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Abstract
We consider a finite-dimensional Jordan superalgebra A over a field of characteristic 
zero �  such that N  is the solvable radical of A . We proved that if N 2 = 0 and A∕N  
is isomorphic to simple Jordan superalgebra of Grassmann Poisson bracket �an(2) , 
then an analogous to Wedderburn Principal Theorem (WPT) holds.
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1  Introduction

This paper is a continuation of a series of papers where there were proven analogous 
versions to WPT for finite-dimensional Jordan superalgebras [1–3].

One of the most classical theorems in structure theory for finite-dimensional 
associative algebras was given by Wedderburn [4], proving that for all finite 
dimensional associative algebra A over an arbitrary field, with nilpotent radical N  , 
there exists a subalgebra S ⊆ A such that S ≅ A∕N  and A = S⊕N  . This theorem 
is known in classical literature as the Wedderburn Principal Theorem (WPT).
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Analogous versions of the WPT were proved for finite-dimensional Jordan 
algebras by Albert [5], Penico [6], and Aškinuze [7].

Superalgebras are algebras that admit a decomposition as a direct sum of vector 
spaces A = A0 ⊕A1 and it satisfies the multiplicative rule AiAj ⊆ Ai+jmod 2 . A0 and 
A1 are called respectively even and odd parts of A . It is well known that all asso-
ciative algebra is an associative superalgebra. However, it is not a general rule. For 
example, if � is a Jordan superalgebra with odd part non-zero, then � is not a Jordan 
algebra while �0 is a Jordan algebra. It arises as a natural question to research the 
validity of the WPT for finite-dimensional non-associative superalgebras. Note that 
this is equivalent to investigating which superalgebras A = A0 ⊕A1 with radical 
N  there exists a S0-superbimodule S1 ⊆ A1 such that S1 ≅ A1∕N1 , A1 = S1 ⊕N1 , 
A = (S0 ⊕ S1)⊕ (N0 ⊕N1) , where S0 ⊆ A0 is a semisimple superalgebra, and 
A0∕N0 ≅ S0 , A0 = S0 ⊕N0.

Additionally, it is known that on the variety of finite-dimensional Jordan and 
alternative algebras, solubility implies nilpotence. However, in finite-dimensional 
Jordan and alternative superalgebras Shestakov [8] proved that there exist solvable 
superalgebras that are not nilpotent. In this sense as a first step, we consider solvable 
radical to study the validity of WPT in Jordan superalgebras. The first author [1] 
proved that it is possible to have an analogous version to WPT for finite-dimensional 
Jordan superalgebras when some conditions are imposed over the irreducible 
superbimodules contained in the solvable radical. First, as in the case of Jordan 
algebras, he proved that it is possible to reduce the problem to Jordan superalgebra 
A with solvable radical N  with N 2 = 0 such that the quotient Jordan superalgebra 
A∕N  is isomorphic to a simple Jordan superalgebra � . As a consequence of this 
result, it is possible to consider case by case of simple Jordan superalgebra. Second, 
he proved that if � is a simple Jordan superalgebra then it is possible to reduce 
the proof of WPT considering the irreducible Jordan �-superbimodules that are 
contained in N .

The classification of finite-dimensional simple Jordan superalgebras over an 
algebraically closed field of characteristic zero was given by Kac [9] and Kantor 
[10].

In this paper, Sect. 2 gives some preliminary results regarding the theory of Jor-
dan superalgebras, including the definition of the superalgebra of the Grassmann 
Poisson bracket �an(2) , and the classification of irreducible Jordan �an(2) – super-
bimodules given by Folleco and Shestakov [11]. Section 3 presents the conditions 
over �(̃xix̃j) ∈ N  , where x̃i ∈ A is a preimage under canonical homomorphism of 

�̄xi , �̄xi ∈ �X and X̃ is an additive basis of A∕N  such that S̄ = alg ⟨�Xi⟩ ≅ �an(2) . We 
assume that x̃ix̃j =

∑
k �kx̃k + �(̃xix̃j)k . Finally, Sect. 4 provides a proof of the main 

theorem of this paper. We shall prove that if N 2 = 0 and A∕N  is isomorphic to the 
simple Jordan superalgebra of Grassmann Poisson bracket �an(2) , then an analo-
gous to WPT holds.
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2 � Basic concepts and notation

Throughout the paper, all algebras are considered over an algebraically closed field 
�  of characteristic zero.

Recall that a superalgebra � = �0 ⊕�1 is said to be a Jordan superalgebra, if for 
every a, b, c, d ∈ �0∪̇�1 the superalgebra satisfies the super identities

We denote the parity of a by |a| = i if a ∈ �i.
Let N = N0 ⊕N1 be a superbimodule over � . We say that N  is a Jordan �

-superbimodule if the split null extension E = �⊕N  is a Jordan superalgebra. 
A regular �-superbimodule, denoted as Reg� , is defined on the vector super-
space � with an action coinciding with the multiplication in � . Besides, if N  is a �
-superbimodule, then the superbimodule Nop is defined as a copy of N  where 
N

op

0
= N1 , N

op

1
= N0 , and the action is defined via

for all a ∈ �0∪̇�1 and m ∈ N0∪̇N1 . N
op is called the opposite of the superbimodule 

N .
Now, we consider the simple Jordan superalgebra of type Poisson Grassmann bracket 

�an(2) ∶= (� ⋅ 1 + � ⋅ f1 + � ⋅ f2 + � ⋅ e12)⊕ (� ⋅ u + � ⋅ e1 + � ⋅ e2 + � ⋅ f12) where 
1 is a unity, f1 ∙ f1 = f2 ∙ f2 = 1 , and nonzero products are given by

for i = 1, 2 . Products in (2.4) and (2.5) are symmetric and skew-symmetric respec-
tively. Irreducible Jordan superbimodules over the simple Jordan superalgebra Pois-
son Grassmann Bracket �an(n) were classified by O. Folleco and I. Shestakov [11]. 
In particular, it was proved that if V is an unital irreducible Jordan superbimodule 
over �an(2) , then there exists a special element v in V such that v ⋅ eI = v ⋅ fI = 0 
where I ∈ {1, 2, 12} . Besides, they proved that the action of �an(2) on V(v, �) 
depends on the choice of a special element v ∈ V(v, �) and a parameter � = R

2
1
∈ �  , 

where Rx denotes the right multiplication operator. Without loss of generality, 
we can assume that v is an even element. Then, for an additive basis for V given 
by v,w1,w2, v12,w , v1 , v2 , and w12 where v,w1,w2, v12 are even elements and 
w, v1, v2,w12 are odd elements, the nonzero right action of �an(2) over V(v, �) is 
given by the following relations:

(2.1)ab = (−1)|a||b|ba,

(2.2)
((ab)c)d + (−1)|d|(|c|+|b|)+|b||c|((ad)c)b + (−1)|a|(|b|+|c|+|d|)+|d||c|((bd)c)a

= (ab)(cd) + (−1)|d|(|c|+|b|)(ad)(bc) + (−1)|c|(|a|+|b|)(ac)(bd).

