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Abstract
We introduce a novel optimization method based on the evolutionary algorithm Particle Swarm Optimization
(PSO) to enhance the electromagnetic performance of quadrature hybrid designs. Optimization and simulations
batches were conducted using a fully tuned and validated version of the algorithm, for the design of quadrature
hybrids intended to operate ALMA (Atacama Large Millimeter Array) Band 2 (67-90 GHz), Band 3 (84-116
GHz), and Band 2+3 (67-116 GHz).

Thus, we present quadrature hybrid designs which are optimized to operate in ALMA Band 3 (84-116 GHz) with
respect to their operational requirements for the scattering parameters and amplitude imbalance. Furthermore,
the resulting designs take into account machining constraints related to cost and feasibility requirements.

Finally, this work provides a method that can be easily extended to optimize other microwave devices and
waveguides for radio astronomy applications, with the benefit of speeding up the design process as well as
reducing the computational costs.

Keywords: radio astronomy, ALMA, quadrature hybrid, directional coupler, optimization algorithm, ampli-
tude imbalance, millimeter and submillimeter device.
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1
Introduction

1.1 Radio Astronomy Fundamentals

1.1.1 Radio Emissions
Radio waves have the longest wavelength in the spectrum, and can be created from a myriad of astrophysical
phenomena. Most radio-loud sources, like quasars, are bright in the radio spectrum, not due to thermal emis-
sion, but due to its free-free and synchroton emission.

One of the first radio detections was performed by Karl Jansky in 1930, and ended up identifying our own galaxy
as an intense radio source. Synchrotron radiation was later introduced as one of the models to explain high
radio brightness and that of the galactic radio background. This mechanism produces electromagnetic radiation
as a consequence of a relativistic electron passing through a region with a magnetic field. The spectrum of
this emission results from adding the emission spectra of individual electrons, which finally yields a total flux
F ≥ ‹–, where – is called the spectral index. Some of the most significant sources of this type of emission are
pulsars, supernova remnants and active galactic nuclei (AGN).

Figure 1.1: NGC 5457 in the visible spectrum taken by the Hubble Space Telescope and the atomic
hydrogen detected using the VLA (Very Large Array). Source: http://galaxymap.org/drupal/node/202

Synchrotron radiation is just one mechanism among many others of the so-called free-particle emissions.
Brehmsstrahlung radiation fits in this category resulting from the interaction of unbound free particles and
ions. The electrostatic interaction determines the energy of the emitted photon. Moreover, to obtain radio
emissions, the interaction should be relatively gentle collisions of electrons with ions.

Radio signals related to thermal processes are comparatively dim, and are described by the Planck’s law for
blackbody emission,

B‹(‹, T ) = 2h‹3

c2
1

e
h‹
kT ≠ 1

. (1.1)
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Thus can be expressed as the Rayleigh-Jeans approximation, describing the thermal emission of a blackbody in
the frequency band corresponding to radio waves, namely in the limit where h‹ << kT (Fig. 1.2),

B‹(‹, T ) = 2kT‹2

c2 . (1.2)

Figure 1.2: Black body flux per unit frequency. The Rayleigh-Jeans approximation dominates in the radio
part of the spectrum. Source: http://spi�.rit.edu/classes/ast613/lectures/radio_i/radio_i.html

On the other hand, at the atomic level, emissions can result from state transitions, for example, Radio Recombi-
nation lines found in HII regions where electron recombination generates photon emission. Another atomic line
come from the hyper-fine transition of neutral hydrogen, which has a natural frequency of 1.420 MHz. This is
commonly known as 21-cm emission. By studying this line we can learn about the velocity of neutral hydrogen
clouds, in our galaxy and other galaxies, helping measure the galactic dark matter haloes.

In addition to these radiation mechanisms, another source of radio line emission is due to molecular transitions.
If we consider molecules as CO, O2, or H2, they can experiment longitudinal or transversal oscillations as well as
rotational movements around di�erent axes. This rotational behavior is quantized in terms of the total angular
momentum J . The energy is thus defined as,

E =
3

h

2fi

42 J(J + 1)
2I

. (1.3)

Here, I = µr2 is the molecular momentum of inertia. Therefore, for a CO molecule, in which a transition occurs
between J = 1 to J = 0, a spectral line results at frequency of 115.2712 GHz. This molecule is frequently used
as a tracer of clouds of molecular hydrogen as well as an indication of a cold environment in which there is a
low level of ionizing radiation. Also, the interstellar medium is filled with both gas and small solid particles
called dust grains, which play an important role in the scattering of photons.

1.1.2 ALMA Observatory
In a very broad definition, ALMA is an aperture synthesis telescope consisting of 66 antennas, operating in
a millimiter and submillimeter regime in a broad frequency range. The idea behind aperture synthesis comes
from synthesizing a pair of telescopes into a "new" one with a wider aperture. To achieve this, the source is
observed by every telescope in the array, and then combining their outputs through mathematical methods. The
resulting image resolution is equivalent to the one of a telescope with a diameter equal to the largest distance
between antennas in the array.
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Figure 1.3: Two-antenna interferometer. Source: Marr et al., 2016

ALMA is composed of 66 12-meter antennas to reach an initial observation window covering from 84 to 950
GHz and, through a continuous upgrade plan, it got extended to 35-950 GHz. To appropriately operate in this
frequency regime, the observatory had to be located in one of the driest places on earth, the plain of Chajnantor,
in order to elude the e�ect of atmospheric water vapor that could prevent the electromagnetic wave to reach
the instruments on the ground.

Figure 1.4: ALMA frequency bands. Source: https://astro.uni-bonn.de/ARC/events/proposalprep2022/
tutorials/ALMA_Prop_Prep2022_LifeOfAnAlmaProject_1.pdf

Each antenna is loaded with a front-end including a cryostat which contains up to ten cartridges, each of them
covering one frequency band (see Fig. 1.4), but only one band can be observed at a given moment. To observe in
di�erent bands or atmospheric windows, a rapid switching between bands is possible by mechanically adjusting
the secondary.

1.1.2.1 Science in ALMA Bands 2 and 3

The scope of our research is set for the study of receiver-microwave devices intended to operate in ALMA Band 2
(67-90 GHz) and 3 (84-116 GHz), pushing the limits for microwave device optimization that could be used in the
ongoing e�ort to develop and deploy a single receiver to fully cover ALMA Band 2+3 (67-116 GHz) (Yagoubov
et al., 2020). The operation in these bands can benefit from improved sensitivities due to the implementation
of optimized microwave devices.
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Three level-one scientific goals have been defined for ALMA, all of which involve Band 2 and 3, namely a) to
detect spectral line emission from CO or C+ in a normal galaxy like the Milky Way at a redshift of z = 3, in less
than 24 hours of observation, b) ALMA should possess the ability to image the gas kinematics in a solar-mass
protostellar/protoplanetary disk at a distance of 150 pc (roughly, the distance of the star-forming clouds in
Ophiuchus or Corona Australis), enabling the study of the physical, chemical, and magnetic field structure of
the disk and to detect the tidal gaps created by planets in formation, and c) The ability to provide precise
images at an angular resolution of 0.1" (Schieven, 2022).

1.1.2.1.1 High redshift studies Band 2 and 3 possesses a low atmospheric opacity that is avail-
able for >87.5% of ALMA observing conditions (Yagoubov et al., 2020), allowing the detection of deuterated
molecules in cold, dense gas and the study of redshifted CO and other species emission from galaxies. One of
the essentials aims in ALMA relates to the understanding of the distribution and evolution of galaxies through
time. To ‘see’ farther is cosmic time, ALMA looks for high redshift measurements of molecular and atomic lines
as CO, CI, CII and H2O (Thompson et al., 2001).

The detection of CO in high redshift objects has an impact in the study of galaxies and stars formation. In
particular, provides evidence of significant amounts of C and O being produced in the early universe. While
some regions are not accessible in the optical spectrum, the detection of CO o�ers a tool to study them and
to use its kinematics to obtain physical conditions as temperature and densities (Guilloteau, 2001). On the
other hand, galaxies contain large molecular clouds in which new stars are forming. Under these clouds many
atomic and molecular transitions take place in the radio ranges. For instance the 12C18O molecule transition
J = 1 æ 0 emits at 109.782 GHz, or the SiO J = 2 æ 1 emits at 88.632 GHz, furthermore, the CII line at
1.90054 THz will be doppler shifted into the radio window for redshift >2.

Another interesting case is the study of high-redshift absorption lines. It takes place as we observe gas against
a bright background source, and provides information on the ISM of the foreground galaxy (Schieven, 2022).
Moreover, in ALMA cycle 9 observations, a Band 3 spectral survey is prepared to probe a spiral galaxy at
z ¥ 0.9 which lies in front of a bright background quasar at at z ¥ 2.5. ALMA capability of very high redshift
detections, enable the study of key elements from the first stellar objects (z > 10) by detecting the cooling lines.

1.1.2.1.2 Star- and planet-forming gas The study of rotational transitions are useful to charac-
terize cold galactic sources such as pre-stellar cores, and other sources relevant to astrobiology like protoplanetary
disks. There is on-going research on the evolutionary state of protostellar disks in the vicinity of the Ophiuchus
molecular cloud. Dust around a protostar is expected to evolve as dust grains concentrate in the mid-plane of
the disk. The evolution can be traced by determining the Spectral Energy Distribution (SED) to infer dust
properties which can be obtained by measuring the dust temperature, density distribution and optical proper-
ties (Schieven, 2022). For a given dust grain composition, the slope of the emission flux vs the wavelength (see
Fig. 1.7) traces the dust grain size distribution, thereby measuring its variation from the interstellar medium
to protoplanetary disks allows for tracing of the evolution from dust, then to grains and, finally, to planets.

ALMA Band 2 allows the measurement of cool molecular gas in high-redshift galaxies, but there is an additional
need to probe dense gas (' 105cm≠3) which is associated with star-formation. This is achieved by observing
molecules with higher dipole moments such as HCN or HCO+ (Fuller et al., 2020).

1.1.2.1.3 Band 2+3 Regarding the extended ALMA Band 2+3, since the early ALMA design, tech-
nology and manufacture capabilities have advanced enough to expect a feasible production of a single wideband
receiver to fully cover the range spanned by Bands 2 and 3 (Fuller et al., 2018). However, this is still to be
proven, as the highly-demanding wideband constrains to fully cover the Band 2+3 set rigorous constructive
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limits. Furthermore, despite the on-going e�orts to produce a receiver that fully complies with ALMA require-
ments, there is no evidence to support an operational device which includes quadrature hybrids capable of fully
covering this operational band, while fully complying with the required �A and �„.

Apart from the technical challenges, the study of high redshift galaxies is highly favored by extending the
capabilities of Band 3 by joining Band 2 in a single detector. Calculations suggest that the spectral survey
would be 2.5 times faster by using a single receiver, and additionally, there will be an increase in redshift
identification e�ciency (Yagoubov et al., 2020). In Fig. 1.5, the CO ladder is presented for the di�erent ALMA
bands. As we consider Bands 2 and 3, we can see how distinct CO transition emissions can be detected in a
wide range of redshift thus allowing for a continuous measurement of the CO by using a single receiver spanning
Band 2+3.

Figure 1.5: CO coverage by ALMA receivers. Source:Fuller et al., 2020

Now, regarding the dense gas tracers, the use of an extended band opens a the possibility to detect sources
up to z ¥ 0.3, which is a great improvement as compared to the z ¥ 0.05 achieved by using single Band 3
observations. The benefit relies on the increase in the number of possible targets in which to trace in the search
for gas parameters. The Fig. 1.6, shows the di�erent species that could be detected to study dense star forming
gas in the whole range spanned by the Band 2+3 at di�erent redshifts.

Figure 1.6: Dense gas tracers as a function of redshift in Band 2+3. Source:Fuller et al., 2020
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While studying the planet formation process, as motioned above, there is great interest in tracing dust evolution.
In the Fig. 1.7, we can see in the orange box, the corresponding Band 2+3. Previous measurements of the
grain growth required observations from di�erent telescopes with the setback of requiring calibration to ensure
the accuracy needed to derive the showed slope and thus to obtain the dust grain size distribution. There is an
accuracy gain by using an extended band and, consequently, there is improvement of the signal to noise ratio
hence allowing a more precise measurement of the grain size variation within the disks.

Figure 1.7: Spectral Energy Distribution of spinning dust. Source:Yagoubov et al., 2020

1.1.3 Radio Detectors
Radio telescope are completely passive devices intended to convert electromagnetic waves into electric current.
It has two functional sections namely the front-end and the back-end. The former provides amplification and
frequency down conversion of the collected waves. As it is usually composed of a set of waveguides hence it
establishes an operational limit to the receiver. The latter has the function of further processing the signal by
applying analog to digital conversion and finally storing the data.

Radio telescope antennas are primarily receiving devices whose most salient properties are,

• sensitivity: the light gathering power. This property is highly dependent on the collecting area thus
larger dishes are capable of more light collecting. As global parameter, the sensitivity is determined by
the noise added in every step of the gathering and processing of the observed signal.

• dish irregularities: the surface can be unpolished conversely to the optical counterpart. The requirement
is that irregularities must be smaller than the wavelength of the radiation. This is the reason why at
long wavelengths the dish can be a mesh with holes.

• resolution: for radio telescopes the angular resolution ◊ Ã ⁄

D
, is the ability to see fine details in the

sky. It depends on the wavelength and the diameter D, thus, the larger the dish the better the angular
resolution.

• directivity: accounts for the ratio of the maximum to the average radiation intensity. It is a measure of
how concentrated is the radiation in a given direction.

• gain: the gain is more generally defined as the relation between the output and the input power. As
for the astronomical observations, we relate the antenna temperature to flux density for a point source,
thus we measure how much antenna temperature results for each Jansky of flux density from a point
source. In radio astronomy, a large gain means that the telescope is very sensitive thus it has a strong
response to the incident radiation. Moreover, a large gain implies that even a weak source with a small
flux density will produce a measurable antenna temperature.
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• radiation pattern: describes the response of the antenna as a function of direction. This pattern is
presented in the form of lobes depicting the gain in polar coordinates.

• e�ciency: due to the losses associated to material’s conductivity or dielectric losses, the collected energy
is not fully converted into electric power.

• feed: its main goal is to confine electromagnetic waves in transmission lines carrying the signal to be
further processed in the receivers. As its main purposes is to treat the faint signal collected during
previous stages by reducing its frequency, and e�ciently amplifying it, the receiver must be as close as
possible to the feed to conserve the signal by avoiding the power loss due to wave transport.

Figure 1.8: Simplified Radio Telescope model. Source: Marr et al., 2016

ALMA receivers consist of a cold and a warm cartridge assembly (WCA) (Fig. 1.9). The signal collected by the
dish is concentrated using a set of mirrors at the top of the front-end (WCA), to be guided into the receiver.
The receiver has a three-stage cooling cryostat (80 K, 15 K and 4 K), housing a down-converting system. Is the
4K stage where the input signal is collected by the feedhorn, as the cryogenic temperatures enable the use of
superconducting materials and improves the sensitivity by reducing the thermal noise of the instrument. The
observed signal has a power of the order of 10≠15 ≠ 10≠20 watt, meaning that the power received from the
background can be many orders of magnitude higher hence the use of di�erent techniques to gain sensitivity
and reduce the noise coming from di�erent sources.

Figure 1.9: Schematic diagram of an ALMA receiver. Source: Claude et al., 2008

The following stage is the down-conversion, by means of mixers, and the amplification which uses low-noise
amplifiers (LNA). This particular stage of major interest, and which we will study in the coming sections due
to addition of a key component for the image-rejection and down-conversion operation: the Quadrature Hybrid
(QH). Optimizing the design of this component is the main goal of this work.
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1.1.3.1 The Receiver

The homodyne, heterodyne and superheterodyne are the most popular type of receivers in radio astronomy.
Despite the architecture of choice, the central function of the front-end is to convert the observed signal into
a lower frequency. This operation reduces the losses typical at higher frequencies and, simultaneously, reduces
the fabrication di�culty of the waveguides involved in further processing of the signal. Furthermore, at lower
frequencies the amplification can take place with higher stability.

Figure 1.10: Components of a radio telescope’s receiver. Source: Marr et al., 2016.

While the homodyne receiver directly converts the RF signal to a DC level without any use of intermediate
frequencies, heterodyne receivers convert the received signal to a lower intermediate frequency (IF). The term
heterodyne implies the combination or mixing of two signals with di�erent frequencies to achieve a frequency
shift. In this type of receivers, the mixer is the fundamental device to achieve the frequency conversion by
multiplying our incoming signal (RF) with a well-characterized signal from a local oscillator (LO).

Figure 1.11: Mixing process to produce down-converted signals.

