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Abstract
Several authors have shown promising results using Ti and Mg to develop materials that combine the benefits of these two 
metals, such as their low density and absence of harmful second phases, which makes them attractive for aerospace and 
biomedical applications as well as for hydrogen storage. However, titanium and magnesium are almost immiscible and there 
are great differences in processing temperatures of these two metals. Within the techniques reported in the literature for 
obtaining Ti-Mg alloys, powder metallurgy and high-energy ball milling are possibly the most popular. In this work, Ti and 
Mg powders were mixed using a high-energy ball mill and subsequently these mixes were sintered by hot isostatic pressing 
(HIP), under various conditions, to obtain Ti-Mg alloys with Mg %wt. close to the limit of solubility (x < 2%wt.). The results 
showed the influence of the sintering parameters in the microstructure of the sintered material, which allowed us to obtain 
a Ti-Mg alloy instead of a composite material.
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1  Introduction

Titanium and magnesium are used extensively in various 
industries due to their unique properties; it is for this reason 
that combining these two metals constitutes an important 
challenge for materials science [1–5]. Different results 
indicated that Ti-Mg materials could be attractive for 

hydrogen storage [6–8], aerospace [9, 10], and biomedical 
[11–14] among other applications. However, titanium 
and magnesium are almost immiscible and their melting 
points differ by around 1000 C [15]. Hence, maintaining 
molten titanium leads to substantial losses of magnesium 
by evaporation processes [16]. The phase diagram in Ti-Mg 
systems confirmed that under equilibrium conditions the 
miscibility of Mg in Ti is low [17]. The solubility of each 
metal into the other is less than 2 atomic % and intermetallic 
compounds are not found [18–21]. The valence of titanium 
is 4 while that of magnesium is only 2 [22, 23], Ti-Mg 
alloys have positive formation enthalpies [24, 25], and 
consequently, metallurgical alloying under thermodynamic 
equilibrium conditions is almost impossible.

In this sense, in the search to obtain Ti-Mg alloys, the 
use of processing techniques outside the thermodynamic 
equilibrium is one of the most likely methods [26]. Powder 
metallurgy and specially mechanical alloying (MA) is a 
process widely reported in studies seeking to manufacture 
Tix-Mg100-x alloys with non-equilibrium compositions 
[27–30], which combined with thermal processes is the 
most appropriate way to achieve bulk alloys. The powders 
produced by mechanical alloying are first green compacted 
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and thereafter sintered with a combination of temperature 
and time [15]. But the main drawback of this methodology is 
that high temperatures are required during the conventional 
sintering stage, affecting the stability of Tix-Mg100-x alloys 
due to their metastable nature and low decomposition 
temperatures [31–33]. In this way, advanced technologies 
like hot isostatic pressing (HIP) have been implemented to 
allow bulk consolidation of these materials [16, 34–36].

In this work, an alternative process for consolidation of 
Ti-x%wt. Mg (x < 2%) materials by means of HEBM and 
HIP is proposed. For this, one or two milling stages of 
HEBM and two HIP temperature conditions were studied 
in search of obtaining solubility of Mg into Ti after HIP. 
Finally, a characteristic microstructure in the titanium matrix 
was obtained, indicating the formation of an alloy instead 
of a composite material. Mechanical tests showed that the 
developed process increased some mechanical properties 
and degrade others as compared to pure Ti.

2 � Experimental

2.1 � Materials and methods

Commercial powders of titanium grade 2 (Fe: 0.04%; O2: 
0.15%; C: 0.02%; N: 0.02%; H2: 0.001%; other: < 0.4% 
mass/mass; Ti: Bal.) and magnesium (99.81% purity) 
were milled in a Retsch Emax high-energy ball mill, 
using zirconia balls in a 50-ml stainless steel vessel with 
zirconia coating and filled with n-hexane (process control 
agent-PCA). The milling container was operated in a globe 
box under high purity argon (Ar) atmosphere (H2O and 
O2 < 1 ppm) to avoid oxidation of the powders. In Table 1, 
the processing conditions of the two sort of samples studied 
here are presented, namely samples 1S and 2S. Sample 1S 
was obtained by only applying the mixing stage to the Mg 
and Ti as-received powders. For sample 2S, first the Ti and 
Mg powders were milled separately at different process 
conditions as described in Table 1, stage 1. After that, these 
milled powders were mixed in the Emax (stage 2), under dry 
conditions using stearic acid (SA-2%wt.) as PCA.