(2.3)amop = (−1)|a|(am)op, mopa = (ma)op

(2.4)f2 ∙ e1 = −f1 ∙ e2 = e12 ∙ u = f12, f1 ∙ f12 = −e2, f2 ∙ f12 = e1.

(2.5)e1 ∙ e2 = e12, ei ∙ u = fi,
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where � ∈ �  . Note that if � = 0 , then V(v, 0) = Reg�an(2).
Now, let A be a finite-dimensional Jordan superalgebra with radical N  such that 

N 2 = 0 , and A∕N ≅ �an(2) . By [1] it follows that an analog to WPT is valid for A 
if it is valid for each irreducible �an(2)-superbimodule. Due to [11], we just need to 
consider two cases, N ≅ V(v, �) , and N ≅ V(v, �)op.

As a consequence of WPT for Jordan algebras it follows that there exist 1̃ , f̃1 , 
f̃2 , ẽ12 ∈ A0 such that S0 = alg⟨1̃, f̃1, f̃2, ẽ12⟩ ≅ (�an(2))0 , and A0 = S0 ⊕N0 . 
Since (A∕N)1 ≅ A1∕N1 ≅ (�an(2))1 , then there exist elements ũ , ẽ1 , ẽ2 and 
f̃12 ∈ A1 such that vec⟨ũ, ẽ1, ẽ2, f̃12⟩ ≅ (�an(2))1 , where x̃ denotes the image of 
x̃ under canonical homomorphism. In the following, we identify elements x̃ ∈ A 
with elements x ∈ �an(2) . In the sequel, we denote the products in A by juxtaposi-
tion, i.e., for x̃ and ỹ ∈ A we write x̃ỹ . Note that products x̃ỹ ∈ A can be written 
as x̃ỹ = x̃ ∙ y + �(̃xỹ) where �(̃xỹ) ∈ N  . �(̃xỹ) is called the radical component of the 
product x̃ỹ . So, given ñ ∈ N  and x̃ ∈ A , we denote ñx̃ = ñ ⋅ x , where ñ is identified 
with n ∈ V(v, �) ( n ∈ V(v, �)op ). Without loss of generality, we can assume the fol-
lowing products in A : skew-symmetric products are given by

while symmetric products are given by

for i = 1, 2 , where �(�x�y) ∈ N0∪̇N1 , and �(̃xỹ) = (−1)|̃x||̃y|�(̃yx̃).
Now, using the identity (2.2) and the fact that N  is a unitary irreducible bimodule 

over A , it follows that for all ã ∈ A1 holds 2((1̃a)1̃)1̃ + 1̃ã = 3(1̃ã)1̃ . So, using this 
equation and assuming 1̃ã = ã + r̃  where r̃ ∈ N  , as a consequence, we conclude 

(2.6)

v ⋅ u = v1 ⋅ f1 = v2 ⋅ f2 = −w12 ⋅ e12 = −w1 ⋅ e1 = −w2 ⋅ e2 = −v12 ⋅ f12 = w,

w ⋅ f1 = w2 ⋅ f12 = v12 ⋅ e2 = v1,w ⋅ f2 = −w1 ⋅ f12 = −v12 ⋅ e1 = v2,

v12 ⋅ f2 = v1 ⋅ u = −w12 ⋅ e2 = w1, − v12 ⋅ f1 = v2 ⋅ u = w12 ⋅ e1 = w2,

w1 ⋅ f2 = −w2 ⋅ f1 = v12, v12 ⋅ u = w12,

w1 ⋅ u = �v1, w2 ⋅ u = �v2, w12 ⋅ u = �v12, w ⋅ u = w12 ⋅ f12 = �v,

v1 ⋅ e1 = v2 ⋅ e2 = −v12 ⋅ e12 = v,

(2.7)

ũũ =�(ũũ), ẽiẽi = �(̃eiẽi), f̃12 f̃12 = �(̃f12 f̃12),

ẽ1 f̃12 = �(̃e1 f̃12), ẽ2 f̃12 = �(̃e2 f̃12), f̃12ũ = �(̃f12ũ),

ẽ1ũ =f̃1 + �(̃e1ũ), ẽ2ũ = f̃2 + �(̃e2ũ), ẽ1ẽ2 = ẽ12 + �(̃e1ẽ2),

(2.8)

f̃i f̃i =1̃1̃ = 1̃, 1̃f̃i = f̃i, 1̃ẽ12 = ẽ12,

1̃ũ =ũ + �(1̃ũ), 1̃ẽi = ẽi + �(1̃ẽi), 1̃f̃12 = f̃12 + �(1̃f̃12),

f̃iũ =�(̃fiũ), f̃1ẽ1 = �(̃f1ẽ1), f̃2ẽ2 = �(̃f2ẽ2),

ẽ12 f̃12 =�(̃e12 f̃12), f̃1 f̃12 = −ẽ2 + �(̃f1 f̃12), f̃2 f̃12 = ẽ1 + �(̃f2 f̃12),

f̃1ẽ2 = − f̃12 + �(̃f1ẽ2), f̃2ẽ1 = f̃12 + �(̃f2ẽ1), ẽ12ũ = f̃12 + �(̃e12ũ),
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that r̃ = 0 . Then, we write 1̃ũ = ũ , 1̃ẽi = ẽi , and 1̃f̃12 = f̃12 for i = 1, 2 . Therefore, we 
obtain that 1̃ is the unity in A.

3 � Conditions on the radical component of products in A

In this section, we investigate the conditions that are satisfied by the radical com-
ponents of products x̃ỹ ∈ A . We need to consider two cases N ≅ V(v, �) , and 
N ≅ V(v, �)op . From now on, let 1̃ , f̃1 , f̃2 , ẽ12 , ũ , ẽ1 , ẽ2 and f̃12 ∈ A such that (2.7) 
and (2.8) holds.

3.1 � Case 1

Assume that N0 = span⟨v,w1,w2, v12⟩ , and N1 = span⟨w, v1, v2,w12⟩ such that 
N ≅ V(v, �) with nonzero actions given by (2.6).

Initially, we present some lemmas used mainly to make short the proof of WPT 
in this case.