If we assume our RF signal as,
vRF = vr cos Êrt , (1.4)

and the LO signal as,

vLO = v0 cos Ê0t , (1.5)

The combining operation (Fig. 1.11) can be made by a simple T-junction or a directional coupler (Pozar, 1998).
Thus, the result of operating both signals is a intermediate frequency (IF) , FIF = FRF ≠ FLO, and a much
higher frequency Fimage = FRF + FLO,
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vout = vRF ◊ vLO (1.6)
vout = vrv0 cos Êrt cos Ê0t (1.7)

vout = vrv0
1
2 [cos (Êr + Ê0)t + cos (Êr ≠ Ê0)t] . (1.8)

We see that the heterodyning operation yields two signals at two di�erent bands, called the lower side band
(LSB) and the upper side band (USB), the latter also known as the image (see Fig. 1.12).

Figure 1.12: Resulting side bands after the mixing process.

From an observational perspective, if the image sideband is located in a part of the spectrum with a higher
atmospheric absorption, noise addition to the observation takes place hence degrading the sensitivity (Khud-
chenko et al., 2017). Some types of mixers, called Double Sideband mixers, or DSB, use passband filters to get
rid of the USB. As the down-conversion happens by means of this configuration, the resulting upper and lower
side bands get combined at IF frequency hence they are indistinguishable. Moreover, as the upper side band
tends to have a signal with a higher noise level associated to the atmospheric absorption at higher frequencies,
our observations will degrade in quality (Mena et al., 2011; Finger, 2013).

However, ALMA uses another type of mixers called Sideband Separating (2SB) mixers, which have been shown
to improve sensitivity (Hesper et al., 2009). This type of mixer yields pure LSB and USB signals (terminals I1
and I2 in Fig. 1.13) without the need of passband filters.

The procedure to achieve this goes as follows. A 90¶ hybrid (RF Quadrature hybrid) equally divides the incom-
ing RF signal into two ports, one with a 0¶ phase while the other su�ers a 90¶ phase shift (see Fig. 1.13). Each
RF signal is mixed with an LO signal using M1 and M2. After the initial mixing, the result is a down-converted
IF signal with in-phase and quadrature components. The next step is to further apply a hybrid (IF quadrature
hybrid), in which a phase cancellation leads to two signals, a pure LSB and a pure USB signal at terminals I1
and I2, respectively. Thus, the good quality of the band separation is determined by that of the IF quadrature
hybrid. We will come back to the requirements for this hybrid below.

Let us consider the ALMA Band 3 (84-116 GHz) as an example. One of the requirements for any ALMA
receiver cartridge is that the total IF bandwidth is 8 GHz per polarization line (Claude et al., 2008). According
to ALMA specifications, the IF bandwidth must be 4-12 GHz. The expected signal (RF) is in the 84-116 GHz
band which is then down-converted to a 6 GHz IF (Vassilev et al., 2017).
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1. Introduction

Figure 1.13: Sideband separating mixer approach in which the quadrature power division occurs on the
incoming RF signal. Source: Finger, 2013

Therefore, the RF/IF quadrature hybrid needs to produce a phase shift of precisely 90¶ while keeping the output
signals as equal in amplitude as possible, for the whole band of operation. This poses a technical challenge from a
design and fabrication standpoint, especially when covering a very wide band, as both parameters are antagonist.

A measurement of the quality of this type of quadrature hybrid needs to be related to a very low amplitude
and phase imbalance (see Fig 1.14). A proxy for this measurement is given by the Image Rejection, defined as:

IR = ≠10 log
3

“2 + 1 + 2“ cos �„

“2 + 1 ≠ 2“ cos �„

4
. (1.9)

Here �„ (phase imbalance) is the phase deviation from the quadrature, and “ = �A =
--- Amp1

Amp2

--- is the amplitude
ratio, which implies that, as “ = 1 no amplitude imbalance exists between the resulting signals (Henderson and
Cook, 2001). Moreover, a �„ = 0¶ and “ = 1 yields an ideal infinite image rejection. Any deviation from those
values reduces the image rejection. To have an IR > 25 dB, it requires that �A <1 dB, even more, to further
increase the image rejection, it is essential that 0¶ < �„ . 3¶.

Figure 1.14: Image rejection vs amplitude and phase imbalance. Source: Henderson and Cook, 2001.

10



1. Introduction

1.2 Problem statement
In order to attend the scientific goals set for ALMA in its 2030 development roadmap, the improvement in sen-
sitivity is set as a mid-term objective. As mentioned, this can be achieved by getting a better image rejection as
a consequence of tighter constraints in the amplitude and phase imbalances for the quadrature hybrids involved
in the sideband separating operation.

The success of the band separation process is highly determined by the amplitude imbalance (�A) and phase
imbalance (�„), each of which is an antagonist to the other, meaning that improving one parameter, conse-
quently, degrades the other. ALMA has set �A < 1 dB and �„ ± 1¶ in order to reach an appropriate image
rejection response hence the device must fully comply with these parameters along the full operational band

This project specifically focuses on finding an optimization method for these devices intended to work on ALMA
Band 2 (67-90 GHz) and ALMA Band 3 (84-116 GHz) due to the scientific interest in these bands, as well as due
to the growing interest in the development of a single receiver cartridge capable of fully covering the extended
ALMA 2+3 band (67-116 GHz).

1.3 Objectives
Optimize the geometric design and the electromagnetic behavior for a Quadrature Hybrid (QH) through a
machine learning algorithm, applied to the development of a receiver intended to operate in the band 2+3
(67-116 GHz) for ALMA Observatory.

1.3.1 Specific objectives
• Define the most relevant electromagnetic parameters to be used in the optimization process, building the

figures of merit and the appropriate cost functions.

• Analyze algorithms to intervene the di�erent geometries and design parameters of the quadrature hybrid.

• Determine the geometric and electromagnetic parameters, including machining constraints, to ensure
flat response of the Quadrature Hybrid through the full ALMA 2+3 Band, while reducing the phase and
amplitude imbalance.

• Document the algorithm and the code to repeat the optimization process, either on di�erent ALMA
receivers or other millimeter/submillimeter observatories, contrasting the optimization and simulation
results to those of previous researches.

• Define a Quadrature Hybrid fabrication and characterization plan.

1.4 Thesis Outline
Despite the vast amount of information regarding microwave devices design and transmission line theory, there
is a lack of sources that clearly and concisely provide the fundamental knowledge to extensively study quadra-
ture hybrids. Therefore, this thesis is intended to provide specific information on the subject of multi-branch
directional couplers, more specifically the quadrature hybrid.

Thus, in the chapters 2 through 4, we develop the theoretical framework to study the multi-branch quadrature
hybrid, its physics and the optimization requirements. In these chapters we compile all necessary information to
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1. Introduction

model waveguides, directional couplers, and multi-branch hybrids, which we expect to be useful for future works.

In order to have a clearer insight of the quadrature hybrid, in chapter 5 we introduce a simulation of a well-
characterized classical quadrature hybrid to be used as a reference to state the optimization problem of our
interest. Herein we define the optimization constraints involved in the operation of the Quadrature Hybrid, all
of which are extensively used in the following chapters.

Thereafter, in chapters 6 and 7, we develop the method to get optimized quadrature hybrid designs that could
improve the performance of such devices in the operational ALMA Bands 2 and 3. These chapters include
the background information of a) types of optimization algorithms, b) heuristic and meta-heuristic strategies,
and c) the Particle Swarm Optimization (PSO) algorithm, its architecture and how it was developed to fulfill
the quadrature hybrid optimization needs. More importantly, we present a validation benchmark, consisting of
an optimization batch applied to a fully-characterized Quadrature Hybrid designed to operate in ALMA Band 5.

Chapter 8 presents the most relevant results of the optimization process for the Quadrature Hybrid designs. To
fully cover the operational bands while improving the amplitude and phase imbalances, a number of geometries
were considered during the optimization and simulations namely, 8-,10 and 12-branch geometries. Furthermore,
alternatives geometries, which added extra cavities to the main guides, were tested as well.

Finally, after applying our proposed optimization method, two fully-optimized and simulated geometries were
selected. As we compare their electromagnetic performance with those of other authors in the field, significant
improvements have been found regarding scattering parameters, amplitude and phase imbalances. Moreover,
the resulting optimized designs provide feasible designs for ALMA W-Band and Band 3.
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2
Physics of the Guiding Structures

• The guiding structures have the purpose of transferring electromagnetic waves in the most e�cient
manner between to points.

• They are usually characterized by the frequency or range of frequencies they are intended to transport.

• They are studied considering the amount of power they e�ectively carry or loss between the two points.

• We are looking for solutions of the Maxwell’s equations to study the propagation of the electromagnetic
wave along the structure.

2.1 Maxwell’s Equations
Solving Maxwell’s equations while considering boundary conditions is the foundation of the models that describe
the di�erent the electromagnetic behavior of the microwave structures and devices to be studied in this work.

Ò ◊ Ę = ≠ˆB̨

ˆt
(2.1)

Ò ◊ H̨ = ˆD̨

ˆt
+ J (2.2)

Ò · D̨ = fl (2.3)
Ò · B̨ = 0 (2.4)

Equations (2.1, 2.4) describe the interaction between charges in four vectors: B̨ (magnetic flux density), Ę
(electric field intensity), H̨ (magnetic field intensity) and D̨ (electric flux density); J is the electric current
density and fl is the electric charge density. Though the goal of this section is not to provide a very detailed
development and solution of the previous set of equations, some significant results can be highlighted for the
sake of the forthcoming discussions.

In addition to the set of equations (2.1, 2.4), we need to consider that the pairs Ę, D̨ and B̨, H̨ are connected
through the following relations,

D̨ = ‘Ę (2.5)
B̨ = µH̨ (2.6)

where µ and ‘ are correspondingly the permeability and permitivity of the medium; such relations can be
expressed in a more general fashion for anisotropic materials, in which case such quantities are dyads.

S

U
Dx

Dy

Dz

T

V =

S

U
‘xx ‘xy ‘xz

‘yx ‘yy ‘yz

‘zx ‘zy ‘zz

T

V

S

U
Ex

Ey

Ez

T

V (2.7)
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2. Physics of the Guiding Structures

If the medium is a conductor, there is an additional relation namely Ohm’s Law,

J = ‡Ę (2.8)

where ‡ is the conductivity. Altogether, the properties of the medium are described by parameters independent
of the fields: µ, ‘ and ‡. Finally, there is a fundamental relation to be consider namely the conservation of
charge,

Ò · J + ˆfl

ˆt
= 0 (2.9)

The preceding description of electromagnetic behavior is based on the assumption of free-space with no presence
of particular materials. It is useful to include dielectric bodies to develop the idea of microwave components
and to study how electromagnetic fields behave in the presence transitioning interfaces between two materials
with di�erent properties.

2.1.1 Fields in di�erent media and boundary conditions
In the study of macroscopic electromagnetic fields, quantities as D̨ and H̨ have more complicated relations
that include electric and magnetic dipoles and quadrupoles (Jackson, 1999) but, in most materials, the higher
order terms are neglected, leaving only the terms of the dominant dipole hence producing electric and magnetic
polarization, P and M. For instance, P informs us about the permittivity as a complex parameter of which its
imaginary part accounts for the losses in the medium. D̨ can be defined as,

D̨ = ‘0Ę + P̨ (2.10)
P̨ = ‘0‰eĘ (2.11)

where ‰e is the complex quantity called electric susceptibility. By operating 2.10 and 2.11, we obtain an
expression for the flux displacement,

D̨ = ‘0(1 + ‰e)Ę (2.12)

If we use the same procedure, we arrive to a definition of B̨ in terms of magnetic polarization M,

B̨ = µH̨ + M (2.13)
B̨ = µ0(1 + ‰m)H̨ (2.14)

This result is meaningful for the study of microwave devices including ferromagnetic materials. Moreover, the
set of equations provide a framework to face problems in which materials, other than free-space, are involved of
which dielectric properties must be accounted for, in order to understand their electric response in the presence
of fields.

Consider now two di�erent materials joint together and both having distinct physical properties hence creat-
ing what can be understood as a discontinuity in the medium. It is expected that the electromagnetic waves
propagate di�erently as in the case of free-space thus exhibiting behaviors as transmission, reflection and reso-
nances among others. Then the question arises: how to model such a vast number of possible behaviors while
having multiple transitioning interfaces between materials?. Furthermore, considering di�erent geometries and
frequency regimes can make the problem extremely complex and almost impossible to be solved analytically.

To answer that question, we can start by stating that vectors D̨ and Ę are our objects of interest at the interfaces
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2. Physics of the Guiding Structures

between media. The more general case is one in which there is a di�erence between the fields in the material
at each side of the interface. Figure 2.1 depicts how electric and magnetic fields are behaving in each material,
for example, the electric field Ę has tangential component in every medium. An additional insight of the fields
behavior comes from the Maxwell’s equations in their integral form, which results from applying Stoke’s and
divergence theorems to the equations (2.1 - 2.4) (Pozar, 1998).

j

S

D̨ · ds̨ =
⁄

V

fl dV (2.15)
j

C

Ę · d̨l = ≠ ˆ

ˆt

⁄

S

B̨ · d̨s ≠
⁄

S

M̨ · d̨s (2.16)

Let us see equation 2.15 in the light of figure 2.1. The integration on the closed surfaces yields no contribution
from tangential components and with two distinct D̨ normal components. At the interface, the integral is
reduced to,

n̂ · (D̨2 ≠ D̨1) = fls (2.17)

meaning that there is a surface charge density associated with the di�erence between the flux displacement at
the material interface. Using similar arguments we can find the tangential components for the electric field,

(Ę2 ≠ Ę1) ◊ n̂ = M̨s (2.18)
n̂ ◊ (H̨2 ≠ H̨2) = J̨s (2.19)

where M̨s is the magnetic current density and J̨s is the electric current at the surface.

The results (2.17 - 2.19) can be further simplified when the interface is composed by two lossless dielectrics. As
there are no charge or current densities at the surfaces, we can state that the normal component of D̨ must satisfy
the boundary condition on either side of the interface, and the same applies to Ę. On the other hand, as for the
magnetic fields, the normal component of B̨ and the tangential component of H̨ must satisfy boundary conditions
at the material interface (Jackson, 1999). Equation 2.20 describes, for instance, the boundary conditions for
two materials with di�erent magnetic permeabilities. A detailed development of boundary conditions can be
found in Collin (1991).

Figure 2.1: Graphical depiction of material interfaces and the conditions for fields at the boundaries.

B̨2 · n̨ = B̨1 · n̨ , B̨2 ◊ n̨ = µ2
µ1

B̨1 ◊ n̨ (2.20)
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2. Physics of the Guiding Structures

2.1.2 Poynting vector
After assessing the fields and their relations at the boundary, we can introduce the Poyinting’s theorem. Consider
that there is a distribution of charge and current hence we can calculate the rate of doing work by external
fields in a volume V as, ⁄

V

J̨ · Ę d3x (2.21)

On the other hand, electric and magnetic energy densities can be obtained and added to further calculate the
total energy density,

u = 1
2(Ę · D̨ + B̨ · H̨) (2.22)

Equations 2.21 and 2.22 produce the continuity equation (Jackson, 1999),

ˆu

ˆt
+ Ò · (Ę ◊ H̨) = ≠J̨ ◊ Ę (2.23)

The equation 2.23 can be seen as formulation of energy conservation in which the quantity Ę ◊ H̨ represents
a flow of energy usually notated as S and called Poynting vector. An additional expression can be obtained as
we consider periodic fields as complex quantities, in which case we obtain a complex Poynting vector,

S̨ = 1
2 Ę ◊ H̨ú (2.24)

This vector can be understood as an average power flow through the surface, which can be obtained from the
real part of the normal component of S̨. If you are interested on a more lengthy and detailed derivation of the
Poyting vector, you can find Jordan and Balmain (1968) very useful.

An important consequence stems from use of this vector: there is an energy flow that can be studied in the
fields rather than in the currents, furthermore, it is thereby implied that there is a physical energy transfer
mechanism or physical transmission line.

The question arises about how to study the amount of energy contained in an electromagnetic field. Though it
is clear that there must be a relation between that energy and mechanical work, mainly due to the interaction
and motion of charges, the discussion can be limited to think in terms of energy stored in the fields flowing at
a given rate. This idea is of major relevance as it becomes the ground to introduce the analysis of fields in the
form of voltages, currents and, finally as lumped circuits.

