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The identification of mutations modifying the age of onset

(AOO) in Alzheimer’s disease (AD) is crucial for understanding

the natural history of AD and, therefore, for early interventions.

Patients with sporadic AD (sAD) from a genetic isolate in the

extremes of theAOOdistributionwerewhole-exome genotyped.

Single- andmulti-locus linearmixed-effectsmodels were used to

identify functional variants modifying AOO. A posteriori enr-

ichment and bioinformatic analyses were applied to evaluate the

non-random clustering of the associate variants to physiopath-

ological pathways involved in AD. We identified more than 20

pathogenic, genome-wide statistically significant mutations of

major modifier effect on the AOO. These variants are harbored

in genes implicated in neuron apoptosis, neurogenesis, inflam-

matory processes linked to AD, oligodendrocyte differentiation,

and memory processes. This set of new genes harboring these

mutations could be of importance for prediction, follow-up and

eventually as therapeutical targets of AD.
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INTRODUCTION

In the study of complex genetic disorders, a new comprehensive

alternative approach has recently emerged to overcome the lim-

itations of the common disease-common allele hypothesis [Cirulli

and Goldstein, 2010]. This approach assesses genetic risk in terms

of nonlinear interactions among genetic variants of major effect

(i.e., exonic mutations) [Fearnhead et al., 2004; Bodmer and

Bonilla, 2008; Bhatia et al., 2010; Liu and Leal, 2010a; Zuk et al.,

2012] by studying patients with extreme phenotypes [Li et al., 2011;
2016 Wiley Periodicals, Inc. 1116
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Barnett et al., 2013; Johar et al., 2014] from extended and/or

multigenerational pedigrees, or homogeneous cohorts from gen-

etic isolates [Arcos-Burgos andMuenke, 2002; Arcos-Burgos et al.,

2010; Jonsson et al., 2012; Velez et al., 2013].

Alzheimer’s disease (AD) (OMIM 104300) is a neurodegenera-

tive disorder that accounts for �60–80% of dementia cases,

especially on people over 65 years [Alzheimer’s Association,

2014]. Prevalence estimates indicate that �27 million people are

affected with AD, and 1 in 85 individuals will be affected by 2050

worldwide [Brookmeyer et al., 2007]. In contrast with familial AD

(fAD), sporadic AD (sAD) represents vastly most of AD cases and

defines a subtype of AD where explicit affected relatives are either

absent or cryptic to the clinical anamnesis.

AlthoughMendelian inheritance andmajormutant causal genes

are present in fAD [Goate et al., 1991; Levy-Lahad et al., 1995;

Sherrington et al., 1995; Giraldo et al., 2013; Guerreiro et al., 2013;

Cruchaga et al., 2014], only susceptibility loci of minor effect have

been identified in sAD, with variants in the Apolipoprotein E

(APOE) gene being the major genetic risk factor in late-onset

cases. Recent genome-wide association studies (GWASs) have

successfully identified over 20 loci of minor effect associated

with late-onset AD (LOAD) outside the APOE locus [Chouraki

and Seshadri, 2014; Logue et al., 2014].

Genetic isolates have shown to be a powerful tool for the genetic

mapping of inherited diseases [Arcos-Burgos and Muenke, 2002].

During the last 30 years, we have studied the “Paisa” community

from Antioquia, Colombia. This community is genetically homo-

geneous, exhibits high degrees of endogamy, and a number of sibs

that is larger when compared to that of families from other areas of

the country [Bravo et al., 1996]. Within the Paisa community, our

group has studied the world’s largest multigenerational pedigree in

which the p.Glu280Ala E280A mutation in the Presenilin-1

(PSEN1) gene co-segregates with early-onset AD (EOAD) [Lopera

et al., 1994].

One of themost intriguing aspects outlined in this pedigree is the

broad spectrum of the AD age of onset (ADAOO) that ranges from

the earliest 30’s to the 70’s [Acosta-Baena et al., 2011]. In this

pedigree, we have identified ADAOO modifier loci [Velez et al.,

2015, 2016]. Following this approach, we performed whole-exome

screening of functional variants in patients with sAD ascertained

from the Paisa community who exhibited an extremeAOO. Several

pathogenic exonic variants of major effect with remarkable

genome-wide significance were found, some of them harbored

in both previously reported and novel ADAOO modifier genes.

Pathway, network and process enrichment analyses converge to

support the role of these pathogenic variants in the physiopathol-

ogy of sAD, opening new roads toward the understanding of the

genetic basis of this complex form of AD.
A
 articles are governed by the applicable C
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METHODS

Subjects
Fifty-four individuals with sAD were included in this study. These

patients inhabit in theMetropolitan Area ofMedellin in Antioquia,

Colombia. Genetic studies have shown that this community has

not been subject to microdifferentiation, and shares the same
genetic background and genealogy of the E280A pedigree [Bravo

et al., 1996; Arcos-Burgos and Muenke, 2002].
Clinical Assessment
Clinical, neurological, and neuropsychological assessment of

patients was performed at the Group of Neurosciences AD Clinic,

University of Antioquia in Medellin, Colombia, using a Spanish

version of The Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD) evaluation battery [Morris et al., 1989] adapted

for the cultural and linguistic characteristics specific to this popu-

lation (Supplementary Material) [Acosta-Baena et al., 2011; Fle-

isher et al., 2012]. Patients were defined as affected by mild

cognitive impairment (MCI) based on Petersen’s criteria [Petersen

et al., 1999], and by AD if they met DSM-IV criteria [American

Psychiatric Association, 2000]. Informed consent was obtained

from all participants.