Lemma 3.1  Let f̃1 , f̃2 , ẽ1 , ẽ2 , ẽ12 , f̃12 , and ũ be as equations (2.7) and (2.8) given in 2. 
Then there exist scalars �0 , �0 , �0 , �0 �0 , �0 , �0 �1 , �1 , �2 , such that f̃1ũ = �0w + �1v1 , 
f̃2ũ = �0w + �1v2 , f̃1ẽ1 = �0w + �1v1 , f̃2ẽ2 = �0w + �2v2 , ẽ12ẽ1 = �0w , ẽ12ẽ2 = �0w , 
and ẽ12 f̃12 = �0w.

Proof  Let us consider a = c = d = f̃i , and b = x̃ ∈ A1 in the equation 
(2.2), we conclude that ((̃fix̃)̃fi )̃fi = f̃ix̃ . Since f̃ix̃ ∈ N1 , we write 
f̃ix̃ = Aw + B1v1 + B2v2 + Cw12 where A,Bi, and C ∈ �  are arbitrary scalars for 
i = 1, 2 . By linearly independence of elements w, and vi we obtain f̃ix̃ = Aw + Bivi 
for i = 1, 2 . Thus, we have that there exist scalars �i , �i , �j , �j ∈ �  such that 
f̃1ũ = �0w + �1v1 , f̃1ẽ1 = �0w + �1v1 , f̃2ũ = �0w + �2v2 , and f̃2ẽ2 = �0w + �2v2.

Now, taking a = f̃1 , b = ũ , and c = d = f̃2 in the equation (2.2), we get that 
(�(̃f1ũ)̃f2 )̃f2 + (�(̃f2ũ)̃f2)̃f1 − �(̃f1ũ) = 0 . Consequently, we conclude that �2 = �1 . It 
is easy to see that if r ∈ N1 , then (rf̃i)̃e12 = 0 . So, substituting a = c = f̃1 , b = ẽi , 
and d = ẽ12 in the equation (2.2), we have that ((̃fiẽi )̃fi )̃e12 + ((̃e12ẽi )̃fi )̃fi = ẽ12ẽi . 
Noting that f̃iẽi ∈ N1 , it is clear that equality �((̃e12x̃)̃fi )̃fi − �(̃e12x̃) = 0 holds, 
and therefore we have scalars �0 , �1 , �0 , and �2 such that ẽ12ẽ1 = �0w + �1v1 , and 
ẽ12ẽ2 = �0w + �2v2.

Considering a = d = ẽ12 , b = ũ , and c = f̃1 in the equation (2.2), 
we obtain ((̃e12ũ)̃f1 )̃e12 = 0 . Expanding this equation, we have that 
(�(̃e12ũ)̃f1)̃e12 + �(̃f1 f̃12 )̃e12 − �(̃e12ẽ2) = 0 . From this, and using the fact that 
(�(̃e12ũ)̃f1)̃e12 = 0 , we conclude that �(̃f1 f̃12)̃e12 − �(̃e12ẽ2) = 0 . Now, let 
f̃j f̃12 = Ajw + Bj1v1 + Bj2v2 + Cjw12 with Aj,Bji,Cj ∈ �  , for i, j = 1, 2 ; substituting 
this in the last equality with j = 1 , we determine that −C1w − (�0w + �2v2) = 0 . 
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Then, by linear independence of elements, we conclude that �2 = 0 , C1 = −�0 . 
Similarly, with j = 2 , we deduce that �1 = 0 and C2 = �0. Thus, we can write

Putting a = f̃i , b = ũ , and c = d = ẽij in the equation (2.2), we have that 
((̃fiũ)̃eij )̃eij + ((̃eijũ)̃eij )̃fi = 0 , and it follows that

Let �(̃e12ũ) = �0w + �1v1 + �2v2 + �12w12 , and 
�(̃e12 f̃12) = �0w + �1v1 + �2v2 + �12w12 , with �i , �i ∈ �  for i ∈ {0, 1, 2, 12} . Replac-
ing these equalities in the equation (3.2) and using the fact that w, v1 , v2 , and w12 
are linearly independent, we get that �1 = �2 = 0 , and �0 = �12 . Finally, substituting 
a = c = d = ẽ12 , and b = ũ in the equation (2.2), we obtain that ((̃e12ũ)̃e12 )̃e12 = 0 . 
Thus, by simplifying the last equation, we get that �(̃e12 f̃12)̃e12 = 0 , hence �12 = 0 . 
Therefore, we can write

which completes the proof. 	�  ◻

Lemma 3.2  If x̃ ∈ {ẽ1, ẽ2, f̃12} , then x̃x̃ = 0 . If � ≠ 0 then ũũ = 0 ; otherwise, there 
exists Λu ∈ �  such that ũũ = Λuv12.

Proof  Assume that x̃x̃ = Axv + Bxw1 + Cxw2 + Dxv12 , where Ax , Bx , Cx , 
and Dx ∈ �  . Putting a = b = x̃ ∈ A1 , c = d = f̃i in the equation (2.2) using 
linear independence of v, wi , and vij , we get ((̃xx̃)̃fi )̃fi = x̃x̃ . Then, we write 
�(̃xx̃) = Dxv12 . Now, taking a = d = ẽij , b = ũ , and c = f̃ij in the equation 
(2.2), we conclude that ((̃eijũ)̃fij )̃eij − (̃eijũ)(̃eijf̃ij) = 0 . Thus, it follows that 
(�(̃eijũ)̃fij )̃eij + �(̃fijf̃ij )̃eij + �(̃eijf̃ij )̃fij = 0 . Observe that (�(̃eijũ)̃fij )̃eij = �(̃eijf̃ij )̃fij = 0 . 
Therefore �(̃fijf̃ij )̃eij = 0 and using the linear independence of v, w1 , w2 , and v12 we 
obtain that D12 = 0 . Besides, replacing a = f̃i , b = f̃ij , c = ẽj , and d = ẽij in (2.2) we 
get ((̃fif̃ij )̃ej )̃eij + ((̃eijf̃ij )̃ej )̃fi − (̃fif̃ij)(̃eijẽj) − (̃eijf̃ij)(̃fiẽj) = 0. Solving this equation 
and using equations (3.1) and (3.3), we conclude that �(̃ejẽj )̃eij = 0 . Then Dj = 0 for 
j = 1, 2.

Finally, assume that ũũ = Λuv12 . Let us consider a = b = c = d = ũ in the 
equation (2.2), we obtain ((ũũ)ũ)ũ = 0 . Then, it follows from this that (�(ũũ)ũ)ũ = 0 . 
Therefore �Λu = 0 . Note that if � ≠ 0 , then Λu = 0 , which proves the Lemma. 	�  ◻

Lemma 3.3  Let ẽ1 , ẽ2 , f̃12 , and ẽ12 as equations (2.7) and (2.8) in Sect. 2. Let �0 be a 
scalar as Lemma 3.1. Then there exist ∇0 and Ω0 ∈ �  such that ẽ1 f̃12 = Ω0v + �0w2 , 
and ẽ2 f̃12 = ∇0v − �0w1.