The powders after processing in the HEBM were uniaxi-
ally compacted under a pressure of 1000 MPa for 15 min 
to obtain green samples with dimensions of 10 × 5 × 5 mm. 
Magnesium stearate was used as die lubricant. Then, the 

compacted samples were sintered by HIP under a UHP Ar 
atmosphere at 800 °C and 1050 °C, applying a pressure of 
193 MPa for 1 h and 2 h respectively. The pressure was hold 
during the entire thermal cycle. The samples were preheated 
at 200° C for 1 h in the HIP in order to evaporate any remain-
ing lubricant. Figure 1 presents the complete sample process.

2.2 � Chemical, metallographic, and microstructural 
characterization

The chemical composition of all samples was performed 
by X-ray fluorescence according to ASTM E-539 using an 
Axios-PANalytical, and some samples were confirmed by 
ICP-OES.

The metallurgical structure was first analyzed in an 
Optical Microscope Nikon Eclipse 200. Previously all 
samples were polished using SiC papers from 180 to 1200 
grits, and further prepared as mirror polish. All samples 
were etched with Kroll’s reagent. At high magnification, 
the morphology of the sintered samples was analyzed using 
a scanning electron microscope (SEM) JEOL JSM-6490LV 
equipped with energy-dispersive X-ray (EDX) OXFORD 
INCAPentaFET- × 3.

2.3 � X‑ray diffraction and TEM

The microstructural study and phase analysis was assessed 
by means of X-ray diffraction (Empyream Malvern-
PANallytical), using CuKα radiation and scanning in the 
range 2ϴ = 20–90° with a step of 0.01°. The XRD peaks 
were analyzed by using the X’pert High Score Analysis 
software and JCPDS database (3.0e, PANalytical, Almelo, 
The Netherlands).

For TEM analysis, a thin film of the alloy was prepared 
by diamond wire cutting, abrading with fine-grit sandpaper, 
and final processing in a Gatan precision ion polishing 
(PIPS). Analysis in both STEM and TEM modes used a 
JEM-3000F equipment.

2.4 � Microhardness tests

The mechanical behavior of sintered samples was 
determined by Vickers hardness tests. The VHT were 
performed according with the ASTM E18-18a standard. 
Vickers hardness measurements were carried out using a 

Table 1   Condition of Ti–Cp 
and Mg milled powder

Sample code Stage Speed (rpm) Time (h) BPR Ball size (mm)

1S Mixing 600 10 8:1 10
2S Stage 1 HEBM Ti-1400

Mg-(1000/1400)
2
9

4.6:1
8:1/10:1

3
10/3

Stage 2 mixing 600 10 8:1 10
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Shimadzu Micro Vickers HMV-G21 hardness tester under 
a load of 1 kg with a dwell time of 15 s. Five measurements 
were made for each sample and the average value is reported 
in the results.

3 � Results

3.1 � Average composition of samples 
and microstructure

According to standard specification for “Powder Metallurgy 
(PM) Titanium and Titanium Alloy Structural Components” 
ASTM B988 [37], the use of X-ray f luorescence 
spectrometry is accepted as semi quantitative chemical 
analysis [38]. Some samples were examined by inductively 
coupled plasma optical emission spectroscopy (ICP-OES) to 
verify the XRF results. The chemical compositions for all 
processing conditions are shown in Fig. 2.

Although the amounts of Mg obtained are not exactly 
consistent with the amount of Mg added to the mixtures, 
it is clear for the samples sintered at high temperature 
(1050 °C) that the amount of Mg incorporated in the alloy 
is much lower than for the samples sintered at 800 °C, 
which implies a loss of magnesium in the process at high 
temperature due to volatilization of Mg [39]. At high 
temperature, the amount of Mg incorporated in samples 
2S (two-step) is greater than for samples 1S, except for the 
sample Ti-2%wt. Mg (1S) HIP1050°C.