For the set of analyses presented below, only patients with

defined AD were included (i.e., patients with MCI were not

included for the genetic comparisons). Furthermore, the AD

and MCI ages of onset were determined during anamnesis with

information provided by the patients or their families, and looking

for confirmation by several sources. Because some patients started

their follow-up during MCI, their dementia age of onset was

defined during the follow-up stage [Acosta-Baena et al., 2011].

This strategy was recently proven to be highly accurate [Aguirre-

Acevedo et al., 2016].
Whole-Exome Genotyping
Genomic DNA was whole-genome amplified, fragmented, hybrid-

ized, fluorescently tagged, and scanned by the Australian Genome

Facility (Melbourne, VIC, Australia) using the Infinium assay

[Gunderson et al., 2005].Whole-exome genotyping was conducted

using Illumina HumanExome 12v1_A BeadChip, which covers

regions with putative functional exonic variants selected from

exome- and whole-genome sequences of >12,000 individuals.

The exonic content consists of >250,000 markers representing

diverse populations (including European, African, Chinese, and

Hispanic individuals) in addition to common conditions such as

type 2 diabetes, cancer, andmetabolic and psychiatric disorders. In

addition to pure exonic variation, the chip covers single nucleotide

polymorphisms (SNPs) in splice sites, stop variants, promoter

regions, and GWAS tag markers, among other potentially func-

tional variation. Samples with calls below Illumina’s expected 99%

SNP call rates were excluded. In addition, the presence of PSEN1

functional mutations in the group of sporadic patients has been

discarded.
Genetic Statistical Analysis
Quality control, filtering, and classification of exonic

variants. Genotypes were extracted using the Genotyping mod-

ule of Illumina’s GenomeStudio v2010.3 and the Illumina1

HumanExome 12v1_A manifest cluster file. Genotype files were

processed in Golden Helix1 SNP Variation Suit (SVS) 8.2.1

(Golden Helix, Inc. Bozeman, MT). Marker exclusion criteria
 C
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P< 2� 10�7 (0.05/250,000 markers); (ii) a minimum genotype

call rate of 90%; (iii) the presence of one or more than two alleles;

and (iv) a minor allele frequency (MAF)< 1% (i.e., excluding rare

variants). Genotype and allelic frequencies were estimated by

maximum likelihood. The identity by descent (IBD) matrix bet-

ween all pairs of individuals was used for quality control.

Exonic variants with potential functional effect were determined

using the functional prediction information available in the

dbNSFP_NS_Functional_Predictions GRCh_37 annotation track

implemented in the SVS Variant Classification Module. This

module was also used to examine interactions between variants

and gene transcripts to classify variants based on their potential

effect on genes. Variants were classified according to their position

in a gene transcript, and those in coding exons were further

classified according to their effect on the gene’s protein sequence.

GWAS of exonic variants. We studied the association of

common exonic functional variants (CEFVs) to ADAOO using
FIG. 1. (a) Histogram and probability density plots for the ADAOO in 54

with an average ADAOO of �57 and �69 years old, respectively. Box- an

No difference in the average ADAOO was found in either case. (d) ADAOO

years of education seem to have an earlier ADAOO. ADAOO, Alzheimer’s di

can be seen in the online version of this article, available at http://wiley
single- and multi-locus additive, dominant, and recessive linear

mixed-effectmodels (LMEMs)with up to 20 steps in the backward/

forward optimization algorithm [Segura et al., 2012]. The advan-

tage of these models is the inclusion of both fixed (sex and years of

education) and random effects, the latter to account for potential

inbreeding by including the IBD matrix. A single-locus LMEM

assumes that all loci have a small effect on the trait, while multi-

locus LMEM assume that several loci have a large effect on the trait

[Segura et al., 2012]. Both types of models are implemented in SVS

8.2.1. The optimal model was selected using a comprehensive

exploration ofmultiple criteria including the Bayesian Information

Criteria (BIC), the extended BIC (eBIC), themodified BIC (mBIC),

the Multiple Posterior Probability of Association (mPPA), the log-

likelihood, and the minimum pseudo-heritability. Correction for

multiple testing was performed using Bonferroni’s correction

[Bonferroni, 1935], false discovery rate (FDR) [Benjamini and

Hochberg, 1995], and a method based on extremes-value theory

[V�elez et al., 2014].
patients with sAD. The disclosed the presence of two hidden groups

d violin-plots for the ADAOO by (b) gender and (c) education group.

as a function of the years of education. Individuals with <3 or >13

sease age of onset; sAD, Sporadic Alzheimer’s disease. [Color figure

onlinelibrary.com/journal/ajmgb].
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regression- and permutation-based Kernel-Based Adaptive Cluster