(3.1)ẽ12ẽ1 = �0w, and ẽ12ẽ2 = �0w.

(3.2)�((̃eijũ)̃eij )̃fi + �(̃eijf̃ij )̃fi = 0.

(3.3)ẽ12 f̃12 = �0w,
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Proof  By Lemma  3.1, we have that ẽ12 f̃12 = �0w . Let 
ẽif̃12 = Aiv + Bi1w1 + Bi2w2 + Civ12 with Ai , Bi1 , Bi2 , Ci ∈ �  for i = 1, 2 . 
Now, putting a = d = f̃i , and b = c = ej in the equation (2.2), we get 
that ((̃fiẽj )̃ej )̃fi − (̃fiẽj)(̃fiẽj) = 0 for i = 1, 2 . From this, it follows that 
(�(̃fiẽj )̃ej )̃fi + �(̃ejf̃ij )̃fi = 0 and it is clear that (�(̃fiẽj )̃ej )̃fi = 0 . Consequently, we 
conclude that �(̃ejf̃ij )̃fi = 0 , i.e., (Ajv + Bj1w1 + Bj2w2 + Civ12 )̃fi = 0 . Now, applying 
action on the last equation, we obtain that ±Biiv12 ± Ciwj = 0 , and using the linear 
independence of wj and v12 , we get that Bii = Ci = 0 for i = 1, 2 . So, we write 
ẽif̃12 = Aiv + Bijwj . Further, substituting a = f̃i , b = ẽi , and c = d = f̃ij in identities 
(2.2) we obtain that ((̃fiẽi )̃fij )̃fij − ((̃fif̃ij )̃fij )̃ei − ((̃eif̃ij )̃fij )̃fi = 0 . From this, it is clear to 
see that �(̃ejf̃ij )̃ei − (�(̃eif̃ij )̃fij )̃fi = 0 . Therefore, we obtain that B12 = −B21.

Finally, substituting a = ẽ12 , b = ẽ1 , c = f̃1 , and d = f̃12 in the equation (2.2) and 
making the calculations, we obtain that (�(̃e12 f̃12)̃f1 )̃e1 + (�(̃e1 f̃12 )̃f1)̃e12 = 0 . There-
fore, we conclude that �0 = B12 , and the proof is complete. 	�  ◻

Note that, the following identities (3.4)–(3.15) hold as a consequence of Lemma’s  
3.1, 3.2, and 3.3.

(3.4)�(̃eiẽj )̃eij = 0.

(3.5)(�(̃fiẽj )̃fi )̃ei − �(̃fif̃ij )̃ei = 0

(3.6)(�(̃eijũ)̃fi )̃fi + �(̃fif̃ij )̃fi − �(̃fiẽj) − �(̃eijũ) = 0.

(3.7)(�(̃fiẽj )̃eij)ũ − �(̃eijf̃ij)ũ − �(̃eijũ)̃fij = 0

(3.8)(�(̃eijũ)ũ)̃fi + �(̃fijũ)̃fi = 0

(3.9)(�(̃eijũ)̃fi)̃fj + �(̃fif̃ij )̃fj − �(̃fjẽj) = 0.

(3.10)(�(̃eijũ)̃fi )̃ei + �(̃fif̃ij )̃ei + �(̃eiẽj) − (�(̃eijẽi )̃fi)ũ − (�(̃eiũ)̃fi )̃eij = 0.

(3.11)�(̃fif̃ij )̃ej − (�(̃eijẽj )̃fi)ũ − (�(̃ejũ)̃fi )̃eij + (�(̃eijũ) + �(̃fiẽj )̃fij = 0.

(3.12)(�(̃eijũ)̃ei )̃fij − 2�(̃eif̃ij )̃fij + �(̃eijf̃ij )̃fi = 0.

(3.13)2�(̃fif̃ij )̃fij − 2�(̃ejf̃ij) − (�(̃eijf̃ij )̃fi)ũ − (�(̃fijũ)̃fi )̃eij + �(̃eijũ)̃ej = 0.
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The proof of these identities is not completely presented. Identities (3.4)–(3.15) are 
obtained via appropriated replacements in the equation (2.2). The proofs of identities 
(3.4) and (3.6) are only sketched. First, putting a = f̃i , b = f̃ij , c = ẽi , and d = ẽij in 
the equation (2.2), we get ((̃fif̃ijẽi )̃eij) + ((̃eijf̃ij )̃ei )̃fi − (̃fif̃ij)(̃eijẽi) − (̃eijf̃ij)(̃fiẽi) = 0 . An 
easy computation shows that �(̃eiẽj )̃eij = 0 , which completes the proof of the identity 
(3.4). Now, taking a = ẽij , b = ũ , and c = d = f̃i in the equation (2.2) we obtain that 
((̃eijũ)̃fi)̃fi + ((̃fiũ)̃fi)ũij − ẽijũ = 0 . By Lemma 3.1, we have that (�(̃fiũ)̃fi)̃eij = 0 , then 
(�(̃eijũ)̃fi )̃fi + �(̃fif̃ij )̃fi − �(̃fiẽj) − �(̃eijũ) = 0 ; i.e., identity (3.6) is proved. Similarly, 
identities (3.5), (3.7)–(3.15) are proved.

Lemma 3.4  Let 1̃ , f̃1 , f̃2 , ẽ12 , ũ, ẽ1, ẽ2, f̃12 be as equations (2.7) and (2.8) in Sect. 2. 
Let �0 , �0 , �0 , �0 , �0 , �0 , �0 , �1 , �1 , �2 , Ω0 , ∇0 , Λu ∈ �  as Lemmas 3.1, 3.2, and 3.3. 
Then, there exist scalars �0 , �0 , �0 , �0 , �0 , �0 such that the following equalities hold: 
symmetry products

and skew-symmetric products

and Λu = 0 , �2 = �0 + Ω0 + ��0 , �1 = −�0 − ∇0 − ��0 , ��0 = 0.

Proof  Let �i , �i for i = 0, 1 ; �j , �j , �j for j = 0, 2 ; �k for k = 0, 1, 2 ; �0 , �0 , �0 , Λu , ∇0 , 
and Ω0 be as in Lemmas 3.1, 3.2, and 3.3.

