
 

  
Abstract— Professor Arnold Kaufmann did propose 

at least two types of indexes for estimating fuzziness in 

finite standard fuzzy sets. First one has an analogue 

formulation to that stated by Claude Shannon for 

measuring uncertainty in a given system. Shannon 

formulation estimates one type of uncertainty classified 

as conflict. The present paper will reveal the 

inconvenience of such an index for measuring fuzziness 

phenomena. In addition, it is proved algebraic 

equivalence between another index posed by 

Kaufmann and a fuzziness index proposed by Ronald 

Yager. 

 

Index Terms— Entropy, Fuzziness, Fuzzy sets, 

Uncertainty Indexes, Uncertainty Measure. 

 

1. INTRODUCTION 

THIS paper presents several reasons for low applicability 

of a fuzziness index proposed by A. Kaufmann. Fuzziness 

is an unavoidable phenomenon when uncertainty is being 

evaluated during fuzzy modeling. In spite of similarities 

between Kaufmann index and others commonly used 

indexes, the index has problems when it is used for 

estimating fuzziness in finite standard sets. In this way, 

any fuzziness measurement will yield unreliable value in 

respecting the measured property. In this work, evidences 

about non-desirable properties of Kaufmann index are 

given comparing its behavior with other fuzziness indexes. 

In what follows the Kaufmann Index just cited will be 

labeled Kaufmann´s Entropy Index. In addition, this paper 

is devoted to prove the equality of algebraic forms (under 

certain mathematical considerations) of Kaufmann´s 

Linear Fuzziness Index and Yager´s Normalized Fuzziness 

Index. 

The paper has the following structure. In section 2, the 

Shannon entropy formulation is shown. Section 3 

describes the fuzziness index proposed by Kaufmann as an 

adaptation of Shannon’s Entropy Index. Section 4 proves 

the unsuitable use of Kaufmann’s Entropy Index for 

measuring the fuzziness. Section 5 establishes the equality 

of algebraic forms of Kaufmann´s Linear Fuzziness Index 

and Yager´s Normalized Fuzziness Index. 

 
 

2. A DESCRIPTION OF SHANNON ENTROPY 

FORMULATION 

Assume that a system can be in any state from a given 

set of N possible states, { }NxxxX ,...,, 21= , and consider 

that a given probability distribution was stated for the set 

X, 
Nppp ,...,, 21=p , with ip  the probability measure 

for the ix  state. The uncertainty grade, S(p), of the 

mentioned system, can be calculated using: 
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The value obtained in Eq. (1) is called “Entropy” by 

Shannon in [1], following its similarity with the 

mathematical formulation for quantifying entropy 

phenomenon in physical systems. Two significant 

properties can be appreciated from Shannon Entropy: 

 -- Any system with only one possible state cannot 

have Shannon Entropy. The fact of having only one 

possible state ix  in the state space of a system, can be 

modeled using a probability distribution 

Nppp ,...,, 21=p , 1=ip  
and ijp j ≠∀= ,0 , 

Nji Ν∈, , { }NN ,...,1N = . In this situation, the Shannon 

Entropy value is 0)( =pS . 

 -- A system has maximum Shannon Entropy when all 

possible system states have equal probability of being 

reached. In this case, the probability distribution is p, 

iNpi ∀= ,/1 . Therefore, a system with uniform 

probability distribution has maximum Entropy value in the 

Shannon sense, and NS blog)( =p . 

In agreement with the two previously presented 

properties, for any system, Shannon Entropy varies 

between two known limits: NS blog)(0 ≤≤ p . 