(KBAC) methods were used [Liu and Leal, 2010b]. KBAC, imple-

mented in SVS 8.3.0, catalogues rare variant data within each of a

number of regions intomulti-marker genotypes and, since variants

are rare, only a relatively few different multi-marker genotypes are

found in any given region. A special test is subsequently applied to

determine their association with the (case/control) phenotype,
FIG. 2. (a) Filtering process applied to exonic variants. Filter 1 excludes

disequilibrium and with one or more than two alleles. Filters 2 excludes

11,544 common functional variants remained for analysis at the end of

variants included for analysis. Markers with �log10(P)> 3.98 (in red) w

top six FDR significant variants are also shown. Pink, blue, and dotted ho

average ADAOO, the individuals’ ADAOO and the global average ADAOO in

relatedness between ADAOO modifier genes (Table I, shown in red) and t

with statistically significant biological relatedness are presented at the b

online version of this article, available at http://wileyonlinelibrary.com/jo
weighting eachmulti-marker genotype by how often that genotype

was expected to occur according to both the data and the null

hypothesis that there is no association between that genotype and

the case/control status of the sample [Liu and Leal, 2010b]. Thus,

genotypes with high sample risks are given higher weights that can

potentially separate causal from non-causal genotypes. Further, a

one-sided test was applied due to the weighting procedure and the

P-values were estimated using 10,000 permutations.
variants with a genotype call rate <90%, in Hardy–Weinberg

variants with MAF< 1% and Filter 3 those not functional. A total of

this process. (b) Manhattan plot for the 11,544 common functional

ere significant after FDR correction. Beanplots for the ADAOO in the

rizontal lines, respectively, correspond to the within genotype

our 54 patients with sAD. (c) Dendrogram showing the biological

he top 10 percentile genes with functional relevance in AD. Genes

ottom. Abbreviations as in Figure 1. [Color figure can be seen in the
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Network enrichment analysis. We performed network and

pathway analyses in order to identify key physiological pathways

and networks harboring the candidate genes considered as

ADAOO modifiers. The identification of these networks allows

the acquisition of rich ontologies for biological processes at the

protein and molecular level with potential importance in AD.

Genes with potential functional effect were examined in MetaCore

version 6.20 build 66481 (Thomson Reuters, NY) using the “Ana-

lyse Network,” “Process Networks,” “Shortest Paths,” and “Direct

Interactions” algorithms, which provide a heuristic interpretation

of maps and networks and rich ontologies for diseases based on the

biological role of candidate genes. To minimize artefacts in the

statistical analysis, only nodes with direct physical interactions

between the encoded proteins in the database were included.

Biological relatedness between candidate and core genes. We

used the Human Gene Connectome (HGC) database [Itan et al.,

2014] to quantify the biological relatedness between ADAOO

modifier genes in our patients with sAD, and genes previously

reported in AD. Similar toMetaCore, the rationale of theHGC is to

prioritize candidate genes on the basis of their functional relevance

to the sAD phenotype. Candidate genes were chosen on the basis of

their quantitative relatedness or biological distance to genes already

established as having functional importance in AD. Biological

distances [Itan et al., 2014] were calculated between genes identi-

fied in our association analyses and those previously identified in

AD. The list of genes with known functional/physiological rele-

vance and/or association to AD was obtained from the Gene

Prospector database [Yu et al., 2008]. Only genes in the top 10

percentile were selected for the HGC-based analysis. To evaluate

the significance of these distances, P-values were estimated via

random permutation of pairwise gene interactions in the HGC

database, and subsequently corrected using FDR.

It is worth mentioning that the Human Genome Connectome

(HGC) is more effectively applied when seeking to identify Men-

delian disease-causing genes. Given that the rational of this study is

the detection of major effect gene variation we have assumed that

the HGC could disclose some relevant information pointing

cryptic networks out from the genes reported by the genetic

screening.

RESULTS

Patients
Of the 54 individuals included in this study, 43 (80%) were women

and 11 (20%) men. The average ADAOO was 63.26� 6.94 years in

these patients. Analysis of the ADAOO distribution suggests that

patients may be clustered in two different groups; the first group

consists of 30 (57%) individuals with an average ADAOO of

57.86� 5.13 years (Fig. 1a, orange line), while 24 (43%) individuals

belong to the second group and have an average ADAOO of

69.08� 2.41 years (Fig. 1a, pink line). As intended, statistically

significant differences in ADAOO were found between groups (P

¼ 2.92� 10�10). No difference in ADAOO was found by gender

(Females: 63.95� 6.44; Males: 60.54� 8.42, P¼ 0.232) (Fig. 1b). In

those individuals with available information (n¼ 53), years of edu-

cation ranged from 0 to 18 years: one patient (2%) never attended

school; 22 (42%) completed primary school (grades 1–5); 23 (43%)
completed high school (grades 6–11, inclusive); and seven (13%)

attended tertiary education. Average ADAOO did not differ signifi-

cantly across education groups education (F2,49¼ 1.362, P¼ 0.265)

(Fig. 1c). Although not statistically significant, ADAOO slightly

increases for individuals with <3 and >13 years of education

(Fig. 1d).
Common Functional Exonic Variants (CFEVs)
Modifying ADAOO
After quality control and filtering, a total of 11,544 CEFVs

remained for analysis (Fig. 2a). A recessive multi-locus LMEM

with 17 steps in the forward selection algorithm was chosen based

on the lowest eBIC, the highest mPPA and the lowest pseudo-

heritability criteria. After FDR correction, a total of 25 variants

were significantly associated as ADAOO modifiers in our patients

with sAD (Table I and Fig. 2b). Based on the estimated regression

coefficient b̂ of the multi-locus LMEM, these CEFVs can be

classified as accelerators (group 1, b̂ < 0, n¼ 14, Table I), or

decelerators (group 2, b̂ > 0, n¼ 11, Table I) of the ADAOO.