Assume that there exist some scalars �i , �i , �i , �i , Δi , �i , �i , �i , and �i ∈ �  , 
i = 0, 1, 2, 12 such that

(3.14)(�(̃fiẽj)ũ)ũ − �(̃fijũ)ũ − (�(̃ejũ)ũ)̃fi − �(̃fjũ)̃fi + �(ũũ)̃fij = 0.

(3.15)
(�(̃fif̃ij)ũ)ũ − �(̃ejũ)ũ − �(̃fjũ) − (�(̃fi ũ)ũ)̃fij

− (�(̃fijũ)ũ)̃fi + �(ũũ)̃ej = 0.

f̃1 f̃12 = − ẽ2 + �0w + �0v1 + �0v2 − �0w12,

f̃2 f̃12 =ẽ1 + �0v − �0w1 − �0w2 + �0w12,

ẽ12ũ =f̃12 + �0w + (Ω0 + ��0)v1 + (∇0 + ��0)v2 + �0w12,

f̃1ẽ2 = − f̃12 + �0w + �0v1 − (∇0 + ��0)v2 − �0w12,

f̃2ẽ1 =f̃12 + �0w + (Ω0 + ��0)v1 − �0v2 + �0w12,

ẽ1ẽ2 =ẽ12 + �0v + �0w1 + �0w2,

ẽ1ũ =f̃1 + (�(−�0 − ∇0 − ��0) − �0)v + �0w1 + (�0 + �0 + �0)w2 − ��0v12,

ẽ2ũ =f̃2 + (�(�0 + Ω0 + ��0) − �0)v − (�0 + �0 − �0)w1 + �0w2 − ��0v12,

f̃12ũ =�(�0 − �0 + �0 + �0)v − (Ω0 + ��0)w1 + (∇0 + ��0)w2,
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Now, we use identities (3.4)–(3.15) to complete our proof. By the identity 
(3.4), it is clear that �12 = 0 . Now, considering the identity (3.5) we have that 
�1 = �0 , �2 = �0 , �2 = −�0 , and �1 = �0 . Taking the identity (3.6) we have that 
�0 = �1 , �2 = −�2 , �0 = −�2 , �1 = �1 , and �0 = �12 = −�12 . Note that the identity 
(3.7) implies that ��0 = 0 . Observe that if � ≠ 0 , then �0 = 0 . Later, using the 
identity (3.8) we obtain that Δi + �i = 0, for i = 1, 2 , and Δ12 = −��0 = 0 . 
Combining these last two equalities, it is clear that �1 = −Δ1 = �1 , and 
�2 = −Δ2 = −�2 . Further, considering the identity (3.9), we get �2 = �0 + �1 , 
�1 = −�0 − �2 , �2 = �0 , and �1 = −�0 . Besides, taking the identity (3.10), 
we have that �2 = �0 + �0 + �0 , and �1 = −(�0 + �0 − �0) . Later, from the 
identity (3.11), it follows that �2 = �2 = �0 , and �1 = −�1 = �0 . Further, by 
the equation (3.13) we get that �1 = Ω0 + ��0 , and �2 = ∇0 + ��0 . Thus, we 
conclude that �2 = �0 + Ω0 + ��0 , and �1 = −�0 − ∇0 − ��0 . Besides, using the 
identity (3.14), we obtain that �0 = �(�1 − Δ1) − �0 = �(�0 + Ω0 + ��0) − �0 , 
�0 = �(�2 + Δ2) − �0 = �(−�0 − ∇0 − ��0) , and 
Δ0 = ��0 − ��1 − Λu = ��2 − ��0 − Λu . Thus, Δ0 = �(�0 + �0 + �0 − �0) − Λu . 
Finally, since the identity (3.15) we have that Δ0 = ��1 − ��1 + Λu , �12 = −��0 , 
and �12 = −��0 . Note that �1 = �0 and comparing this with the identity (3.14), we 
conclude Λu = 0 , and the proof is complete. 	� ◻

Note that by Lemmas 3.1 and 3.4 we have proved that:

Theorem  3.5  Let A be a finite-dimensional Jordan superalgebra with solvable 
radical N  such that N 2 = 0 , A∕N ≅ �an(2) , and N  is isomorphic to irreducible 
�an(2)-superbimodule V(v, �) . Then there exists 1̃ ∈ A0 such that 1̃ is a unity 
of A and there exist elements f̃1 , f̃2 , ẽ12 ∈ A0 , and ũ , ẽ1 , ẽ2 , f̃12 ∈ A1 such that 
alg⟨1̃, f̃1, f̃2, ẽ12⟩ ≅ (�an(2))0 and span⟨ũ, ẽ1, ẽ2, f̃ 12⟩ ≅ (�an(2))1 where x̃ is the 
image of x̃ under canonical homomorphism. Moreover, there exist scalars �0 , �1 , �0 , 
�0 , �0 , �0 , �0 , �0 , �0 �0 , �0 , �0 , �0 , �0 , �0 such that ��0 = 0 and the non-zero products 
are given by: symmetric products

f̃12ũ =Δ0v + Δ1w1 + Δ2w2 + Δ12v12, ẽ12ũ = f̃12 + �0w + �1v1 + �2v2 + �0w12

f̃1ẽ2 = − f̃12 + �0w + �1v1 + �2v2 + �12w12, f̃2ẽ1 = f̃12 + �0w + �1v1 + �2v2 + �12w12,

f̃1 f̃12 = − ẽ2 + �0w + �1v1 + �2v2 − �0w12, f̃2 f̃12 = ẽ1 + �0w + �1v1 + �2v2 + �0w12,

ẽ1ũ =f̃1 + �0v + �1w1 + �2w2 + �12v12, ẽ2ũ = f̃2 + �0v + �1w1 + �2w2 + �12v12,

ẽ1ẽ2 =ẽ12 + �0v + �1w1 + �2w2 + �12v12.
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and skew-symmetric products,

3.2 � Case 2

Assume that N0 = span⟨w, v1, v2,w12⟩ and N1 = span⟨v,w1,w2, v12⟩ such that 
N ≅ V(v, �)op . We present a series of lemmas to simplify the proof in this case.

Lemma 3.6  Let f̃i , ẽi , ẽ12 , f̃12 , and ũ be as Eqs. (2.7) and (2.8) in Sect.  2. Then 
there exist scalars �2 , �12 , �12 , �2 , �12 , �1 , �12 , and �0 such that f̃1ũ = �2w2 + �12v12 , 
f̃2ũ = −�2w1 + �12v12 , f̃1ẽ1 = �2w2 + �12v12 , f̃2ẽ2 = �1w1 + �12v12 , ẽ12ẽ1 = �2v , 
ẽ12ẽ2 = −�1v , and ẽ12 f̃12 = �0v.