3. KAUFMANN FUZZINESS INDEX AS AN ADAPTATION 

OF SHANNON ENTROPY 

Professor A. Kaufmann modifies Shannon formulation 

in order to obtain a fuzziness index. Such an index varies 

in the [ ]1,0  interval and is calculated as: 
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In an example described in [2], page 26, Kaufmann 

proposes an analogy between his formulation and 
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Shannon´s measure:  

Let us suppose that the discourse universe 

{ }NxxxX ,...,, 21=  is available and a fuzzy set 

∑ =
=

N

i iiF xxF
1

)(µ  is determined over X. Considering 

that )( iF xµ  is the membership grade of ix  to F and 

∑ represents the union operation over fuzzy sets 

iiF xx )(µ , Kaufmann estimates fuzziness of F as: 
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with 
NF πππ ,...,, 21=π  and  
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4. OBSERVATIONS ABOUT KAUFMANN FORMULATION 

Any fuzziness measurement function f, is defined as 

( ) CXPf →: , with )(XP  the power set or family of 

standard fuzzy subsets of X and { }0∪ℜ= +C . Three 

axiomatic principles, or axioms for abbreviating, of any 

fuzziness measurement function, f, are explained in [6]. 

Those axioms are: 

 -- Axiom 1.  0)( =Af  if, and only if, A is a crisp set 

(non-fuzzy set). 

 -- Axiom 2.  If BA p , then )()( BfAf ≤ , where 

BA p  indicates that B is more fuzzy than A. However, 

such a requirement is dependent of the definition of “more 

fuzzy than”. 

 -- Axiom 3.  Function )(Af  assumes the maximum 

value if, and only if, A is maximally fuzzy. 

Kaufmann’s formulation for estimating fuzziness, given 

in (3) and (4), does not fulfill these axioms as it will be 

shown through the observations 1 - 4. 

Observation 1 

Let F  any fuzzy set such that ( ) cxiF =µ , Xxi ∈∀ , 

Ni ,...,1= . According to Eq. (3) and Eq. (4): 
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                                                                                        (5) 
 

An effect of (5) is, that degrees of fuzziness of sets with 

homogeneous membership functions is not distinguished. 

This consequence of Eq. (5) disagrees with Axiom 2 since 

that as 0→c  or 1→c  sets are less fuzzy, and its 

corresponding values ( )⋅S
(

 would be smaller ones. 

Observation 2 

Another consequence of Eq. (5) is that the criterion of 

maximal fuzziness could be to display an uniform 

membership function, this criterion is not generally correct 

one. 

Observation 3 

Kaufmann formulation assigns fuzziness value different 

of zero to crisp sets. 

Every crisp set F with q elements, Nq < , has a 

fuzziness value: 
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 (6) 
The last expression in Eq. (6) implies that every crisp 

set has a value of fuzziness different to zero. In this way 

the Axiom 1 is not fulfilled. 

A notorious instance of preceding situation is the 

discourse set X . This set can not exhibit fuzziness degree 

different of zero because it is a crisp set. The set 

)(XPX ∈  is a fuzzy set with a homogeneous 

membership function where ( ) 1=iX xµ , Xxi ∈∀ , 

Ni ,...,1= . Kaufmann’s Entropy Index would yield, 

according to Eq. (6), a fuzziness value different to zero for 

the set X and therefore Axiom 1 is violated. In accordance 

with Eq. (5) Kaufmann’s Entropy Index estimates a 

maximal fuzziness value to crisp set X, this contradicts 

Axiom 3 because a crisp set can not be maximally fuzzy 

set. These results are recognized by Kaufmann as a wrong 

outcome of his index. However, he explains it as a 

consequence of using relative membership grades as it 

appears in Eq. (4). 

Observation 4 

Let F and G be two crisp sets. Suppose that cardinality 

of F, F , is m and pG = , with 0, ≠pm . Using (3): 

0
ln

ln
)( ≠=

N
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In addition, if pm < , )()( GF SS ππ
((

< .

 The previous result means that two crisp sets can be 

compared according to its fuzziness. This result implies 

that the Axiom 1 is not fulfilled. 

