
Implementation of a SNN model on an SBC-GPU and on a

workstation in order to compare their efficiency

Jonathan Ferney Gómez Hurtado

Research work presented as a requirement to obtain the degree of:

Master in Engineering

Director

PhD. Ricardo Andrés Velásquez Vélez

Co-Director

PhD. Sebastián Isaza Ramı́rez

University of Antioquia

Faculty of Engineering

Master’s degree in engineering

Medellin, Antioquia, Colombia

2023

Master’s degree in Engineering

Research group: Sistemas Embebidos e Inteligencia Computacional (SISTEMIC).

Library Carlos Gaviria Dı́az

Institutional Repository: http://bibliotecadigital.udea.edu.co

University of Antioquia - www.udea.edu.co

The content of this work corresponds to the authors’ right to freedom of expression

and does not compromise the institutional thinking of the University of Antioquia nor

unleash its responsibility towards third parties. The authors assume responsibility for

copyright and related rights.

1

Contents

1 Introduction 9

1.1 Objectives . 10

1.1.1 Specific objectives . 10

1.2 Document Organization . 11

1.3 Contributions . 12

2 Background 13

2.1 Neuron models used in SNNs . 13

2.1.1 Hodgkin-Huxley neuron model (HH) 13

2.1.2 Izhikevich neuron model (IZH) 15

2.1.3 Leaky Integrate-and-Fire neuron model (LIF) 16

2.1.4 Synaptic Model . 18

2.2 Numerical methods for differential equations solution 18

2.2.1 Forward Euler . 19

2.2.2 Exponential Euler . 19

2.2.3 Fourth-Order Runge-Kutta . 19

2.3 Spikes and encoding techniques for SNNs 20

2.3.1 Action potentials or Spikes . 21

2.3.2 Encoding techniques . 22

2.4 Network topologies . 23

2.4.1 Feedforward networks . 24

2.4.2 Recurrent networks . 24

2.5 SNNs software packages . 26

2.6 Computer systems . 27

2.6.1 General-Purpose Computer (GPC) 27

2.6.2 Embedded Systems (ES) . 28

2

2.6.3 High Performance Computers (HPC) 28

2.7 Domain-specific accelerators . 28

2.7.1 Neural Processing Unit Module (NPU) 28

2.7.2 Graphics Processing Unit Module (GPU) 29

2.8 Parallel computing development frameworks 29

2.8.1 OpenMP . 29

2.8.2 MPI . 29

2.8.3 CUDA . 30

2.8.4 OpenCL . 30

3 Related Work 34

3.1 Neuromorphic hardware . 35

3.1.1 Digital Systems . 35

3.1.2 Mixed-signal systems . 36

3.2 Conventional computer systems plus accelerators 37

3.3 GPGPUs applications on SBCs . 39

4 Methodology 41

4.1 Methodology for Network Deployment 41

4.1.1 Selection of the network architecture 42

4.1.2 Dataset selection and network training 42

4.1.3 Algorithm deployment to perform network inference 43

4.1.4 Performance evaluation of deployment on SBC-GPU and

Workstation-GPU . 43

4.2 Target Platforms . 44

4.3 Performance metrics . 45

5 SNN Implementation 47

5.1 Network Architecture . 48

5.2 Input data compression . 50

5.3 Sequential implementation . 52

5.4 Sequential program . 52

5.4.1 Validation of data integrity resulting from training 52

5.4.2 Validation of the input synapse and membrane voltage in the

excitatory layer . 54

3

5.4.3 Validation of spike train vectors in the time domain 55

5.4.4 Validation of digit classification 55

5.5 Parallel Program . 56

5.5.1 CPU code . 56

5.5.2 GPU code . 57

6 Experimental Results 60

6.1 Time window tuning for simulations . 60

6.2 Network training . 61

6.3 Inference sequential code . 63

6.4 Performance and energy efficiency . 63

7 Conclusions and Future Work 68

7.1 Conclusions . 68

7.2 Future Work . 70

References 71

4

List of Figures

2.1 Electrical diagram of Hodgkin-Huxley neuron model 14

2.2 Electrical diagram of Leaky Integrate-and-Fire neuron model 17

2.3 Comparison of different neuron models in terms of biological plausibility

versus computational efficiency . 21

2.4 Representation of the action potential or spike 21

2.5 Rate coding example . 23

2.6 temporal coding example . 23

2.7 Feedforward network . 24

2.8 Recurrent network . 25

2.9 Platform model or heterogeneous system 31

2.10 OpenCL memory model . 32

3.1 Power consumption of neuromorphic hardware versus conventional com-

puting systems . 38

4.1 Block diagram of the project development process 42

4.2 Setup procedure for using the instrument for voltage measurement . . . 44

4.3 Setup procedure for using the instrument for current measurement . . . 44

5.1 Two-layer SNN network architecture using LIF neurons 49

5.2 Image encoding process step by step 50

5.3 Representation of digit 0 after being transformed from pixels to a poisson

signal . 51

5.4 Compression of spikes in bits . 51

5.5 Flow diagram for sequential implementation of the algorithm. 53

5.6 Representation of the weights corresponding to the synaptic connections

of the input layer with the layer of excitatory neurons. 54

5

5.7 Matrix of spikes generated for the validation process in the layers of the

network . 55

5.8 Flowchart corresponding to the parallel implementation of the algorithm 59

6.1 Analysis window over time vs. algorithm accuracy in the inference process

using BindsNET on Workstation . 61

6.2 Training accuracy vs. Training time using BindsNET on Workstation . 62

6.3 Inference accuracy vs. Inference time using BindsNET on Workstation 62

6.4 Serial implementation throughput VIM3 and Workstation 64

6.5 Performance comparison between sequential and parallel implementation

on the Worsktation . 65

6.6 Performance comparison between sequential and parallel implementation

on the VIM3 . 66

6.7 Throughput achieved in the experimental stage with SBC-GPU and

Workstation GPU. 67

6

List of Tables

2.1 Izhikevich neuron model parameters . 16

2.2 FLOPS per step update . 20

2.3 Review of numerical methods used to solve differential equations of spiking

neuron models and other relevant features of SNNs libraries and simulators. 27

3.1 Hardware platforms to simulate SNNs 37

4.1 Workstation and SBC features. 45

6.1 Accuracy of the network for the training stage 63

6.2 Accuracy of the network for the inference stage 63

6.3 Simulation features . 64

6.4 Speed and energy efficiency comparison. 66

7

Abstract

Researchers using Spiking Neural Networks to deploy its applications on Servers and

Workstations with graphics processing units because of the restricted access the special-

ized neuromorphic platforms. Moreover, using such conventional systems imply high

energy and acquisition costs.

Recently, we have seen the popularization of computing platforms with small form

factors, low energy consumption, and the ability to perform artificial intelligence. These

platforms, known as single-board computers, often integrate graphics processing units

and other hardware accelerators; thus, they are feasible alternatives to traditional

computer systems in critical energy consumption applications.

This work presents our insights into implementing a 2-layer Spiking Neural Networks

inference algorithm for handwritten digit recognition. We implemented the network on

a GPU MALI included on the VIM3 and a workstation GPU using the C++ language

and openCL. Our experimental results show that while single-board computer infer-

ence is 6x slower compared to a workstation, it is 7x more efficient in energy consumption.

Keywords: Spiking Neural Networks, embedded GPU, Single Board Computer

8

Chapter 1

Introduction

For many years, the brain and its learning mechanisms have attracted the scientific

community’s interest. An example of this are Artificial Neural Networks (ANNs). ANNs

are inspired by the biological nervous system and have become one widely used tool to

implement Artificial Intelligence. On the other hand, Spiking Neural Networks (SNNs)

have emerged as a promising computational paradigm, because they are capable of mod-

eling the information processing observed in biological neural networks [52]. Moreover,

SNNs can naturally capture space and time dimensions, including frequency and phase

of the the input signals, and are suitable for implementation on low-power hardware

[76].

One feature differentiating SNNs from ANNs is how information travels inside the

network. That is, using spikes as the elementary unit of information transmitted

between neurons. A spike is a short electrical pulse with amplitude in the order of

millivolts and durations of a few milliseconds [29]. In line with this, academia and

industry are recently developing specialized neuromorphic hardware to take advantage

of the Spatio-temporal characteristics of SNNs in engineering applications. The most

outstanding projects in this area are SpiNNaker [27], Loihi [17], TrueNorth [4], which

are digital platforms explicitly created to simulate SNNs. However, the use of these

systems is limited, and the technology in this field has not reached sufficient maturity

to make these hardware platforms commercially available.

Today, most SNNs are implemented on conventional computer systems, often helped by

Graphics Processing Units (GPUs) in order to accelerate both training and inference

9

stages [3, 59, 45]. GPUs can provide large-scale parallel computations at a cost in

developing effort and power, depending on the type of computer systems they are part of.

Single-board computers (SBCs) are low-cost and low-power alternatives that can be

used to run neural network applications. Some of those SBCs feature embedded GPUs

to accelerate compute intensive applications such as SNNs, achieving higher efficiency

when compared to expensive and power hungry workstations. Running SNNs on GPU

powered SBCs can be very valuable for building a simulation cluster infrastructure for

neuroscientists or for edge computing applications.

To the best of our knowledge there are no works where SNNs are mapped to an

embedded GPU and hence, we implemented a 2-layer Spiking Neural Network using

the MALI GPU of a VIM3 SBC and Nvidia GPU of a workstation which were pro-

grammed using C++ and openCL, taking as an example of application a handwritten

digit recognition system. Our objective with this work is provide insights into the speed

and energy efficiency levels of SBCs and workstations featuring GPUs.

1.1 Objectives

To implement a SNN model on an off-the-shelf heterogeneous MPSoC and on a worksta-

tion in order to compare their efficiency.

1.1.1 Specific objectives

• To select the SNN model type and input encoding techniques for reducing the

computational cost on an off-the-shelf heterogeneous MPSoC, using a pre-trained

SNN.

• To design a suitable partitioning and mapping strategies for the trained SNN onto

both, the heterogeneous MPSoC and the workstation.

• To implement an SNN in the heterogeneous MPSoC and workstation, considering

an application that allows efficient use of heterogeneous hardware components.

• To evaluate the performance of the SNN implementation in the heterogeneous

MPSoC and workstation.

10

1.2 Document Organization

This work is organized as follows:

Chapter 2: This chapter describes fundamental concepts necessary for the project

development. We will be presenting the definition of neuron models from the electrical

point of view, solution forms of the neural model based on numerical methods, types

of encoding for the information communication between neurons, network topologies

commonly used with SNNs, SNNs software, frameworks for parallel computing and

finally, we will refer to computer systems and hardware accelerators.

Chapter 3: This chapter presents the literature review regarding the computer systems

where SNNs are deployed, including the use of digital or analog/digital systems called

neuromorphic. We discuss the use of general purpose computers, as well as the use

of embedded GPUs for applications related to Neural Networks and Artificial Intelligence.

Chapter 4: This chapter presents the methodology used for the implementation

of the SNN, explaining the procedures for achieving the project objectives and the

technical aspects of the computer systems.

Chapter 5: This chapter presents the network architecture, the training process

in BindsNET, the considerations regarding the handling of the information to reduce

the memory footprint and also the algorithms to be executed in both the CPU and GPU.

Chapter 6: This chapter discusses the experimental results obtained in the project.

The reduction of the analysis time window for obtaining both, accuracy and execution

speed. We also present the results of running the base algorithm in its sequential imple-

mentation and the notable difference in throughput with the parallel implementation.

Chapter 7: In this chapter we present the conclusions obtained from the experi-

mental component and the future work alternatives to improve the understanding of

SNNs deployed on embedded GPUs.

11

1.3 Contributions

Based on the literature review, it can be concluded that research on spiking neural

networks has been mainly conducted on GPU-enabled computing systems. The im-

plementation of these networks is restricted to the use of libraries such as BindsNET,

CARLsim, Nengo, among others, which are based on libraries with support mainly for

CUDA, deployed predominantly in conventional computing systems.

Thus, we were able to define the following contributions: (1) this study presents the first

work that integrates a Spiking Neural Network algorithm on a Single Board Computer

through the use of OpenCL as an embedded GPU programming tool for parallel compu-

tation, (2) we found that single-board computer inference process is 6x slower compared

to a workstation, but, it is 7x more efficient in energy consumption, this means that

for projects that do not require high processing power, single-board computers can be

a more cost-effective and eco-friendly option, (3) we performed an exploration of the

simulation window to fine tune this parameter to the ideal point that would allow us to

obtain the best performance without suffering significantly degradation of accuracy in

the network inference process.

Other contributions resulting from the project are highlighted below.

Conference paper

Gómez Hurtado, J. F., Isaza Ramı́rez, S., Velásquez Vélez, R. A. (2022). On the

Efficiency of Embedded GPUs for Spiking Neural Networks. In N. Callaos, N. Lace,

B. Sánchez, M. Savoie (Eds.), Proceedings of the 26th World Multi-Conference on

Systemics, Cybernetics and Informatics: WMSCI 2022, Vol. I, pp. 23-29. International

Institute of Informatics and Cybernetics. https://doi.org/10.54808/WMSCI2022.01.23

Source code

Github repository with the source code containing the implementation of the sequential

algorithm and also the parallel implementation using openCL:

https://github.com/JonathanProf/thesisCode

12

Chapter 2

Background

This chapter presents essential concepts used throughout the document. These concepts

serve as a reference for developing our network and executing the experiments. We

discuss the neuron models used in SNNs, information coding techniques, and differential

equation solution methods. Moreover, we also present the most important programming

models, parallel computing platforms and, SNN simulation tools.