The results for the HIP treatment at 800 °C reveal a clear 
trend of progressive increase in the amount of Mg incorporated 
into the alloy, approaching to the expected composition in 
the mixtures. In a similar way for samples 2S, the amount 
of Mg incorporated in the alloy is higher compared to 1S, 
which means that in most cases, the two-step milling process 
incorporates more magnesium into the titanium.

Figure 3 shows four typical microstructures of samples 
sintered at 1050 °C in HIP. The images correspond to alloys 
with low alloy content (0.5% wt.) and high alloy content 
(2% wt.) of Mg. For the first condition, microstructure of 
fine and coarse lamellar morphology of α-Ti due to severe 
plastic deformation in the ball milling process is clear 
[40], which is consistent with the lower %wt. Mg (Fig. 3a). 
The second characteristic microstructure is equiaxed α-Ti 
plus a transformed beta Ti phase (lamellar phase), which 
corresponds to the samples with the greatest amount 
of magnesium (Fig. 3b). The dark zone corresponds to 
this second α/β colony phase. The third typical structure 
corresponds to a homogenous fine-grained structure Ti-α 
(Fig. 3c), and the last one is coarse equiaxed alpha plus the 
second dual-phase α/β (Fig. 3d).

Figure 4 shows four typical microstructures of the sam-
ples sintered at 800 °C in HIP. The images correspond to 
alloys with medium and high alloy content of Mg. At these 
conditions, a microstructure of fine α-Ti plus an acicular 
phase (from original particle) with a slightly elongated 
shape is clear. It can be seen that the greater the amount 
of this second phase, the greater the amount of magnesium 

Fig. 1   Process to obtain Ti-Mg alloys with low alloy contain
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incorporated in the sample according to the compositional 
analysis (Fig. 4b and d). At these conditions, some voids 
were present in the sample. These cavities are related to 
the chemical attack on the surface and discontinuities in 
the matrix due to its lower sintering temperature. Tem-
peratures below 1000 °C for titanium sintering inevitably 
result in a loosely bonded Ti matrix [41].

To confirm the presence of magnesium in the second 
phase, SEM–EDS analysis was done in selected samples 
sintered at 1050 °C in HIP. The images in Fig. 5a show 
a microstructure typically transformed beta (alpha plus 
beta Ti), with some equiaxed grains inside it and basket-
wave microstructure in the sintered samples [42]. The 
EDS analysis in this zone presented a broad Mg peak. 

(a) (b)

Fig. 2   Magnesium percentage in the alloys determined by XRF or ICP-OES. a HIP-1050  °C, two-step condition 2S (black) and one-step 
condition 1S (red). b HIP-800 °C, two-step condition 2S (black) and one-step condition 1S (red)

Fig. 3   Samples of Ti-x%wt. Mg 
sintered at 1050 °C in HIP at 
two different milling conditions. 
a Ti-0,5%wt. Mg (2S)-HIP 
1050°C, b Ti-2%wt. Mg(2S)-
HIP1050°C, c Ti-0,5%wt. Mg 
(1S)-HIP1050°C and d Ti-
2%wt. Mg(1S)-HIP1050°C

(a) (b)

(c) (d)

1736 The International Journal of Advanced Manufacturing Technology (2023) 126:1733–1746



1 3

In contrast, the alloy showing a preferably equiaxed 
grain structure, which corresponds to the low Mg added 
(0.1% wt. Mg by XRF), did not show this Mg peak 
by EDS analysis; however, it is important to note that 
the concentration of the alloying element is within the 
detection limit of the technique of 0.1% [43] (Fig. 5b).

A similar trend is observed in the samples sintered at 
800 °C in the HIP (Fig. 6); but in such a case, all samples 
contained a limited amount of this second dual phase. It 
is clear from the EDS analysis of the samples processed at 
800 °C that the Mg peak heights agree with the amount of 
Mg added, where the highest peak represents a content of 
2.06% wt. Mg, while the lowest peak represents a content 
of 1.03% wt. Mg (Fig. 6a and b).