Observation 5 

Finally, the doubtful applicability of Kaufmann’s 

Entropy Index for fuzziness measurement is evident when 

it is compared with others proposed indexes, such as: 

Linear Index and Quadratic Index, both of them 

formulated in [2], and De Luca-Termini Index [7]-[9]. A 

conception of fuzziness property establishes that as 

difference between a fuzzy set and its nearest crisp set is 

smaller, is less fuzzy. This fuzziness conception implies 

that a fuzzy set A is less fuzzy than another fuzzy set B if  

( ) ( ) ( ) ( ){ }5.0,5.0, >>≥= xxxxxC BABA µµµµ , 

( ) ( ) ( ) ( ){ }5.0,5.0, ≤≤≤= xxxxxD BABA µµµµ ,  
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φ=∩DC  and XDC =∪ . 

The behavior of all these indexes can be shown by 

means of two cases. 

Case 1. Let { }4321 ,,, xxxxX =  a discourse universe 

and { }4321 8.0,9.0,9.0,1 xxxxF =  and 

{ }4321 7.0,9.0,8.0,9.0 xxxxG = , two fuzzy sets on 

X. It is evident that Xxxx GF ∈∀≥ )()( µµ , and 

5.0)( ≥xFµ , 5.0)( ≥xGµ , it means that set F is less 

fuzzy than set G. However, as it is shown in Table I., 

Kaufmann’s Entropy Index establishes the opposite 

statement. 

 
Case 2. Let { }4321 ,,, xxxxX =  a discourse universe 

and { }4321 2.0,1.0,3.0,2.0 xxxxH =  and 

{ }4321 4.0,1.0,3.0,4.0 xxxxI = , two fuzzy sets on 

X. It is clear that Xxxx IH ∈∀≤ )()( µµ , and 

5.0)( ≤xHµ , 5.0)( ≤xIµ . It implies that set H is less 

fuzzy than set I. Kaufmann’s Entropy Index declares a 

differing assertion, as it can be observed in Table 

II:

  

5. ABOUT ALGEBRAIC EQUALITY BETWEEN LINEAR 

FUZZINESS AND NORMALIZED YAGER INDEXES 

A feature of indexes for calculating set fuzziness is its 

complete correspondence with one of the two groups of 

mathematical functions for measuring this property. The 

first group requires fixing the difference between the set 

and its nearest crisp set. The second one needs to calculate 

that difference with respect to its complement set. It can 

be proved that the Linear Fuzziness Index formulated by 

Kaufmann [2] (different to Kauffman’s Entropy Index 

described in previous sections) and fuzziness index 

proposed by Yager [10], have the same algebraic form, 

even though they belong to different groups. The 

preceding assertion will be proved in the following 

proposition. 

Proposition. If the Hamming distance and the standard 

definition of fuzzy set complement are used, Linear 

fuzziness Index proposed by Kaufmann and Normalized 

Fuzziness Index formulated by Yager, both of them 

acquire the same algebraic form, and as a consequence, 

generate the same value. 

Proof. When fuzziness in a fuzzy set A is estimated 

using the Linear Fuzziness Index, the membership values 

of elements of X to nearest crisp set of A, CA, must be 

obtained. The membership values to the set CA, is fixed as: 

( ) ( )
( )


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≤

>
=

5.0,0

5.0,1

x

x
x

A

A

CA µ
µ

µ  (7) 

Let 
>A  and 

≤A  
be crisp sets stated in the following 

way: ( ){ }1==> xxA
AC

µ  and ( ){ }0==≤ xxA
AC

µ . 

These two crisp sets satisfy the following properties: 

φ=∩ ≤> AA  and XAA =∪ ≤>
, it means that { }≤> AA ,  

is a partition of X and as a consequence XAA =+ ≤>
. 