2.1 Neuron models used in SNNs

The primary purpose of developing SNNs was to model how the brain works. The

level of detail used for this modeling has generated different ways to represent spiking

neurons. Some neuron models are more biologically plausible than others but with high

computational complexity. At the same time, some of them relegate biological plausibility

slightly in favor of easy implementation and computational efficiency. We will start

presenting the most biologically plausible models, such as the Hodgkin-Huxley. Then,

we finish this section by discussing the Leaky Integrate-and-Fire model, a biologically

plausible model with lower computational complexity.

2.1.1 Hodgkin-Huxley neuron model (HH)

Hodgkin and Huxley proposed their spiking neuron model in 1952. They experimented

with the giant squid’s axon and found three ionic currents (sodium, potassium, and

leak) [36]. Thus, a neuron can be represented through an electrical circuit (Figure 2.1).

Here, an input current Iinput(t) is injected into the cell. The capacitor represents the

13

semipermeable cell membrane that separates the cell interior from the extracellular

liquid. RL, RK , and RNa model the leakage, potassium, and sodium ionic currents.

Resistor RK and RNa are variable since their values depend on whether the ion channels

are open or closed. VK , VNa and VL model the Nernst potential [35] for each ion channel

[30].

CM

−

+

VM(t)

IC(t)

RL

IL(t)

+

−
VL

RK

IK(t)

+

−
VK

RNa

INa(t)

−
+
VNa

Iinput(t)

Figure 2.1: Electrical diagram of Hodgkin-Huxley neuron model [36].

We must use electrical circuit solution techniques to derive a mathematical representa-

tion. For this case, we apply the Kirchhoff’s current law [75] on the top node to have

the mathematical representation of this neuron model, where:

Iinput(t) = ICM
(t) + IL(t) + IK(t) + INa(t)

ICM
(t) = Iinput(t)− IL(t)− IK(t)− INa(t)

CM ∗
dVM(t)

dt
= Iinput(t)−

[VM(t)− VL]

RL

− [VM(t)− VK]

RK

− [VM(t)− VNa]

RNa

(2.1)

The computational complexity and biological plausibility of the model presented in

Equation 2.1 comes from modeling the time dynamics of the opening and closing of ion

channels, because the resistors are not a constant value but depend on other variables

associated with probabilistic events as shown in the following equations.

RK =
1

gK ∗ n4
(2.2)

14

RNa =
1

gNa ∗m3 ∗ h
(2.3)

RL =
1

gL
(2.4)

dn

dt
= αn(VM(t))(1− n)− βn(VM(t))n (2.5)

dm

dt
= αm(VM(t))(1−m)− βm(VM(t))m (2.6)

dh

dt
= αh(VM(t))(1− h)− βh(VM(t))h (2.7)

The variables m, n, and h represent the probability of a channel opening at a given

time [30]. Thus, the combined action of m and h controls the sodium channel, while n

controls the potassium channel.

The Hodgkin-Huxley model offers excellent biological accuracy, but it is computa-

tionally prohibitive for many real-life applications. However, the research community

has proposed models that reduce the computational complexity compared to HH while

maintaining biological plausibility.

2.1.2 Izhikevich neuron model (IZH)

Izhikevich proposed in [37] a new model which reduces the Hodgkin-Huxley neural

model to a two-dimensional system of ordinary differential equations. Equations (2.8),

(2.9) and (2.10) present the Izhikevich neural model.

dVM(t)

dt
= 0.04V 2

M(t) + 5VM(t) + 140− U(t) + Iinput(t) (2.8)

dU(t)

dt
= a(bVM(t)− U(t)) (2.9)

with the auxiliary after-spike resetting equation:

if VM(t) ≥ 30mV , then =

VM(t)← c

U(t)← U(t)+d
(2.10)

Unlike the HH model, this one does not have a circuit representation, but it is used in

the literature to design spiking networks that can emulate in a similar way the cortex of

15

a mammal [37].

Table 2.1 shows the typical values presented by Izhikevich for the different parameters

considered in his model.

Table 2.1: Izhikevich neuron model parameters acquired from [37].

Parameter or Variable Feature

Membrane potential (VM(t)) This variable is in the order of mV

Resting potential (Vrest)
Depending of the b value is between

−70mV and −60mV

Threshold potential (Vth)
This parameter is between −55mV and
−40mV depending on the VM(t) history

Membrane recovery variable (U(t))
Accounts for the the inactivation of

sodium ionic currents and the activation
of potassium ionic currents

time (t) This variable is in the order of ms

a
Describes the time scale of U(t). A

typical value for this parameter is 0.02

b
Describes the sensitivity of U(t) to VM(t)
subthreshold fluctuations. A typical value

for this parameter is 0.2

c
Describes the reset value in mV of VM(t)
after the spike has occurred. A typical
value for this parameter is −65mV

d
Describes the reset value of U(t) after the
spike has occurred. A typical value for

this parameter is 2

2.1.3 Leaky Integrate-and-Fire neuron model (LIF)

While Izhikevich neuron model reduces complexity compared with HH model, a simpler

neural model that preserves biological plausibility but with a lower computational cost

is desirable. The leaky integrate-and-fire (LIF) [29] is an efficient neuron model whose

differential equation solution is one-dimensional, and thus it requires less computational

operations than the two previously presented models. Figure 2.2 shows the equivalent

electrical RC circuit for this neuron model. A current Iinput(t) feds the circuit, RM is

16

the membrane resistor, CM is the membrane capacitor, and VM(t) is the membrane

potential.

CM

−

+

VM(t)

ICM
(t)

RM

IRM
(t)

Iinput(t)

Figure 2.2: Electrical diagram of Leaky Integrate-and-Fire neuron model [29].

We can obtain the mathematical model of this electrical circuit by applying the Kirch-

hoff’s current law [75] on the top node

Iinput(t) = IRM (t) + ICM (t) (2.11)

Now, let us replace IRM
(t) = VM(t)/RM and ICM

(t) = CM ∗ d[VM(t)]/dt in Equation

2.11

Iinput(t) =
VM(t)

RM

+ CM ∗
d[VM(t)]

dt

Finally, let us define τm = RM ∗CM , the neuron’s leaky integrator constant or membrane

time constant.

τm
d[VM(t)]

dt
= RM ∗ Iinput(t)− VM(t) (2.12)

The Equation 2.12 is known as a differential equation (field of mathematics), leaky

integrator or RC-circuit (electrical engineering field), or passive membrane equation

(neuroscience field) [29]. In addition to Equation 2.12, the model define that a spike

occurs at the output when VM(t) ≥ Vth(threshold voltage).

The LIF model with current-based synapse and leakage can help reduce the com-

putational complexity compared to IZH or HH models. Therefore, many researchers

17

on SNNs often select LIF as its neural model. Among the applications and works

carried out with this neuron model we can highlight the following: Energy-Efficient Neu-

ron, Synapse and STDP Integrated Circuits [16], Image Classification [71], Real-Time

Convolution-Based Nonlinear Feature Extraction [58].

2.1.4 Synaptic Model

In the three neural models, the input Iinput(t) is the total synaptic current or the sum

of the input synapses. We can express mathematically Iinput(t) as the dot product of

the weights vector W = [w1, w2, ..., wN] and the spatiotemporal input spike patterns

S(t) = [s1(t); s2(t); ...; sN(t)] at an instant t [76].

Iinput(t) = W · S(t) (2.13)

The amplitude and sign of the synaptic current depend on W, where for each synapse i,

if wi > 0 we have excitatory synapses while for wi < 0 we have inhibitory synapses[20].

Therefore, we can express Iinput(t) as the sum of an excitatory synaptic current (positive

current) and an inhibitory synaptic current (negative current) as a function of time [28].

We redefine the total current as:

Iinput(t) = W · S(t) = Iexc − Iinh (2.14)

S(t) is known as a Poisson process with rate Nν, where N is the synapse number and ν

is the activation rate of one synapse [12]. This method is used to transform real values

into spike trains to feed the input layer [76].

2.2 Numerical methods for differential equations

solution

Once we have studied the neuron models, a question emerges: Which numerical methods

are used to solve the neuron models’ differential equations? In this section, we review

the methods commonly used to solve differential equations, based on the work presented

by Skocik et al. in [70], who studies the computational cost of the Forward Euler,

Exponential Euler and Fourth-Order Runge-Kutta methods.

18

2.2.1 Forward Euler

Euler proposed this method in [24] as:

yi+1 = yi +∆t ∗ f(ti, yi) (2.15)

Where ∆t is a fixed step size in the time domain during the entire simulation and the

error is proportional to this parameter. An important consideration is that the model

is simple, and the differential equation can be solved only with Equation 2.15. Hence,

the performance in terms of solution accuracy is not as good if we compare it to the

Fourth-Order Runge-Kutta method, which is more accurate.

2.2.2 Exponential Euler

Let us consider d[y(t)]/dt = f(t, y) = −A(t) ∗ y(t) + B(t), , where A(t) and B(t) are

arbitrary functions. This method is defined in [54] and [80] as:

yi+1 =

(
yi −

Bi

Ai

)
e−Ai∆t +

Bi

Ai

(2.16)

If A(t) and B(t) are constants in the interval ∆t, we obtain the exact solution. However,

if these functions vary rapidly over time or depend on y, the method may require

iterations over each step. Skocik et al. in [70] indicate that the LIF neuron model is

appropriate for this method by the nature of the differential equation.

2.2.3 Fourth-Order Runge-Kutta

Kutta defines this method in [47] as:

yi+1 = yi +
∆t

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(ti, yi)

k2 = f(ti + 0.5∆t, yi + 0.5∆t ∗ k1)

k3 = f(ti + 0.5∆t, yi + 0.5∆t ∗ k2)

k4 = f(ti +∆t, yi +∆t ∗ k3)

(2.17)

Although this method is computationally more intensive than the two previous ones due

to the number of equations required, it provides more accurate solutions to differential

19

equations.

A study was carried out in [80] to measure the computational cost of the three neuron

models LIF, IZH, and HH for each numerical method presented. Table 2.2 shows the

results. It is possible to conclude that the LIF neuron model needs fewer operations

than the other models with the three numerical methods considered. Forward Euler and

Exponential Euler methods produce similar FLOPS when computing the differential

equation of the LIF model. These results confirm that LIF model is computationally

more efficient than the IZH and HH models, but it still retain the biological plausibility

required to preserve the structure of the spiking network. The latter being one of the

main reasons to consider neuron models based on biological experimentation and not

only on mathematical models that only seek the highest performance in the network

response.

Table 2.2: FLOPS per step update [80].

Spiking
Neuron

Forward Euler
Exponential

Euler
Fourth-Order
Runge-Kutta

LIF 4 4 23

IZH 14 23 57

HH 114 158 472

Another important study was conducted by Capra et al. [13]. The research work is

important because it highlights the trade-off between biological plausibility and com-

putational efficiency in neuron models (Figure 2.3), which validates the information

presented above in Table 2.2, as it identifies which neuron models are significantly more

biologically plausible and which ones allow for efficient computation.

2.3 Spikes and encoding techniques for SNNs

Let us now introduce how information is conveyed in the synaptic process. We will first

define the spike representation from the electrical point of view. Subsequently, we will

present how a spike train allows encoding information to feed the neurons.

20

Figure 2.3: Comparison of different neuron models in terms of biological plausibility
versus computational efficiency [13].

2.3.1 Action potentials or Spikes

The neurons mainly communicate using short electrical pulses (action potential) or

spikes. A spike typically has a duration between 1ms and 2ms and a voltage amplitude

of around 100mV [30]. Figure 2.4 shows the shape of the electrical signal for a single

spike.

Figure 2.4: Representation of the action potential or spike [55]. The vertical axis
represents the signal voltage (u), and the horizontal axis the evolution of the spike over

time (t).

When neurons produce several spikes over time, we call this spikes train. The spikes are

well separated and may occur at regular or irregular time intervals [30]. Mathematically

21

a spike train for a neuron i can be expressed as:

Si(t) =
∑
f

δ(t− tfi) (2.18)

Where δ(t) is the Dirac function and f is the spike label [30]. Next, we will study spikes

train but from the perspective of the most commonly used encoding techniques for

SNNs.

2.3.2 Encoding techniques

How spikes encode information is one of the critical aspects studied by neuroscientists,

there are several ways to represent them but we will illustrate the most common ones,

rate coding and temporal coding [76].

Rate coding

In this method, the input data is transformed into spike trains through the neuron’s

mean firing rate [1]. This encoding approach is the most popular and, mathematically

we can express the mean firing rate (ν) as follows:

ν =
nsp(T)

T
(2.19)

Where nsp(T) is the number of spikes in a time window T , and ν has units of Hz. One

advantage of this technique is its low encoding and decoding process complexity and

its wide use for SNNs [85]. Figure 2.5 presents a rate coding example for encoding an

image’s pixels into spikes trains.

Temporal coding

This technique generates fewer spikes than rate coding, reducing computational resources

in the inference process [2]. If we compare against the example for rate coding, only one

spike per pixel is used (Figure 2.6).

22

𝑝𝑖𝑥𝑒𝑙
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑠𝑝𝑖𝑘𝑒 𝑡𝑟𝑎𝑖𝑛

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒

Figure 2.5: Rate coding example, based on [2].

𝑝𝑖𝑥𝑒𝑙
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑠𝑝𝑖𝑘𝑒𝑠

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒

Figure 2.6: Temporal coding example, based on [2].