Variants rs35946826 (GPR45, b̂ ¼ �12:7, PFDR¼ 3.08� 10�36),

rs61742849 (MAGI3, b̂ ¼ �14:3, PFDR¼ 4.38� 10�34), and

rs61749930 (MYCBPAP, b̂ ¼ �12:1, PFDR¼ 6.06� 10�27) in the

first group, and variants rs675026 (OPRM1, b̂ ¼ 5:4, PFDR¼ 1.15

� 10�33), rs7677237 (HERC6, b̂ ¼ 2:1, PFDR¼ 3.58� 10�15), and

rs34230332 (C3orf20, b̂ ¼ 1:6, PFDR¼ 4.81� 10�7) in the second

group are of particular interest because of their ADAOO modifier

effect. In particular, having two copies of the A allele in rs35946826

(GPR45) accelerates ADAOO by �13 years compared to having

zero or one copies of the allele, and having two copies of the A allele

in rs675026 (OPRM1) delays ADAOO by �5.5 years compared to

having zero or one copies of it (Table I and Fig. 2b). There were no

qualitative differences in the number of loci selected by the linear

mixedmodelwhen either the FDRor the Bonferroni correctionwas

used. In addition, no significant rare variant was found to be

associated with the ADAOO using KBAC.
HGC-Based Biological Relatedness
Figure 2c shows the dendrogram constructed from the biological

relatedness similarity between the top 10 percentile of core AD

genes and the genes reported herein. We successfully identified

statistically significant biological relatedness between TTBK2 and

APOC1, ABCA7 and TF (three of the core AD genes), while both

MAGI3 and IDE, andMAGI3 and BIN1 were nominally significant

(Fig. 2c, bottom). Of particular importance is the pairwise com-

parison between TTBK2 and TF as this pair of genes had the most

significant biological relatedness (Fig. 2c). Additionally, TTBK2 is

biologically related to APOC1 and ABCA7 (Fig. 2c) (additional

interpretations are provided in the Supplementary Material).
Pathway Enrichment Analysis
Apoptosis-related and neurological signaling-related

processes. We identified key physiological processes involving

some of our ADAOO modifier genes (Table I). Indeed, MAGI3,

FPR1, OPRM1, and NFATC1 are involved in physiological
C
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TABLE II. Apoptosis- and Neurological Signaling-Related Processes, and Disease Ontological Descriptions of Candidate Genes From the
Pathway, Network, and Enrichment Analyses

Network

Gene

Network

algorithm Name P-value FDR

Process, disease annotations,

and disease ontology

(P-value) Biological process node in network
MAGI3 Shortest

paths

a a a Regulation of neuron apoptosis

(2.24� 10�4)

Binding of b-adrenergic receptor to MAGI3

a a a Regulation of apoptotic processes

(1.67� 10�4)

Binding of b-adrenergic receptor to MAGI3, and

cleavage of MAGI3 by cathepsin K
a a a Regulation of MAP kinase activity

(1.31� 10�6)

Binding of b-adrenergic receptor to MAGI3

FPR1 Process

networks

NPS 7.64� 10�4

(3/155)

1.23� 10�2 Negative regulation of synaptic

transmission (2.04� 10�7)

Binding of G protein a-q 11 to FPR1

Alzheimer’s Disease

(4.84� 10�20)

EOAD (4.63� 10�3)

LOAD (5.76� 10�10)b

OPRM1 Process

networks

NPS 7.64� 10�4

(3/155)

1.23� 10�2 Positive regulation of IL1b

production (6.23� 10�3)

Binding of G protein a-q 11 to FPR1

Regulate NFkB activity

(5.78� 10�3)

Neurogenesis (7.73� 10�7)

Dopamine receptor signaling

(5.27� 10�4)

NFATC1 Process

networks

InS 7.07� 10�3

(2/104)

4.28� 10�2 Memory (4.22� 10�4)

Alzheimer’s

Dephosphorylation of NFATC1 by calcineurin, ad

phosphorylation of NFATC1 by ERK1/2 kinase

Disease (4.52� 10�23) LOAD

(8.37� 10�19)

TLR3 signaling (2.74� 10�2)

Oligodendrocyte differentiation

(1.69� 10�2)

FPR1/

OPRM1

Process

networks

NPS 7.64� 10�4

(3/155)

1.23� 10�2 Positive regulation of I-kappaB

kinase (4.62� 10�2)

GTP hydrolysis of GPCRs (encoded by FPR1 and

OPRM1), leading to activation of G-protein a-I

familyPositive regulation of

neurogenesis (1.34� 10�3)