Proof  We can now proceed analogously to the proof of Lemma 3.1 using the same 
replacements. 	�  ◻

Lemma 3.7  For all x̃ ∈ A1 , x̃x̃ = 0.

Proof  Let x̃ ∈ A1 be. Using the Eq. (2.2), it is easy to see that ((̃xx̃)̃fi )̃fi = x̃x̃ . Then, 
we get that ((̃xx̃)̃fi )̃ei = (̃xx̃)(̃fiẽi) , and, we conclude that x̃x̃ = 0 . 	�  ◻

By Lemmas 3.6 and 3.7, we are now in a position to show valid equations in A.

f̃i f̃i =1, i = 1, 2;

f̃1ũ =�0w + �1v1, f̃2ũ = �0w + �1v2,

f̃1ẽ1 =�0w + (−�0 − ∇0 − ��0)v1,

f̃2ẽ2 =�0w + (�0 + Ω0 + ��0)v2,

ẽ12ẽ1 =�0w, ẽ12ẽ2 = �0w, ẽ12 f̃12 = �0w

f̃1 f̃12 = − ẽ2 + �0w + �0v1 + �0v2 − �0w12,

f̃2 f̃12 =ẽ1 + �0v − �0w1 − �0w2 + �0w12,

ẽ12ũ =f̃12 + �0w + (Ω0 + ��0)v1 + (∇0 + ��0)v2 + �0w12,

f̃1ẽ2 = − f̃12 + �0w + �0v1 − (∇0 + ��0)v2 − �0w12,

f̃2ẽ1 =f̃12 + �0w + (Ω0 + ��0)v1 − �0v2 + �0w12,

f̃12ẽ1 =Ω0v + �0w2, f̃12ẽ2 = ∇0v − �0w1

ẽ1ẽ2 =ẽ12 + �0v + �0w1 + �0w2,

ẽ1ũ =f̃1 + (�(−�0 − ∇0 − ��0) − �0)v + �0w1 + (�0 + �0 + �0)w2 − ��0v12,

ẽ2ũ =f̃2 + (�(�0 + Ω0 + ��0) − �0)v − (�0 + �0 − �0)w1 + �0w2 − ��0v12,

f̃12ũ =�(�0 − �0 + �0 + �0)v − (Ω0 + ��0)w1 + (∇0 + ��0)w2.
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In the same manner as equalities (3.4)–(3.15) with suitable replacement in the 
identity (2.2), we can see those equations (3.16)–(3.24) hold in A.

Lemma 3.8  Let 1̃ , f̃1 , f̃2 , ẽ12 , ũ, ẽ1, ẽ2 , and f̃12 be as relations eqrefpro: A1A1 and 
(2.8) in Sect. 2. Let �2 , �12 , �12 , �2 , �12 , �1 , �12 , �0 ∈ �  be as Lemma 3.6. Then, there 
exist scalars �0 , �0 , �12 , �12 , �0 , �1 , �2 such that the following equalities hold: with 
symmetric products

and skew-symmetric products

(3.16)(�(̃eijũ)̃fj )̃fi + �(̃fjf̃ij )̃fi + �(̃fiẽi) = 0.

(3.17)(�(̃fiẽj )̃fi )̃ei − �(̃fif̃ij )̃ei − (�(̃fiẽi )̃fi )̃ej − (�(̃eiẽj )̃fi)̃fi − 2�(̃fiẽi )̃fij = 0.

(3.18)(�(̃fiũ)̃fi)̃eij + (�(̃eijũ)̃fi)̃fi + �(̃fif̃ij )̃fi − �(̃fiẽj) − �(̃eijũ) = 0.

(3.19)(�(̃fiũ)̃fi )̃ei − (�(̃eiũ)̃fi)̃fi − (�(̃fiẽi )̃fi)ũ + �(̃eiũ) = 0.

(3.20)(�(̃ejũ)̃fj )̃fi + (�(̃fiẽj )̃fj)ũ − �(̃fjf̃ij)ũ − �(̃eiũ) − �(̃fjũ)̃fij = 0.

(3.21)(�(̃fiũ)̃fi )̃fij − (�(̃fif̃ij )̃fi)ũ + �(̃fiẽj)ũ − (�(̃fijũ)̃fi )̃fi + 2�(̃fiũ)̃ej = 0.

(3.22)(�(̃fiẽj )̃eij)ũ − �(̃eijf̃ij)ũ + (�(̃ejũ)̃eij )̃fi − �(̃fiẽj )̃fij − �(̃eijũ)̃fij = 0

(3.23)
(�(̃fif̃ij )̃ei)ũ + �(̃eiẽj)ũ + �(̃eijũ) − (̃fijũ)̃ei )̃fi − �(̃fif̃ij )̃fi

− �(̃eiũ)̃ej + �(̃fiẽj) = 0

(3.24)
(�(̃fijũ)̃eij )̃fi + (�(̃fif̃ij )̃eij)ũ − �(̃eijẽj)ũ − �(̃fif̃ij )̃fij

− �(̃eijũ)̃ej − �(̃ejf̃ij) = 0

ẽ12ũ =f̃12 + �0v + �1w1 + �2w2 + �0v12,

f̃1ẽ2 = − f̃12 + (�2 − �0)v − �1w1 − (�1 + �2)w2 + �12v12,

f̃2ẽ1 =f̃12 + (−�0 + �0)v + (−�2 + �1)w1 + �2w2 + �12v12,

f̃1 f̃12 = − ẽ2 + �0v + �12w1 − �12w2 + (�1 + �2)v12,

f̃2 f̃12 =ẽ1 + �0v − �12w1 + �12w2 + (�2 − �1)v12,
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Proof  Let �i , �i , �i , �i , Δi , �i , �i , �i , and �i ∈ �  , for i = 0, 1, 2, 12 be such that