2.4 Network topologies

The way in which the neurons are connected among them is known as the topology of a

Neural Network. Generally, a complete network is constructed using a set of neurons

that are distributed in layers [21]. Feedforward networks and recurrent networks are

a common classification of SNNs topologies [76]. We review some of these topologies

below:

23

2.4.1 Feedforward networks

The feedforward structure seems to be an accepted model for information processing,

supported by the response of inferotemporal cortex cells [69]. This model can be

represented in a general way by three layers as can be seen in Figure 2.7. The first

layer handles the input stimuli and performs the encoding of the information into spike

trains applying one of the techniques described in section (2.3). Then, all the units that

perform the encoding are fully connected to the neurons in learning (processing) layers,

this intermediate layers are where the neuron models described in section (2.1) are used

as the fundamental information processing units. Finally, there is an output layer where

information is retrieved from the responses generated in the processing layer and the

classification process is carried out [84].

Figure 2.7: Feedforward network.

2.4.2 Recurrent networks

Recurrent Neural Networks (RNNs) differ from feedforward networks, because its inter-

nal state evolves over time. RNNs simulate memory functions and it has been evidenced

that play an important role in the visual cortex [20]. In studies such as those conducted

by Chance et al. [14] have shown that complex cell responses could be generated by

recurrent networks. So, this type of networks can be useful for pattern recognition

24

applications [23, 76]. In Figure 2.8 we can see the representation of a typical RNN.

𝑠𝑡𝑖𝑚𝑢𝑙𝑖

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑜𝑢𝑡𝑝𝑢𝑡

Figure 2.8: Recurrent network [20].

In the field of SNNs, the implementation of competitive recurrent architectures which

are based on RNNs are very common, because the accuracy of the network can be

improved, as well as making better the convergence speed during the training stage

[48]. Winner-Take-All (WTA) stands out as one of the most widely used systems for

this competitive process. WTA, besides being a brain-inspired mechanism, consists of

making the neurons of the same layer compete with each other. Therefore as soon as a

neuron generates a spike to the output, an inhibition process to the other neurons in

the same layer is generated, preventing more than one neuron from generating spikes at

the output simultaneously [11, 53].

From the studies carried out in [22, 67, 38], we conclude that competitive learning is

relevant for digit/vowels classification. Additionaly, it is necessary to cluster layers of

neurons with excitatory and inhibitory synapses to facilitate recurrence.

25

2.5 SNNs software packages

There are many software packages that can simulate SNNs. Several of these have a

specific application domain with different approaches. The differences are in the context

of whether it is desired to represent the neural model with sufficient features or better

target a more functional design to obtain the best performance of the network.

For example, NEST [31], BRIAN [73], and ANNarchy [81] concentrate on precise

biological simulation from subcellular components and biochemical reactions to complex

neurons models, and the programmer can specify the neuron dynamics via differential

equations [33]. These simulation libraries run on desktop computers or high-performance

platforms, representing a significant advantage. However, a drawback of these tools is

that due to the detailed definitions required for each component, they are not suitable

for quick prototyping.

Nengo [9], CARLsim [15], BindsNET [33] and NeuCube [39] allow the user to work with

the behavior of the SNNs at a high level, and they target AI applications. Nengo is an

open-source project developed in Python, and it has options for deploying neural models

on dedicated hardware platforms such as SpiNNaker [33]. CARLsim was designed to

run simulations on heterogeneous computing cluster using several CPUs and GPUs [15].

BindsNET uses Pytorch [65] for efficient computation of SNNs and can be connected

to some systems such as FPGA, ASIC, DSP. NeuCube, on the other hand, is not an

open-source project and therefore has limited usability. It is developed in MATLAB

and supports simulation at the level of spikes or firing rates [33].

Table 2.3 provides a summary description of relevant aspects in addition to those

mentioned above. The table shows that the majority of simulation tools have imple-

mented the most popular neuron models (LIF, IZH and HH). Additionally, they have

implemented one or more of the numerical methods presented in section (2.2), which

allows us to delimit the design space for the parameters selection in the construction

and simulation of our neural network.

26

Table 2.3: Review of numerical methods used to solve differential equations of spiking
neuron models and other relevant features of SNNs libraries and simulators.

Tool Numerical methods Neuron implemented

NEST [31]
Forward Euler, Fourth-Order

Runge-Kutta
Integrate-and-fire (IF), HH,

IZH and LIF

Brian 2 [72, 73]

Exponential Euler, Forward
Euler, Second-Order

Runge-Kutta, Fourth-Order
Runge-Kutta, Stochastic Heun

User-defined by means of
symbolic equations

ANNarchy [81]
Forward Euler, Backward
Euler, Exponential Euler,
Second-Order Runge-Kutta

HH, IF, IZH, user defined e.g.
LIF

Nengo [9] Forward Euler LIF and IZH

CARLsim [15]
Forward Euler, Fourth-Order

Runge-Kutta
IZH and LIF

BindsNET [33] Euler McCulloch-Pitts, IF, LIF, IZH

NeuCube [39] - LIF and IZH

2.6 Computer systems

A complete computer is defined as a system that includes a processor, memory, input, and

output ports, built to receive user actions with input peripherals, process information and

present results on its output peripherals [78]. Electronic vendors design these systems

following a general model: input, storage, processing, and output. However, there are

differences in how a computer system can be classified, built, and used. There are three

categories of computer systems: high-performance, general-purpose, and embedded

systems [66].

2.6.1 General-Purpose Computer (GPC)

General-Purpose computer systems can be programmed to carry out many tasks. These

systems are versatile in the number of activities since the software can be added, updated,

and removed without altering the functionality [66]. Desktops and laptops are examples

of GPC systems since they have multiple input ports (USB, PS2, Serial Connector),

output ports (HDMI, VGA), processing units, memories, and storage units. In addition,

27

they run an operating system and several applications simultaneously, mainly for daily

use.

2.6.2 Embedded Systems (ES)

Embedded systems carry out fewer tasks than GPCs since manufacturers focus on

dedicated functions that the system must perform efficiently and optimally [66]. An ES

can be, for example, a pacemaker, a device that aims to monitor and control the heartbeat

to ensure its regularity, where low power and low resource consumption implementations

are required. Among the advantages of ESs are high efficiency in executing tasks,

reliability, low production cost, compact size, and low power consumption.

2.6.3 High Performance Computers (HPC)

High Performance Computers are systems with a significantly higher degree of per-

formance than the previous ones. They are custom-built to perform computationally

intensive tasks, which is why they are widely used in research and industry. With

these systems it is possible to perform climate simulations, large-scale modeling for the

generation of new materials, cryptographic analysis, among others. They are mainly

used to get results in a shorter time than a conventional computer, since they make use

of hundreds of CPUs to implement parallel and distributed programming methodologies.

2.7 Domain-specific accelerators

Hardware accelerators are devices that increase the performance of applications that

require parallel or concurrent computing. There is a wide range of accelerators but the

most widely used and implemented in computer systems are graphics processing units

and neural processing units.

2.7.1 Neural Processing Unit Module (NPU)

A neural processing unit (NPU) is a dedicated circuit that has all the control and

arithmetic logic components necessary to execute machine learning algorithms. NPUs’

primary purpose is to accelerate the performance of machine learning tasks such as

image classification, machine translation, object detection, and various other predictive

models.

28

2.7.2 Graphics Processing Unit Module (GPU)

Early GPUs were initially developed and produced for computer graphics, particularly

for video processing and computer gaming. GPUs try to maximize the computing

throughput by exploiting data parallelism. GPUs can speed up computations by

simultaneously running a single instruction on multiple data points (SIMD) [40]. Some

SNN simulation libraries use GPUs as vector processors to speed up large-scale SNN

simulations, such as NeMo [26] or BindsNet [32]. There are some differences of these

accelerators depending on the system that integrates them. For instance, embedded

GPUs have less number of cores compared to server GPUs and, embedded GPU-CPU

share the physical memory because they are built on the same chip [83].

2.8 Parallel computing development frameworks

In this section we discuss the programming models that make possible the implementation

of SNN networks on computer systems. Here, we mainly discuss the programming

interfaces to efficiently operate the CPU and GPU resources on computer systems.

2.8.1 OpenMP

OpenMP is not a programming language but an extension for languages like C,

C++, or Fortran. OpenMP is considered an Application Programming Interface (API)

used to program multithreaded applications, allowing running programs on shared

memory systems. The API comprises compiler directives, supporting functions, and

shell variables [79]. This programming model, beyond being portable and scalable, eases

the programmer to use the Fork-Join model, where the aim is to divide a sequential

task performed by a single process into several processes working together to perform

the total work.

2.8.2 MPI

Message Passing Interface or MPI is a standardized parallel programming model

for programming distributed memory computer systems. Similar to OpenMP, MPI

is not a programming language. The MPI standard defines a helpful API for various

programming languages like C, C++, and Fortran. There are several open-source MPI

implementations [79]. MPI is generally used to try to optimize the execution time

29

of a program that needs to perform massive operations but cannot be executed on a

single machine, instead it requires the cooperative work of several computer systems to

perform a job.

2.8.3 CUDA

CUDA or Compute Unified Device Architecture is a parallel programming model for

developing general-purpose applications on GPUs. CUDA provides language extensions

for programming languages such as C, C++, Fortran, Python, and MATLAB. CUDA

users develop applications for desktops, data centers, and embedded systems that use

NVIDIA technology [62]. This programming model has become very popular in recent

years, since it has allowed the development of several areas of knowledge, such as:

animation and modeling (mainly in video games), astronomy and astrophysics, big data,

data mining, bioinformatics, climate modeling, among other applications.

2.8.4 OpenCL

Open Computing Library or OpenCL is a widely used and standardized parallel

programming model. Unlike the previous programming models, OpenCL programs can

execute on different computing devices without modifications. This feature provides

an advantage over other programming models whose programs require customization

for each computing device. OpenCL runs on various computing devices such as CPUs,

GPUs, or hardware accelerators [79]. OpenCL users develop parallel programs for

supercomputers, servers, personal computers, mobile devices, and embedded systems

[42]. A developer must understand three concepts when working with this programming

model: platform, execution, and memory models [79].

Platform model

The OpenCL platform model (Figure 2.9), consists of a single host (e.g. CPU) connected

to one or more accelerator devices known as Compute Device (e.g. GPU, DSP, FPGA)

[64]. An OpenCL program consists of two components, the first component which is the

main program that runs on the host, and the second called kernels that will run on the

devices [79].

30

CPU

GPU

FPGA

DSP

𝑑𝑒𝑣𝑖𝑐𝑒𝑠

ℎ𝑜𝑠𝑡

𝑚𝑎𝑖𝑛 𝑐𝑜𝑑𝑒

𝑘𝑒𝑟𝑛𝑒𝑙
01011
01011
01011
01011

𝑘𝑒𝑟𝑛𝑒𝑙
01011
01011
01011
01011

01011
01011
01011
01011

𝑘𝑒𝑟𝑛𝑒𝑙

Figure 2.9: Platform model or heterogeneous system.

Execution model

The execution model define the way in which kernels will be executed. The main

program (host program) is responsible for preparing the environment to launch the

kernels to the devices [79]. There are some concepts needed to understand the execution

model. A work-item is the basic unit of work on a device, work-items are grouped

into work-groups. A kernel is the code to be executed by one or several work-items,

the program is the set of kernels. Finally, the context is the environment in which the

kernels will run [43].

Memory model

The memory model defines 4 address spaces (Figure 2.10): private (per work-item), local

(shared by work-group), constant (read function only and visible to all work-groups)

and global (read and write functions and visible to all work-groups) [79, 64]. When

kernels are defined, the location where the data will be placed must also be explicitly

indicated: global if the data will be sent to the global memory region of the device,

constant if the data will be sent to the constant memory region of the device, local if

the data will be sent to the local memory region of the device. By default variables are

private within a kernel. It is also important to note that according to the location where

31

the data is stored, the access speed and storage capacity will be inversely proportional.

Private memory is the fastest among the four, but has the smallest capacity, on the

other hand, the global memory has the largest capacity but the access speed is slower [7].

𝑲𝒆𝒓𝒏𝒆𝒍

𝑔𝑙𝑜𝑏𝑎𝑙/𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑔𝑟𝑜𝑢𝑝

𝑙𝑜𝑐𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦
⋯

𝑤𝑜𝑟𝑘 − 𝑔𝑟𝑜𝑢𝑝

𝑙𝑜𝑐𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦
⋯

𝑤𝑜𝑟𝑘 − 𝑔𝑟𝑜𝑢𝑝

𝑙𝑜𝑐𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦

𝑤𝑜𝑟𝑘 − 𝑖𝑡𝑒𝑚

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦
⋯

Figure 2.10: OpenCL memory model.

As already mentioned, the first step to develop an application with OpenCL is to

code the program that will be executed on the host side. Considering the information

presented in [79] the following steps must be performed:

1. Discover and initialize the available device(s) in the heterogeneous system.

2. Test the device(s) to verify that the designed kernel(s) is(are) adapted to its

characteristics.

3. Create a context and a command queue.

4. Read and build the source code which defines the kernel(s).

5. Set the memory objects to be configured on the device(s).

6. Write host data to the device(s) memory object(s).

32

7. Create and compile the kernel(s).

8. Set the kernel arguments.

9. Run the kernel(s) on the device(s).

10. Retrieve the values returned by the device(s).

33

Chapter 3

Related Work

Differential equations model SNN’s neurons, which differ from each other only in the

synaptic weights. A neuron model does not require much computation, but hundred,

thousand, or millions of neurons do. Consequently, the research community and the

semiconductor companies have started developing specialized hardware to train and

simulate SNNs. These hardware platforms are known as neuromorphic and enable

the efficient training and execution of SNNs. Since these platforms are still under

development, they are not available for retail.