According to our metallographic and SEM analysis of 
the samples sintered at both temperatures, this second 
dual phase is directly related to the amount of magne-
sium incorporated into the Ti matrix. From these images, 
it is not possible to observe any Mg particle isolated in 
the Ti matrix, as readily found in composite materials. 
Of course, we know that the titanium etching reagent 
leaches Mg particles that could be on the surface, but 
in the mirror polished samples sintered at high tempera-
ture (without etching), the two typical phases observed 
in composite materials (matrix and reinforcement) were 
not evident. The XRF analysis confirmed the presence 
of magnesium in the samples, so we can affirm that we 
obtained Ti-x%wt. Mg materials, whose amount of Mg 
depends on the manufacturing conditions.

3.2 � XRD analysis

Figure 7 shows the XRD patterns of the different samples 
sintered at both temperatures and the phase identification.

At HIP-1050 °C for one-step (1S) or two-step (2S) sam-
ples, three phases were distinguishable, namely, Ti-α, TiC, 
and Ti-β, the latter being present with a low intensity only 
in the Ti-0.5%wt Mg (1S)-HIP1050°C sample. It can be 
observed from the peak height that for the samples with a 
two-step milling process, the amount of TiC is higher than 
for the one-step samples. The peaks corresponding to Mg 
are not visible even though Mg was found by XRF, which 
means that the element is in solution or its volume fraction 
was below the detection limit of X-ray diffraction.

At HIP-800 °C, the Ti-α, Mg, and Ti oxide compounds can 
be observed. At this temperature for the one-step samples, the 
intensity of the peaks of Ti oxides increased as the percentage 
of Mg decreases. These compounds may be associated with 
the thin oxide layer present in the as-received powders [41] 
and with chemical reactions with oxygen trapped in the pores 
remaining after compaction process, which did not close during 
HIP due to the low sintering temperature [44]. It is interesting 
to note a peak at 2ϴ = 50.5°, which was not observed in the 
high-temperature samples and did not coincide with the crystal-
line planes of any of the phases analyzed. However, from the 
peak position, this signal may be associated with magnesium 
hydroxide present on the surface derived from a reaction with 
the humidity of the environment given the high reactivity of 
Mg and its higher content in the samples at HIP-800 °C [13].

Fig. 4   Samples of Ti-x%wt. Mg 
sintered at 800 °C in HIP at two 
different milling conditions. a 
Ti-1%wt. Mg(2S)-HIP 800°C, 
b Ti-2%wt. Mg (2S)-HIP 
800°C, c Ti-1%wt. Mg(1S)-HIP 
800°C and d Ti-2%wt. Mg(1S)-
HIP800°C

(a) (b)

(c) (d)
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3.3 � TEM analysis

To detect the presence of Mg inside the material, two selected 
samples were analyzed by TEM. Figure 8 shows a high-
temperature sintering sample, and Fig. 9 the low-temperature 
sintered sample. The HAADF of Ti-2%wt. Mg (1S) HIP1050°C 
showed clusters of nanometric Mg grain which formed a 
magnesium-rich region close to grain boundaries and inside 
Ti grains [45]. Some magnesium oxide crystals could be seen 
too, but Mg is not uniformly distributed in the sample. In some 
areas and samples processed at the same HIP condition, it was 
difficult to identify its presence by TEM, which may indicate 
that it was selectively located at certain phases. The HAADF 
image also indicated that Mg was not always deposited at the 
grain boundaries (Fig. 8).

For the samples processed at low temperatures 
(Ti-2%wt. Mg (2S) HIP 800 °C), the STEM image showed 
a better distribution of Mg throughout the sample (Fig. 9a, 
b). Since Mg signals were detected by EDX throughout 
the matrix, it was clear that some Mg still exists as a 
solid solute in the titanium matrix [46]. Likewise, Mg 
nanoparticles can be observed in the Ti matrix as well as 
Ti and Mg crystals that form a coherent interface, which 
confirmed its iteration at an atomic scale (Fig. 9c).

