generate fewer
routes than RNN does, the former have a greater impact on the final solutions. For
instance, 6.21 % of the routes in the final solutions are exclusive to RFI. In other words,
eliminating RFI from H would have caused our heuristic to miss 6 % of the routes that
appeared in its high-quality final solutions. A similar observation can be made about
RBI and RNI. Based on the contribution of RFI and RNI to the final solutions (81.72 and
79.73 %, respectively) we decided to perform a simple experiment (for T = 10,000)
with H = {RF I } and H = {RN I }. The version of the heuristic that uses only RFI
gave solutions with an average gap of 0.32 % with respect to the BKSs, and that using
only RNI produced results with an average gap of 0.37 %. In both cases the results
are dominated by those obtained by the original multi-space sampling heuristic. In
conclusion, using different sampling heuristics in the sampling phase fosters diversity
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and contributes to the effectiveness of the approach. This is an important observation
since VRP heuristics that are based on drawing samples from the solution space (e.g.,
GRASP) traditionally incorporate only one randomized heuristic.

4 Concluding remarks and future research

This paper introduces an effective multi-space sampling heuristic for the VRPSD.
The approach uses three components—a set of four randomized heuristics for the
TSP, a tour partitioning procedure, and a set partitioning formulation—to sample the
solution space and find solutions. Experiments conducted on a set of forty instances
from the literature showed that our heuristic is competitive with the state-of-the-art
metaheuristic in terms of both solution quality and computational efficiency. Our
approach found four new BKSs for the testbed and matched another 24. For the
remaining 12 instances, the heuristic reported average gaps with respect to the BKSs
ranging from 0.15 to 0.69 % depending on its configuration.

Our heuristic was also designed to be simple and flexible. It is simple to understand
and implement and can be extended to other VRPs. The feasibility and cost of the
solutions are controlled at two points in the heuristic: (1) when we extract routes
from the TSP tour in the sampling phase and (2) when we solve the set partitioning
model in the assembly phase. The literature discusses a number of splitting procedures
designed to map TSP-like tours to solutions in the context of different VRP variants
(for a comprehensive review, the reader is referred to [8]). It is, in general, fairly easy
to adapt these procedures (as we adapted s-split in this research) so that they return
not only the optimal partition of the tour but also the set of routes evaluated during the
splitting. One could use these adapted procedures (or develop new ones) to build pools
of feasible routes for different VRP variants during the sampling phase. As for the
assembly phase, the set partitioning model described in Section 2.2.3 fits several VRP
variants and thus may remain untouched. However, if there are additional constraints
on the solution (e.g., a maximum number of routes) or an objective function that is not
given by the sum of the cost of the individual routes, the model can be extended (at the
risk of making the problem intractable for the optimizer). Research currently underway
builds on this flexibility; it includes the extension of our approach to the VRPSD with
a heterogeneous fleet and the VRP with stochastic and correlated demands.
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