Without access to neuromorphic hardware, some researchers utilize conventional com-

puter systems such as general-purpose and high-performance computers with GPUs

to perform their studies and developments with SNNs. Moreover, embedded com-

puters like SBCs have gained importance for AI applications because they possess

powerful multicore processors and include GPUs. In particular, embedded GPUs’ com-

putational power has increased and enables the acceleration of AI applications like SNNs.

In this section, we review the state-of-the-art, mainly the works related to the de-

ployment of SNNs on computing systems; we detail SNN characteristics such as network

architecture, type of application, type of neuron, and software tools used for the im-

plementation. In addition, we will review the use of SBC in several works as an

alternative platform for AI application deployment to support its use and utility in

these applications.

34

3.1 Neuromorphic hardware

SNNs have attracted neuroscientists and engineers interested in algorithms and network

architectures. Furthermore, hardware designers have shown interest in developing neuro-

morphic hardware to make SNN’s computation as efficient as possible. Those hardware

systems consist of ASIC or FPGA chips, and their primary purpose is to simulate large

numbers of spiking neurons. The following are some of the most outstanding projects,

which we will classify into two categories: digital and mixed-signal (analog and digital)

systems.

3.1.1 Digital Systems

SpiNNaker [27] is a fully digital system aiming to simulate massive spiking networks

in real-time. SpinNNaker uses an event-driven simulation technique. It comprises 864

ARM9 cores, divided into 48 chips containing 18 cores each. The main feature of SpiN-

Naker is its efficient communication system. A high-throughput network interconnects

all the nodes. The communication network routes small packets, which contain Address

Event Representation (AER) spikes, i.e., the address of the transmitter neuron, the

date of the emission, and the destination neuron [27]. SpiNNaker is programmable

using the PyNN library. PyNN is a Python library for SNN simulation [18, 19], which

provides various neuron models (LIF, Izhikevich, etc.) and synaptic plasticity rules such

as Spike-Time-Dependent Plasticity (STDP).

TrueNorth [4] is a fully digital system capable of simulating up to 1 million spiking

neurons. It consists of 4096 Neurosynaptic cores dedicated to LIF neuron emulation

[2]. TrueNorth can perform 46 billion synaptic operations per second (SOPS) per Watt.

The system is programmable thanks to the Corelet programming language [6], allowing

to tune neuron parameters, synapse connectivity, and inter-core connectivity. Similar to

SpiNNaker, the communication scheme in TrueNorth is asynchronous, event-based, and

able to tolerate a very high level of parallelism [2].

Loihi [17] is a fully-digital chip containing 128 cores. Each core can simulate up

to 1024 different neurons. It supports up to 130.000 neurons and 130 million synapses,

and it can perform online learning [17]. The chip can be programmed to implement

various learning rules, notably STDP, and simulate up to 30 billion SOPS [2].

35

SpiNNaker, TrueNorth, and Loihi are neuromorphic systems built from application-

specific integrated circuits (ASICs). This fact represents an advantage over SNN

implementation on GPC, HPC or SBCs concerning power efficiency and performance.

FPGAs are an alternative technology for implementing SNNs accessible to anyone

able to program them. Minitaur [61] and HFirst [63] are neuromorphic platforms based

on FPGAs. Minitaur is an event-driven neural network accelerator dedicated to high

performance and low power consumption. This SNN accelerator implemented on the

Xilinx Spartan 6 FPGA board has an architecture consisting of 32 LIF-based cores

dedicated to parallel processing spikes [61]. HFirst is based on a frame-free paradigm,

as it takes inputs from a Dynamic Vision Sensor (DVS) [50] and is used for temporal

pattern recognition. It runs on Xilinx’s Spartan 6 FPGA with a 100MHz clock and

consumes between 150mW and 200mW [63].

3.1.2 Mixed-signal systems

BrainScaleS [68] is a mixed-signal system. The processing units (neuron cores) are

analog circuits, whereas the communication units are digital. It implements the adap-

tive exponential Integrate-and-Fire (EIF) neuron model, which can reproduce many

biological firing patterns [68]. It is composed of HiCANN (High-Input Count Analog

Neural Network) chips, which can simulate 224 spiking neurons and 15.000 synapses

[68]. The PyNN interface allows users to program the network similarly to SpiNNaker.

NeuroGrid [10] is a mixed-signal system that targets real-time simulation of large

SNNs. The board comprises 16 NeuroCore chips interconnected by an asynchronous

multicast tree routing digital communication system. Each core is composed of 256*256

analog neurons so that NeuroGrid can simulate up to 1 million neurons and billions of

synaptic connections [10].

We can highlight some common facts among the neuromorphic platforms reviewed.

Only NeuroGrid, BrainScaleS, and SpiNNaker can perform online learning, and none

of the FPGA-based platforms can carry out this type of learning. FPGA-based works

support large-scale simulations and generally support integrate and fire neuron models.

SpiNNaker exhibits lower power efficiency, mainly when it simulates the more complex

36

neuron and synapse models [11]. Table 3.1 summarizes neuromorphic hardware archi-

tectures and their most essential features.

Table 3.1: Hardware platforms to simulate SNNs.

Device Electronics Neuron Model Application
Domain

SpiNNaker [27] Digital LIF, IZH, HH NeuroSciences

TrueNorth [4] Digital LIF Multi-object detection

HFirst [63] Digital Complex IF DVS-based
object recognition

Minitaur [61] Digital LIF Classification

Loihi [17] Digital CUBA LIF LASSO/classification

BrainScaleS [68] Analog/Digital exp IF NeuroSciences/
Classification

NeuroGrid [10] Analog/Digital Dimensionless
Model

NeuroSciences

Regarding the power consumption in Figure 3.1 [13], it is clear that neuromorphic

systems consume several times less power than the human brain. It is precisely the

feature that makes them such suitable for SNNs. On the other hand, conventional

computing systems equipped with accelerators such as GPUs or TPUs consume higher

power than neuromorphic systems. Although programs with equivalent functionality

to be deployed on neuromorphic hardware can run in conventional computer systems

plus accelerators, these are slower and less energy efficient, but until neuromorphic

hardware becomes commercially available, they should be used to continue the software

component development of SNNs.

3.2 Conventional computer systems plus accelera-

tors

As we have stated before, neuromorphic hardware is not commercially available yet.

FPGA alternative is not the first choice for deploying SNNs due to its programming

complexity. Hence, SNNs researchers use conventional computer systems in their studies.

37

Figure 3.1: Power consumption of neuromorphic hardware versus conventional
computing systems [13].

There are many works where GPCs and HPCs with GPUs serve as computing platforms

for implementing SNNs. This section presents these works.

Ahmadi et al. [3] implemented an Izhikevich [37] neuron-based simulator using a

multilayer SNN structure partially connected, where the number of neurons in the

network was scaled up to 1.000.000 to evaluate GPU’s performance. The GPU-SNN

model was deployed on three different systems: a laptop with NVIDIA GeForce GT

325M with 48 GPU CUDA cores, a desktop computer with NVIDIA GeForce GT 9500

with 32 GPU CUDA Cores, and a desktop computer with NVIDIA GeForce GT 9400

with 16 GPU CUDA Cores. This work concludes that the simulator has excellent

flexibility and performance in large-scale simulations. They also identify the GPU’s

memory as the main bottleneck for the simulator.

Nageswaran et al. [59] implemented an Izhikevich neuron-based large-scale SNN sim-

ulator, considering a network with random connections between excitatory neurons

and inhibitory neurons. The network size comprises 100.000 to 220.000 neurons. The

work’s purpose was to identify the performance of SNNs using GPU by measuring

fidelity, memory usage, and scalability. A workstation with an Nvidia GTX 280 GPU

was used as the platform for carrying out the trials. The authors reported 24 times

higher performance in the GPU simulations compared to the CPU simulation for 100,000

neurons with 50 million synaptic connections.

38

Kulkarni et al. [45] implemented an SNN for classifying handwritten digits in real-time.

They used a three-layer topology with LIF neurons. The hidden layer performed fea-

ture extraction and the output layer classification. The former had 8112 neurons and

used the NormAD gradient-descent supervised learning algorithm to adjust the SNN

synaptic weights. The output layer had ten neurons (one neuron for each digit) and

used fixed synaptic weight maps to extract the key features of the image. The network

was implemented using an Nvidia GTX 860M GPU with 640 CUDA cores.

It is important to note that the works mentioned previously used the Compute Unified

Device Architecture(CUDA) framework as the development tool for the algorithms’

implementation on the GPUs. LIF or IZH neuron models are used to perform the exper-

iments both for their biological plausibility and computational complexity. Depending

on the objective to be achieved with the work, biological plausibility can be sacrificed to

gain performance in the execution of the application, or performance can be improved

by sacrificing accuracy in the task performed by the network.

3.3 GPGPUs applications on SBCs

Works such as Nazir et al. [60] show the current interest in developing AI applications

employing SBCs to take advantage of their energy efficiency and reduced form factor.

The authors developed a car detection system using computer vision and applying

techniques like Histograms of Oriented Gradients (HOG) and Support Vector Machines

(SVM). They implemented this system on a Raspberry Pi 3 and an Odroid C2. However,

they only used the CPUs because these two SBCs do not have GPUs for general-purpose

computing. Embedded GPUs for general-purpose computing have been available only

in the last decade and were restricted generally to graphic processing given the lack of

support of hardware and software [49]. We present now some works that use GPUs in

applications that require energy or computational efficiency on SBCs.

Lindner et al. [51] conducted studies for implementing a face recognition system

on a Raspberry Pi 3B+, an NVIDIA Jetson Nano, and a Banana Pi M3. They aim

to evaluate the possibility of carrying face recognition and detection systems in small,

low-power devices. The Jetson Nano exhibits higher performance than its competitors,

39

mainly because it is the only one with a GPU. The study concludes that although the

application can be performed on all the computer systems tested, the Jetson is the most

efficient in terms of execution time, but if very fast inference times are not required, the

Raspberry Pi offers a greater benefit in production costs.

In [44], Kim et al. developed a driver status monitoring system utilizing Convolu-

tional Neural Networks (CNNs). They implemented the system on an NVIDIA Jetson

Nano and its GPU. The results show that MobileNetV2 can execute in real-time on the

Jetson Nano. They also highlighted the importance of the system memory size and how

this affects the overall system budget.

Matthews and Leger in [56] used an NVIDIA Jetson Nano SBC for developing an

anomaly detection system, aiming to improve computing speed. They performed an

energy consumption analysis and reported that the system’s peak power consumption

using the GPU reaches up to 9.4Watts.

Haogang et al. in [25] investigated the performance of the You Only Look Once

(YOLO) network using different SBCs: Raspberry Pi 4B with Intel Neural Compute

Stick 2, NVIDIA Jetson Nano and NVIDIA Jetson Xavier NX. The results showed

that the Raspberry with the accelerator is better to lightweight models. The Jetson

Xavier NX obtained the best results in execution time for all the models analyzed, but

consumed twice as much energy as the other systems. The study therefore concludes

that the Jetson Nano offers the best performance and cost.

According to the works, as mentioned earlier, the use of GPUs for general-purpose com-

puting has been evidenced only in the NVIDIA Jetson boards, limiting the applications

developed only to the NVIDIA software and hardware components installed on the

mentioned SBC. Furthermore, there is no evidence in the literature review on using

SBCs for SNN applications.

40

Chapter 4

Methodology

This chapter will cover the aspects considered for the development of the project. Firstly,

we will discuss the selection of the architecture, the selection of the dataset, the training

process carried out, and the deployment of the algorithm to perform inference on GPUs.

We will also describe the performance evaluation mechanism considered. Finally, we will

provide details of the platforms and software used for the experimental and deployment

stage.

4.1 Methodology for Network Deployment

The primary purpose of this work is to implement SNNs in a GPU-enabled SBC efficiently.

To reach this goal, we divided our work into four steps (see Figure 4.1):

• We selected an SNN architecture and its baseline implementation in the BindsNET

simulator [32].

• We used the MNIST dataset [57] to train the SNN for handwritten digit recognition

and obtain the network parameters and reference output.

• We developed a version of the SNN inference algorithm for the GPU-enabled SBC

and Workstation deployment.

• We evaluated the performance of the SNN inference in both platforms and the

energy efficiency.

41

Testing
platforms

SNN
implementation

Weights and
thresholds taken

from the
network

Baseline
simulator

Bindsnet code

Trained
parameters

OpenCL
inference code

SBC Workstation

Figure 4.1: Block diagram of the project development process.

4.1.1 Selection of the network architecture

The first step in the project was to carry out a literature review to investigate the funda-

mental components to assemble a spiking network to proceed with the implementation

at the software level. Therefore, our project was based on the architecture worked by

[22, 67] as the baseline for training the SNN’s parameters and as a reference to validate

the output of the inference algorithm that interests us. In the next chapter, we will give

more details since it is required to specify aspects such as the type of neuron, coding

technique, topology, differential equation solution method, etc.

4.1.2 Dataset selection and network training

Several related papers seeking to explore the response of spiking networks use the

MNIST Dataset to perform handwritten digit recognition [22, 46, 67, 84]. At this stage,

42

after choosing the network parameters and architecture training was performed using

BindsNET. For network training, we explored different network sizes and the optimal

time window, and subsequently we extracted the parameters required by the inference

algorithm: weights and firing thresholds of excitatory neurons. This process will be

explained in more detail in the following chapter.

4.1.3 Algorithm deployment to perform network inference

In this part, we first performed a sequential implementation of the algorithm to validate

its suitability for the classification process using the parameters obtained after the

training stage. These validations will be explained in chapter 5. After this, some

optimizations were made to improve the performance of the application not only from

the parallelization of the key points, but also from the data input to the network with

the compression of the input signals to the first layer.