3.4 � Microhardness test

Figure 10 shows the Vickers micro hardness of Ti-x%wt. 
Mg alloys under different milling and HIP conditions. 
It was observed that the highest hardness values were 

(a)

(b)

Fig. 5   SEM and EDS images of samples sintered at 1050 °C in HIP. a Ti-2%wt. Mg (1S). b Ti-0.5% wt. Mg (1S)
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obtained for samples sintered at 1050 °C compared to 
800 °C for both milling conditions, 1S or 2S.

For the 2S samples (Fig. 10a.), the smaller particles help 
to improve melting, packing, and diffusion, improving the 
hardness of the material. Additionally, this powder, milled in 
liquid organic PCA, helped to promote the formation of hard 
phases, which increased the material hardness.

The graph does not show a trend in hardness concerning the 
percentage of magnesium added, but in any case, this property 
increases with the addition of Mg, compared with the pure Ti 
sample processed under the same conditions.

4 � Discussion

In the reported binary phase diagram of the Ti-Mg system, 
the solubility of each metal into the other is less than 2 
at.% [18, 20]. According to Murray [17] under equilibrium 
conditions, the solid solubility of magnesium in titanium 
is about 0.35% wt. at 890 °C and is as low as 0.10% wt. at 
500 °C [23]. To enhance the solubility of Mg in Ti, non-
equilibrium processing techniques can be utilized [47, 
48]. Senkov et al. [19] reported a maximum solubility of 
Mg in α-Ti of 0.5%wt. and the solubility in β-Ti of 6%wt. 

(a)

(b)

Fig. 6   SEM and EDS images of samples sintered at 800 °C in HIP. a Ti-2%wt. Mg (2S). b Ti-1% wt. Mg (1S)

1739The International Journal of Advanced Manufacturing Technology (2023) 126:1733–1746



1 3

This indicates that the increase in temperature or in the 
amount of beta-titanium phase enhances the solubility of 
Mg into Ti as discussed below. In the high-temperature 
HIP process, the amount of Mg is far less than at low 
temperature, but the XRD high-temperature pattern showed 
that no Mg phase was present, in spite of showing its 
presence by TEM and confirmed by ICP-OES. In this way, 
it is clear that the solubility of Mg in Ti sintered at high 
temperatures could be extended under certain processing 
conditions despite the phase diagram indicating a solubility 
less than 1%wt. [49]. These favorable conditions include 
the individual pregrinding process where the mechanical 

energy stored in the particles increases the free energy 
of the phases [23], and then the generation of more grain 
boundaries derived from comminution act as pathways to 
initiate solubilization [29], second for the generation of 
internal defects and dislocations, and finally for the high 
pressure and temperature conditions of the HIP which favor 
the sintering processes and also promote the diffusion of 
Ti and Mg atoms [41].

Few reports predict the interaction behavior of the alloying 
element Mg with Ti; however, some of them estimate that 
Mg is a beta phase stabilizer [17], and its effect is more 
noticeable at high temperatures [50]. Based on the quantity of 

(a) (b)

(c) (d)

Fig. 7   XRD analysis of Ti-x%wt. Mg samples sintered at 1050 °C and 800 °C in HIP
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alloying elements and phases present in the microstructures, 
small addition (1 to 2% wt.) of β stabilizer would lead to 
classifying the alloy as near alpha [51]. In practice, the 
near alpha alloys contain up to 2% wt. β stabilizing element 
which both introduce small amount of β-phase into the 
microstructure [52]. There is a relationship between the 
presence of the second phase in the microstructure and 
the amount of magnesium in our metal sample. When the 
amount of Mg was close to 0 (0.1% wt by XRF), the preferred 
microstructure was only equiaxial α-Ti, but when the amount 
of Mg was higher, the microstructure presented a bimodal 
microstructure typical of alpha plus beta alloys similar to that 
of Ti64 when cooled in air [53, 54].