2.1.3 Maxwell’s equations and guiding structures
To approach the phenomena of energy transport, the initial step must be that of solving the set of Maxwell’s
equations (2.1, 2.4). In the appendix A.1, the reader can find a detailed description of how to solve those
equations by means of phasor forms and Hemlhotz equations. Some important results are the expressions for
the E and H field in terms of traveling waves,

Ex = E+e≠jkz + E≠ejkz , (2.25)

and
Hy = 1

÷
[E+e≠jkz + E≠ejkz] . (2.26)

where ÷ = Êµ/k =


µ/‘, is the wave impedance or the intrinsic impedance of the medium. Likewise, we find
that Ę and H̨ are orthogonal to the direction of propagation and to each other (see Fig. 2.2).

16



2. Physics of the Guiding Structures

Figure 2.2: A generalized view of the direction of propagation and the orthogonal fields.

The notion of transport of energy in electromagnetic fields in the form of waves, can be extended by thinking
about electromagnetic fields confined within a closed surface. Consider a perfect conductor namely a material
with infinite ‡ thus all fields must be zero inside the conductor material. We can find that 2.18 reduces to,

n̂ ◊ Ę = 0 (2.27)

which means that the tangential components are zero or very small due to skin depth e�ect. Furthermore, 2.27
is accompanied with additional boundary conditions like n̂ ◊ H̨ = J̨ and n̂ · D̨ = fls (Pozar, 1998); the type
of boundary complying with the mentioned conditions is frequently known as electric wall. Such boundaries
enable the electromagnetic wave to travel inside a closed surface made of conducting material as the energy
can only flow or “escape” through the walls in very small amounts, in an event more precisely know as a loss.
Additionally, there are also losses related to the surface currents in the walls, which finally manifests itself as
heat.

In order discuss to a greater extent the transport of energy through cavities made of conductors, let us first
approach the types of propagation behaviors that an electromagnetic wave could have.

2.1.3.1 Wave Modes

We have seen that traveling electromagnetic waves, in the case of planar waves, have orthogonal components to
the direction of propagation. A more broad depiction is that of waves having more components, not just in a
perpendicular plane but in a arbitrary plane relative to the traveling direction, manifesting itself as polarization,
reflections and even as constructive or destructive behaviors.

Imposing a preferred direction of propagation for the equations A.11 and A.12, result in a solution to Maxwell’s
equations in which there is no component along the traveling axis, usually known as Transverse-electromagnetic
or TEM. Two additional conditions occur regarding the components along the propagation axis . There is a
case in which the electric field has component along the traveling axis while the magnetic fields does not; this
situation is known as Transverse Magnetic or TM. A second case, known as Transverse Electric or TE, is the
one in which the magnetic field has component along the traveling axis while the electric field remains in the
transverse plane hence does not have a component along the propagation axis.

Maxwell’s equations can be solved for TEM waves, o�ering further insight about the particular case. Let us
first consider TEM waves as uniform given that there is no change in amplitude in the surface along the z axis;
a second consideration is that Ez and Hz are zero given the definition of TEM, and consequently ˆ/ˆx and
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2. Physics of the Guiding Structures

By applying similar procedures we can derive mathematical descriptions for non-uniform TEM waves, but now
the derivatives ˆ/ˆx and ˆ/ˆy are not zero (Montgomery et al., 1987). Authors like Jackson and Montgomery
et al. provide a deeper study of geometries like coaxial conductor, parallel plates and spherical conductors, and
how the wave modes are mathematically described hence di�erent ways to calculate impedance and fields.

Let us now consider the TE waves namely E field is fully transverse or equivalently, Ez = 0. With that condition
at hand and by expanding the rotational and divergence equations from phasor form of Maxwell’s equations,
we get,

ˆEy

ˆz
= jÊµHx , ˆEx

ˆz
= ≠jÊµHy (2.37)

ˆHz

ˆy
≠ ˆHy

ˆz
= jÊ‘Ex , ˆHx

ˆz
≠ ˆHz

ˆx
= jÊ‘Ey (2.38)

ˆEy

ˆx
≠ ˆEx

ˆy
= ≠jÊµHz (2.39)

ˆHy

ˆx
≠ ˆHx

ˆy
= 0 (2.40)

ˆEx

ˆx
+ ˆEy

ˆy
= 0 (2.41)

ˆHx

ˆx
+ ˆHy

ˆy
+ ˆHz

ˆz
= 0 (2.42)

This set of equations can be used to get a wave equation for every field component, in this case we are going
to solve for Hz. If we assume that every field component varies with z like e≠“z, we can plug solutions of the
type Ecoordinate(z) = Ecoordinatee≠“z into 2.37 to get,

≠“Ey = jÊµHx , ≠ “Ex = jÊµHy (2.43)

We can further substitute this results into 2.39 and 2.42 and solve for Hz,

ˆ2Hz

ˆx2 + ˆ2Hz

ˆy2 +
!
“2 + Ê2‘µ

"
Hz = 0 (2.44)

Once a solution is found for the equation 2.44 of the type A.14 and A.15, we can get the other components
namely Hx, Hy, Ex and Ey, by using the whole set of equations 2.37 - 2.42. This means that all fields can be
obtained from a single quantity, Hz in this case.

Alternatively to 2.44, we can solve for Ez hence we get a wave equation,

ˆ2Ez

ˆx2 + ˆ2Ez

ˆy2 +
!
“2 + Ê2‘µ

"
Ez = 0 (2.45)

A major conclusion from this section is that a rectangular waveguide, which has all walls made of the same
conducting material, cannot support the TEM propagation mode, TE and TM are the only allowed modes
in such a structure. This is a consequence of the fully transverse layout of the fields, one in which none of
them have a component in the direction of propagation, moreover, there are walls in the x and y direction,
which necessarily implies due to the boundary conditions, that both fields must be zero at some point along the
waveguide. If you are interested about diving deeper into other guiding structures, parallel plates for instance,
and solving Maxwell’s equations for TE and TM wave, please refer to Ellingson (2020) or Jordan and Balmain
(1968).
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2.1.3.2 Waveguides

In the beginning, the two-wire waveguides, parallel plates for instance, were considered the best way for power
transfer until the development of closed hollow tubes and the prove of TM/TE modes propagating in them,
furthermore, it was proved that they have higher power-carrying capacity and lower losses (Pozar, 1998). But,
the problem remained on how to model the electromagnetic behavior of such devices.

It is important to keep in mind that solving Maxwell’s equations and studying the types of traveling waves
that result from those solutions, are important to provide a tool to evaluate how energy is transported along
an enclosed surface containing the fields. In order to keep a simple but clear development of this work, we are
limiting ourselves to the exploration of symmetric guiding structures with uniform cross-section, in particular
the rectangular waveguide.

Figure 2.4: Rectangular cross-section for a waveguide.

Let us consider a guiding structure as showed in the figure 2.4, which has perfectly conducting walls. To study
this type of waveguide we can use TE and TM waves modes. A comprehensive derivation of the equations can
be found in Jackson and Montgomery et al.; here we will describe the process as well as the major findings
necessary to analyze microwave devices.

To find the relations that govern the electromagnetic waves inside a rectangular waveguide, we have at hand two
approaches. The first treats the problem by dividing the fields in two di�erent components namely tranverse
and longitudinal, while the second relies on solving the wave equation 2.44, depending on the type of solutions
we are looking for, particularly TE or TM waves.

A particular case for TE waves can be found in A.1, where a solution to 2.44 is provided. In order to continue
developing the theoretical framework to model guiding structures as transmission lines, we can highlight some
major results.

In the first place, the parameter “ called the phase propagation constant is expressed in terms of the rectangular
waveguide dimensions,

“ =
Ú1mfi

a

22
+

1nfi

b

22
≠ Ê2‘µ . (2.46)

Secondly, there is a critical value, usually known as cut-o� frequency, which defines a real- or imaginary-valued
“ hence determining the wave propagation (see A.1). This value is the one that satisfies,

Êc =

Û
1
‘µ

51mfi

a

22
+

1nfi

b

226
. (2.47)

This value Ê depends on the geometric size of the cross-section of the waveguide and, simultaneously, depends
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on the values m and n, thereby di�erent cut-o� frequencies can be found for “higher” modes, namely higher
values of m and n.

Further meaningful relations were found, such as the wavelength of the guide,

⁄g = ⁄Ú
1 ≠

1
⁄

⁄c

22
(2.48)

⁄g = ⁄0Ú
‘µ

‘0µ0
≠

1
⁄0
⁄c

22
(2.49)

As values are assigned to m and n, specific modes arise and expressions for Êc and ⁄c are found, particularly
for TEmn with m=1 and n=0 namely TE10-Mode.

Êc = fi

‘µa
(2.50)

⁄c = 2a. (2.51)

We can conclude that the cut-o� frequency corresponds to the one in which half wavelength is equal to the width
a of the waveguide; interesting enough is the fact that, as for TE10 mode, the dimension b has no relevance.
For practical purposes, the last result in which we get expressions for TE10 mode, is of major significance for
rectangular waveguides, as this mode is considered the dominant in such type of structures.
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3
Transmission lines and Microwave

circuits

Radio astronomy applications highly benefits from the developments herein explained in particular regarding
the design of devices intended to work in di�erent regimes with the highest standards in terms of sensitivity.
To reach a transmission line formalism, a definition of impedance along a waveguide required as it is one of
the key parameters allowing the development of transmission line theory. Each case needs to be addressed by
its own, whether we are studying TEM, TM, or TE waves; expressions are needed for fields and impedance in
each particular case such as parallel plates, cylindrical waveguides as well as for guides with conductors within
namely coaxial lines, among others.

3.1 Impedance in waveguides and the Transmission Line
formalism

After our study on how to solve Maxwell’s equations and how waves propagate in a medium hence how elec-
tromagnetic waves behave in a guiding structure such as rectangular waveguides, the question arises about how
we can further model more complex structures. The propagation along a waveguide made of conductor mate-
rial has been modeled so far but, what if structures that have discontinuities?, or cavities are being filled with
dielectric materials?. It is required to use alternative approaches to simplify the analysis for such intricate cases.

Let us recall from equation 2.36 the well known wave impedance, which tell us about how the medium impedes
or prevents the electromagnetic wave to propagate. The impedance is a complex number in function of the
frequency which is not a minor feature as it tells us how the material behaves at higher frequencies with respect
to the conductivity ‡. The impedance can be reduce in an ideal medium to Z =


µ/‘. This presents us a

major attribute of the complex wave impedance: its dependency on medium’s constants.

Why is this relevant for our understanding of the transmission line concept?. The power transmission inside a
guide relates to the characteristics of the materials thus to the impedance, more specifically, a field is established
in the presence of certain conducting properties of the medium. Additionally, fields depend on the shape of the
guide.

The parallel-plates case provides an example of a guiding structure and how E and H fields are related. As
we study how waves evolve in parallel plates we expect to have di�erent field values than while working with
rectangular waveguides (see appendix A.1) and we obtain expression relating fields like,

----
Ey

Hx

---- = Êµ

—
= ÊµÒ

Ê2µ‘ ≠
!

mfi

a

"2
. (3.1)

This sort of relation represent the impedance in the ẑ direction, being the direction of propagation for TE waves.
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On the other hand, as we solve for the TEM-waves case, the resulting impedance has the form,
----
Ex

Hy

---- = —

Ê‘
=

Ú
µ

‘
, (3.2)

which was introduced earlier as the impedance of the medium Z and, in this case, also known as intrinsic
impedance ÷. This parameter can be traced back to a preliminary discussion about solving the Helmholtz
equation and its representation in equation A.15.

The significance of these findings relies on the fact that models depicting fields and transmitted power in terms
of voltages and currents stem from the behavior of impedance along the waveguide, in other words, knowing
the impedance is the base on which we build a circuit representation for waveguides and, in a wider extent, for
transmission lines.

We have explored so far a procedure to calculate impedance for waves propagating with parallel plates as guid-
ing structure. Now, it is valuable to inspect how a rectangular cross-section waveguide transport waves and in
particular the behavior of impedance.

As for rectangular waveguides, let us recall the result 2.44 and 2.45 from which we can obtain solutions for Ez

and Hz. In addition to that, from the set equations 2.37 we can get expressions for fields in the guide in terms
of Ez and Hz,

Hx = ≠ “

“2 + Ê2µ‘

ˆHz

ˆx
+ j

Ê‘

“2 + Ê2µ‘

ˆEz

ˆy
(3.3)

Hy = ≠ “

“2 + Ê2µ‘

ˆHz

ˆy
≠ j

Ê‘

“2 + Ê2µ‘

ˆEz

ˆx
(3.4)

Ex = ≠ “

“2 + Ê2µ‘

ˆEz

ˆx
≠ j

Êµ

“2 + Ê2µ‘

ˆHz

ˆy
(3.5)

Ey = ≠ “

“2 + Ê2µ‘

ˆEz

ˆy
+ j

Êµ

“2 + Ê2µ‘

ˆHz

ˆx
(3.6)

These expressions agree with the general case in which whether Ez = 0 or Hz = 0 are not considered. Just
recall that the case studied in section 2.1.3.1 corresponds to Ez = 0. At this point is evident that either Ez or
Hz is required in a rectangular waveguide for transmission to occur.
In section A.2 you can find a concise description of the procedure to solve equation 2.45 for TE waves in a
rectangular guide. The final solution has the form,

Hz = C cos
1mfi

a
x

2
cos

1nfi

b
y
2

. (3.7)

This result jointly with equations (3.3 - 3.6) can be used to get all fields in a rectangular guide to TE waves,

Hx = j—

“2 + Ê2µ‘
C
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x

2
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1nfi

b
y
2

(3.8)

Hy = j—

“2 + Ê2µ‘
C

nfi

b
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1mfi
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x

2
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1nfi

b
y
2

(3.9)

Ex = jÊµ

“2 + Ê2µ‘
C

nfi

b
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1mfi
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x

2
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1nfi
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y
2

(3.10)

Ey = ≠ jÊµ

“2 + Ê2µ‘
C

mfi

a
sin

1mfi

a
x

2
cos , (3.11)

where the presence of j simply means a phase di�erence between the components and Hz in the direction of
propagation.
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Moving one step forward, an impedance from (3.8 - 3.11) can be obtained,
----
Ex

Hy

---- = Êµ

—
= ÊµÒ

Ê2µ‘ ≠
!

mfi

a

"2 ≠
!

nfi

b

"2
. (3.12)

As a final step, the set of equations can be further simplified by considering a particular mode namely m = 1
and n = 0, leaving us with Ex = Hy = 0 what finally yields the impedance for TE10 mode in a rectangular
waveguide, ----

Ey

Hx

---- = Êµ

—
= ÊµÒ

Ê2µ‘ ≠
!

fi

a

"2
. (3.13)

This final result can also be obtained from equation 2.43, as you can easily check. For the reader we leave to
check the case of TM waves, which can be solved in the same way as done before to find,

----
Ex

Hy

---- = —

Ê‘
=

Ò
Ê2µ‘ ≠

!
mfi

a

"2 ≠
!

nfi

b

"2

Ê‘
. (3.14)

As final remarks, here are some important insights to account for:

• From 3.12 and 3.13 we can see how the order in which fields are operated indicates if we are looking
impedance forward or backwards in the waveguide, but ultimately the value is the same. An additional
observation is that, we can obtain a total impedance by considering all transverse components from (3.8
- 3.11),

Z = Etransverse

Htransverse

=

Ò
E2

x
+ E2

y

Ò
H2

x
+ H2

y

(3.15)

• We can rewrite — by recalling equation A.36,

— = Ê
Ô

µ‘


1 ≠ (Ê2
c
/Ê2) (3.16)

which can be replaced in our expressions for TE mode impedance to get,

ZT E = Êµ

—
= ÷

1 ≠ (Ê2
c
/Ê2)

(3.17)

• By applying the procedures herein discussed we have formulas for TEM (parallel plates only), TE and
TM modes in a rectangular waveguide, which also happens to apply for cylindrical guides, moreover, the
expression just depend on the intrinsic impedance of the dielectric material and the ratio between Ê and
Êc,

ZT M = ÷


1 ≠ (Ê2
c
/Ê2) (3.18)

To grasp the meaning behind a transmission line, we return to the idea of guiding structure we have studied.
There are three possible propagation modes namely TEM, TE and TM, and by combining them we can fully
represent the propagation of a wave in a guiding structure. In addition to that, the geometry influences which
modes are supported. For instance, in a rectangular cavity no TEM modes are allowed, in contrast to the
parallel plate structure, which favors TEM propagation mode. In practice, a transmission line is defined as
a system of two conductors that support TEM modes, and a waveguide is define as a system involving one
enclosed conductor that supports the other extra propagation modes (Jordan and Balmain, 1968).

We can now move forward to define a representation for transmission line in the case of non-TEM waves and
later we will include the circuit model to support our analysis. There is an issue to be addressed in the par-
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ticular case of rectangular waveguides: how to relate Ę and H̨ fields to V̨ (voltage) and Į (current)?, as they
are the appropriate parameters to work in circuit representations. When referring to TEM waves it could seem
something straightforward thinking about potentials between parallel plates or parallel wires, but as for TE and
TM waves in rectangular waveguides, relations should be di�erent.