4.1.4 Performance evaluation of deployment on SBC-GPU and

Workstation-GPU

Last but not least, we validate this implementation against the BindsNET simulator

outputs. We evaluated the performance of SNN inference in SBCs against the workstation

and their energy efficiency. For this purpose, we define 3 different network sizes and used

10000 images from the MNIST database as the set of tests. We used the time Linux

command for timing measurements, covering the whole application running time, not

only the GPU compute part. We consider this command reliable enough given that the

time measurements were in the order of tens of seconds. We used a Uni-T Professional

Digital Multimeter UT70A [74] to measure both systems’ voltage and current consumed

at the power outlet. For these measurements we proceeded to set up the instrument

in AC configuration as shown in the Figure 4.2 and Figure 4.3, that are described in

the user’s manual of the instrument [74]. We calculated the total energy consumed

with these parameters and the runtime measured in each experiment. We performed

10 repetitions of the experiments and took the nominal value of each metric which are

considered the final values to be reported in the experimental results chapter.

43

Figure 4.2: Setup procedure for using the instrument for voltage measurement [74].

Figure 4.3: Setup procedure for using the instrument for current measurement [74].

4.2 Target Platforms

We used two computer systems for the experiments: a Dell Precision 5820 Workstation

and a VIM3 Pro. Table 4.1 shows the most relevant features of the platforms selected for

the experiments. It should be noted that the difference in hardware resources between

44

the platforms is considerable, so for our work it is important to highlight the convenience

of using SBCs for inference tasks deploying SNNs with the graphics unit, to be considered

as an alternative for mobile computing or edge computing applications. Among the

remarkable differences is the considerable price difference that the two systems represent,

on the one hand the Workstation GPU has a cost of 829.00 USD [5] while the entire

SBC VIM3 PRO has a cost of 159.99 USD [41] at the date of this document.

Table 4.1: Workstation and SBC features.

Feature Workstation SBC

Reference system
Dell Precision 5820

Workstation
VIM3 Pro

CPU
6-Core Intel Xeon
W-2135@3.7GHz

2xCortex-A52@1.8GHz +
4xCortex-A73@2.2GHz

Operating System Ubuntu 18.04.6 Ubuntu 20.04

G++ Compiler Version 7.5.0 Version 9.4.0

OpenCL version 2.2 2.2

GPU

Device name Nvidia Quadro P5000 ARM Mali-G52

Max. Compute units 20 2

Max. Clock frequency 1733MHz 750MHz

Max. Work item sizes 1024x1024x64 384x384x384

Max. Work group size 1024 384

Preferred work group
size multiple

32 8

Global memory size 15.89GiB 3.621GiB

Global memory cache
size

960KiB 128KiB

Local memory size 48KiB 32KiB

4.3 Performance metrics

In order to compare the performance and energy efficiency of SNN’s inference algorithm

against the workstation counterpart, we used the following metrics:

45

• Digits per second: the number of digits available in MNIST (10000) divided by

the total execution time measured.

• Digits per Watt-hour: the number of digits available in MNIST (10000) divided

by the total energy measured.

• SOPS: Synaptic Operations per Second. This metric is calculated using the

following equation:

SOPS = (N ∗ (I +N − 1) +N)/((1/DR)/ST) (4.1)

Where N is the number of neurons, I the number of inputs of the network, DR

the number of digits processed per second or throughput, and ST the number of

simulation steps to obtain the digit classification.

• SOPS/W: It is the number of Synaptic Operations Per Second per Watt.

46

Chapter 5

SNN Implementation

In this chapter, we will describe the implementation process carried out for the network

simulation. First, we will review the main components of the network architecture,

then we will describe how the information that is transported through the network was

represented. We will continue with the details of the implementation of the sequential

program describing the verification processes that were carried out to validate the correct

implementation, and finally, we will provide details of both the sequential and parallel

programs.

We developed a C version of the SNN for handwritten digit recognition and selected

part of the algorithm for offloading to the GPU. To run the compute intensive parts

on the GPUs, we used the OpenCL library, which allows us to run the same code both

on the embedded GPU and on the workstation GPU. Furthermore, we applied some

strategies in order to achieve an efficient implementation.

It is important to note that we train the SNN with BindsNET in the workstation

because we are focused on optimizing the performance of the network inference process.

In addition, BindsNET was used exploratorily in the SBC to perform the inference but

we found two limitations that highlight the relevance of our project and that we will

detail below:

• When we tried to perform inference with BindsNET, it was not possible to use the

SBC-GPU for handling the tensors required in Pytorch for the simulation. This is

because currently there is no PyTorch support for SBC-GPU architectures.

47

• In this context, the simulation was performed using the SBC-CPU but when

trying to scale the neurons, an execution error occured again because of PyTorch’s

limitation with the handling of tensors for SBCs for 800 and 1600 neuron networks.

So, this second limitation leads us to desist from testing with BindsNET on the

SBC due to the constraints that PyTorch introduces in our experiments.

For the reasons previously described, we chose to perform the algorithm deployment on

the SBC with OpenCL.

5.1 Network Architecture

Diehl and Cook in [22] proposed the SNN architecture used in their research for handwrit-

ten digit recognition using an unsupervised learning technique, and other authors [77, 82]

have used this work as reference for their experiments with SNNs. A LIF neuron model

[29] has been selected for this architecture considering the results presented by Valadez-

God́ınez et al. in [80](Table 2.2), in which the LIF neuron model is referenced as the most

computationally efficient using Euler methods (Forward Euler or Exponential Euler),

and the work done by Capra et al. [13] where they compare the biological plausibil-

ity versus the computational efficiency of LIF, IZH, and HH neuron models (Figure 2.3).

A two-layer topology with one excitatory and one inhibitory layer symmetrically dis-

tributed was implemented using the Winner-Take-All competitive system for the inference

process. Poisson rate coding for encoding the input pixel into spike trains is used to feed

the input layer of the network. Figure 5.1 shows the network architecture. The circles

in the graph represent the LIF neurons; excitatory neurons are labeled excn; while

the inhibitory neurons are labeled inhn. The small circles with the plus (+) symbol

that lead to the excitatory neurons represent the synapses. Each network layer has K

neurons. During our experiments, we explore three values for the K parameter (see

chapter 6).

The SNN’s input is the digit images of 28x28 pixels. The 784 pixels are encoded

into spike trains through a Poisson rate coding strategy using a time window of 64 ms.

Figure 5.2 presents the encoding process step by step. Thus, spike-trains for each pixel

become a binary signal where we represent spikes with 1’s and its absence with 0’s.

Instead of computing this encoding process every time an image feeds the network, we

48

𝑖𝑛ℎ𝐾

𝑖𝑛ℎ0

𝑖𝑛ℎ2

1001010100100110

1001010100000010

1001010111100000

1101010100100111

⋮

𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

⋮

𝑒𝑥𝑐0+ 1000010000000010

𝑖𝑛ℎ1

0000000000000000

0001000000000100

0000000000000000

⋮

𝑝𝑖𝑥𝑒𝑙 0

𝑝𝑖𝑥𝑒𝑙 1

𝑝𝑖𝑥𝑒𝑙 2

𝑝𝑖𝑥𝑒𝑙 783

⋮
⋮

𝑒𝑥𝑐1+

𝑒𝑥𝑐2+

𝑒𝑥𝑐𝐾+

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

⋮

Figure 5.1: Two-layer SNN architecture using LIF neurons.

saved the complete encoding for each image in the dataset and reused it. Hence, we

stored each digit on the MINST dataset as a 784 64-bit integer matrix. As a result,

the SNN can work directly with spike encoded images, and we can focus on the actual

SNN’s inference performance. In Figure 5.3 we can see an example of the zero digit

converted from pixels to a spike train. The vertical axis represents each pixel of the

image and the x-axis the 64ms that represent 64 simulation steps in our system.

A synapse integrates multiple input signals into a single excitatory current to the

neuron. Each synapse on the left side of the excitatory neurons aggregates all input

signals into each excitatory neuron. Moreover, the synapses on the right side of the

excitatory neurons aggregate the signals from all inhibitory neurons but themselves.

Equation 2.13 defines how to compute the synapse. In summary, every excitatory neuron

receives the 784 input signals and K − 1 inhibitory signals through its synapse and

produces an output.

Every neuron in the inhibition layer takes the output of one excitatory neuron. In

49

𝑃𝑜𝑖𝑠𝑠𝑜𝑛
𝑟𝑎𝑡𝑒 𝑐𝑜𝑑𝑖𝑛𝑔

𝑃𝑜𝑖𝑠𝑠𝑜𝑛
𝑟𝑎𝑡𝑒 𝑐𝑜𝑑𝑖𝑛𝑔

𝑃𝑜𝑖𝑠𝑠𝑜𝑛
𝑟𝑎𝑡𝑒 𝑐𝑜𝑑𝑖𝑛𝑔

𝑝𝑖𝑥𝑒𝑙 0

𝑝𝑖𝑥𝑒𝑙 1

𝑝𝑖𝑥𝑒𝑙 783

⋮ ⋮

𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
(𝑔𝑟𝑎𝑦 𝑠𝑐𝑎𝑙𝑒)

𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚

𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚

𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚

⋮

𝑠𝑝𝑖𝑘𝑒 − 𝑡𝑟𝑎𝑖𝑛

𝑠𝑝𝑖𝑘𝑒 − 𝑡𝑟𝑎𝑖𝑛

𝑠𝑝𝑖𝑘𝑒 − 𝑡𝑟𝑎𝑖𝑛

𝑠𝑐𝑎𝑙𝑎𝑟 [0 − 255]

𝑠𝑐𝑎𝑙𝑎𝑟 [0 − 255]

𝑠𝑐𝑎𝑙𝑎𝑟 [0 − 255]

Figure 5.2: Image encoding process step by step.

the case of a spike, the inhibitory neuron sends an inhibitory spike back to all other

excitatory neurons. Thus, the excitation layer recognizes specific patterns in the input

image, and the inhibition layer helps the network select the most active excitatory

neurons to produce the encoded output.

Finally, the first excitatory neuron firing will determine the recognized digit by applying

the soft Winner-Take-All mechanism [53].

5.2 Input data compression

In the baseline implementation, the input spike-trains are generated as vectors containing

boolean types, each requiring one byte (8 bits) to store each sample. We modified the

code in such a way that the spike-train was encoded with bits instead of bytes. In such

a scheme we managed to compress the input data 8×. This optimizations allows us to

reduce the memory footprint of the application which allows for a faster data upload to

the network per iteration, as there is an improvement in the execution of the complete

database. This procedure is illustrated in the Figure 5.4.

50

Figure 5.3: Representation of digit 0 after being transformed from pixels to a poisson
signal.

Figure 5.4: Compression of spikes in bits: (a) Pytorch spike representation using 8 bits,
(b) Representation of the spikes in our system.

51

5.3 Sequential implementation

Based on the selected architecture, a C implementation of the inference algorithm was

developed. In this implementation, the objective was to represent as accurately as

possible both, the process and the outputs generated by BindsNET. In this section, we

will give details of the implementation of the sequential program and the validations

carried out with the data.

5.4 Sequential program

We present in Figure 5.5 the implementation of the sequential program for which

the previously described validations were made. In the first stage of the execution is

where the loading of the parameters trained with BindsNET is performed and also

the initialization of the vectors that store the total input synapses, the membrane

voltage vectors, the spike vectors and the refractory time vectors necessary for the

correct simulation of the network. Subsequently, there are two nested loops, the first one

that performs the counting for each of the 10000 samples that will be entered into the

network, and the second inner loop that corresponds to the evolution of the membrane

voltage signals over time. The inner loop is where the computation of synapses for

excitatory and inhibitory neurons is performed, and it is selected from the output spikes

that excitatory neurons produce the winner in case of several firing at the same time by

applying the WTA mechanism.

5.4.1 Validation of data integrity resulting from training

Considering that training was performed using tensors from the PyTorch framework

and also computed on the Workstation GPU, it was necessary to validate that the

information would remain consistent both for testing with the Workstation CPU and

for transferring it to the SBC for the inference process.

To make the transfer process uniform and avoid losing decimal precision with the

floating point units, the information was transferred in binary format for both the

trained weights and the neuron firing thresholds of the network. In Figure 5.6 we can

see a graphical representation of the weights obtained from the training process for the

neural network with 400 excitation neurons would look like. In the image we can see

52

Start

sample number <= 10000

Loading of the network
parameters and vector
initialization in the CPU

corresponding to the network
weights, firing thresholds of

excitatory neurons and spike
vectors in each layer

Finish

True

time <= 64ms

True

Excitatory neurons? state
update

output spike ?True
Select the winner
excitatory neuron

False

Inhibitory neurons? state
update

Buffer exchange for next
time iteration

False

False

Vector reset to compute
the following sample

Figure 5.5: Flow diagram for sequential implementation of the algorithm.

400 digits arranged in 20 rows with 20 columns. Each digit corresponds to the filter

associated to each excitation neuron with the trained weights. For example, the upper

left corner represents the filter associated with the first excitation neuron that will be in

charge of classifying patterns similar to digit 9. This filter receives synaptic connections

from the input layer so it has 784. The color scale represents the strength of the synaptic

connection, where values close to 1 reflect a strong synaptic connection and values close

to 0 reflect a weak synaptic connection which prevents it from being sensitive to input

signal stimuli.

53

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Representation of the weights corresponding to the synaptic connections of
the input layer with the layer of excitatory neurons.