 Using the identity (3.4) we get that �12 = 0 . Later, considering the identity (3.16), 
we have that �2 = �12 , and �1 = �12 . The following identities hold as a consequence 
of identity (3.17): �0 = �12 + �12 , �1 = �2 , �2 = �1 , and �12 = −�2 , �12 = −�1 . 
Now, considering the Eq. (3.18) it follows that �0 = �2 − �0 = −�0 , �1 = −�1 , 
�2 = �12 , �2 = �2 , and �1 = −�12 . Later, taking the identity (3.19) we conclude 
that �2 = −�2 − ��12 , �1 = �2 + ��12 , �12 = −�2 , and �12 = �1 . On the other hand, 
the Eq. (3.20) implies that �0 = −�12 + �0 , �0 = �12 − �0 , �12 = −�12 + �1 , and 
�12 = −�2 + �12 and, in consequence, �1 = −�2 + �1 , and �2 = −�1 − �2 . Moreo-
ver, substituting a = f̃i , b = c = ũ , and d = ẽj in the identity (2.2), we get that 
�1 = �(Δ12 + �12) , and �2 = �(Δ12 − �12) . Our next claim is obtained from the Eq. 
(3.21) concluding that Δ0 = −�0 , Δ1 = �12 − ��1 , and Δ2 = �12 − ��2 . Further, 
replacing a = f̃i , b = ũ , c = ẽij , and d = ẽj in the Eq. (2.2) and rewriting this replace-
ment, we obtain �12 = �0 . Besides, using the Eq. (3.23) we have that Δ12 = −�0 . 
Finally, taking the Eq. (3.24) we obtain that Ω12 = ∇12 = 0 , Ω0 = �2 − �1 , 
∇0 = −(�1 + �2) , Ω1 = −�12 , ∇2 = −�12 , Ω2 = −�12 , and ∇1 = �12 , which com-
pletes the proof. 	�  ◻

By Lemmas 3.6–3.8, we have proved the following theorem:

Theorem  3.9  Let A be a finite-dimensional Jordan superalgebra with solvable 
radical N  such that N 2 = 0 , A∕N ≅ �an(2) , and N  is isomorphic to irreducible 
�an(2)-superbimodule V(v, �)op . Then there exists 1̃ ∈ A0 such that 1̃ is a unity 
of A and there exist elements f̃1 , f̃2 , ẽ12 ∈ A0 , and ũ , ẽ1 , ẽ2 , f̃12 ∈ A1 such that 
alg⟨1̃, f̃1, f̃2, ẽ12⟩ ≅ (�an(2))0 and span⟨ũ, ẽ1, ẽ2, f̃ 12⟩ ≅ (�an(2))1 where x̃ is the 
image of x̃ under canonical homomorphism. Moreover, there exist scalars �2 , 

ẽ1 f̃12 =(�2 − �1)w − �12v1 − �12v2,

ẽ2 f̃12 = − (�1 + �1)w + �12v1 − �12v2,

f̃12ũ = − �0w + (�12 − ��1)v1 + (�12 − ��2)v2 − �0w12,

ẽ1ẽ2 =ẽ12 + (�12 + �12)w + �2v1 + �1v2

ẽ1ũ =f̃1 + (−�0 + �12)w − �(�0 − �12)v1 − (�2 + ��12)v2 − �2w12,

ẽ2ũ =f̃2 + (−�0 + �12)w + (�2 + ��12)v1 − �(�0 + �12)v2 + �1w12.

f̃12ũ =Δ0w + Δ1v1 + Δ2v2 + Δ12w12, ẽ12ũ = f̃12 + �0v + �1w1 + �2w2 + �0v12

f̃1ẽ2 = − f̃12 + �0v + �1w1 + �2w2 + �12v12, f̃2ẽ1 = f̃12 + �0v + �1w1 + �2w2 + �12v12,

f̃1 f̃12 = − ẽ2 + �0v + �1w1 + �2w2 + �12v12, f̃2 f̃12 = ẽ1 + �0v + �1w1 + �2w2 + �12v12,

ẽ1ũ =f̃1 + �0w + �1v1 + �2v2 + �12w12, ẽ2ũ = f̃2 + �0w + �1v1 + �2v2 + �12w12,

ẽ1 f̃12 =Ω0w + Ω1v1 + Ω2v2 + Ω12w12, ẽ2 f̃12 = ∇0w + ∇1v1 + ∇2v2 + ∇12w12,

ẽ1ẽ2 =ẽ12 + �0w + �1v1 + �2v2 + �12w12.
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�12 , �12 , �2 , �12 �1 , �12 , �0 , �0 , �0 , �12 , �12 , �0 , �1 , �2 , non-zero products are given 
by:symmetric products

and skew-symmetric products,

4 � WPT for Jordan superalgebras of type �an(2)

In this section, We apply Theorems 3.5 and   3.9 proved in Sect. 3 to prove our 
main result.

Theorem  4.1  Let A be a finite-dimensional Jordan superalgebra over an 
algebraically closed field, with solvable radical N  such that N 2 = 0 and 
A∕N ≅ �an(2) . Then, there exists S = S0 ⊕ S1 subsuperalgebra of A such that 
A = N⊕ S , and S ≅ �an(2) , i.e., an analogous to WPT holds for A.

Proof  By results of the first author [1], the proof has two parts according to O. 
Folleco and I. Shestakov [11] results, we need to consider the cases N ≅ V(v, �) , and 
N ≅ V(v, �)op.

Case 1. Let N  be an irreducible superbimodule over �an(2) such that N  is iso-
morphic to V(v, �) . Assume that 1̃ , f̃1 , f̃2 , ẽ12 , ũ , ẽ1 , ẽ2 , f̃12 ∈ A such that condi-
tions of Theorem  3.5 hold. Let 1̂ = �1 , f̂1 = �f1 , f̂2 = �f2 , and ê12 = �e12 ∈ A0 , and 

f̃i f̃i =1, i = 1, 2;

f̃1ũ =�2w2 + �12v12, f̃2ũ = −�2w1 + �12v12,

f̃1ẽ1 =�2w2 + �12v12, f̃2ẽ2 = �1w1 + �12v12,

ẽ12ẽ1 =�2v, ẽ12ẽ2 = −�1v, ẽ12 f̃12 = �0v,

ẽ12ũ =f̃12 + �0v + �1w1 + �2w2 + �0v12,

f̃1ẽ2 = − f̃12 + (�2 − �0)v − �1w1 − (�1 + �2)w2 + �12v12,

f̃2ẽ1 =f̃12 + (−�0 + �0)v + (−�2 + �1)w1 + �2w2 + �12v12,

f̃1 f̃12 = − ẽ2 + �0v + �12w1 − �12w2 + (�1 + �2)v12

f̃2 f̃12 =ẽ1 + �0v − �12w1 + �12w2 + (�2 − �1)v12

ẽ1ẽ2 =ẽ12 + (�12 + �12)w + �2v1 + �1v2

ẽ1ũ =f̃1 + (−�0 + �12)w − �(�0 − �12)v1 − (�2 + ��12)v2 − �2w12

ẽ2ũ =f̃2 + (−�0 + �12)w + (�2 + ��12)v1 − �(�0 + �12)v2 + �1w12

f̃12ũ = − �0w + (�12 − ��1)v1 + (�12 − ��2)v2 − �0w12,

ẽ1 f̃12 =(�2 − �1)w − �12v1 − �12v2,

ẽ2 f̃12 = − (�1 + �1)w + �12v1 − �12v2.
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let S0 = alg⟨1̂, f̂1, f̂2, ê12⟩ , thus we have S0 ≅ (�an(2))0 . Now, let û = �u + �(û), 
ê1 = �e1 + �(ê1) , ê2�e1 + �(ê2) , and f̂12 =

�f12 + �(f̂12) ∈ A1 . From this, note that 
span⟨û, ê1, ê2, f̂12⟩ ≅ (�an(2))1.