Dopamine receptor signaling

(1.22� 10�7)

Direct

interactionsc
DIs d d Positive regulation of cytosolic Ca2

+ ion concentration

(2.54� 10�2)

Ab protein binding G protein coupled receptors

(encoded by FPR1 and OPRM1)

Neuron projection development

(1.22� 10�4)

Neuron recognition (6.38� 10�3)

Regulation of Ca2+ transport

(5.40� 10�3)

Cleaved Ab protein which binds GPCRs

Positive regulation of neuron

differentiation (4.48� 10�2)

Ab binding to GPCRs (encoded by FPR1 and

OPRM1)

Regulation of apoptotic signaling

(4.69� 10�4)

Neuron generation (1.88� 10�6) ESR1 transcriptionally regulates ACE1, which

cleaves Ab proteins (inhibitory effect)

Alzheimer’s Disease

(2.76� 10�14)

LOAD (7.14� 10�11) Cleaved protein binds to GPCRs (encoded by FPR1

and OPRM1)

Enrichment scores are shown in bold.
DIs, Direct interactions; EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; InS, Inflammation/IL2 signaling; NPS, Neuropeptide signaling; FDR, False discovery rate.
The P-values associated to each network give the probability of getting a certain number of genes obtained from a given network algorithm from the input list by chance. Enrichment scores are similarly
interpreted.
aP-value is not included because the shortest path algorithm only builds a single network.
bIncludes all nodes only involving FPR1 and OPRM1.
cContains genes from Table I and the top two percentile of AD-related genes from the Gene Prospector database.
dP-values not included because only a single network is produced.
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processes such as neuron apoptosis, neurogenesis, andmemory, all

containing statistically significant ontological process (P< 0.05,

Table II). Specifically, the network node showing the interaction of

the b-adrenergic receptor with MAGI3 (Fig. 3a) suggests that this

gene is involved in neuron apoptosis (P¼ 2.24� 10�4), apoptotic

processes (P¼ 1.67� 10�4), and regulation of the MAP kinase

activity (P¼ 1.31� 10�6).

NFATC1, OPRM1, and FPR1 are involved in oligodendrocyte

differentiation (P¼ 1.69� 10�2), positive regulation of neurogen-

esis (P¼ 1.34� 10�3), and negative regulation of synaptic trans-

mission (P¼ 2.04� 10�7), respectively, and have important

implications in AD, EOAD, LOAD, and memory (Table II).

FPR1 and NFATC1 are involved in immune related processes,

which could also have implications for AD, while FPR1 is involved

in the release of IL1b, which is thought to contribute to neuro-

inflammation and neurodegeneration (P¼ 6.23� 10�3), and

NFATC1 is a necessary activator of TLR3 signaling (P¼ 2.74�
10�2) (Table II). This later process is seemingly facilitated by
FIG. 3. Networks for (a) MAGI3, (b) NFATC1, (c) OPRM1 and FPR1, and (

information in Table II. [Color figure can be seen in the online version of
dephosphorylation of NFATC1 by calcineurin (Table II and

Fig. 3b). OPRM1 was also found implicated in the regulation of

NF-ĸB activity (P¼ 5.78� 10�3), neurogenesis (P¼ 7.73� 10�7),

and dopamine receptor signaling (P¼ 7.73� 10�7) through the

binding of G protein a-q/11 to FPR1 (Fig. 3c). Our findings also

indicate that the ACE1 cleavage enzyme cleaves amyloid beta (Ab),
resulting in an inhibitory effect on the activity and accumulation

(Fig. 3d). The cleaved protein then binds to and subsequently

activates G protein-coupled receptors (GPCRs), which are impor-

tant molecules involved in neuron recognition (P¼ 6.38� 10�3),

development (P¼ 1.22� 10�4), differentiation (P¼ 4.48� 10�2),

and generation (P¼ 1.87� 10�6), as well as in apoptotic signaling

(P¼ 4.68� 10�4) and calcium transport (P¼ 5.40� 10�3)

(Table II). Hence, a mutation in the GPCR encoding genes

(FPR1 and OPRM1) might change the regulation of these func-

tions, which in turn could affect neurological function, potentially

leading to symptoms in AD (P¼ 2.76� 10�14) and LOAD

(P¼ 7.14� 10�11). This mechanism coincides with other previous
d) reflecting direct interactions involving FPR1 and OPRM1. Additional

this article, available at http://wileyonlinelibrary.com/journal/ajmgb].
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findings showing that Ab accumulation can disrupt GPCR func-

tion and, therefore, the aforementioned processes [Thathiah and

De Strooper, 2011]. However, a mutation in the GPCR encoding

proteins would also prevent these essential processes, thereby

favoring AD pathogenesis.