5.4.2 Validation of the input synapse and membrane voltage

in the excitatory layer

For this case, the tests were performed considering the training data for the 400-neuron

network in the excitation layer. The procedure consisted of capturing the input synapse

and membrane voltage of excitatory neurons. For synapse, information from both the

input layer and inhibitory neurons was stored for the input synapse. These synapses

were subsequently stored in binary form on the hard disk. In the case of membrane

voltage, we considered storing this variable for both excitatory and inhibitory neurons.

The above procedure was followed in the same way in BindsNET to verify the suitability

of the data generated with our implementation.

To verify the consistency of the data, a Python program was developed to load the data

and compare the information to verify both, the similarity of the data and the decimal

accuracy. It is important to clarify that the information generated in BindsNET (using

54

PyTorch) stores the data for the synapse with 32-bit float data types and therefore in

our case we use the same data type.

5.4.3 Validation of spike train vectors in the time domain

Because the spikes occur at a given instant of time, a capture of the spikes generated by

both the input layer, excitation neurons and inhibition neurons is performed both, in

BindsNET and in our implementation to validate that the equations defining the firing

thresholds are satisfied for all t. Figure 5.7 shows how for any layer of the network, a

vector of spikes converted to binary is obtained, showing both the neuron and the time

instant where the neuron generates the spikes.

64𝑚𝑠

⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋯

⋱

𝑛𝑒𝑢𝑟𝑜𝑛 0

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0 0 1 0

0

0

1

1

0

𝑛𝑒𝑢𝑟𝑜𝑛 1

𝑛𝑒𝑢𝑟𝑜𝑛 2

𝑛𝑒𝑢𝑟𝑜𝑛 3

𝑛𝑒𝑢𝑟𝑜𝑛 𝐾

Figure 5.7: Matrix of spikes generated for the validation process in the layers of the
network.

5.4.4 Validation of digit classification

For this case the output of the classification process, i.e. the digit predicted by the

network is stored in a file. The same process was followed with BindsNET and finally

the files were cross-checked to verify the correspondence in the classification process.

The validations previously performed allowed us to ensure that the serial implementation

55

was carried out properly and, the required adaptations for the parallel implementation

were made.

5.5 Parallel Program

In this section, we will discuss the fundamental aspects of the program implementation

developed in OpenCL to be executed in the two selected computer systems. In the

first instance, the implementation executed by the CPU is considered, since it is in

charge of executing the instructions corresponding to the loading of the trained network

parameters and the initialization of the vectors that allow the evolution of the network

over time. After initialization, the communication interface with the GPU must be

configured in the main program, and the buffers for transporting data vectors to/from

the GPU must be initialized. Next, the kernel containing the code that allows the

computation of synapses of the network layers and the selection of excitatory neurons

using WTA must be launched. Subsequently, the vectors that perform the spike counting

are retrieved from the GPU to finalize the classification process in the main program.

Finally, the vectors are reinitialized to process the next input sample in the network. In

the Figure 5.8 we can see the flowchart corresponding to the components implemented

by CPU and GPU respectively for the execution of the network.

5.5.1 CPU code

The CPU code is the part that manages the overall behavior of the application and the

interaction with the GPU accelerator. In the code delivered to the CPU is where the

loading of data into the program is performed, the link to the GPU is configured, data

is sent and received to/from the GPU and in case of having several associated devices

such as multiple GPUs, FPGAs or other hardware accelerators, this code performs the

entire process of control and management. In the following, we will explore the steps

required to deploy our program on the CPU:

1. Loading of the network parameters that were obtained in the training stage using

BindsNET.

2. Vector initialization in the CPU corresponding to the network weights, firing

thresholds of excitatory neurons and spike vectors in each layer. In addition, the

56

number of Work Groups (WG) and Work Items (WI) for the GPU kernel execution

are defined.

3. Platform and context creation using OpenCL commands to configure the GPU as

an associated computing device.

4. Kernel loading onto the GPU.

5. Definition of arguments to be sent to the kernel and writing of buffers containing

the data structures to be sent to GPU.

6. External loop where each of the 10000 samples of the test set are read and sent to

the kernel.

7. Internal loop where the runtime window of the spiking network is defined.

8. Kernel launching for a fixed number of neurons.

9. Reading of spikes in excitatory neurons to identify which digit has been classified.

According to the one with the highest number of spikes on the output.

10. After passing all the samples to the network, a validation of the number of network

hits is carried out, taking as a reference the classification accuracy performed by

BindsNET.

5.5.2 GPU code

The following are the main steps of the algorithm that performs the computations

required at each layer of the SNN architecture. These part of the program runs on the

GPU accelerator:

1. Synaptic currents update: the calculation of the input synaptic current is performed

in this step for all excitatory neurons. Here, both the pre-synaptic connections

of input layer and inhibitory neurons are considered to find the total synaptic

current.

2. Excitatory neurons’ state update: in this step, the differential equations char-

acterizing the LIF excitation neurons are computed and, the output spikes are

obtained if the activation threshold defined for each neuron has been exceeded to

be evaluated at time t+ 1.

57

3. The winning neuron is selected with WTA: the soft Winner-Take-All mechanism is

applied to select only one of the excitatory neurons if more than one has generated

a spike at time t.

4. Synaptic current is updated for inhibitory neurons: synaptic current is updated for

the inhibition neuron group for time t. For this case, we consider that an inhibitory

neuron j has only one pre-synaptic connection from an excitatory neuron i.

5. Update the state of inhibitory neurons: the differential equation characterizing the

LIF inhibitory neurons are computed and, the output spikes are obtained if the

activation threshold defined for each neuron has been exceeded to be evaluated at

time t+ 1.

6. Update the vectors for time t+1: in this step is where the data corresponding to

the vectors of state t are transferred to the vectors of state t+ 1.

58

Start

sample number <= 10000

Loading of the network
parameters and vector
initialization in the CPU

corresponding to the network
weights, firing thresholds of

excitatory neurons and spike
vectors in each layer

Finish

True

time <= 64ms

True

Excitatory neurons? state
update

output spike ?

True

Select the winner
excitatory neuron

False

Inhibitory neurons? state
update

Data return to the host

False

False

Vector reset to compute
the following sample

CPU GPU

openCL
Configurations

Create context

Create
command queue

Write host data
to the device

Create memory
objects

Set kernel
arguments

compile kernel
program

Figure 5.8: Flowchart corresponding to the parallel implementation of the algorithm.

59

Chapter 6

Experimental Results

For our experiments we first identified the optimal temporal window length to perform the

inference process using the BindsNET simulator, since as we will see later on, generating

an inference using large window lengths directly affects the execution time but the whole

network must be computed per simulation step, and it does not improve the accuracy

of classification significantly. We will then evaluate the OpenCL implementation to

measure both the system performance in terms of throughput and power.

6.1 Time window tuning for simulations

The Poisson-based generation of the input spike-trains in the baseline implementation

used a window size of 250 ms, which translates into 250 simulation steps. We performed

experiments with the length of this window since there is no evidence in the literature of

an optimal window size and that the accuracy of the pattern recognition process depends

on it. Figure 6.1 presents the results after performing the simulation window tuning

experiments. We obtained that by reducing the window progressively, an approximately

constant accuracy level was maintained until reaching the 64ms simulation window,

when reducing to 32ms there was a significant degradation of the performance of the

network for the classification task, so it was decided to keep all subsequent experiments

with the window length at 64ms. An aspect to highlight also in the selection of the

simulation window, is that by having 64ms we will be having 64 simulation steps so that

each spike train can be simulated with 64 bits by having a binary signal or in terms of

variables of 8 bytes.

60

Figure 6.1: Analysis window over time vs. algorithm accuracy in the inference process
using BindsNET on Workstation.

6.2 Network training

After selecting the simulation window and leaving it fixed at 64ms. We performed

experiments with BindsNET in order to identify the number of neurons needed to obtain

the accuracy in the training and inference. The results can be seen in Figure 6.2, Figure

6.3, Table 6.1 and Table 6.2 . In which we can see that for network sizes considering the

number of excitatory neurons between 100 and 6400, the time used by the Workstation

GPU to perform the inference remains practically constant. But, for training, a slight

increase in time is perceived considering that the network is scaling.

A considerable increase in the number of neurons from 1600 to 6400 does not present

a significant change in the network’s accuracy percentage, neither for training nor

for inference. But there is a negative effect on performance considering that training

time increases by 4.5× and the time to perform inference increases by 3×. From this

evaluation we can see that scaling the number of neurons, does not allow us to obtain

substantial improvements that would allow us to accept the excessive time required to

perform both, the training of the network and the inference.

61

Figure 6.2: Training accuracy vs. Training time using BindsNET on Workstation.

Figure 6.3: Inference accuracy vs. Inference time using BindsNET on Workstation.

62

Table 6.1: Accuracy of the network for the training stage

Number of neurons 100 200 400 800 1200 1600 6400
Train Accuracy 79% 88% 93% 93% 94% 94% 95%

Table 6.2: Accuracy of the network for the inference stage

Number of neurons 100 200 400 800 1200 1600 6400
Inference Accuracy 78% 86% 90% 91% 91% 92% 92%

6.3 Inference sequential code

After the process carried out with BindsNET in the training stage, the characteristics

to be considered in the network for the inference process were obtained, as shown in

Table (6.3).

In Figure 6.4 we can see the throughput of the SNN in VIM3 and workstation with

the sequential code processing the 10,000 samples from the testing set of the database.

As the network scales, performance degrades considerably, which allows us to later

compare the optimizations made and the execution performed on the GPU to identify

the feasibility of implementing applications that involve SNNs and SBC-GPUs.

6.4 Performance and energy efficiency

Our primary purpose is to evaluate the feasibility of SBCs for implementing applications

with SNNs. We evaluated the performance of our SNN’s inference algorithm for the

three network sizes (400, 800, and 1600), the two hardware platforms (SBC+GPU and

Workstation+GPU), and nine work group values (2, 4, 5, 8, 10, 16, 20, 40, 100). Figure

6.7 presents the performance of each configuration in digits per second. As expected,

the more powerful and costly Workstation+GPU achieves a higher performance. When

having 400 and 800 neuron networks, the performance gap between the two hardware

systems for the best Work Group configuration is 6.2× and 6.5×, respectively. For 1600
neurons, the gap grows significantly to 7.8× because at that point, the parallel resources

63

Table 6.3: Simulation features

Feature Value
Number of neurons (excita-
tory and inhibitory)

400, 800, 1600

Strength of synapse weights
from excitatory to inhibitory
layer

22.5

Strength of synapse weights
from inhibitory to excitatory
layer

-120

Simulation time step 1ms
Simulation time 64ms

Excitatory neurons Inhibitory neurons
Rest voltage -65mV -60mV
Post-spike reset voltage -60mV -45mV
Spike threshold voltage variable -40mV
Post-spike refractory period 5ms 2ms

Figure 6.4: Serial implementation throughput VIM3 and Workstation.

of the embedded SBC-GPU are exhausted, while the larger workstation GPU’s resources

are not.

64

Concerning the Work Group exploration, we can observe that its impact on performance

for the SBC+GPU platform is negligible. On the other hand, the Work Groups have a

notable impact on the performance of the Workstation+GPU platform. Thus, a 400

neuron SNN achieved maximum performance with 20 Work Groups, 8 Work Groups

for 800 neurons, and 20 Work Groups for 1600 neurons. OpenCL uses Work Groups

and Work Items abstractions to distribute the work among the GPU computing units.

The number of Work Items is limited to 384 in the SBC+GPU and 1024 in the Work-

station+GPU. That is why there are missing bars in Figure 6.7 for some SBC+GPU

configurations.

Regarding the number of neurons, the networks with 400 neurons achieved the highest

performance in all configurations since they require fewer computations. Of course, this

translates into slightly lower accuracy at digit recognition. In Figures (6.5, 6.6) we

can see the difference in performance achieved in the network inference process after

performing the optimizations in the base algorithm.

Figure 6.5: Performance comparison between sequential and parallel implementation on
the Worsktation.

Although the inference process is faster on the Workstation GPU, the SBC-GPU

is more power-efficient. Table 6.4 puts together a summary of the speed results next to

65

Figure 6.6: Performance comparison between sequential and parallel implementation on
the VIM3.

the energy efficiency metric. We can see the maximum achieved values of throughput

and energy of the inference process with the network of 400 excitation neurons using

the GPUs.

Table 6.4: Speed and energy efficiency comparison.

System Excitatory
Neurons

Throughput
[digits/s]

Kdigits/Wh GSOPS GSOPS/W

SBC
400 19.08 22.80 0.58 0.19
800 16.23 19.40 1.32 0.44
1600 8.55 10.22 2.09 0.69

Workstation
400 119.05 3.29 3.61 0.03
800 105.26 2.91 8.54 0.07
1600 68.97 1.91 16.84 0.13

We can identify that there is a profit margin with respect to SOPS and SOPS/W that

our system achieves with respect to neuromorphic systems such as SpiNNaker (0.064

GSOPS; 0.064 GSOPS/W [8]), which is von-Neumann-based. However, in systems such

as the Truenorth (58 GSOPS; 46 GSOPS/W [8]), which is a neurosynaptic processor

with 4096 cores, the results illustrate the real performance gaps between a system

designed and built to compute SNNs and our platform.

66

Figure 6.7: Throughput achieved in the experimental stage with SBC-GPU and
Workstation GPU.

With respect to the results achieved, we can see an advantage in terms of power

consumption of embedded GPUs, because as we saw in Figure (3.1) the power is com-

parable to that used for the brain but keeping the distance in terms of the amount of

synaptic operations and also that the brain has many areas dedicated to other processes

such as the motor process, which not only perceives the environment but also must

generate motor control actions.