Kaufmann´s Linear Fuzziness Index, in case of using 

Hamming distance, ( )⋅⋅,HD , calculates fuzziness by 

means of the mathematical expression: 

( ) ( )AH CAD
X

A ,
2

ˆ =ν  (8) 
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Considering that the family of sets { }≤> AA ,  is a partition 

of X: 

( )
( )( ) ( )
X
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A
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1
2ˆ  

Finally, Eq. (9) shows the mathematical expression for 

( )Aν̂ : 

( )
( ) ( )
X

xxA
A

Ax AAx A ∑∑
≤> ∈∈> +−

=
µµ

ν 2ˆ  (9) 

Whenever fuzziness of a fuzzy set A is obtained by 

means of the Yager´s Normalized Fuzziness Index, it is 

necessary to determine the difference with respect to its 

complement set A . Yager´s Normalized Fuzziness Index 

is: 

( ) ( )
X

AAD
AfY

,
1ˆ −=  (10) 

( )AAD , : is a metric difference between A and A . 

If ( )⋅⋅,D  is obtained through Hamming distance, 

( )⋅⋅,HD , Yager´s Normalized Fuzziness Index assumes 

the following form: 

( )
( ) ( )
X

xx
Af Xx AA

Y

∑ ∈
−

−=
µµ
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If the standard fuzzy complement operation for 

establishing A  is used, (11) takes the form: 

( )
( )

X

x
Af Xx A

Y

∑ ∈
−
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µ
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The following algebraic manipulations on (12) can be 

done: 

( )( ) ( )( )
X

xx
Ax AAx A ∑∑
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−+−
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µµ 2112
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( ) ( )
X
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Ax AAx A ∑∑
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µµ 22
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( ) ( )
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Ax Ax AA ≤∈ >∈
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µµ 22
1  

TABLE II 

FUZZINESS IN SETS H AND I, USING LINEAR, QUADRATIC, 

DE-LUCA TERMINI, AND KAUFMANN INDEXES. 
 Linear Quadratic De Luca-Termini 

(scaled) 

Kaufmann 

(scaled) 

H 0.4000 0.4243 0.6985 0.9528 

I 0.6000 0.6481 0.8230 0.9277 

 

TABLE I 

FUZZINESS IN SETS F AND G, USING LINEAR, QUADRATIC, 

DE-LUCA TERMINI, AND KAUFMANN INDEXES. 
 Linear Quadratic De Luca-Termini 

(scaled) 

Kaufmann 

(scaled) 

F 0.2000 0.2449 0.4150 0.9978 

G 0.3500 0.3873 0.6353 0.9963 
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The final expression for ( )AfY
ˆ  is 

( )
( ) ( )
X

xxA
Af

Ax Ax AA

Y

∑ ∑
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=
µµ
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By comparing Eq. (9) and Eq. (13), it is obvious that 

whenever Hamming distance is used: 

( ) ( )AfA Y
ˆˆ =ν  (14) 

 

6. CONCLUSIONS 

A fuzziness index proposed by Professor A. Kaufmann 

was analyzed in order to detect its capability for 

measuring such a phenomenon. Major problems were 

evident when using Kaufmann’s Entropy Index to measure 

fuzziness. Some of those problems about Kaufmann’s 

Entropy Index were found comparing its behavior with 

other fuzziness indexes. Other difficulties of Kaufmann’s 

Entropy Index are due to non-adhere the axioms defined 

for that type of indexes. In this way, other indexes for 

fuzziness measurement were presented in order to list 

available more effective indexes. The reader has the 

option of use one of those indexes looking for better 

fuzziness estimation. 

The Kaufmann’s Entropy Index is important because it 

was one of the first indexes proposed for measuring 

fuzziness. Moreover, Kaufmann as author of [2], is an 

important collaborator to formalize and to concrete some 

notions on fuzzy set theory. Finally, Kaufmann’s entropy 

index has been cited in some literary sources: [3] – [5]. 

It was proved that Linear fuzziness Index proposed by 

Kaufmann and Normalized Fuzziness Index formulated by 

Yager have the same algebraic form, even though they 

belong to different groups. This statement implies that  

 

these two indexes produce numerically identical results, 

and therefore, it blurs the supposed clear distinction 

between the two categories of fuzziness indexes 

mentioned in section 5. 
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