A fundamental relation must be established between electric parameters and fields. It is easily remembered
that there exists such relation in integral form,

V̨ab =
⁄

b

a

Ę · dr̨ . (3.19)

Moreover, if the propagation is in ẑ thus the voltage across a rectangular section is,

Vab =
⁄

b

0
Eydy (3.20)

while in order to find the current, Ampere’s law allows to find I as,

I =
j

c

H̨ d̨l (3.21)

where the integral is done over the conductor’s closed contour C.

From these relations one can obtain voltages and currents from the fields along a waveguide despite its geometry;
it is valid whether you are working with TEM waves transported by parallel plates or coaxial lines, or while
working with hollow waveguides with di�erent geometries, what really matters is that there is a solution for
Maxwell’s equations which can be found by the procedures described in previous sections.

From these equations and by recurring to the customary circuit theory, we can obtain the impedance,

Z0 = V̨

Į
(3.22)

which is known as the characteristic impedance of the transmission line.

Let us study the TE10 case to find voltage and current. Consider the set of equation (3.8 - 3.11) representing
all transversal components of both fields namely those laying in the plane perpendicular to the propagation
direction. To find the voltage we can integrate Ey from 3.20,
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and by replacing m = 1 and n = 0,

V = ≠ jÊµ
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mfi
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(3.24)

The maximum voltage occurs at x = a/2 thus,

V = ≠ jÊµ

“2 + Ê2µ‘
C

mfib

a
(3.25)
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Figure 3.1: Electric field TE10 mode in a rectangular waveguide.

On the other hand, the current can be calculated from magnetic field. Continuing with our ẑ propagation
vector, thus we have Ey and H̨ = ≠Hx furthermore, there is a surface current in ẑ, Jz, which is related to the
magnetic field by,

J = n̂ ◊ H = ≠Hx (3.26)

with n̂ a unit vector normal to the conducting surface.

The longitudinal current for the lower conducting surface namely b = 0, is obtained from

I =
⁄

a

0
Jz dx (3.27)

which can be solved applying the same arguments as for the voltage using equations (3.8 - 3.11) and making
m = 1 and n = 0,

I = ≠2 j—

“2 + Ê2µ‘
C (3.28)

If we use this result as well as 3.22 and 3.25, an expression can be obtained for the impedance,

Z0 = Êµ

—

fib

2a
(3.29)

which is known as integrated impedance, in this case for TE10 waves. This result can be further extended by
realizing that it is related to the wave impedance 3.17 hence,

Z0 = ZT E

fib

2a

= fib

2a

÷
1 ≠ (Ê2

c
/Ê2)

(3.30)

recalling that ÷ is the intrinsic impedance of the material filling the waveguide.

The former results namely the integrated impedance for TE10 waves in rectangular guides, are of
considerable importance as we count for a procedure connecting fields with circuit parameters (voltages and
currents) inside a waveguide, moreover, this findings can be extended to higher order modes or geometries with
arbitrary cross-sections. For the reader interested in further developments of this concepts, may find of help
Jordan and Balmain (1968), Pozar (1998) chapter 3 as well as Marcuvitz (1986).

The waveguide can be studied by means of an equivalent model which contains a characteristic impedance,
a model in which voltages and currents can be used to solve waveguide problems viz. the transmission line
paradigm.
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3.1.1 Circuit representation
The interest behind the developments presented so far, is to collect a set of instruments that could be used
for the design of more devices derived from waveguides, for instance couplers, attenuators and isolators, among
others, all of which are commonly used in instruments such as the receivers in radio telescopes.

In order to properly describe complex geometries and how electromagnetic waves behaves while transported
along them, exist two alternatives namely the rigorous solution of Maxwell’s equations and thinking of intricate
devices as a mixture of more simpler ones. The latter has become the common practice as we can have a
collection of canonical geometries carefully studied, and from them, we can compound more intricate devices.
Montgomery et al. (1987) suggest that using a more abbreviated model of transmission lines described as in-
ductance, capacitance and resistance, can vastly simplify the analysis instead of solving the electromagnetic
field equations. The di�culties arise when connecting di�erent waveguide sections or when elements are added
inside the waveguides resulting in the loss of uniformity, hence creating a whole new problem to solve. Con-
sider the case of connecting two rectangular waveguides by means of a third guide usually named branch; the
electromagnetic analysis of that structure may be extremely di�cult if trying to solve the Maxwell’s equations,
but on the other hand, the whole complexity is reduced when considering that we already have equations to
explain how each sub-waveguides behaves.

After deriving impedance expressions for di�erent guiding structures and wave propagation modes, they can
be used to represent a guiding structure as circuit components (resistance, capacitance, inductance), which are
distributed continuously along the structure.

The question arises on which voltage, current or impedance to use for an specific waveguide as we could have
as many as modes are available, and just to make things worse, voltage is di�erent along the integration line.
For instance, recall that we assumed a value for x to obtain 3.25. Three criteria are stated in order to settle on
the circuit parameters we use to describe a rectangular waveguide (Pozar, 1998):

• Voltage and current are selected for and specific mode, one in which voltage is proportional to the
transverse component of the electric field.

• The product of equivalent voltages and currents must yield the power flow of the selected mode.

• The ratio between voltage and current namely the impedance, must be equal to the characteristic
impedance of the line.

The perceptive reader may be aware that we stick to these guidelines during this section while finding expressions
for voltage and current in rectangular waveguides. Though there is enough information to help us in definition
of circuit description of a waveguide, something is missing namely how to properly represent impedance as
resistance and reactance.

Let us recall the set of equations (2.37 - 2.42) which provides the description of TE waves in rectangular
coordinates. Our interest is placed on the equations that relate the transverse components we have dealing with
namely Ey and Hx,

ˆEy

ˆz
= jÊµHx

ˆHz

ˆy
≠ ˆHy

ˆz
= jÊ‘Ex (3.31)

As for TE waves, there is no component of the electric field in ẑ what necessarily means that Ò ◊ H=0 in
the perpendicular x ≠ y plane. This condition allows us to conclude that in the x ≠ y plane a magnetic scalar
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potential Â can be defined. This potential can be used to express the magnetic field as the gradient,

H̨ = ≠Ǫ̀Â (3.32)

Hx = ≠ˆÂ

ˆx
, Hy = ≠ˆÂ

ˆy
(3.33)

We already have wave relations for the transverse components in terms of Hz and Ez; in particular we can use
the equation 3.6 remembering that Ez = 0, and to replace it in 3.31,
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which can be further simplified by operating the partial derivatives to get expressions for relating Hz and Â.
The equation 3.34 becomes,
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and equation 3.35 yields,
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The first observation from 3.36 and 3.37 is the tight relation between the fields and the direction of propagation.
It is expected that the field changes along the waveguide giving a first taste of the importance of the length,
which is coherent with the previously exposed concept of distributed characteristic impedance along the guiding
structure.

This result helps us to link circuit transmission line theory and electromagnetic waves in rectangular waveguides.
But let us keep this result aside for a moment to enter into the transmission line modeling; we will comeback
to it later.

3.1.2 Two-wire transmission line
The key parameter in a transmission line is the length of the structure, furthermore, all other electric param-
eters are defined in terms of the length, as depicted in the Fig.3.2. The easiest approach to the transmission
line model is the two-wire, moreover, it is a straight forward schema for guiding structures consisting of two
conductors namely two parallel wires, two parallel plates or coaxial lines.

The physical variables involved in the wave transport can be represented as circuit elements. The conductors
have a resistance R associated to their finite conductivity causing a voltage drop along the conductor, as well
as a complex response in the frequency domain similar to a series inductance L. Think about what we have
seen so far regarding the complex characteristic of the impedance. A second set of parameters are associated
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to the presence of a dielectric medium which are represented as shunt elements in the circuit. The proximity
between the conductors needs to be accounted in the form of a capacitance C which changes at the same time
as the dielectric or the geometry of the conductors are changed. Finally, we must account for the losses in the
material between the to conductors as a resistance, but in order to simplify the calculations, the reciprocal is
normally used which is represented as a conductance G. Let us remember that conductance is the reciprocal
of the resistance, but with circuit analysis in mind, it is easier to work with conductance with elements in the
frequency domain. If the cross-section of the guide changes along the propagation axis, all these quantities will
be functions of the position instead of constant values.

(a) Two-wire transmission line model.

(b) Equivalent circuit for a length-dependent
transmission line.

Figure 3.2: Two-wire transmission line in terms of incremental length.

The most general impedance could be represented as,

Z(jÊ) = ≠ j

ÊC
+ R + jÊL (3.38)

which includes a resistive and a reactive components. The latter are usually called Reactance (X).

Another important element is the admittance Y , which is used to represent the shunt elements,

Y (jÊ) = G + jB (3.39)

with B regarded as the element that represents all “imaginary” elements.

Another basic consideration is the fact that when splitting the admittance Y in di�erent elements, they should
be combined in parallel. For instance, if we have components in parallel, the admittance is obtained as,

Y (jÊ) = 1
R

+ jÊC ≠ j

ÊL
(3.40)

A third concept to remember is that Kirchho�’s voltages and current laws are still valid for circuit analysis.
The voltage law states that the algebraic sum of the voltages around a circuit must be zero, while the current
law states that such algebraic sum must be zero when performed on the currents flowing into each branch. The
appropriate technique commonly used to set up the equation from the circuit using Kirchho�’s laws is the mesh
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currents and voltages, which is something you can easily find in most circuit theory textbooks. The relevance
of these concepts in our work is that by using them you get into a system of equations that describe the circuit
network in terms of voltages, currents and impedances,
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...
vn

T

XXV =

S

WWU
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Z21 Z22 ... Z2n

... ... ... ...
Zn1 Zn2 ... Znn

T

XXV
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WWU

i1
i2
...
in

T

XXV (3.41)

There is an additional parameter to consider namely �Z, which describes the length of the guiding structure,
see Fig. 3.2. The distributed impedance depends on the resistive and reactive parameters calculated from the
length of the waveguide hence the voltage V (z, t) and currents I(z, t), are also length-dependent. By taking a
di�erential length in ẑ, we can derive a set of equations by means of Kirchho�’s laws,

v(z, t) ≠ R�zi(z, t) ≠ L�z
ˆi(z, t)

ˆt
≠ v(z + �z, t) = 0 (3.42)

i(z, t) ≠ G�zv(z + �z, t) ≠ C�z
ˆv(z + �z, t)

ˆt
≠ i(z + �z, t) = 0 (3.43)

which can be expressed in di�erential form by dividing by �z and taking the limit �z æ 0 (Pozar, 1998),

ˆv(z, t)
dt

= ≠Ri(z, t) ≠ L
ˆi(z, t)

ˆt
(3.44)

ˆi(z, t)
dt

= ≠Gv(z, t) ≠ C
ˆv(z, t)

ˆt
(3.45)

These equations can be expressed in phasor form, commonly known as telegraphists’ equations,

≠dV

dz
= (R + jÊL)I (3.46)

≠dI

dz
= (G + jÊC)V (3.47)

Both equations can be used to find a solution for V or I,

d2V

dz2 + (R + jÊL)(G + jÊC)V = 0 (3.48)

d2I

dz2 + (R + jÊz)(G + jÊC)I = 0 (3.49)

which has solutions of the type,

V (z) = V +
o

e≠“z + V ≠
o

e“z (3.50)
I(z) = I+

o
e≠“z + I≠

o
e“z (3.51)

and the propagation constant,
“ =


(R + jÊL)(G + jÊC) = – + j— (3.52)

Both functions 3.50 and 3.51 describe traveling waves propagating in the positive or negative direction along ẑ.
This final result can be further assessed in lossless and lossy cases namely R and G are either zero or greater
than zero.

There is a major conclusion that stems from the equation 2.32 and our last result in equation 3.52. As you
may recall, while working with fields, “ has a complex value with real and imaginary components, in terms of
parameters describing the physics of the propagation process. Herein we have the same constant in terms of
passive circuit parameters. The reader may also recall our finding for “ in equation A.35 for the rectangular
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waveguide. As mentioned before, if this constant is real valued the propagation is not allowed, moreover, though
losses may exists, the reactive components of the impedance are key for the frequency response to take place
and thus the propagation of the waves along the structures.

As for the current, we can get an expression in terms of voltage by using 3.48 and 3.50,

I(z) = “V +
o

e≠“z

R + ÊL
+ “V ≠

o
e“z

R + ÊL
(3.53)

where the expression “

R+ÊL
may be regarded as the characteristic impedance Z0.

In the particular case of a lossless line, in other words – = 0, the propagation constant becomes imaginary thus
it takes the value of —,

“ = – + j— = jÊ
Ô

LC (3.54)

After considering the fundamental two-wire transmission line model, let us go back to the preliminary results in
equations 3.36 and 3.37 for TE waves in rectangular guides; let us contrast these equations with the foregoing
results, in particular equation 3.46. Both results are similar regarding the functional form hence we can make,

V = j
ÊµHz

“2 + Ê2µ‘
, (3.55)

Â = I . (3.56)

Thus the field equations are rewritten as,

ˆV

ˆz
= ≠jÊµI (3.57)

ˆI
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3
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jÊµ
+ jÊ‘

4
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which allows us to state that,

Z = jÊµ (3.59)

and,

Y =
3

“2 + Ê2µ‘

jÊµ
+ jÊ‘

4
(3.60)

Both 3.60 and 3.59 are the required expressions that encode physical information of the phenomena as well as
information that enables a circuit modeling of the waveguide as showed in 3.3.

vi
jÊµ vo

voj “2+Ê2µ‘
jÊµ jÊ‘

Figure 3.3: Equivalent circuit for TE waves in a rectangular waveguide.

Similar expressions can be derived for TM waves (Jordan and Balmain, 1968), allowing us to represent the case
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as a circuit, as showed in 3.4.

vi
jÊµ j “2+Ê2µ‘

jÊ‘ vo

vojÊ‘

Figure 3.4: Equivalent circuit for TM waves in a rectangular waveguide.

An additional remark worth of mention. The specific values for L, C, R and G, must be obtained for every
distinct transmission line problem, for instance, whether you are working with parallel wires or coaxial guides,
these components have di�erent values. Fortunately, they are tabulated in the literature, as provided by
Franceschetti (1997) Table 7.2 , but in general,

L = µ
Z0
÷

, C = ‘
÷

Z0
(3.61)

Intuitively, we can approach the situations of open- and short-circuit ends in the line. In the former, the current
is zero, while the voltage vo reaches its maximum value, while in the latter, the current reaches its maximum
and the voltage becomes zero. These conditions make sense in the light electromagnetic field analysis. For
instance, in the short-circuit case, the zero voltage situation at the end of the line can be depicted as a wall
of the same conducting material at the end of the line, which needs to comply with the boundary condition
namely the field must be zero.

More important, there is an additional case in which the end of the line is neither open nor closed but a load
is attached to it. This is called the terminated line, implying the existence of an impedance whose value can be
associated with an adjoined waveguide with di�erent characteristic impedance.

Figure 3.5: Two-terminal network.

Figure 3.6: Terminated transmission line.

Consider a geometry as showed in Fig. 3.4. This structure can be seen as the junction between two di�erent
rectangular waveguides and each one with its own impedance hence there is an di�erence between them. A
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perfectly matched impedance occurs when both impedances coincide, otherwise an imbalance takes place which
needs to be accounted. The question arises as how to model the intersection between both guides; a preliminary
approach is to think as if the opening waveguide terminates with an impedance load equivalent to the impedance
di�erence.

Figure 3.7: A discontinued waveguide.

The treatment of terminated lines is a matter of the utmost importance as it provides a widely implemented
tool to analyze electromagnetic waves in guides namely incident and reflected waves .

We can recall the equations 3.46, 3.50 and 3.51 to express current in terms of the voltage,

I(z) = 1
Z0

V +
o

e≠“z ≠ V ≠
o

e“z (3.62)

The presence of a terminating impedance has an electromagnetic interpretation which is the need to comply
with a boundary condition, in particular, related to the fields hence voltages and current at the end of the line.