At the high HIP sintering temperature (1050  °C), a 
higher amount of Mg may be lost due to the proximity to 
the Mg boiling point, but this temperature which is above 
the estimated β Transus (900 °C for this Ti–Cp by DSC) 
should allow a phase change of the powder after heating 
due to the HEBM processes and the incorporation of 
alloying elements. The presence of alpha phase might be 
developed due to alpha stabilizers like oxygen and carbon, 
and the presence of beta seems to be produced owing to 
Mg which is a beta stabilizer. This dual phase was found 
too in HDH Ti64-HIP980°C due to local overheating and 
outflowed beta stabilizing elements [55] as happens at high 
temperature in the HIP when approaching the vaporization 
temperature of magnesium. The thermal process plays an 
important role too. During the slow cooling in the HIP, the 
alpha phase nucleated at the beta grain boundary and the 
beta transformed into α + β phases as can be seen in the SEM 
images. The slow cooling rates of the sintering process in the 

HIP should reduce the nucleation rate of the α-phase. In the 
present case, the cooling rate used was 5 °C/min and the α/β 
clustering could be observed in the microstructure similar to 
other microstructures reported in Ti [42].

At low sintering temperature in the HIP (800 °C), the 
thermal process is more similar to the annealing heat 
treatment used for titanium alloys; a temperature below 
beta transus is reached and then the sample is cooled in the 
furnace. This can leave traces of cold or warm working in 
the microstructures of heavily worked samples and helps to 
obtain recrystallization. For commercial Ti–Cp and near-α 
alloys, the temperature of annealing treatment is close to 
800 °C [54]. The final microstructure in our samples was 
incompletely recrystallized α, with a small volume fraction 
of dual-phase (α + β).

When studying the Ti-Mg system, it is clear from the 
XRD literature that a series of representative peaks exist in 
the 2ϴ region 30–41°, corresponding to the (100), (002), 
and (101) planes of hexagonal Ti and Mg, or other crystal 
structures of both elements [25, 56, 57]. When comparing 
the XRD scans of Ti-wt.% Mg with different magnesium 
contents, a peak shift in this range appears. The systematic 
shift of the peaks from the magnesium towards the titanium 
position further indicates the formation of a single-phase 
solid solution and speculated successful alloying [11, 58]. 
Shifting in the peak position in the 2ϴ ranges 35–35.5° and 
37.8–38.4° agree with the supersaturating of Mg in Ti in 
HCP structures [47]. The above condition is fulfilled for 
both processing states at HIP-800 °C sintered powders (S1 
and S2); however, at high temperature, the change is less 
noticeable than at low temperature, given the few quantities 

(a) (b)

Fig. 8   High-temperature sample Ti-2%wt.  Mg (1S)-HIP1050°C. a STEM-HAADF image Ti matrix and Mg nanograin. b Corresponding 
STEM-EDX mappings
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of Mg present in the alloys. At 800 °C HIP, the XRD of 
Ti-x%wt. Mg alloys shows a clear change in intensity and 
position in the peak of (002) plane of Ti-α. The shift to a 

lower diffraction angle is associated with the atomic radius 
of Mg which causes the expansion of the lattice parameter 
of the plane (002) [59]. The lattice volume expands due to 

(a) (b)

(c)

Fig. 9   Low-temperature sample Ti-2%wt. Mg (2S)-HIP800°C. a STEM-HAADF image Ti matrix and Mg. b Corresponding STEM-EDX 
mappings. c Coherent interface and SAED analysis
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the accommodation of some Mg atoms in the Ti lattice [7]. 
When Mg contents do not significantly affect the position 
of Ti diffraction peaks, the alloying element (Mg) is not 
diffused [60] or its content is too low to be detected. At 
HIP-800 °C, a decrease in peak height and a progressive 
broadening of the (002) plane can be observed as the Mg 
content increases for both groups (1S and 2S—see insert), 
suggesting that the (002) plane texture in the samples is sup-
pressed as more Mg atoms are mixed into Ti; additionally, 
it is also observed in the XRD that (100) and (101) textures 
are favored in our samples in a similar way to the reports for 
Ti-Mg alloys obtained by magnetron sputtering [58].