Let A, Bi , C, D, Ei , F, G, Hi , L, J, Ki , M ∈ �  for i = 1, 2 be such that 
û = �u + Aw + B1v1 + B2v2 + Cw12 , f̂12 =

�f12 + Dw + E1v1 + E2v2 + Fw12 , 
ê1 = �e1 + Gw + H1v1 + H2v2 + Lw12 , and ê2 = �e2 + Jw + K1v1 + K2v2 +Mw12 . 
Computing the products of elements x̂ŷ , we have the following equalities hold:

Now, by Theorem  3.5, we have that ê1ê2 = ê12 , ê1û = f̂1 , ê2û = f̂2 , and 
f̂12û = f̂12ê1 = f̂12ê2 = 0 if and only if H1 = −�0 , K2 = −�0 , L = �0 , M = �0 , F = �0 , 
E1 = Ω0 + ��0 , E2 = −∇0 − ��0 , and

Hence, it is clear that 2K1 = �0 − (�0 + �0) , 2H2 = −(�0 + �0 + �0) , 
2C = �0 + �0 − �0 + 2�0 , and �(2D + (�0 + �0 − �0)) = 0. Further, using 
Lemma 3.1, we have that f̂iû = 0 if and only if A = −�1 , B1 = �0 , and B2 = �0 ; and 
f̂iêi = 0 if and only if J = −(�0 + Ω0 + ��0) , and G = (�0 + ∇0 + ��0) . Observe that 
all these conditions are consistent with the first line of the equation (4.2).

It is easy to verify that ê12ê1 = ê12ê1 = ê12 f̂2 = 0 . To complete the proof in this 
case, we need to prove that ê12û = ê1 f̂2 = −ê2 f̂1 = f̂12 . A computation shows that

and

(4.1)

ê1û =�e1�u + (𝛼G − B1)v + H1w1 + (H2 − C)w2 + 𝛼Lv12,

ê2û =�e2�u + (𝛼J − B2)v + (K1 + C)w1 + K2w2 + 𝛼Mv12,

f̂12û =�f12�u + 𝛼(D − C)v + E1w1 + E2w2 + 𝛼Fv12,

ê1ê2 =�e1�e2 + (H2 − K1)v − Lw1 −Mw2,

ê1 f̂12 =�e1�f12 + (𝛼L − E1)v − Fw2,

ê1 f̂12 =�e1�f12 + (𝛼M − E2)v − Fw1.

(4.2)

�(G − �0 − ∇0 − ��0) − B1 − �0 = 0, �(J + �0 + Ω0 + ��0) − �0 − B2 = 0,

−(�0 + �0 − �0) + K1 + C = 0,�0 + �0 + �0 + H2 − C = 0,

�0 + H2 − K1 = 0, �(�0 − �0 + �0 + �0 + D − C) = 0.

ê12û = �e12�u − Cw

= �f12 + 𝜑0w + (Ω0 + 𝛼𝜏0)v1 + (∇ + 𝛼𝜎0)v2 + 𝜖0w12 − (
1

2
(𝜒0 + 𝛽0 − 𝜃0) − 𝜑0)w

= �f12 + (Ω0 + 𝛼𝜏0)v1 + (∇ + 𝛼𝜎0)v2 + 𝜖0w12 −
1

2
(𝜒0 + 𝛽0 − 𝜃0)w

= �f12 + Dw + E1v1 + E2v2 + Fw12

= f̂12,
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Similarly to the last computation, it is clear that ê1 f̂2 = −f̂12 , f̂1 f̂12 = −ê2 , and 
f̂2 f̂12 = ê1 . Finally, taking S1 = alg⟨û, ê1, ê2, f̂12⟩ , it follows that S0 ⊕ S1 ≅ �an(2) , 
and A = N⊕ S , as a consequence, we have that an analogue to WPT holds for A 
when N ≅ V(v, �) , which completes the proof of the first case.

Case 2. Assume that N  is an irreducible bimodule isomorphic to 
N ≅ V(v, �)op , and let 1̃ , f̃1 , f̃2 , ẽ12 , ũ , ẽ1 , ẽ2 , and f̃12 be as Theorem  3.9. In the 
same manner, as in case 1, we can choose elements 1̂ , f̂1 , f̂2 , ê12 ∈ A0 such that 
S0 = ⟨1̂, f̂1, f̂2, he12⟩ ≅ (�an(2)0) . Taking elements û , ê1 , ê2 , f̂12 ∈ A1 such that

It is easy to see that S1 = vec⟨û, ê1, ê2, f̂12⟩ ≅ (�an(2))1 , and consequently, we con-
clude that there exists a subsuperalgebra S in A such that S = S0 ⊕ S1 ≅ �an(2) 
and A ≅ S⊕N  , which completes the proof. 	�  ◻

Observe that proof of the Theorem 4.1 is independent of �.
Let us mention one important consequence of the Theorem 4. This result implies 

that the second cohomology group (SCG)
H

2(�an(2),V(v, �)) = 0 , and H2(�an(2),V(v, �)op) = 0.
The study of nontrivial SCG for finite-dimensional Jordan superalgebra was made 

by the authors in [12].

Acknowledgements  The authors are thankful to the referee for several helpful comments and suggestions.

Funding  Open Access funding provided by Colombia Consortium. The first author was partially 
supported by the University of Antioquia, CODI: 2022-47470.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

ê1 f̂2 = �e1�f2 + Gv2 + H2w

= �f12 + 𝜃0w + (Ω0 + 𝛼𝜏0)v1 − 𝜆0v2 + 𝜖0w12 + Gv2 + H2w

= f̂12.

û =�u + Av − 𝜂12w1 + 𝜉12w2 + 𝜉2v12,

f̂12 =
�f12 + (𝜑0 − 𝜉2)v + 𝜑1w1 + 𝜑2w2 + 𝜖0v12,

ê1 =�e1 + 𝜆0v + (𝜖0 − 𝜃12)w1 + 𝛼12w2 + 𝛼2v12,

ê2 =�e2 − 𝛾0v − 𝛿12w1 + (𝜖0 + 𝛽12)w2 − 𝛿1v12.
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