Z(z) = V (l)
I(l) = Z0

V +
o

e≠“z + V ≠
o

e“z

V +
o e≠“z ≠ V ≠

o e“z
(3.63)

If we take l as the length of the waveguide along the z direction, thus

Zline = Z0
V +

o
e≠“l + V ≠

o
e“l

V +
o e≠“l ≠ V ≠

o e“l
(3.64)

Solving for the V ≠
o

e“l term gives,
V ≠

o
e“l = Zline ≠ Z0

Zline + Z0
V +

o
e≠“l (3.65)

It is worth of mention that the voltage wave is the superposition of two components, moreover, V ≠
o

represents
a reflected wave while V +

o
is the incident wave. Thus, the amount of reflected wave in relation to the incident

wave gives what is know as the reflection coe�cient �,

� = Zline ≠ Z0
Zline + Z0

(3.66)

This coe�cient appropriately represents the previously mentioned situations. In order to grant that the incident
wave is fully transmitted hence there is no reflected component, Zload must coincide with the impedance of the
line Z0. As long as there is an impedance di�erence between the load and the line, a reflected wave must be
expected. The equations 3.51 can be written in terms of �,

V (z) = V +
o

#
e≠“z + �e“z

$
(3.67)

which evidently shows the presence of an incident wave and a reflected component. Additionally, the open- and
short-circuit cases, can be revisited by considering them in the light of the equation 3.67. If Zload = 0 thus
� = ≠1,

V (z) = V +
o

#
e≠“z ≠ e“z

$
= ≠2jV +

o
sin “z (3.68)
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while for the open-circuit case, Zload æ Œ thus � = 1,

V (z) = V +
o

#
e≠“z + e“z

$
= 2V +

o
cos “z (3.69)

The reader can find a more extensive treatment of this topics in text like Montgomery et al. (1987) and Owyang
(1989). In the interest of a straightforward development of following sections, attention must be paid to the
case depicted in Fig. 3.6. As stated before, we need to solve for the case of two waveguides with di�erent
impedances thereon Z0 and Z1. If we grant no reflected wave within the load line, for example, by having an
infinite length, then the input guide sees a load Zload = Z1 thus,

� = Z1 ≠ Z0
Z1 + Z0

(3.70)

The power of the incident wave splits into two components; there is a reflected fraction, obtained from �,
while the other part is transmitted onto the second guide. The transmitted fraction relates to the transmission
coe�cient T.

Figure 3.8: Transmission and reflection coe�cients between a couple of two-wire transmission lines, each of
them with di�erent characteristic impedances.

The transmitted wave corresponds to a fraction T of the positive component of the propagating wave in 3.67,
V +

o
e≠j“z,

V (z) = V +
o

Te≠“z (3.71)

furthermore, voltage must be same at the intersection point hence as 3.71 is equated with 3.67, we can find an
expression for coe�cient T (Pozar, 1998),

T = 1 + � = 2Z1
Z1 + Z0

(3.72)

3.1.3 Power transfer
By carefully looking these results, we find the underlying consequence of power transfer. Whether we talk about
voltage and current, or about fields transferred along or onto a waveguide, we are in fact treating with power
propagation. The equation 2.24 gives the power in terms of the complex Poynting vector, but the interest lies on
the real part of the complex quantity, Re( 1

2 E ◊Hú). As you may recall, there is a relation between electric field
and voltage given by 3.20 and the same for currents in equation 3.21, and both are useful to find an expression
for power in terms of voltages and currents. A comprehensive derivation of this expression can be consulted in
Collin (1991) chapter 5 but, for our aim, it is enough to mention that the electric and magnetic energies are
obtained, i.e.,

We = 1
4V 2C (3.73)

Wm = 1
4LI2 (3.74)

34



3. Transmission lines and Microwave circuits

to move forward in finding the expression,

P = 1
2Z0I2 = 1

2V Iú (3.75)

An alternative perspective is to calculate the total power carried by the fields in the z direction, which is
performed through the cross-section of the guide, but as only the transverse components propagate power.
Once there is an expression available for the fields, we can compute the energy by integrating the Poynting’s
vector over the cross section of the guide (Montgomery et al., 1987),

P = 1
2

1
Re(Z)

⁄
|Etransverse|2 dS = 1

2Re(Z)
⁄

|Htransverse|2 dS (3.76)

where the impedance Z is the wave impedance corresponding to TEM, TE or TM cases. P can be written as
(Orfanidis, 2016),

P = Re(1
2Etransverse ◊ Hú

transverse
) (3.77)

By using the relations,
H = 1

÷
ẑ ◊ E (3.78)

and
|Etransverse| = Z |Htransverse| (3.79)

the equation 3.77 becomes,

P = 1
2÷

|E|2 = 1
2÷ |H|2 (3.80)

As for the TE10 mode in rectangular waveguides, the transverse components Ey and Hx are known, thus an
expression is obtained for power flow or transmited power recalling the impedance for TE waves in the equation
3.17,

P = 1
2ZT E

—2

“2 |ÒHz|2 (3.81)

P = 1
2ZT E

⁄
|Hx|2 dS = a3b

⁄2
g

ZT E (3.82)

where ⁄g has been derived in A.41. TM modes can be treated similarly remembering that TM11 is the lowest
possible mode for TM waves as developed by Montgomery et al. (sec.2-18) and Orfanidis (chap.9).

P = 1
2ZT M

|E|2 = 1
2ZT M

—2

“2 |ÒEz|2 (3.83)

The foregoing expressions for transmitted power provide a framework for the next sections as the behavior of
the line is more often explicitly referred in terms of power than voltages and currents. The appropriate unit to
use is the decibel or dB as it tells about relative measures namely increases (gains) or decreases (losses). For in-
stance, 0 dB implies neither a decrease nor an increase in power; 3 dB corresponds to two fold increase in power.

The conversion from linear power ratios to dB is done as,

10 log
3

Power Level 1
Power Level 2

4
(3.84)
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but, if you are comparing voltages or currents,

20 log
3

Voltage Level 1
Voltage Level 2

4
(3.85)

Now consider again the transmission coe�cient T. It gives the fraction of power fed onto a guide with Z1 from
a waveguide with Z0. There is a power relation involved between the incident power and the power that is
actually transferred, thus the transmission coe�cient can be expressed in dB,

IL = ≠10 log |T | dB (3.86)

what is commonly known as insertion loss. On the other hand, the return loss, is the ratio between the incident
and the reflected power,

RL = ≠20 log |�| dB (3.87)

3.1.4 Wave formalism and Microwave networks
The actual applications of the guiding structures are rather limited if the geometries are restricted to the few
herein mentioned. The most exciting applications are driven by the use of complex devices that originate from
a composition of canonical geometries such as the rectangular waveguide. Think about devices with many
branches forming circuits; each branch has its own behavior, dissipates power and can conveniently be repre-
sented by a characteristic impedance.

Let us begin this section defining what port means. Easily said, a waveguide has terminal points or endings that
connect to other guides or structures. Its relevance relies on the concept of a whole structure being characterized
by its impedance at every termination or port. Keep in mind that the transmission of power has been modeled
in terms of � and T , which implies that we must know the impedance at every port if our goal is to develop
new devices from interconnected structures.

Furthermore, the composition of many guiding structures is called microwave network, where every port has
an incident and reflected wave as well as a characteristic impedance. A microwave network can be treated by
means of a system of equations similar to 3.41,

S

WWU

V1
V2
...
Vn

T

XXV =

S

WWU

Z11 Z12 ... Z1n

Z21 Z22 ... Z2n

... ... ... ...
Zn1 Zn2 ... Znn

T

XXV

S

WWU

I1
I2
...
In

T

XXV (3.88)

or in terms of admittances,
S

WWU

I1
I2
...
In

T

XXV =

S

WWU

Y11 Y12 ... Y1n

Y21 Y22 ... Y2n

... ... ... ...
Yn1 Yn2 ... Ynn

T

XXV

S

WWU

V1
V2
...
Vn

T

XXV (3.89)

We can think of these equations as if every relation between a pair of ports is calculated while keeping all other
ports open circuits.
Though it all seems familiar and somehow easy to grasp, the reality is that there is no direct form to measure
quantities like voltages in non-TEM waveguides (Pozar, 1998). For this reason, the incident, reflected and
transmitted wave model is of major significance by means of a more suited tool to model complex networks
namely the scattering matrix .
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We have seen, so far, how voltages relates to currents through impedances or admittances, but alternatively,
scattering parameters describes the network in terms of incident and reflected waves at every port with the
attribute that this quantity can be calculated or measured. When we refer to networks with multiple ports, we
could use the model based on voltages and currents but, the characterization of a network is easier if we would
be able to perform measurements of incident and reflected power in every port while all other ports remain
open-circuited or loaded.

S

WWU

V ≠
1

V ≠
2
...

V ≠
n

T

XXV =

S

WWU

S11 S12 ... S1n

S21 S22 ... S2n

... ... ... ...
Sn1 Sn2 ... snn

T

XXV

S

WWU

V +
1

V +
2
...

V +
n

T

XXV (3.90)

An alternate view to describe a network is by expressing input quantities in terms of output quantities; in the
case for a two-port network,

5
V1
I1

6
=

5
A B
C D

6 5
V2
I2

6
(3.91)

The equation 3.91 is significant since, as you may find later in this text, many of the models and solutions pre-
sented in prior papers for quadrature hybrids and other microwave devices, rely on this matrix representation.
For now, let us limit our scope to scattering parameters since they play a remarkable role in our pursue for
optimization method for geometries of microwave device, more precisely, a quadrature hybrid.

Let us consider a two-port guide as a manageable model to further study scattering parameters. The equation
3.90 can be expressed as, 5

b1
b2

6
=

5
S11 S12
S21 S22

6 5
a1
a2

6
(3.92)

where [b] represents the reflected and [a] the incident components of a generalized variable. Expanding 3.92
yields,

b1 = S11a1 + S12a2 (3.93)
b2 = S21a1 + S22a2 (3.94)

Figure 3.9: Two-port network with incident and reflected quantities.

A preliminary approach to define the S parameters, can be constructed from the prior expansion. The quantity
b1 is made of two components; a1 is the incident wave in port 1 while a2 corresponds to the incident wave
through port 2 of our guiding structure. This means that S11 is equivalent to the reflection coe�cient while S12
can be seen as the transmission coe�cient from port 2 to port 1.
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S11 = b1
a1

-----
a2=0

(3.95)

S12 = b1
a2

-----
a1=0

(3.96)

S21 = b2
a1

-----
a2=0

(3.97)

S22 = b2
a2

-----
a1=0

(3.98)

A symmetrical two-port network is the one in which the conditions S11 = S22 is satisfied. On the other hand, in
a reciprocal network the condition to satisfy is S12 = S21. The former implies that the characteristics at either
port are equal, while the latter means that, whether you use port 1 or port 2 as the entry point of signal, the
behavior of the device is going to be the same in regard of the transferred power from one port onto the other.

vi
Z vo

(a)

Vs

Zg vi
Z vo

ZLa1

b1 b2

a2

(b)

Figure 3.10: Two-port network modeled as a series impedance (a). The model can be generalized by adding
a generator and matched load (b).

For instance, voltage vi between terminals can be written as vi = a1 + b1. If b1 = 0 then vi = a1 which can
only happen when Zg = Z namely the when generator and the line are perfectly matched. Can be obtained an
expression for vi in terms of the source voltage Vs,

vi = Vs

Zi

Zg + Zi

(3.99)

where Zg is the impedance of the sourcing device and Zi corresponds to the impedance “seen” at the input
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port. As b1 = vi ≠ a1 then,
b1 = Vs

2
Zi ≠ Zg

Zg + Zi

(3.100)

with Zi = Z + ZL, we get,

b1 = Vs

2
Z + ZL ≠ Zg

Zg + Z + ZL

(3.101)

Using the last formula together with 3.99 ,we can deduce an expression for S11,

S11 = Z

Z + 2Zg

(3.102)

Using the same approach we can find an equation for S21 by finding vo (Owyang, 1989),

S21 = 2Zg

Z + 2Zg

(3.103)

Figure 3.11: N-Port network.

Owyang (1989) presents a general procedure that seeks to obtain expressions for [a] and [b] quantities no matter
the physical quantity in question, for instance, voltages, currents or power.

Figure 3.12: 3-Port network samples.

The same applies to an n-port device, where we can define junction planes through which the reflected and
incident waves may cross, as depicted in Fig. 3.11. The Fig. 3.12 presents a three-port junction. The junction
between the guides must be accounted in some way, and for this reason, the shunt or series impedance models
are used (Owyang, 1989). Three guide lines are depicted clearly, while the di�erence relies on which type of
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impedance is used to model the junction.

The suggested device can be represented in the form of S-parameters as well, moreover, if one port is chosen as
the entry of signal, the other two ports may or may not have a perfectly matched load. The scattering matrix
has the form, S

U
S11 S12 S13
S21 S22 S23
S31 S32 S33

T

V (3.104)

If the load is matched, the component bn is zero namely there is no return at ports,

S11 = S22 = S33 = 0 (3.105)

The scattering matrix has the property of being symmetrical for reciprocal networks, which finally translates
in the following unitarity relation (Franceschetti, 1997),

ÿ

k

Sú
kn

Skm = ”nm (3.106)

Figure 3.13: Simulated 3-Port T-junction asymmetrical power divider.

This equation represents that the dot product of any column with the complex conjugate of any other di�erent
column, is zero thus they are orthogonal. A matrix that satisfies these conditions is a unitary matrix. To
be more specific, as the ports are perfectly matched, all components from the summation 3.106 that involves
diagonal entries are zero, for instance,

⇠⇠⇠: 0
Sú11 S11 =⇠⇠⇠: 0

Sú11 S12 =⇠⇠⇠: 0
Sú11 S13 = 0 (3.107)

and the same applies to every diagonal entry. Now, the sum sweeps through k = 1, 2, 3, while considering the
cases when n = m and n ”= m. If the latter is considered, the dirac delta condition gives,

Sú
21S23 + Sú

31S32 + Sú
12S13 + Sú

32S31 + Sú
13S12 + Sú

23S21 = 0 (3.108)

If we enforce this condition,
Sú

31S32 = Sú
21S23 = Sú

12S13 = 0 (3.109)

then the entries of the matrix with n ”= m end up being zero (Pozar, 1998),

S32 = S21 = S13 = 0 (3.110)
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The same condition applies to the n = m components thus

Sú
12S12 + Sú

13S13 = S2
12 + S2

13 = 1 (3.111)
S2

21 + S2
23 = 1 (3.112)

S2
31 + S2

32 = 1 (3.113)

which finally yields,
|S12|2 = |S23|2 = |S31|2 = 1 (3.114)

The ends result is a scattering matrix for a three-port device,

S =

S

U
0 1 0
0 0 1
1 0 0

T

V (3.115)

Though many other subjects are of research interest for common and rare networks, we approach them to the
extent of not losing the scope of this text. Other authors study topics like symmetry and commutability of
the scattering matrix (Owyang, 1989), the relation between impedance, admittance and scattering parameters
(Pozar, 1998; Owyang, 1989), and extensive details on how to obtain the entries of each of the matrices herein
mentioned depending on the wave mode.
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Power Dividers and Directional

Couplers

4.1 Power Dividers
An immediate application from previous sections, is that of dividing or combining power in certain fraction.
Think in terms of an input signal that splits into two or more signals with lower power than the original.
A microwave network of that kind of capability is commonly known as Power Divider. A behavior like this
can be achieved by means of three- or four-port networks. While three-port networks are mainly depicted as
T-type junctions which ports behave either as inputs or outputs, the four-port devices usually have an input
port and the remaining ports are signal outlets with particular properties linked to the specific geometric design.

(a)

(b)

Figure 4.1: Directional Coupler as a 3-Port network application.

At this point, the reader may be aware that the three-port devices were studied in the last section by means of
the S matrix for a reciprocal network. Lastly, for this type of devices, the power division takes place in fractions
namely P2 = –P1 and P3 = (1 ≠ –)P1. This is achieved by using matched loads and reactances with an specific
proportion, as derived by Collin (2001).

Attention must be paid to the four-port network, as it is requisite to go into the modeling of devices like the
quadrature hybrid. The ways in which four-ports can be obtained are countless, furthermore, the coupling
method between the guides definitely changes the circuit representation adding extra complexity to the prob-
lem. Consider the Fig. 4.2, in which a four-port device is created by the junction of two guides trough a
hole. Though there is enough information regarding a two-port line namely a rectangular waveguide, this new
device requires more work to model how power transfers between both lines and, consequently, between ports.
Firestone (1952), defines directional coupler as a device which couples together transmission lines by means of a
coupling mechanism, with the capacity to induce a proportion of the traveling wave from one line into the other.
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(a) Bethe coupler.

(b) Magic T.

Figure 4.2: 4-Port devices examples.

To analytically solve a complex structure like this may be inconvenient thus the need of the scattering model-
ing. For instance, the design process can become extremely slow as we introduce modifications to the device
such as a change in the angle in which the guides are intersected. For this reason, to speed up the design and
optimization process and to obtain the scattering parameters for complex structures, the use of electromagnetic
simulation software has become a widely spread practice.