The workstation has an advantage in terms of computation due to its advanced and

powerful GPU for both the training stage of the network and for performing inference,

however in terms of consumption and portability the embedded system is a great alter-

native for deploying applications that require edge computing, and even for applications

in the area of Internet of things that the large dimensions and weight of the workstation

would make it impossible to deploy.

67

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work we presented the implementation and performance evaluation of a GPU-

enabled Vim3 Pro card and a workstation for Spiking Neural Networks. We tailored the

SNN for handwritten digital recognition and measure the execution time and energy

consumption in both systems.

Experimental results showed that despite the significant processing speed advantage

of the workstation, the energy efficiency of the SBC creates an opportunity to build

cluster systems based on SBCs to compete with workstations or conventional computing

clusters for brain simulation research, for instance.

On the other hand, these results show that SBC cards deployed on edge devices can

be used efficiently to run Artificial Intelligence applications based on SNNs, where the

power budget is typically highly constrained.

As for the software tools involved, it’s important to notice that the use of flexible

programming libraries such as OpenCL, allows engineers to easily migrate codes from

a high-end computing platform such as a workstation to budget systems such as the

Vim3 Pro.

The window reduction technique showed in this research, is an example of optimizations

that are required when porting neural network applications to constrained systems

68

such as the SBCs. There is a small loss of accuracy but this can be balanced by using

more complex neuron models or by using a more sophisticated inhibition scheme that

increases the performance of the competitive system.

Finally, the results provided us with a great opportunity to develop applications that are

focused on portable and edge computing, for example for autonomous robotic systems

or for offline applications for pattern recognition. In raw computational terms it is

evident the gap that exists between the SBC and the Workstation, for this reason it is

not recommended to use the SBC to train this network, since the main objective of the

work is in the inference process which is where the model deployment works properly.

69

7.2 Future Work

Different architectures could be evaluated to determine whether a numerical method

that provides a more accurate solution of the differential equations like Fourth-Order

Runge-Kutta, could make it possible to reduce the number of neurons needed to have the

same accuracy for pattern recognition applications such as handwritten digit recognition.

Also, it could be considered to choose a more biologically complex neuron model com-

bined with a numerical method to identify the effects on the scalability of the network

to achieve the same level of accuracy in the classification task, regarding a reduction in

the number of neurons which are the fundamental processing unit.

Further work could also consider giving a greater role to the inhibitory layer to experi-

ment with its effects on the network response, since in articles such as [34] it is concluded

that modifying the inhibitory layer schemes can lead to greater biological plausibility of

the network, and thus compensate for the characteristics of the LIF neuron model that

allowed us to have good performance measures.

It would be interesting to test the algorithm implemented on neuromorphic hard-

ware in order to verify the efficiency of the algorithm implemented on embedded GPUs.

This would largely depend on whether one of the more advanced systems such as Intel’s

LOIHI is released for the market for easy access or consider the option of developing on

an FPGA.

70

References

[1] Nassim Abderrahmane, Edgar Lemaire, and Benôıt Miramond. “Design Space

Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence”.

In: Neural Networks 121 (Oct. 2019), pp. 366–386. doi: 10.1016/j.neunet.2019.

09.024. arXiv: 1910.01010.

[2] Nassim Abderrahmane, Edgar Lemaire, and Benôıt Miramond. “Design Space

Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence”.

In: Neural Networks 121 (Jan. 2020), pp. 366–386. issn: 18792782. doi: 10.1016/

j.neunet.2019.09.024.

[3] Arash Ahmadi and Hamid Soleimani. “A GPU based simulation of multilayer spik-

ing neural networks”. In: 2011 19th Iranian Conference on Electrical Engineering.

2011, pp. 1–5.

[4] F. Akopyan et al. “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron

Programmable Neurosynaptic Chip”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 34.10 (2015), pp. 1537–1557.

[5] Amazon. Quadro P5000. Available at https://www.amazon.com/PNY-Quadro-

P5000- VCQP5000- PB- estaci%C3%B3n/dp/B01N6W4CVB?ref_=ast_sto_dp

[Accessed 5 Nov 2022].

[6] A. Amir et al. “Cognitive computing programming paradigm: A Corelet Language

for composing networks of neurosynaptic cores”. In: The 2013 International Joint

Conference on Neural Networks (IJCNN). 2013, pp. 1–10.

[7] Jason D Bakos. Embedded Systems: ARM Programming and Optimization. Morgan

Kaufmann, 2015.

[8] Arindam Basu et al. “Spiking Neural Network Integrated Circuits: A Review

of Trends and Future Directions”. In: 2022 IEEE Custom Integrated Circuits

Conference (CICC). IEEE. 2022, pp. 1–8.

71

https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.1016/j.neunet.2019.09.024
https://arxiv.org/abs/1910.01010
https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.1016/j.neunet.2019.09.024
https://www.amazon.com/PNY-Quadro-P5000-VCQP5000-PB-estaci%C3%B3n/dp/B01N6W4CVB?ref_=ast_sto_dp
https://www.amazon.com/PNY-Quadro-P5000-VCQP5000-PB-estaci%C3%B3n/dp/B01N6W4CVB?ref_=ast_sto_dp

[9] Trevor Bekolay et al. “Nengo: a Python tool for building large-scale functional

brain models”. In: Frontiers in Neuroinformatics 7 (2014), p. 48. issn: 1662-5196.

doi: 10.3389/fninf.2013.00048. url: https://www.frontiersin.org/

article/10.3389/fninf.2013.00048.

[10] B. V. Benjamin et al. “Neurogrid: A Mixed-Analog-Digital Multichip System

for Large-Scale Neural Simulations”. In: Proceedings of the IEEE 102.5 (2014),

pp. 699–716.

[11] Maxence Bouvier et al. “Spiking neural networks hardware implementations and

challenges: A survey”. In: ACM Journal on Emerging Technologies in Computing

Systems 15 (2 2019). issn: 15504840. doi: 10.1145/3304103.

[12] Nicolas Brunel and Simone Sergi. “Firing Frequency of Leaky Intergrate-and-fire

Neurons with Synaptic Current Dynamics”. In: Journal of Theoretical Biology

195.1 (1998), pp. 87–95. issn: 0022-5193. doi: https://doi.org/10.1006/jtbi.

1998.0782. url: https://www.sciencedirect.com/science/article/pii/

S0022519398907822.

[13] Maurizio Capra et al. “Hardware and software optimizations for accelerating deep

neural networks: Survey of current trends, challenges, and the road ahead”. In:

IEEE Access 8 (2020), pp. 225134–225180.

[14] Frances S Chance, Sacha B Nelson, and Larry F Abbott. “Complex cells as

cortically amplified simple cells”. In: Nature neuroscience 2.3 (1999), pp. 277–282.

[15] Ting Shuo Chou et al. “CARLsim 4: An Open Source Library for Large Scale,

Biologically Detailed Spiking Neural Network Simulation using Heterogeneous

Clusters”. In: Proceedings of the International Joint Conference on Neural Networks

2018-July (2018), pp. 1158–1165. doi: 10.1109/IJCNN.2018.8489326.

[16] Jose M. Cruz-Albrecht, Michael W. Yung, and Narayan Srinivasa. “Energy-efficient

neuron, synapse and STDP integrated circuits”. In: IEEE Transactions on Biomed-

ical Circuits and Systems 6.3 (2012), pp. 246–256. issn: 19324545.

[17] M. Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning”. In: IEEE Micro 38.1 (2018), pp. 82–99.

[18] Andrew Davison et al. “PyNN: a common interface for neuronal network simula-

tors”. In: Frontiers in Neuroinformatics 2 (2009), p. 11. issn: 1662-5196.

72

https://doi.org/10.3389/fninf.2013.00048
https://www.frontiersin.org/article/10.3389/fninf.2013.00048
https://www.frontiersin.org/article/10.3389/fninf.2013.00048
https://doi.org/10.1145/3304103
https://doi.org/https://doi.org/10.1006/jtbi.1998.0782
https://doi.org/https://doi.org/10.1006/jtbi.1998.0782
https://www.sciencedirect.com/science/article/pii/S0022519398907822
https://www.sciencedirect.com/science/article/pii/S0022519398907822
https://doi.org/10.1109/IJCNN.2018.8489326

[19] Andrew Davison et al. “PyNN: towards a a universal neural simulator API in

python”. In: BMC Neuroscience 8.S2 (2007), P2. issn: 1662-5196.

[20] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational

and mathematical modeling of neural systems. MIT press, 2005.

[21] Lei Deng et al. “Rethinking the performance comparison between SNNS and

ANNS”. In: Neural networks 121 (2020), pp. 294–307.

[22] Peter U. Diehl and Matthew Cook. “Unsupervised learning of digit recognition

using spike-timing-dependent plasticity”. In: Frontiers in Computational Neuro-

science 9.August (2015), pp. 1–9. issn: 16625188. doi: 10.3389/fncom.2015.

00099.

[23] Pangao Du et al. “An Unsupervised Learning Algorithm for Deep Recurrent

Spiking Neural Networks”. In: 2020 11th IEEE Annual Ubiquitous Computing,

Electronics Mobile Communication Conference (UEMCON). 2020, pp. 0603–0607.

doi: 10.1109/UEMCON51285.2020.9298074.

[24] Leonhard Euler. Institutionum calculi integralis volumen primum. Vol. 2. Academic

Press, 1769.

[25] Haogang Feng et al. “Benchmark Analysis of YOLO Performance on Edge Intel-

ligence Devices”. In: Cryptography 6.2 (2022). issn: 2410-387X. doi: 10.3390/

cryptography6020016. url: https://www.mdpi.com/2410-387X/6/2/16.

[26] Andreas K Fidjeland and Murray P Shanahan. “Accelerated simulation of spiking

neural networks using GPUs”. In: The 2010 International Joint Conference on

Neural Networks (IJCNN). IEEE. 2010, pp. 1–8.

[27] S.B. Furber et al. “The SpiNNaker project”. In: Proceedings of the IEEE 102.5

(2014), pp. 652–665.

[28] Andrew A George et al. “A diversity of synaptic filters are created by temporal

summation of excitation and inhibition”. In: Journal of Neuroscience 31.41 (2011),

pp. 14721–14734.

[29] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, Aug. 2002. isbn: 97805-

21813846. doi: 10.1017/cbo9780511815706.

73

https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/UEMCON51285.2020.9298074
https://doi.org/10.3390/cryptography6020016
https://doi.org/10.3390/cryptography6020016
https://www.mdpi.com/2410-387X/6/2/16
https://doi.org/10.1017/cbo9780511815706

[30] Wulfram Gerstner et al. Neuronal dynamics: From single neurons to networks

and models of cognition. Cambridge University Press, 2014, pp. 1–577. isbn:

9781107447615. doi: 10.1017/CBO9781107447615.

[31] Marc-Oliver Gewaltig and Markus Diesmann. “Nest (neural simulation tool)”. In:

Scholarpedia 2.4 (2007), p. 1430.

[32] Hananel Hazan et al. “BindsNET: A Machine Learning-Oriented Spiking Neural

Networks Library in Python”. In: Frontiers in Neuroinformatics 12 (2018), p. 89.

issn: 1662-5196. doi: 10.3389/fninf.2018.00089.

[33] Hananel Hazan et al. “BindsNET: A machine learning-oriented spiking neural

networks library in python”. In: Frontiers in Neuroinformatics 12.December (2018),

pp. 1–18. issn: 16625196.

[34] Hananel Hazan et al. “Unsupervised learning with self-organizing spiking neural

networks”. In: 2018 International Joint Conference on Neural Networks (IJCNN).

IEEE. 2018, pp. 1–6.

[35] B. Hille. Ion Channels of Excitable Membranes. 3rd. Sinauer Associates, INC.,

2001. isbn: 0-87893-321-2.

[36] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current

and its application to conduction and excitation in nerve”. In: The Journal of

Physiology 117.4 (1952), pp. 500–544. issn: 0022-3751.

[37] E. M. Izhikevich. “Simple model of spiking neurons”. In: IEEE Transactions on

Neural Networks 14.6 (2003), pp. 1569–1572.

[38] Hyeryung Jang, Nicolas Skatchkovsky, and Osvaldo Simeone. “VOWEL: A local

online learning rule for recurrent networks of probabilistic spiking winner-take-all

circuits”. In: 2020 25th International Conference on Pattern Recognition (ICPR).

IEEE. 2021, pp. 4597–4604.

[39] Nikola K. Kasabov. “NeuCube: A spiking neural network architecture for mapping,

learning and understanding of spatio-temporal brain data”. In: Neural Networks

52 (2014), pp. 62–76. issn: 18792782. doi: 10.1016/j.neunet.2014.01.006.

url: http://dx.doi.org/10.1016/j.neunet.2014.01.006.

74

https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1016/j.neunet.2014.01.006
http://dx.doi.org/10.1016/j.neunet.2014.01.006

[40] Bahadir Kasap and A. John van Opstal. “Dynamic parallelism for synaptic updat-

ing in GPU-accelerated spiking neural network simulations”. In: Neurocomputing

302 (2018), pp. 55–65. issn: 18728286. doi: 10.1016/j.neucom.2018.04.007.

url: https://doi.org/10.1016/j.neucom.2018.04.007.

[41] KHADAS. Khadas Shop: Vim3 Pro Edition. Available at https://www.khadas.

com/product-page/vim3 [Accessed 5 Nov 2022].

[42] KHRONOS Group. OPEN STANDARD FOR PARALLEL PROGRAMMING

OF HETEROGENEOUS SYSTEMS. Available at https://www.khronos.org/

opencl/ [Accessed 9 Mar 2022].