Wnt signaling-related processes. FRP1 and OPRM1 were also

identified to have key roles of potential relevance inWnt signaling

via various mechanisms (Table III and Fig. 4). Figure 4a suggests

the initiation ofWnt signaling process through the transcriptional

regulation of GPCRs (encoded by OPRM and FPR1) by the c-myc

transcription factor and/or the binding to and activation of Phos-

pholipase C (PLC) g. Gene ontology analysis shows that this

mechanismmight be important in positive regulation of apoptosis

(P¼ 4.01� 10�5, Table III). GPCRs can also impactWnt signaling

via alternate pathways and processes by binding and subsequently

activating G Protein a I family members (Fig. 4b), which might

result in the negative regulation ofWnt protein secretion (P¼ 1.28

� 10�2, Table III). The NPFF receptor 2 and the Nociceptin

receptor bind the m-type opioid receptor encoded by OPRM1

(Fig. 4c). This binding has an inhibitory antagonistic effect on

OPRM1 and thereby restricts the regulatory capabilities of this

protein in important processes such as calcium ion transport

and homeostasis (P¼ 1.39� 10�5), and PLC signaling (P¼ 4.29

� 10�3) (Table III).

The network and enrichment analysis further indicated thatWnt

signaling is not only influenced by activation effects through

proteins binding to receptors, but could also be regulated by

antagonistic effects such as the binding of Nociceptin receptors,

SSTR2, substance P receptor, and NPFF receptor 2 to the m-type
opioid receptor (encoded by OPRM1) (Fig. 4c,d). Both networks

suggest that this mechanism inhibits the activity of the m-type
opioid receptor, which consequently results in the negative regu-

lation of Wnt protein secretion. This regulatory cascade seems to

continue as a consequence of them-type opioid receptor binding to
and activating the d-type opioid receptor. Furthermore, this pro-

cess is also facilitated by activation of G Proteinb/g after it binds to
GPCRs (P¼ 1.66� 10�7 for Fig. 4c, P¼ 4.98� 10�6 for Fig. 4d,

respectively).
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DISCUSSION

Despite the clinical, neuropsychological and neuropathological

proven similarities between familial and sporadic AD [Duara

et al., 1993; Lehtovirta et al., 1996; Israel et al., 2012], the identifi-

cation of causative genetic variants has only been successful in the

former [Piaceri et al., 2013; Alzheimer’s Association, 2014]. Here,

we report 25 CFEVs that modify ADAOO in patients with sAD

ascertained from a genetic isolate. In addition to their potential

functional implications, the effect sizes of these mutations is

genome-wide significant and stand after correction for multiple

testing. Furthermore, some of these pathogenic mutations point

toward conspicuous genes that have been either previously impli-

cated in the physiopathology of AD, or significantly linked to

pathways, networks, or processes related to AD.

Some genes harboring these mutations deserve a more detailed

report. Our network and pathway enrichment analysis showed that

MAGI3 interacts with the b-adrenergic receptor playing a role in
neuron apoptosis. In addition, MAGI3 interacts with PTPRB

[Adamsky et al., 2003] and PTEN [Wu et al., 2000], modulators

of the AKT1 gene, which is a critical mediator of growth factor-

induced neuronal survival, reported as disturbed in AD [Guan

et al., 2000; Persad et al., 2001; Rickle et al., 2004].

GPCRs mediate most cellular responses to hormones and

neurotransmitters and play important role in the physiopathology

of AD (see Table II) [Rosenbaum et al., 2009; Thathiah and De

Strooper, 2011; Ghanemi, 2015]. We found that GPCRs (encoded

by FPR1 and OPRM1) might also have a key role in apoptotic

processes (Table III and Fig. 4). Thus, a mutation in either or both

of these genes encoding GPCRs may disturb the apoptotic regula-

tion process. Excessively high levels of apoptosis may lead to

destruction of cells key to neurological processes. Conversely, if

the mutation(s) lead(s) to a reduction in apoptotic activity, this

may lead to the accumulation of cell contents and or proteins with

potential neurotoxic effects. GPR45 is expressed in the central

nervous system, the periphery and neural cells [Marchese et al.,

1999; Kawasawa et al., 2000]. To find that a CEFVs in GPR45

(rs35946826, b̂ ¼ �12:7, PFDR¼ 3.08� 10�36) accelerates AOO in

our patients with sAD, strongly highlights the potential of GPCRs

as a therapeutic target in sAD.

Gene ontology annotations relate FPR1with FPRL1, a variant of

the formyl peptide receptor (FPR). FPRL1 is activated by Ab42 and

participates in its internalization inmacrophages and subsequently

in the cytotoxicity for neuronal cells, which suggests that is

involved in inflammatory aspects of AD [Cui et al., 2002; Slowik

et al., 2012]. Furthermore, our network and pathway analyses

linked FPR1with the release of IL1b, which is thought to contribute
to neuroinflammation and the neurodegeneration that follows

[Shaftel et al., 2007].

OPRM1 belongs to the m-Opioid receptor family, which has

been implicated in learning and memory, as well as in locomotor

activity, thermoregulation, hormone secretion, and immune func-

tions.OPRM1was also involved in the regulation of NFkB activity,

neurogenesis, and dopamine receptor signaling, through the bind-

ing of G protein a-q/11 to FPR1 (Fig. 3c), all fundamental

mechanisms linked to the genesis of AD.

Wnt signaling regulates the structure and function of the

nervous system in adults [Rosso and Inestrosa, 2013]. Recent

studies suggest that perturbations of Wnt signaling may promote

human neurodegenerative diseases [Logan and Nusse, 2004].