By following a similar procedure to the one applied for the three-port network, a reciprocal perfectly-matched
four-port device is represented by a S matrix of the form,

S =

S

WWU

0 S12 S13 S14
S21 0 S23 S24
S31 S32 0 S34
S41 S42 S43 0

T

XXV (4.1)

A reciprocal four-port device is represented by a symmetric matrix with respect to its diagonal, while the zero-
valued diagonal means that a perfectly matched load is supposed. A process can be applied to derive the entries
of the matrix (see appendix A.4), which yields a matrix of the form,

S =

S

WWU

0 S12 S13 0
S12 0 0 S24
S13 0 0 S34
0 S24 S34 0

T

XXV (4.2)

With the results gathered thus far, a few attributes can be inferred for a coupled four-port network:

a.) Matched terminals: As far the junctions and loads are matched, none reflected waves are expected.

b.) Amplitudes and phases: Power is split between the transmitted and coupled ports in di�erent proportion.
Phases experience the same at the output ports hence generating di�erent devices to be used in particular
cases depending of the amplitude and phase di�erence between the outlet ports.

c.) Symmetry: Devices are particularly symmetric what is of help to model the electromagnetic behavior.
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d.) Coupling: An incident wave in port 1 couples power into port 2 and 3 but not into port 4 (Pozar, 1998)
namely port 1 and 4 are uncoupled. On the other hand, port 2 and 3 are uncoupled as well.

e.) 3-dB coupling: As you may remember, a power relation of 1
2 is equivalent to 3 dB, thus a directional

coupler that divides incident power into two equal amounts if called a 3-dB directional coupler or a hybrid
junction.

The process gives information about the entries of the matrix, but the specific values have not been deduced.
Let us consider that port 1 is the reference as entry point for an incident wave. Let us also recall equations
3.52, 3.67 and 3.71 and it is evident that if an incident wave from port 1 is fully transferred into port 2 namely
there are no reflected waves, the wave at the end of the line must have a phase change due to the impedance
along the waveguide.

By including the phase change due to the length of the waveguide, all entries can be fully deduced, moreover,
we settle in a S-matrix with the form,

S = 1Ô
2

S

WWU

0 1 j 0
1 0 0 j
j 0 0 1
0 j 1 0

T

XXV (4.3)

This final matrix represents a special case of directional couplers known as hybrid couplers. As the reader may
notice, as the incident wave is fed at port 1, a fi/2 phase di�erence takes place between ports 2 and 3. This
particular device is commonly known as a Quadrature Hybrid. The antisymmetrical case, in which the phase
di�erence is fi, is known as Magic-T hybrid.

Figure 4.3: Directional coupler signal flow and schematic symbol.

Directional couplers are characterized by two parameters that measure the coupler’s ability to separate waves
and to couple ports. The directivity measures how well the coupler separates forward and reverse waves (Pozar,
1998), which must be infinite in an ideal situation. Numerically it is the relation between the input signal at
the coupled port and the reflected signal at the same port thus a high directivity means that the reflections
from the output port will cause less interference at the coupled port.

Directivity = D = 20 log amplitude in wanted port
amplitude in isolated port = 20 log b

|S14| dB. (4.4)

As for the specific case of this research, the formula used to calculate the directivity is,

Directivity = 20 log dB

3
S(3, 1)
S(4, 1)

4
(4.5)

On the other hand, by design, the coupling between port 1-4 and ports 2-3 should be zero, while the coupling
from port 1 into and 3 must have a value that agrees with the design constraints, for instance, a 3-dB coupling.
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The relation between the emerging power from port 3 to the incident power in port 1 is called coupling coe�cient,

Coupling = C = 10 log P1
P3

= ≠20 log b dB. (4.6)

The final parameter is the isolation which measures the leakage of power from port 1 to port 4,

Isolation = I = 10 log P1
P4

= ≠20 log |S14| dB. (4.7)

An alternate definition for directivity is,
D = I ≠ C dB (4.8)

Many devices can be conceived which are capable of delivering power by using the coupling e�ect. The reader
may be interested in Pozar (1998) who extensively develops solutions for alternative configurations as the Bethe
Hole Couplers and the Multihole couplers. Let us concentrate on modeling our subject: the multi-branch
quadrature hybrid.

4.2 Quadrature Hybrid
Millimeter and sub-millimeter receivers, in specific those operating in ALMA’s radiotelescopes, are permanently
undergoing upgrades to accomplish their scientific objectives. One of the key improvements that the observatory
is seeking until 2030, as part of its Wideband Sensitivity Upgrade Plan (Carpenter et al., 2019), is to boost the
the sensitivity by improving the front-end capabilities. Sensitivity upgrades are enabled by wider bandwidths
and the noise reduction operations, the latter attained using devices like mixers in Double-Side or Single-Side
Band configurations.

The quadrature hybrid plays a crucial role in the down-converting operation of the incoming signal to be sub-
sequently used in the image rejection for the noise reduction process. Thus, the slightest refinement in the
operation of the quadrature hybrid has a major impact in global performance measures as the sensitivity or
image fidelity.

In this section, we seek to set forth the background for quadrature hybrid design, moreover, we look to describe
the di�erent methods to solve complex structures like the multi-branch and cascading hybrid structures.

4.2.1 Modeling
As mentioned by Matthaei et al. (1980), these devices can be conceived in distinct forms. A TEM-mode di-
rectional coupler is inherently consisting of parallel plates or coupled transmission lines as micro-strips. On
the other hand, there are TE- or TM-mode directional couplers in which the coupling takes place through
mechanical means.

The coupling mechanism is the foremost modeling goal. There are wide variety of options to couple two main
waveguides namely holes, coupled micro-strips and branches, but the choice actually depends on the type of
application and constructive techniques. Moreover, while working in frequencies of the order of terahertz, it is
presumed that the fabrication method would be that of micro-strip lines, on the contrary, in the lower frequen-
cies regime the cavities are still useful and well understood.

The use of a mechanical coupling is commonly known as Branch Line Coupler which consists of parallel trans-
mission lines coupled through branch lines. The branch line geometric dimensions modify its impedances hence
allowing to adjust the electric performance of the complete device. Furthermore, the characteristic impedance
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of the two parallel main lines may be changed creating di�erent sections thus having an impact in the operation
as well.

Regardless of the coupler’s type under consideration, it is always necessary to account for the kind of transmission
line hence getting di�erent impedance expressions depending of the selected wave modes. In a more general
case, the branches connecting the main lines must be represented as shunt or series junctions.

Figure 4.4: Branch-line coupler immittance schematic.

Though di�erent modeling approaches are at hand, we must account for the modeling of discontinuities resulting
from intersections or disruptions in the continuity of the transmission line, regardless of the modeling technique;
the main waveguides are interrupted thus creating extra impedances altering how the coupler behaves in practical
situations. A generalized two-terminal basic waveguide may be represented by a transmission line with some
alteration in the middle thus creating an structure divided in three phases, as illustrated in Fig. 4.5 (Marcuvitz,
1986).

Figure 4.5: General transmission line with discontinuity.

The discontinuity is represented by two basic transmission lines with an additional circuit joining them together.
The Fig. 4.6 shows the two types of intermediary connections, both of which are usually known as fi≠ and
T≠networks.

Now, if we try to model every intersection by means of the equivalent circuits presented in the Fig. 4.6, for a
branch-line coupler as presented in Fig. 4.5, in which we find a large number of intersections between the main
lines and the branches, we will soon discover an extremely intricate equivalent circuit and, in consequence, a
hard-to-solve set of equations. To have a wider view of the circuit representation and calculation of di�erent
networks, please refer to Marcuvitz (1986) (Sec. 5), where you can find a treatment for a wide variety of
two-port networks, for instance, a rectangular to circular change in cross section or the change in height of a
rectangular guide.

4.2.2 Periodic structures
As a mean to easily study structures that are the product of joining repetitive sub-structures thus creating a
sequential pattern, we require a method that provides a way to treat the device as a black box with input and
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Z1 Z11 ≠ Z12 Z21 ≠ Z12 Z2

Z12

(a) T network.

Y1 Y12 Y2

Y22 ≠ Y12Y11 ≠ Y12

(b) fi network.

Figure 4.6: a) T and b) fi intermediate connections to model discontinuities.

output signals.

Consider the fundamental junctions from Fig. 4.6, which can be connected in a repetitive manner (Matthaei
et al., 1980). The transmission line is then treated as a whole by properly combining the parameters form each
individual sub-network. The combining process is done through the ABCD-Matrix method, which was briefly
mentioned in the equation 3.91.

Figure 4.7: Periodic connection with intermediate admittances.

This type of network is usually symbolized in terms of susceptance B, which is the inverse of the reactive
components from Fig. 3.2. With the aim of avoiding confusions with the B term in ABCD-Matrix, we will use
the suceptance term as B.

The ABCD parameters are defined in terms of voltages and currents presented in the Fig. 4.8, represented by
the matrix form 3.91 and obeying the relations (Pozar, 1998),
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(a)

(b)

Figure 4.8: ABCD-parameters representation to solve cascade networks.

V1 = AV2 + BI2 (4.9)
I1 = CV2 + DI2 (4.10)

The matrix may have a change in I2 to account for current direction between two cascading connection of
adjacent networks.

5
V1
I1

6
=

5
A B
C D

6 5
V2

≠I2

6
(4.11)

where the index Õ1Õ represents variables at port 1 and index Õ2Õ represents the electric quantities at port 2.

This can be extended by thinking in two adjacent networks as depicted in Fig. 4.8, yielding a set of matrix
equations,

5
V1
I1

6
=

5
A B
C D

6 5
V2
I2

6
(4.12)

5
V2
I2

6
=

5
A2 B2
C2 D2

6 5
V3
I3

6
(4.13)

which can be rewritten by direct substitution,
5
V1
I1

6
=

5
A B
C D

6 5
A2 B2
C2 D2

6 5
V3
I3

6
(4.14)

Each ABCD-matrix is obtained for every individual two-port transmission line. Pozar (Tab. 4.1) presents a
brief but useful set of two-port circuits and their ABCD parameters. Finding the specific parameters, as many
of the procedures presented earlier in this text, requires to deal with impedances hence calculating voltages and
currents, furthermore, all of this can be expressed in terms of Ę and H̨ fields. The set of equations 4.15 provides
the relations to obtain the parameters whether by strictly introducing voltages and currents in terms of fields
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or by simply analyzing the circuits as open- or short-circuits.

A = V1
V2

-----
I2=0

(4.15)

B = V1
I2

-----
V2=0

(4.16)

C = I1
V2

-----
I2=0

(4.17)

D = I1
I2

-----
V2=0

(4.18)

Let us test the the power of this method. After working with the basics of transmission lines, some fundamental
relations are found and usually tabulated (Ramo et al., 1994) (Tab. 5.11a). For example, the line impedance
for a general open-ended line is,

Zi = Z0 coth “l (4.19)

which is tightly connected with the concepts seen in 3.63 section 3.1.2. When finding the ABCD for a line like
the one in Fig. 3.10.a, we get

A = cosh “l (4.20)

B = Z0 sinh “l (4.21)

C = Y0 sinh “l (4.22)

D = cosh “l (4.23)

Figure 4.9: A basic two-port transmission line disruption that can be solved using ABCD-parameters.

Now, if we are asked to find expressions for a line with a disruption, it can be conceived as two l/2 lines joined
by a shunt admittance in cascade. If the admittance is represented as,

A = 1 (4.24)
B = 0 (4.25)

C = Y (4.26)
D = 1 (4.27)
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then the set of matrices to be combined which represent the complete system becomes,
5
A B
C D

6
=

5
cosh “l

2 Z0 sinh “l

2
Y0 sinh “l

2 cosh “l

2

6 5
1 B
Y 1

6 5
cosh “l

2 Z0 sinh “l

2
Y0 sinh “l

2 cosh “l

2

6
(4.28)

This multiplication can be made to get every ABCD-parameter, just as presented in 4.29, moreover, there is
still the alternative to obtain expressions for S- and Z-parameters in terms of A, B, C and D (Ramo et al.,
1994), likewise, there exists a way to convert between two-port network parameters namely from S-parameters
into ABCD-parameters and from Z-Matrix into ABCD-parameters as well. Pozar (Tab. 4.2) provides a table
comprising all fundamental transformations.

A = D = cosh “l + Y

2Y0
sinh “l (4.29)

which complies with the forward-to-backward symmetry.

4.2.3 Branch-line design
During the course of this text, one of the most important concepts used is the one of impedance, which relates
to other parameters that describe how input and output quantities are behaving namely admittance and ABCD
parameters. Owyang and Matthaei et al. among others, when approaching the solving of symmetric branch-line
couplers, use the extended concept of immittance, which is nothing more than the admittances and impedances
matrices.

By referring to Fig. 4.4 and 4.7, it can be noticed the presence of series impedances corresponding to sections of
the main guide and, shunt admittances representing the physical disruption of the branches. The introduction
of reactive elements to a guiding structure is obtained by adding physical discontinuities in a uniform waveguide
(Owyang, 1989). This discontinuity perturbs the fields withing the structure depending on the type of reactance
produced by the physical alteration.

As we use the name immittance we refer to a general form of impedance/admittance, allowing us to talk in terms
of a normalized to describe relative dimensions throughout the quadrature hybrid. As for the notation, Matthaei
et al. proposes, and many other authors followed, the use of Ki for series impedance and Hi to shunt admittance.

Something else is required involve during the study quadrature hybrids. As reciprocal devices, they require
what is called end-to-end symmetry. So, K0 = Kn+1 meaning that the impedance for the input port is the
same at the output; H1 = Hn+1 namely the opening and closing branches have the same admittance. Besides,
this configuration creates n sub-sections and n + 1 branches.

4.2.4 Reed’s method
The multi-branch waveguide set as directional coupler has been treated for several authors, most of them
focusing on how to solve for di�erent setups of the device. One of the most notorious is Reed and Wheeler
(Reed and Wheeler, 1956), who introduced a design method that fits for any number of branches. In this
proposed design, the opening and closing branches are of the same height, while all other branches have reduced
height with respect to the opening and closing ones. The method is based on the even- and odd-mode analysis
(see appendix A.5), recalling that the wave amplitude at every port, calculated from the reflection and
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transmitted coe�cient are,

A1 = �e/2 + �o/2 (4.30)
A2 = Te/2 + To/2 (4.31)
A3 = Te/2 ≠ To/2 (4.32)
A4 = �e/2 ≠ �o/2 (4.33)

where o and e stand for even and odd components. Further development was achieved through the ABCD

Figure 4.10: Normalized dimensions in a branch-line coupler. Source:Reed(1958)

parameters formalism. The values of � and T coe�cients for each half is obtained from,

�/2 = A + B ≠ C ≠ D

2(A + B + C + D) (4.34)

T/2 = 1
A + B + C + D+ (4.35)

where T and � are the elements S12 and S11 of a basic two-port network.

The method is straightforward in the sense that thinking in sections enables the study of periodic structures.
For instance, a three-branch device, with the special feature of having evenly-spaced sections of ⁄/4, yields the
following matrix for the even mode,

Even =
5
1 ja
0 1

6 5
0 j
j 0

6 5
1 jc
0 1

6 5
0 j
j 0

6 5
1 ja
0 1

6
(4.36)

A three-branch coupler has opening and closing branches of height a and a single intermediate branch of height
c. Consequently, it has two subsections consisting of flat two-port transmission lines of length ⁄/4 and addi-
tionally, as everything else is normalized against the main guide, its height is the unity. Hence the first, third
and fifth matrices correspond to the T-junction disruptions for the even mode component of the analysis, while
the second and fourth represent the main guide flat sections with characteristic impedance 1.

As the reader may guess, the analysis follow with the odd-mode components. The matrices are the same but a
and c must be exchanged by ≠a and ≠c.

Even =
5
≠a(≠c) ≠ a ≠j(a2(≠c) + 2a)

j(≠c) ≠a(≠c) ≠ 1

6
(4.37)

Odd =
5
ac ≠ 1 ≠j(a2c ≠ 2a)

jc ac ≠ 1

6
(4.38)

To proceed with solving for the quadrature hybrid, it is expected that, neither in even- or odd- modes, the
device has reflections. This constraint is achieved by setting B and C equal in the total ABCD-matrix. To
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obtain a in terms of c we solve,
≠j(a2(≠c) + 2a) = j(≠c) (4.39)

which finally yields,

a = 1 ±
Ô

1 ≠ c2

c
(4.40)

If this value is replaced in the matrices and, additionally, c is taken as the impedance depending of the electrical
length ◊ = “l,

Even =
5

cos ◊ j sin ◊
j sin ◊ cos ◊

6
(4.41)

Odd =
5

cos ◊ ≠j sin ◊
≠j sin ◊ cos ◊

6
(4.42)

By replacing these entries into 4.34 and by using 4.31 then the amplitudes at port 2 and 3 can be deduced,
which are our aim.