TEM images confirm the presence of Mg at the nanometric 
scale. It seems that it initially dissolves at the grain boundaries 
due to the number of crystals deposited there and then diffuses 
inwards [29]. Although the sintering temperature is high 
enough to evaporate part of the magnesium, the presence of 
these nanocrystalline Mg grains has been already reported in Ti 
alloys processed by HIP at high temperature and pressure [61] or 
by spark plasma sintering [39, 46]. The selected area diffraction 
pattern in the HIP 800 °C sample presented two close-packed 
hexagonal lattices related to Ti and Mg. Their orientation 
relationships can be expressed as (hkl) planes (100) Mg // (1–10) 
Ti (− 100) Mg // (− 110) Ti and correspond to one of the most 
likely matching crystalline planes with lesser interplanar spacing 
misfits [62]. This is a clear sign that a small amount of Ti 
existed in the Mg rich region or vice versa [39]. There are three 
types of phase boundary structures: coherent interface (form 
when the lattice misfits are <  ± 10%), semi-coherent interfaces 
(lattice misfit of < 20%), and incoherent interface (lattice misfits 
beyond 20%) [63]. According to cell parameter misfit of 9.76% 
and interplanar spacing misfit between (101) Mg // (002) Ti of 
less than 5.6%, a coherent interface forms between Mg and Ti 
matrix, which would lead to strong interfacial bonding in the 
alloys [4].

The correlation between Mg concentration and hardness 
of the Ti-Mg samples at low atomic concentration of Mg 
(< 0.2%wt.) was studied by Haruna et al. [64], finding a 
positive and almost linear relationship between the two 
parameters and reported a value of around 190 Hv for 0.1%wt. 
Mg. In the present work, the compositions evaluated were 
higher and although the hardness values obtained were in most 
cases above the values reported by Haruma et al., the existence 
of such a relationship with the Mg content is not clear. In the 
present study, the hardness of all samples initially increased 
with the increase in Mg content and then decreased when Mg 
was close to 2%wt. In the Ti-Mg samples with high alloying 
content produced by the Vapor Quenching route, the Vickers 
hardness of the deposit at 200 °C showed a similar tendency 
to our samples, reaching a maximum value of about 300 HV 
for about 4%wt of Mg and then decreased to 250 HV at 10% 
wt. [44]. In the present study, the hardness of the magnesium-
bearing samples processed at high temperature was much 
higher than that of the samples processed at low temperature 
due to the presence of TiC phase and a better sintering 
temperature in the HIP for Ti alloys. At 800 °C, one possible 
cause for the lower hardness values could be an incomplete 
diffusion bonding across closed pores, which would be due to 
insufficient sintering temperature or processing time [1].

To better understand the potential magnesium inclusion 
into the titanium crystal structure, tracer diffusion 
coefficients of magnesium for temperatures up to 1200ºC 
were calculated with the ThermoCalc software, in a 
Ti98wt%-Mg2wt% system at atmospheric pressure, as seen 
in Fig. 11. It can be observed that for the 800ºC and 1050ºC 
working temperatures, magnesium atoms will diffuse 
preferentially into the bcc phase. The titanium allotropic 
temperature of compact-hexagonal (hcp) to bcc at 886ºC 
was not fully considered, as the bcc phase is supposed to 
coexist with hcp. In fact, it has been proposed that Mg 
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addition can lead to a beta-stabilization during cooling [17] 
so magnesium inclusions into the titanium matrix could lead 
to a stabilization of beta-titanium at ambient temperature.

5 � Conclusion

In this work, it was proved that it is possible to obtain Ti-Mg 
alloys with low quantities of Mg through high-energy ball 
milling coupled with hot isostatic pressing, offering a new 
process way for metastable alloy production. First, the amount 
of Mg introduced in the alloy was close to the reported limit of 
solubility. Then, titanium alloy microstructure and the atomic 
scale iteration between Ti and Mg allow us to assume that 
under the processing conditions described, the material was 
closer to an alloy than to a composite material. In addition, the 
quantity of Mg introduced into the alloys was directly related 
to the presence of the second binary α + β phase, depending 
on the processing parameters, mainly, the milling conditions 
and the sintering temperature in the HIP. Finally, the hardness 
was enhanced with the presence of TiC and (0.22–0.42)%wt. 
Mg in samples sintered at 1050 °C, leading to a 344% increase 
in hardness with respect to pure Ti.
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