Because the loss of Wnt/b-catenin signaling function underlies

the Ab-dependent neurodegeneration observed in AD, the Wnt

signaling pathway has been proposed as a therapeutic treatment for

AD [Moon et al., 2004; Inestrosa and Toledo, 2008]. Our analysis

showed a key role ofOPRM1 and FPR1 in the negative regulation of

Wnt protein secretion (P¼ 1.28� 10�2) and the positive regula-

tion of apoptosis via the canonicalWnt signaling pathway (P¼ 4.09

� 10�5) (Table III). A mutation in either one of them can restrict

ormodify these biological processes aforementioned in addition to

severally disturb the regulation of Ca2þ transport, and PLC activity

[Mouledous et al., 2012].

NFATC1 encodes a protein that is a necessary activator of the

TLR3 signaling, which is facilitated by the dephosphorylation of

NFATC1 by calcineurin [Fric et al., 2014]. The TLR3 neuroin-

flammatory response and overexpression in the nervous system
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TABLE III. Wnt Signaling-Related Processes and Disease Ontological Descriptions of Candidate Genes From the Pathway, Network, and
Enrichment Analyses

Network

Network

algorithm Name P-value FDR

Process, disease

annotations, and

disease ontology

(P-value) Biological process node in network

Analyse

networka
m-type opioid

receptor

4.97� 10�20(8/50) b Regulation of neuron

development

(8.31� 10�4)

SSTR2, NPFF, substance P, and/or

nociceptin receptor binding to mu type

opioid receptor (encoded by OPRM1).
Also GPCRs (encoded by FPR1 and

OPRM1) hydrolysed by GTP, activates G

protein b/g

Negative regulation of

Wnt protein
secretion

(4.98� 10�6)

Negative Regulation of

Ca2+ cytosolic

concentration

(1.39� 10�5)

Alzheimer’s Disease

(6.274� 10�11)

LOAD (1.89� 10�10)

Analyse

network

from GO

processes

m-type Opioid

receptor, d-type
opioid receptorc

8.76� 10�7

(6/50)

3.5� 10�4 Negative regulation of

Wnt protein
secretion

(1.67� 10�7)

SSTR2, NPFF, substance P, and/or

nociceptin receptor binding to mu-type

opioid receptor (encoded by OPRM1), in
turn binds to d-type opioid receptor

Process

networksa
Chemotaxis 5.32� 10�4

(3/137)

1.23� 10�2 Negative regulation of

Wnt protein
secretion

(1.28� 10-2)

GTP hydrolysis of GPCRs (transformation

reaction), leading to activation of G

protein a I family members

Phospholipase A2

Activity

(1.92� 10�2)

Phospholipase C

activating G protein

coupled receptor

signaling

(6.99� 10-4)

Motor neuron axon

guidance

(8.22� 10-5)

Alzheimer’s disease

(3.37� 10-11)

LOAD (3.53� 10�2)

Neuropeptide

signaling

7.64� 10�4

(3/155)

1.28� 10�2 Negative regulation of

Wnt protein
secretion

(3.63� 10�5)

GTP hydrolysis (transformation) of GPCRs

encoded by FPR1 and OPRM1 leading to

activation of G protein a I family

members

Neuron differentiation

(3.49� 10-8)

Alzheimer’s disease

(4.84� 10�20)

EOAD (4.63� 10�3)

LOAD (5.76� 10�10)

Cholecystokinin

signal

transduction

7.33� 10�3

(2/106)

4.28� 10�2 Canonical Wnt
signaling pathway

in positive

regulation of

apoptosis

c-myc transcription regulation of GPCRs

(encoded by FPR1 and OPRM1). GPCRs
in turn hydrolysed, leading to activation

of G protein a I family members.

(Continued)
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TABLE III. (Continued)

Network

Network

algorithm Name P-value FDR

Process, disease

annotations, and

disease ontology

(P-value) Biological process node in network
(4.01� 10�5)

Regulation of neuron

projection

development

(1.68� 10�5)

Regulation of release of Ca2+ ion in cytosol

by SR (4.29� 10�3)

GPCRs are involved in

binding and

activating PLC

(Phospholipase C)

g
Neuron differentiation

(3.49� 10�8)

GPCRs activate G protein a-12 family

proteins, which activate PKA-cat

phosphatase, in turn phosphorylates

PLC g
Alzheimer’s disease

(4.84� 10�20)

LOAD (5.76� 10�10)

EOAD

(4.63� 10�3)

Enrichment scores are shown in bold.
EOAD, Early-onset Alzheimer’s disease; GPCR, G protein-coupled receptor; LOAD, Late-onset Alzheimer’s disease; FDR, False discovery rate.
The P-values associated to each network give the probability of getting a certain number of genes obtained from a given network algorithm from the input list by chance. Enrichment scores are similarly
interpreted.
aResults only include OPRM1 and FRP1 genes.
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leads to inhibition of neuronal growth cones, and overall neuron

development in mice. Conversely, mice with defects in TLR3 are

less susceptible to neurodegenerative disorders [Cameron et al.,

2007]. Recently, a mouse model of AD showed that inhibition of

the NFAT pathway alleviates Ab neurotoxicity of AD [Hudry et al.,

2012], which confirms the previously reported association between

NFAT/calcineurin signaling with AD [Abdul et al., 2010] and

cognitive decline [Abdul et al., 2009]. Our discovery of a mutation

inNFATC1would be crucial to better understand the implications

of this pathway in causing AD.