A2 = cos ◊ (4.43)
A3 = j sin ◊ (4.44)

The process can be escalated to find solutions for devices with n + 2 branches. Reed solves until five branches
and arrives to a generalized approach by deducing general expression for the ABCD-Matrix from Tchebyshev
polynomials (Owyang, 1989),

S0(≠c) = +1 (4.45)
S1(≠c) = ≠c (4.46)

S2(≠c) = c2 ≠ 1 (4.47)
S3(≠c) = ≠c3 + 2c (4.48)

S4(≠c) = c4 ≠ 3c2 + 1 (4.49)
S5(≠c) = ≠c5 + 4c3 ≠ 3c (4.50)

S6(≠c) = c6 ≠ 5c4 + 6c2 ≠ 1 (4.51)
Sn+1(≠c) = ≠c Sn(≠c) ≠ Sn≠1(≠c) (4.52)

If each branch has a length of ⁄/4 keeping the same spacing between branches, with a uniform main guide, a
matrix can be found for the even mode,

Evenn+2 =
5
≠aSn(≠c) ≠ Sn≠1(≠c) ≠j(a2(Sn(≠c) + 2aSn≠1(≠c) + Sn≠2(≠c))

jSn(≠c) ≠aSn(≠c) ≠ Sn≠1(≠c)

6
(4.53)

For an even number of branches, the term C of the ABCD-matrix 4.53 is equal to A2, which is used to compute
the height c. on the other hand, if there is an odd number of branches, C is equal to A3. By applying the same
reasoning as before, a can be found,

a =


1 ≠ S2
n
(≠c) ≠ Sn≠1(≠c)
Sn(≠c) (4.54)

This method applies to an specific quadrature hybrid in which the inner branches are all the same and equally
spaced by ⁄/4 length. It is clear that any further modification completely changes the behavior of the device
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hence the power at each port, the reflections and directivity. Bhagat (1968) describes the methods proposed by
other authors to deal with the situation in which the main guide is not uniform and the impedance is changing
from section to section of the device. This task is not minor, it is time consuming and very ine�cient as the
goal is to find devices that properly work in di�erent regimes and settings. For instance, to evaluate the impact
on the overall bandwidth by a change in a section’s impedance would be almost an impossible task.

Reed gives a set of immittances for di�erent settings of branches and couplings. Table 4.1 takes some of these
values for reference and further discussion. Recall that a and c correspond to the outer and inner branches,
in which all inner branches are of the same size c. Thus, if the input port uses a WR10 waveguide, with a
rectangular cross-section of 2.54mm ◊ 1.27mm, all other measure are taken relatively to b = 1.27mm, hence for
a 3-branches coupler, a = 0.5259mm and c = 0.8980mm.

Table 4.1: Selected immittances for 3-dB multi-branch couplers. Source: Reed (1958)

Branches Coupling a c
3 3-dB 0.4141 0.7071
8 3-dB 0.1064 0.2257

Table 4.2: 3-dB multi-branch couplers dimensions from WR10 main waveguides. All sizes are given in mm.

Branches Coupling a c
3 3-dB 0.5259 0.898
8 3-dB 0.1351 0.2866

Table 4.3: Selected immittances for 3-dB multi-branch couplers. Source: Levy and Lind (1968)

Branches Coupling a1 a2 a3 a4 a5 b1 b2 b3 b4
3 3-dB 0.4149 1.3432 1.3775
8 3-dB 0.0145 0.0913 0.3548 0.9210 1.0311 1.2245 1.7453 2.1476

Table 4.4: 3-dB multi-branch couplers to operate in the 75-110 GHz band.

Branches Coupling a1 a2 a3 a4 a5 b1 b2 b3 b4
3 3-dB 0.5269 1.70 1.7494
8 3-dB 0.018415 0.1159 0.4505 0.9210 1.1696 1.5551 2.2165 2.7274

Figure 4.11: 8-branch simulated model from Reed’s table. Source: Reed(1958)

Levy and Lind (1968), o�er a method for a device with ⁄/4 sections at mid-band frequency and uniform
impedance for the main guides. This method is close to the one of (Reed and Wheeler), nevertheless the use
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of Butterworth polynomials and enables the use of branches of di�erent heights along the quadrature hybrid,
always complying to the end-to-end symmetry. In particular, they present immittance values for multiple cou-
plings and branches, of which results for 3 and 8 branches are showed in the Table 4.3, where ai are the branch’s
heights and bi correspond to the main-guide’s immittance. In practical terms, as the input and output ports
are equal by the reciprocity and end-to-end symmetry, the immittance values are equivalent to geometrical sizes
to be calculated as fractions of the main-guide size.

By selecting as our objective the 75-110 GHz band, the input port must be a WR10 waveguide, with a rectangular
cross-section of 2.54mm ◊ 1.27mm. In consequence, the reference dimension is 1.27mm, giving the sizes for
branches and sections showed in the Table 4.4. A result worth to be mentioned is the significant reduction in
branch sizes as the number of branches is increased.
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Though the modeling process introduced in the last chapter seems straight forward, it might be clear to this
point how the complexity grows as the geometry changes. Alterations like adding branches or using sections
with di�erent electrical length hence varying the mainline impedance, just play a role in making hard to ana-
lytically derive the quadrature hybrid model. However, while looking for quadrature hybrids that fully comply
with a set of requirements for specific applications, an optimization method must be applied.

Herein we present the most salient features of the quadrature hybrid by using Ansys HFSS as simulation tool.
We use the design obtained by Reed and Wheeler in Table 4.2 as the simulation object. Concisely, the device
has flat main guides, ⁄/4 = 0.74mm separation between branches and equally-sized inner branches. As showed
in Fig. 5.1, the incoming power to port 1 is divided into port 2 and port 3. Also, the progressive e�ect of the
branches is clear in the sense of the phase shifting e�ect between the both outlets. As expected, the port 4 is
isolated namely there is no power flowing through it.

(a) (b)

Figure 5.1: Simulated (a) E-field and (b) H-field for a 3-dB 8-branch quadrature hybrid.

A deeper understanding of this type of coupler stems from the simulation performed on the Reed’s eight-branch
hybrid (Fig. 5.2). There are four merit figures to describe the behavior, moreover, these parameters are of
major significance during the optimization process to be applied during forthcoming sections.

Amplitude Imbalance: This is regarded as one of the most relevant features to observe as it becomes essen-
tial for the image rejection performance in ALMA’s receivers (Fig. 5.2.a). As for the 3-dB multi-branch from
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Figure 5.2: Amplitude imbalance (a), phase imbalance (b) and S-parameters (c,d) for 8-branch quadrature
hybrid set for W-band (75-110 GHz).

Reed’s research, it is evident that the mid-band amplitude imbalance is out of limits, therefore failing to fulfill
the �A < 1 requirement.

Phase Imbalance: Next, we find the �„ or Phase Imbalance, which measures how phase deviate with respect
to the 90¶ di�erence between the wave at ports 2 and 3. Herein we can see that this parameter behaves as
expected throughout the operational band, in spite of failing in the range between 70 GHz and 78 GHZ.

Coupling: A significant amount of work is placed on finding the hybrid design that complies with the mentioned
constraints, moreover, they are the result of the S-parameters measures in the operational band. The S31 corre-
spond to the coupling e�ect supposed to happen in a directional coupler, hence a power transmission must occur
between port 1 and port 3. It is expected that this parameters stays the same or as close as possible to -3 dB. Let
us recall that this value tells us about the 1/2 power split between port 2 and 3. The �A parameters is directly
dependent on the S31 and S21; the farther they are apart from the -3 dB mark, the higher the amplitude imbal-
ance. It is su�cient to notice the gap between S31 and S21, which is specially large at mid-band. An additional
feature must be noticed. The di�erent researches, whether through simulations or by laboratory tests, show
that as we try to have a wider useful bandwidth by adding more branches, the mid-band coupling parameter
su�ers a detriment namely gets higher. This is of concern as it reveals the presence of two conflicting parameters
to account for during the optimization thus setting a limit to the number of branches or the bandwidth coverage.

The bandwidth: An increase in the number of branches allows for a wider bandwidth (Ishii, 1995). The
physical consequence is that the height of each branch is reduced as the branch number is creased hence setting
a practical design and fabrication limit for multi-branch couplers. This is confirmed by the branch sizes found
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in Table 4.3. Trials show that two-branch 3-dB hybrids have a useful bandwidth of 10% while a Tchebyschev
design allows for roughly a 50%.

5.1 The design and optimization problem
The design challenge consists of choosing the branch line locations and impedances namely their heights to
achieve a desired coupling and directivity for an specific operational band. Any method used to model the
hybrid must account for the T -junction e�ects, adding extra complexity to the design. As our goal is to find
quadrature hybrid designs that can comply with all constrains along the whole bandwidth, attention is paid to
the the operational bands ALMA Band 2 (67-90 GHz) and ALMA Band 3 (the 84-116 GHz).

The implications for radio astronomy are significant. Quadrature hybrids are proposed to be used in Single-Side
Band heterodyne receivers for the ALMA bands 3 to 10 (Andoh and Minamidani, 2003) by undergoing a the
same design process as herein introduced, while using assisted by HFSS simulator.

More recently, as part of the ALMA Development Roadmap, the observatory is pursuing a wider bandwidth,
consequently, new receivers are being designed for ALMA Band 2 to extend the original 67-90 GHz to reach a
67–116 GHz atmospheric window coverage (Mroczkowski et al., 2019). Yagoubov et al. reported a proposal for
a receiver intended to operate in the extended 67–116 GHz window which contains 2SB channels with 3-dB 90¶

couplers (Yagoubov et al., 2020). Therefore, there is an ongoing search for increased sensitivity in ALMA Re-
ceivers in a wider band, all this complying with the tight constraints established for radio astronomical detection.

Authors like Gonzalez et al. and Ding et al. have approached the problem of dealing with amplitude and phase
imbalances while trying to achieve a wider bandwidth. The first approach is to extend the number of branches
and to have non-uniform main waveguides hence modulating the behavior by changing the intermediate section
height and length. Moreover, Gonzalez et al. managed to design and fabricate a quadrature hybrid to operate
in W-band (75-110GHz) with an amplitude imbalance of 0.8dB.

Rashid et al. (2016) presented a design based on the Reed’s model for multi-branch couplers. Their work intro-
duced the addition of ripple in the operational band by modifying the heights of the input and output branches
and by adding discontinuities in the form of extruded cavities in the main-guide. By using these features
they achieved a low amplitude imbalance as the ripple in the mid-band sections allows for closer values of the
S31 and S21 to the -3 dB mark, all that while greater branches are permitted thus easing the fabrication process.

Accomplishing a full-band coverage while complying with the quadrature hybrid theoretical behavior namely
zero return losses, 3-dB coupling and 90¶ phase shift.

�A < 1dB (5.1)
89¶ < „ < 91¶ (5.2)

≠3.5dB < S31 < ≠2.5dB (5.3)
≠3.5dB < S21 < ≠2.5dB (5.4)

S11 < ≠15dB (5.5)
S41 < ≠15dB (5.6)

where �A = mag
!

S21
S31

"
and �„ = arg

!
S21
S31

"
. As already mentioned, the quadrature hybrid has a bandwidth

coverage under 50% hence it is considered particularly narrow-band device, which is far from the 100% expected
coverage.
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6
Particle Swarm Optimization

Algorithm (PSO)

• Evolutionary algorithms, such as the Particle Swarm algorithm, have a major feature namely random
exploration of the solution space. This feature allows an exploration of the parameter space using
sampling methods.

• The algorithm has been widely validated in numerous cases, particularly in geometry-oriented problems,
but not exclusively.

• This research introduces a novel application of the PSO algorithm to quadrature hybrid design, particu-
larly for ALMA receivers.

• We also introduce a novel application of the absorbing wall technique for radio astronomy instrumentation
optimization.

6.1 Optimization
In this section, we provide a brief review of general optimization concepts to subsequently advance in applying
and optimization algorithm for our quadrature hybrid design problem.

Though many authors can provide comprehensive definitions of the optimization concept, it can be simply put
as the detection of optimal solutions for a problem (Parsopoulos and Vrahatis, 2010). Greater attention must
be paid to the type of problem and the constraints posed by it. Additionally, even though a prospect solution
fulfills all the requirements set by the problem, still needs to undergo a test until proved to be the optimal one,
which implies that there must be a method to scientifically demonstrate the quality of the proposed solutions.

In the search of optimization methods, many phases have been exhausted due the fact that the need of opti-
mization is primordial in science and engineering. Just consider the evolution of linear, quadratic programming
or dynamic programming, all being major optimization sub-fields intended to satisfy specific needs. During the
80’s a boom of di�erent methods took place, mainly following the trend of gradient descent algorithm, but since
the 90’s there is a growing trend to employ Machine Learning, Genetics and Evolutionary algorithms (Rajesh
Kumar Arora, 2015).

Despite the selected algorithm, the modeling phase always precedes the optimization allowing for a mathemati-
cally description of the actual problem. During the modeling phase, variables, parameters and constraints must
be defined in a way that properly represents our system. Let us consider the modeling of a physical spin system
using ISING (Hartmann and Rieger, 2001). By using this model, the idea of traditional optimization methods
to find a state that satisfies the imposed constraints i.e., the temperature, is unfeasible. The system and the
problem impose the use of stochastic methods, like Monte Carlo techniques, to infer probability distributions
for the system’s states. This situation depicts the importance of modeling and appropriately selecting the right
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optimization method for the problem.

A rephrasing of the optimization problem would be that our goal is to maximize or minimize a function, which
is something conceptually clear from calculus courses. This definition explains why so many disciplines find of
great value the implementation of optimization methods. Under this criteria, an optimization problem can be
expressed as,

min f(x) (6.1)

subject to,

gi(x) Æ a i = 1, 2, ..., m (6.2)
hj(x) = c j = 1, 2, ..., n (6.3)

(6.4)

x =

S

WWWWWU

x1
x2
.
.

xn

T

XXXXXV

where gi are inequality constraints while the hj are equality constraints. The xi corresponds to the design vari-
ables which are usually bounded (constrained optimization) by maximal and minimum values, in other words
xmin Æ xi Æ xmax. Therefore, the constraints are functions of the design variables and, if the set x of design
variables satisfy all the imposed constraints is thus considered a feasible solution. The point xs from the set of
feasible solutions S that allows for the minimum of f(x) to be reached is called an optimum point.

min
xiœS

f(x) (6.5)

Thus, the idea of minimizing a function implies a lack of desirability of solutions for a particular model, in other
words, f(x) represents the cost of using xi as a solution. In a global view, cases could exist in which there are
two “issues” to address but cannot be combined into a single measure of cost hence creating a situation in which
more than one objective functions must be optimized. This is usually known as Multi-objective optimization.
An objective function can be a mapping from n dimensional into a one-dimensional space,

’x œ Rn, f : Rn æ R (6.6)

A linearly constrained problem is characterized by functions whereby the constrains satisfy g : Rn æ R. On
the other hand non-linear constraints are expressed by function with more than one feasible point to satisfy the
equality constraint, for example a circle or elliptical functions.

6.1.1 Global and local minima
As for the objective function, in practical terms, the optimization problem frequently involves functions that
have more than one minima point. This situation manifests itself as false global solutions emerging from an
algorithm incapable of further exploring the solution space.

In the Fig. 6.1, two minima points can be found though one global minima can be identified. Functions like this
pose a challenge for algorithms and become a major concern during the selection and tuning of an algorithm.
As we will see later, algorithms like the Particle Swarm Optimization (PSO), can easily fall in local minima
points hence unable to get out of the well to finally reach the global minima. It strongly depends on the type
of algorithm and the hyper-parameters selection to ensure it finally reaches optimal solutions.
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Figure 6.1: Function with two local minima points.

Techniques have been developed to help to establish a between the model and the characteristics of the selected
algorithm. This is commonly known as transformations or performance enhancing techniques, which implicitly
or explicitly introduces changes to the variables or constraints to improve the e�ectiveness of the algorithm.
This is not a minor subject as there is a explicit need to prevent finding local minima.

There are two paradigms to apply some transformation to our objective function or the algorithm in order to
reduce the probability of finding a local minima instead a global one. Trajectory methods are based on changing
the direction as the algorithm descends into a local minima thus switching to ascend when reaching that minima
point. As the algorithm explores the solution space in the opposite direction, a maximal point is expected to be
found, assuming a smooth di�erentiable curve. If the maximal point is found, the algorithm is switched back
to descent trajectory hence there is a chance for the process to end in a new minima.