[43] KHRONOS Group. OpenCL Details. Available at https://www.khronos.org/

assets\/uploads/developers/library/2012- pan- pacific- road- show-

June/OpenCL-Details\-Taiwan_June-2012.pdf. [Accessed 18 May 2022].

[44] W. Kim et al. “An adaptive batch-image based driver status monitoring system

on a lightweight GPU-equipped SBC”. English. In: IEEE Access 8 (2020). Cited

By :5, pp. 206074–206087.

[45] Shruti R Kulkarni, John M Alexiades, and Bipin Rajendran. “Learning and real-

time classification of hand-written digits with spiking neural networks”. In: 2017

24th IEEE International Conference on Electronics, Circuits and Systems (ICECS).

IEEE. 2017, pp. 128–131.

[46] Shruti R. Kulkarni and Bipin Rajendran. “Spiking neural networks for handwritten

digit recognition—Supervised learning and network optimization”. In: Neural

Networks 103 (2018), pp. 118–127. issn: 18792782. doi: 10.1016/j.neunet.2018.

03.019.

[47] Wilhelm Kutta. “Beitrag zur näherungsweisen integration totaler differentialgle-

ichungen”. In: Z. Math. Phys. 46 (1901), pp. 435–453.

[48] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. “Training Deep Spiking Neural

Networks Using Backpropagation”. In: Frontiers in Neuroscience 10 (2016). issn:

1662-453X. doi: 10.3389/fnins.2016.00508. url: https://www.frontiersin.

org/article/10.3389/fnins.2016.00508.

75

https://doi.org/10.1016/j.neucom.2018.04.007
https://doi.org/10.1016/j.neucom.2018.04.007
https://www.khadas.com/product-page/vim3
https://www.khadas.com/product-page/vim3
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/assets\/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details\-Taiwan_June-2012.pdf
https://www.khronos.org/assets\/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details\-Taiwan_June-2012.pdf
https://www.khronos.org/assets\/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details\-Taiwan_June-2012.pdf
https://doi.org/10.1016/j.neunet.2018.03.019
https://doi.org/10.1016/j.neunet.2018.03.019
https://doi.org/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508

[49] W. K. Lee, Raphael C.W. Phan, and B. M. Goi. “Fast and Energy-Efficient Block

Ciphers Implementations in ARM Processors and Mali GPU”. In: IETE Journal

of Research 0 (0 2020), pp. 1–8. issn: 0974780X. doi: 10.1080/03772063.2020.

1725656.

[50] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128×128 120dB

15us Latency Asynchronous Temporal Contrast Vision Sensor”. In: Solid State

Circuit 43.2 (2008), pp. 566–576.

[51] T. Lindner et al. “Face recognition system based on a single-board computer”.

English. In: 15th International Conference Mechatronic Systems and Materials,

MSM 2020. Cited By :2. 2020.

[52] Jesus L Lobo et al. “Spiking Neural Networks and online learning : An overview

and perspectives”. In: Neural Networks 121 (2020), pp. 88–100. issn: 0893-6080.

doi: 10.1016/j.neunet.2019.09.004.

[53] Wolfgang Maass. “On the computational power of winner-take-all”. In: Neural

computation 12.11 (2000), pp. 2519–2535.

[54] Ronald J. MacGregor. Neural and Brain Modeling. Ed. by Richard F. Thompson.

Neuroscience: A series of monographs and texts. Academic Press, 1987.

[55] Henry Markram et al. “Interneurons of the neocortical inhibitory system”. In:

Nature reviews neuroscience 5.10 (2004), pp. 793–807.

[56] Suzanne J. Matthews and Aaron St. Leger. “Energy-Efficient Analysis of Syn-

chrophasor Data using the NVIDIA Jetson Nano”. In: 2020 IEEE High Perfor-

mance Extreme Computing Conference (HPEC). 2020, pp. 1–7. doi: 10.1109/

HPEC43674.2020.9286226.

[57] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris

Burges. Available at http://yann.lecun.com/exdb/mnist/. [Accessed 28 Apr

2022].

[58] Jayram Moorkanikara Nageswaran et al. “Computing spike-based convolutions on

GPUs”. In: Proceedings - IEEE International Symposium on Circuits and Systems

(2009), pp. 1917–1920. issn: 02714310.

76

https://doi.org/10.1080/03772063.2020.1725656
https://doi.org/10.1080/03772063.2020.1725656
https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/10.1109/HPEC43674.2020.9286226
https://doi.org/10.1109/HPEC43674.2020.9286226
http://yann.lecun.com/exdb/mnist/

[59] Jayram Moorkanikara Nageswaran et al. “Efficient simulation of large-scale Spiking

Neural Networks using CUDA graphics processors”. In: 2009 International Joint

Conference on Neural Networks. 2009, pp. 2145–2152. doi: 10.1109/IJCNN.2009.

5179043.

[60] Danish Nazir et al. “Vehicle Detection on Embedded Single Board Computers”. In:

2018 7th International Conference on Computer and Communication Engineering

(ICCCE). 2018, pp. 480–485. doi: 10.1109/ICCCE.2018.8539298.

[61] D. Neil and S. Liu. “Minitaur, an Event-Driven FPGA-Based Spiking Network

Accelerator”. In: IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 22.12 (2014), pp. 2621–2628.

[62] NVIDIA. CUDA Zone. Available at https://developer.nvidia.com/cuda-zone

[Accessed 8 May 2022].

[63] G. Orchard et al. “HFirst: A Temporal Approach to Object Recognition”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 37.10 (2015),

pp. 2028–2040.

[64] Sang-Soo Park, Jung-Hyun Hong, and Ki-Seok Chung. “Modified convolution

neural network for highly effective parallel processing”. In: 2017 IEEE International

Conference on Information Reuse and Integration (IRI). IEEE. 2017, pp. 325–331.

[65] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems 32.

Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035.

[66] Raspberry Pi Foundation. Embedded and general-purpose computer systems. [On-

line]. Available: https://www.futurelearn.com/courses/embedded-systems/1/todo/58820.

Accessed: June 2, 2020.

[67] Daniel J Saunders, Hava T Siegelmann, Robert Kozma, et al. “STDP learning of

image patches with convolutional spiking neural networks”. In: 2018 international

joint conference on neural networks (IJCNN). IEEE. 2018, pp. 1–7.

[68] J. Schemmel et al. “A wafer-scale neuromorphic hardware system for large-scale

neural modeling”. In: 2010 IEEE International Symposium on Circuits and Systems

(ISCAS). 2010, pp. 1947–1950.

77

https://doi.org/10.1109/IJCNN.2009.5179043
https://doi.org/10.1109/IJCNN.2009.5179043
https://doi.org/10.1109/ICCCE.2018.8539298
https://developer.nvidia.com/cuda-zone

[69] Thomas Serre, Aude Oliva, and Tomaso Poggio. “A feedforward architecture

accounts for rapid categorization”. In: Proceedings of the national academy of

sciences 104.15 (2007), pp. 6424–6429.

[70] Michael J Skocik and Lyle N Long. “On the capabilities and computational costs of

neuron models”. In: IEEE Transactions on neural networks and learning systems

25.8 (2014), pp. 1474–1483.

[71] Shiming Song et al. “A Matching Pursuit Approach for Image Classification with

Spiking Neural Networks”. In: 2019 IEEE Symposium Series on Computational

Intelligence, SSCI 2019 (2019), pp. 2354–2359.

[72] Marcel Stimberg, Romain Brette, and Dan FM Goodman. “Brian 2, an intuitive

and efficient neural simulator”. In: eLife 8 (Aug. 2019). Ed. by Frances K Skinner,

e47314. issn: 2050-084X. doi: 10.7554/eLife.47314.

[73] Marcel Stimberg et al. “Equation-oriented specification of neural models for

simulations”. In: Frontiers in Neuroinformatics 8 (2014), p. 6. issn: 1662-5196.

doi: 10.3389/fninf.2014.00006. url: https://www.frontiersin.org/

article/10.3389/fninf.2014.00006.

[74] Suconel. Operating Manual Digital Multimeter Unit UT70A. Available at https:

//drive.google.com/file/d/1UJLt5N3PmMxvm_Oe0iw71ohC8w7MQG_n/view

[Accessed 5 Nov 2022].

[75] James A. Svoboda and Richard C. Dorf. Introduction to electric circuits. 9th.

Wiley, p. 900. isbn: 9781118477502.

[76] Aboozar Taherkhani et al. “A review of learning in biologically plausible spiking

neural networks”. In: Neural Networks 122 (2020), pp. 253–272. issn: 0893-6080.

doi: https://doi.org/10.1016/j.neunet.2019.09.036.

[77] Hoyoung Tang et al. “Spike counts based low complexity snn architecture with

binary synapse”. In: IEEE Transactions on Biomedical Circuits and Systems 13.6

(2019), pp. 1664–1677.

[78] Joan L. Tomsic. Dictionary of Materials and Testing (2nd Edition). SAE Interna-

tional, 2000. isbn: 978-0-7680-0531-8. url: https://app.knovel.com/hotlink/

toc/id:kpDMTE0001/dictionary-materials/dictionary-materials.

[79] Roman Trobec et al. Introduction to parallel computing: from algorithms to pro-

gramming on state-of-the-art platforms. Springer, 2018.

78

https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fninf.2014.00006
https://www.frontiersin.org/article/10.3389/fninf.2014.00006
https://www.frontiersin.org/article/10.3389/fninf.2014.00006
https://drive.google.com/file/d/1UJLt5N3PmMxvm_Oe0iw71ohC8w7MQG_n/view
https://drive.google.com/file/d/1UJLt5N3PmMxvm_Oe0iw71ohC8w7MQG_n/view
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.036
https://app.knovel.com/hotlink/toc/id:kpDMTE0001/dictionary-materials/dictionary-materials
https://app.knovel.com/hotlink/toc/id:kpDMTE0001/dictionary-materials/dictionary-materials

[80] Valadez-God́ınez, Sergio and Sossa, Humberto and Santiago-Montero, Raúl. “On

the accuracy and computational cost of spiking neuron implementation”. In: Neural

Networks 122 (2020), pp. 196–217.

[81] Julien Vitay, Helge Ülo Dinkelbach, and Fred H Hamker. “ANNarchy: a code

generation approach to neural simulations on parallel hardware”. In: Frontiers in

neuroinformatics 9 (2015), p. 19.

[82] Jiajun Wu et al. “Efficient design of spiking neural network with STDP learning

based on fast CORDIC”. In: IEEE Transactions on Circuits and Systems I: Regular

Papers 68.6 (2021), pp. 2522–2534.

[83] Saehanseul Yi et al. “Real-time integrated face detection and recognition on

embedded GPGPUs”. In: 2014 IEEE 12th Symposium on Embedded Systems for

Real-time Multimedia (ESTIMedia). 2014, pp. 98–107. doi: 10.1109/ESTIMedia.

2014.6962350.

[84] Qiang Yu et al. “Rapid Feedforward Computation by Temporal Encoding and

Learning With Spiking Neurons”. In: IEEE Transactions on Neural Networks

and Learning Systems 24.10 (2013), pp. 1539–1552. doi: 10.1109/TNNLS.2013.

2245677.

[85] Nan Zheng and Pinaki Mazumder. “Operational Principles and Learning in

Spiking Neural Networks”. In: Learning in Energy-Efficient Neuromorphic Com-

puting: Algorithm and Architecture Co-Design. 2020, pp. 119–171. doi: 10.1002/

9781119507369.ch4.

79

https://doi.org/10.1109/ESTIMedia.2014.6962350
https://doi.org/10.1109/ESTIMedia.2014.6962350
https://doi.org/10.1109/TNNLS.2013.2245677
https://doi.org/10.1109/TNNLS.2013.2245677
https://doi.org/10.1002/9781119507369.ch4
https://doi.org/10.1002/9781119507369.ch4

	Introduction
	Objectives
	Specific objectives

	Document Organization
	Contributions

	Background
	Neuron models used in SNNs
	Hodgkin-Huxley neuron model (HH)
	Izhikevich neuron model (IZH)
	Leaky Integrate-and-Fire neuron model (LIF)
	Synaptic Model

	Numerical methods for differential equations solution
	Forward Euler
	Exponential Euler
	Fourth-Order Runge-Kutta

	Spikes and encoding techniques for SNNs
	Action potentials or Spikes
	Encoding techniques

	Network topologies
	Feedforward networks
	Recurrent networks

	SNNs software packages
	Computer systems
	General-Purpose Computer (GPC)
	Embedded Systems (ES)
	High Performance Computers (HPC)

	Domain-specific accelerators
	Neural Processing Unit Module (NPU)
	Graphics Processing Unit Module (GPU)

	Parallel computing development frameworks
	OpenMP
	MPI
	CUDA
	OpenCL

	Related Work
	Neuromorphic hardware
	Digital Systems
	Mixed-signal systems

	Conventional computer systems plus accelerators
	GPGPUs applications on SBCs

	Methodology
	Methodology for Network Deployment
	Selection of the network architecture
	Dataset selection and network training
	Algorithm deployment to perform network inference
	Performance evaluation of deployment on SBC-GPU and Workstation-GPU

	Target Platforms
	Performance metrics

	SNN Implementation
	Network Architecture
	Input data compression
	Sequential implementation
	Sequential program
	Validation of data integrity resulting from training
	Validation of the input synapse and membrane voltage in the excitatory layer
	Validation of spike train vectors in the time domain
	Validation of digit classification

	Parallel Program
	CPU code
	GPU code

	Experimental Results
	Time window tuning for simulations
	Network training
	Inference sequential code
	Performance and energy efficiency

	Conclusions and Future Work
	Conclusions
	Future Work

	References