TTBK2 is mildly expressed in the prefrontal cortex, encodes a

serine-threonine kinase that acts as a key regulator of ciliogenesis,

and putatively phosphorylates tau and tubulin proteins [Houlden

et al., 2007]. TTBK2was shown to be biologically related toAPOC1,

ABCA7, and TF, all of them important AD genes (Fig. 2c, bottom).

Mutations in TTBK2 cause spinocerebellar ataxia type 11, a neuro-

degenerative disease characterizedbyprogressive ataxia andatrophy

of the cerebellum and brainstem [Houlden et al., 2007]. Mouse

models of AD have also shown that the TTBK gene family plays an

important role in neuronal and cognitive dysfunction in mamma-

lianmodels in vivo [Sato et al., 2008]. Finding that aCEFV inTTBK2

modifies ADAOO (rs6493068, b̂ ¼ �0:479, PFDR¼ 4.27� 10�2)

strongly implicate this gene in the natural history of sAD.

We targeted genes reported associated to either Alzheimer’s

(EOAD and LOAD), Alzheimer’s age of onset, Alzheimer’s cogni-

tive decline, Alzheimer’s survival time, and Alzheimer’s biomark-

ers, as compiled by the gwasCatalog (UCSC genome browser). A

window of 60 kb outlining the targeted genes allowed the inclusion

of markers/genes in potential LD to the reported marker/gene (for

the Paisa community, a whole genome average of �60 kb of LD
blocks has been published elsewhere [Arcos-Burgos et al., 2010]). A

total of 195 markers from our functional chip where harbored in

those regions. Mixed models applied to these markers were no

significant after correction by multiple testing; the lowest P-value

was found at the marker rs11935573 harbored in theHomo sapiens

dachsous cadherin-related 2 (DCHS2) gene (P¼ 0.0015,

PFDR¼ 0.2667).

Wewant to raise a flag of caution to account for the fundamental

fact that the sample size small, the sample size for the exomechip

genotyping array is small (with less genomic content compared

with whole exome sequencing and other standard chips for

GWAS). As with any analysis, a small sample size has power for

very large effects. However, we have made power analyses of small

samples to detect large effects (as defined by the Cohen’s d

parameter) that have been published in the Supplementary Mate-

rial of Velez et al. [2015]. These power analyses remain useful

provided homogeneity of the population. In summary, for a k¼ 3

group design, 50 individuals would be sufficient to detect up to

�70% true positives and a large effect (defined by the Cohen’s d

parameter; d¼ 0.82, Supplementary Fig. S5 [Velez et al., 2015]),

when m¼ 100,000 variants are tested for association (a value that

certainly overcomes the final number of variants used during the

LMEM analyses). The selection of such effect is based on our

hypothesis that variants of large effect (i.e., mutations) modify

ADAOO (see also the bb coefficients in Table I of themanuscript); k

is selected based on the maximum number of possible genotypes

for a biallelic genetic marker; and m, as mentioned before, to be

conservative.

It is worth mentioning that we previously applied a chip built

with intronic variation that suits the search for loci with minor
C
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FIG. 4. Wnt signaling-related networks showing processes involving (a) cholecystokinin signaling, (b) chemotaxis, (c) m/d opioid receptors,

and (d) m-type opioid receptor. Additional information in Table III. [Color figure can be seen in the online version of this article, available at

http://wileyonlinelibrary.com/journal/ajmgb].
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effect in PSEN1 E280A AD [Velez et al., 2013]. In this scenario, the

“functional” chip applied herein attempts to tackle the hypothesis

of major effect variation. We have recently replicated one of these

ADAOOmodifiers loci in this sample of sporadic cases [Velez et al.,

2015], and showed that loci of minor effect in PSEN1 E280A AD

also contain ADAOOmodifier variants of large effect [Velez et al.,

2016]. Although other reciprocal analyses are in the process of

completion using extended and independent samples using

ADAOO as a continuous phenotype, we are particularly interested

in studying genetic associations of functional mutations with the

AD diagnosis as a discrete trait in order to determine causal

mutations.

Here, we report common pathogenic genetic variants signifi-

cantly associated to ADAOO with remarkable accelerating/delay-

ing effects after applying a comprehensive approach involving the

whole-exome genotyping of functional variants in a group of

patients ascertained from a genetic isolate, and exhibiting an

extreme AOO phenotype. Genes harboring these mutations are

involved in crucial pathways that might largely contribute to the

pathophysiology of sAD, and provide an initial explanation for the
wide range of ADAAO. Although the common mechanisms inv-

olved result in known AD pathological pathways such as Ab or

hyperphosphorylated tau deposition, the modulation or fine-tun-

ing of this or other relevant pathways are determining of AD

pathology onset. In future studies, we plan to model their func-

tionality in mouse models of AD as a first step to evaluate the

potential of these ADAOOmodifier genes as therapeutical targets.
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