The second transformation is known as penalty methods. This method directly modifies the objective function,
preventing the local minima by excluding them through penalizing functions applied to each local minima. This
type of transformation is tightly related to heuristic methods as the process is improved by the introduction of
heuristics to avoid false local minima (Törn and Zilinskas, 1989).

Transformations go beyond the realm of local minima to become widely used techniques to face multi-objective
optimization problems as well as to transform constrained problems into unconstrained ones. For instance, let
us consider a situation in which our problem has n objective functions fn(x). We can define a new function,

’x œ Rn, F : Rn æ R (6.7)

with,
F (x) = w1f1 + w2f2... =

ÿ
wnfn (6.8)

in which wn are weights defined mainly on the basis of experience or via heuristic methods. Hence a new function
F (x) is formed which maps to a one-dimensional real space and becomes our new minimization/maximization
objective.
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In a penalty method, the algorithm penalizes the objective function as constrains are violated. Let us consider
a new objective function that includes constraints expressed as a Lagrange function,

F (x) = f(x) +
ÿ

j

⁄jhj(x) +
ÿ

i

µigi(x) (6.9)

A penalty is applied by two means, by transforming constraints into functions and by adding a penalty param-
eter. constraints can be expressed as functions that add a value to the total function when the constraints are
not satisfied, and become zero in the opposite case. If our constraint is gi Æ 0, then,

max[0, gi(x)] (6.10)

would be a valid function to apply. Thus equation 6.9 becomes,

F (x) = f(x) ± penalty (6.11)
F (x) = f(x) + r

ÿ

j

hj(x) + r
ÿ

i

max[0, gi(x)] (6.12)

where r is the penalty coe�cient, which becomes a tunnable parameter during the optimization process.

6.1.2 Review on Optimization Algorithms
After broadly defining an optimization problem, we have to pay attention to the implementation of methods
to solve them. The rise of new computational methods and the growth in the processing capabilities enabled
the development of maximization/minimization methods, many of which were around for decades before being
e�ectively applied to science and engineering problems. These methods are described in the form of operations
to solve a problem which, in many cases, is traced back to ordered computational sentences (Baldick and Uni-,
2006). In this sense, an algorithm is the structure of operations that e�ectively solves a problem. Moreover,
there are many adequate alternative structures to find an answer for an specific problem only distinguished by
their speed to come up with a satisfying solution.

Algorithms are classified into direct and iterative. The former means that there is finite list of steps to arrive to
a solution while the latter implies the need of recurrent cycles of the operation list to finally obtain a solution.
Though this topic is of great interest, the scope must be narrowed down to iterative algorithms, to focus on
new concepts as random exploration.

The idea that supports the types of method to solve multi-objective optimization problems is search space. This
can be seen as the set of decision variables that satisfy the constraints or feasible set S, furthermore, in an
problem with n decision variables, each possible solution is an n-dimensional vector. Optimization algorithms
are intended to search for vectors in the search space that optimizes the objective function by implementing
search strategies. The Fig. 6.2 shows some common optimization methods.

6.1.2.1 Probabilistic strategies

This strategy applies sampling techniques to select points in the search space, to evaluate them and to choose
the best (Bozorg-Haddad et al., 2017). As the reader may notice, the larger the decision space the greater the
computational overhead; this situation can grow until becoming unfeasible to implement due to time an com-
putational required resources. This type of algorithms are frequently performed through methods like random
search in which the space is explored randomly choosing prospect solutions and then evaluating their objective
functions.
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Figure 6.2: Optimization approaches taxonomy. Source: Coello et al., 2007.

As random search methods soon become ine�cient and unpractical, solutions have been provided to solve the
issue of having large search spaces hence algorithms like the targeted sampling have become widely used to the
point of being the foundation for meta-heuristic methods. These methods have more systematic search strategy.

6.1.2.2 Heuristic and meta-heuristic strategies

Heuristics are widely seen as problem-solving methods to reach su�ciently good approximations. For instance,
the rule of thumb is an heuristic method in which a guess is made based on prior information or some predeter-
mined assessment parameter.

These methods take into account the experience gained previously to select feasible solutions. Each problem
requires a particular heuristics in which the goal consists in finding potentially good solutions, but not solving
the problem itself. This characteristic necessarily implies the use of gained experience through iterative pro-
cesses to refine the selection of the proposed solutions. A side explanation from the search-space perspective, is
that heuristics remove portions of the search space to reduce the number of solution to be tested thus targeted
sampling gradually centers the attention in regions of the search space where is very likely to find the global
optimum (Bozorg-Haddad et al., 2017).

An empirical salient feature is that these algorithms own what is called a problem-independent design, which
means that these methods are well suited for all kind of complex problems. This is an advantage to tackle ex-
tremely complex problems that are hard to solve by traditional means. Moreover, an advanced version of heuris-
tic methods are the Meta-heuristic and evolutionary algorithms which comply with the problem-independent
optimization principle.

At a fundamental level, meta-heuristic algorithms simulate elements and procedures that translate into intel-
ligent behaviors in nature, for instance, evolutionary computation and swarm intelligence belong to this cate-
gory of algorithms. Meta-heuristic algorithms like genetic algorithms, particle swarm optimization, simulated
annealing and variable neighborhood search, are widely used in di�erent field such as genetic engineering, aero-
dynamics, and electromagnetic design, as a consequence of the adaptability to almost any sort of optimization
problem.

6.1.2.3 Population based strategies

What distinguishes these type of algorithms from others is their population-based approach in which a pop-
ulation of feasible solutions is created and, through an iterative process, a refinement of that population is
performed by selection and replacement procedures therefore giving birth to a new population that carries the
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best inherited characteristics of their predecessors (Rao Kurada et al., 2013;Bozorg-Haddad et al., 2017).

Figure 6.3: A feasible solution space spanned by two variables. Source:Bozorg-Haddad et al., 2017.

A remarkable enhancement, in comparison with other algorithms, is the parallel-search process. Instead of using
a single proposed solution to evaluate its fitness, populations are formed by many individuals all having its own
fitness value. The refinement also occurs in parallel manner because the heuristic rules are equally applied to
all members. Therefore, whether a couple of individuals or a very large populations are used, the refinement
still occurs hence reaching nothing less than a local minima solution.

Meta-heuristic algorithms and population based methods are rarely deterministic in nature. On the contrary,
they are more stochastic as the population is randomly generated from the search space, mainly during the first
steps of the algorithm. In this case, there is no meaningful di�erence in the nature of the decision variables,
whether they are discrete or continuous is not a relevant issue. As for the continuous variables, a sample must
be randomly taken between their lower and upper boundaries by means of a distribution function which, for all
practical purposes, is usually chosen as a uniform distribution for random generation of the variables.

By including the random generation of the individuals and the sampling method governing the mutation process
a region of feasible solution from the whole search space can be defined. This is showed in the Fig. 6.3 for a
two-variable case in which a two-dimensional solution space is spanned. There is a feasible region established
by the joint knowledge of the max and min values for each variable.

Our intention is to get more fully acquainted with the suitable methods to optimize the quadrature hybrid thus
finding a design that complies with the constraints introduced in former chapters.

6.2 Particle Swarm Optimization (PSO) Algorithm

6.2.1 Theoretical background
Instead of getting right into the PSO algorithm and its structure, it is of greater value to briefly introduce
the concepts involved in genetic and evolutionary algorithms. This will be of help to understand how the
PSO works and how the structure must be developed to fulfill the guiding principles of the population-based
meta-heuristic algorithms.
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There is a very diverse field of study around these algorithms resulting from a significant number of real-world
applications in which the concepts have been tested with exceptional results. As the field grows, many new
alternative algorithms are proposed, for instance, the multi-objective Evolutionary Algorithm (MOEA) which
is a generalization of Evolutionary Algorithms (EA), or the mimetic algorithm (MA) which is a hybrid between
EA and local search algorithm. These algorithms di�er from each other but all keep the same foundational and
core process (Corne and Lones, 2018). Computationally speaking, PSO is an extension of cellular automata
(CA), in which the cells in CA can be seen as the swarm. Both models follow the principles of a) individual
particles updated in parallel, b) new values depend only on the previous and its neighbors and c) all particles
update under the same rules (del Valle et al., 2008).

6.2.1.1 Genetic and evolutionary algorithms

Nature-inspired algorithms adopt the ways that nature uses to adapt to challenging environments or systems.
On the one hand, Genetic Algorithms (GA) are based on mechanisms of natural selection namely survival of
the fittest. Intuitively, we can realize that the population undergoes many transformations (by cross-over),
furthermore, those changes manifests through generations. As the algorithm mimics nature, the individuals
are selected from their fitness to environmental conditions leaving a final individual as the best at the end of
the process. On the other hand, Evolutionary Algorithms (EA) combine adaptation and learning in order to
mimic “Intelligent Behaviors", in which adaptation occurs by evolution (by mutation) exploiting information
from previous steps (Parsopoulos and Vrahatis, 2010).

Algorithm 1 Genetic and Evolutionary core algorithm
Initialize:

Population
Evaluate: Population
while condition do

Apply: Selection
Apply: Crossover/combination
Apply: Mutation
Evaluate: New individuals
Update: Population

end while

Algorithm 1 shows the core operations performed when developing GA and EA. The di�erences sprout as the
specific operators are adjusted for the problem we are dealing with, for instance, the selection can be done
di�erently depending on whether binary or real-numbered representations are used.

Population initialization: A first generation generated from the search space. The most common procedure
is a random generation of this initial population using a uniform distribution spanning the whole the search
space. As the designer gathers information about the characteristics of the population or regions of a higher
potential to find a solution, di�erent distributions functions can be used to select a higher number of individuals
from those special regions.

Selection: A variety of approaches can be used to select individuals by either deterministic or stochastic cri-
teria. A deterministic criteria consists in selecting the best individuals directly namely those with the lowest
fitness value. There are other stochastic methods like tournament selection and roulette-wheel selection (Par-
sopoulos and Vrahatis, 2010).

Crossover or combination: This is a procedure in which two individuals are crossed to produce a new
individual which has information carried by its parents. The crossing can randomly happen between parents
selected in the previous step by applying an exchange operation of sub-parts of them.
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Mutation: This process is fundamental in the heuristic optimization process as it means a change in the
properties of the individual to fit the environment. The mutation has a goal of keeping the population as
diverse as possible thus avoiding undesirable behaviors, which in our case means getting stucked into local
minima. If we consider a case in which the individuals are binary represented, a mutation operation could
consist of random bit flips. Thus, mutations can be realized as randomly introduced perturbations in each
individual’s structure.

6.2.1.2 Particle Swarm

The ground for the PSO algorithm is the meta-heuristic of swarm intelligence. This behavior is seen in flocks
of birds as they achieve the goal of reaching a destination despite the high number of di�erent individuals,
which finally inspired Eberhart and Kennedy (1995) to develop the algorithm. Swarm intelligence deals with
many-individual systems who coordinates themselves without centralized control. There are many theories on
how they achieve control in a decentralized manner, but the most accepted states that this behavior results
from the local interaction between individuals which finally translates into a collective behavior.

The PSO algorithm is based on this kind of social interaction seen in bird flocks. An individual seeking for
food in a region could have a hard time finding it, but instead of keep looking in the same spot, it is more
“intelligent” to follow the bird that is known to be closer to food. This same principle is followed by the PSO
in the search for optimal solutions.

The bird population is expressed as a set of points in the solution space called particles. These particles are eval-
uated against a fitness function which measures the distance to food. Additionally, each particle has a direction
and speed guiding how it moves around the search space. As each particle has an associated fitness value hence
the best particle becomes the leader of the flock, which is followed by the other particles around the search space.

A key ingredient of the heuristic process relies on how each particle determines its next position in the search
space. This is achieved by using a) its best individual position and b) the best position achieve globally by the
group. This particle updating is related to the mutation element of the more universal algorithm, in which the
new position is set by a function that uses best individual position and best global position as well.

6.2.2 Structure
Two of the main structural elements of the PSO have already been mentioned namely particle and velocity. A
third element that characterizes a particle is position. As a population-based algorithm, initializing the particles
population is one of the first tasks, which is done by randomly initializing positions and velocities.
To be more specific, a particle is represented by a vector which entries are the decision variables that determine
the search space. In an n-dimensional optimization problem, particles are defined by vectors as,

particle = X = [x1, x2, ..., xn] (6.13)

where X represents a possible solution to the optimization problem. The PSO starts by randomly generating
many particles thus the population can be seen as a matrix of size m ◊ n where m denotes the size of the
population of feasible solutions.
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Figure 6.4: Flow chart for the PSO Algorithm.

After creating the population, every particle must undergo an evaluation to classify which one holds the best
position in the search space. Two values are used to track every particle’s performance namely the pbest and
the gbest. The former the best position array achieved by every particle, while the latter is the best position
among all particles.

pbest = [best x1, best x2, ..., best xn] (6.14)
gbest = [globalbest x1, globalbest x2, ..., globalbest xn] (6.15)

Keep in mid that the xi entries are explicit values given to every variable of the problem, is written in vector
form to represent a position in a hyper-space. As we are working with an iterative algorithm, in every cycle of
the optimization process the pbest and gbest are updated which means that the holder the best global position
title could change in every iteration. This process must stop when the convergence of all particles around a
consistent global best position takes place.

6.2.2.1 Velocity and particle update

A key feature of the algorithm is the use of velocity as the method for particles to change direction and follow
the global best particle. This can be seen as a particle whose flying around the search space is determined
by the velocity vector. This parameter is used to update every particle’s next position by a calculation based
on the pbest and gbest which represent available information regarding own experience and knowledge of the
performance of other individuals. This calculation accounts for the relative distance between a particle and the
global best, furthermore, if there is a significant relative di�erence a high speed in the direction of the global
best is allowed to quickly follow the leader. That is not the case when the particle is very close to the global
best particle, in which case the speed must decrease in order to remain close to the best individual.
As in the case of the position the velocity is an array for every particle as well, in which every entry is the
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velocity corresponding to each variable of the n-dimensional space. Thus, for a particle j its velocity looks like,

Vj = [v1, v2, ..., vn] (6.16)

The first approximation to the velocity equation, must include local and global knowledge but, as these two
factors change its relative importance for every variable involved in our problem, makes more sense to consider
random weights for every factor, thus the velocity can be calculated by,

v̨i(t) = v̨i(t ≠ 1) + „1rand1 ·
1

˛pbesti ≠ X̨i(t ≠ 1)
2

+ „2rand2 ·
1

˛gbest ≠ X̨i(t ≠ 1)
2

(6.17)

where „1 and „2 are hyper-parameters to assign specific weight to the individual or to the social prior knowledge
hence the designer is able to put more or less stress on each one these factors. Lastly, The random numbers are
sampled from an uniform distribution between 0 and 1.

The first component of the sum in equation 6.17 is known as inertia or momentum. It models the tendency to
continue in the same direction for every particle. The second component describes an attraction towards the
best individual position which is called memory or self-knowledge. Finally, the third component is an attraction
towards the best global position which is known as social knowledge.

As for the particle’s update, it is a process dependent of the velocity calculation which allows for a new position
to be obtained as,

X̨i(t) = X̨i(t ≠ 1) + v̨i(t) (6.18)

Algorithmic wise these functions are time dependent which is equivalent to iteration steps, therefore every cur-
rent state depends on the prior positions and velocities.

Though this simpler version of the velocity formula is a kick-starter to introduce the algorithm and its compo-
nents, e�orts have been made by di�erent authors to improve convergence and the e�ectiveness of the algorithm.
One of the first major modifications introduced by Shi and Eberhart was the so-called inertia weight Ê.

v̨i(t) = Ê ◊ v̨i(t ≠ 1) + „1rand1 ·
1

˛pbesti ≠ X̨i(t ≠ 1)
2

+ „2rand2 ·
1

˛gbest ≠ X̨i(t ≠ 1)
2

(6.19)

which is called canonical PSO. A modern version of the algorithm proposes an alternative definition for velocity,
which achieves a higher convergence rate (Clerc and Kennedy, 2002),

v̨i(t) = ‰
1

v̨i(t ≠ 1) + „1rand1 ·
1

˛pbesti ≠ X̨i(t ≠ 1)
2

+ „2rand2 ·
1

˛gbest ≠ X̨i(t ≠ 1)
22

(6.20)

These modifications stem from a number of researches to face some undesirable dynamical behaviors of the
traditional version of the algorithm. One of the most noticeable conducts is the explosion of the swarm if
velocities are not limited to control trajectories. Thus, the use of ‰ coe�cient is recommended by Clerc and
Kennedy (2002) for particles to take smaller steps. Also, the velocity clamping by setting strict bounds is used
to prevent the extreme large steps hence avoiding the swarm divergence (Parsopoulos and Vrahatis, 2010).

6.2.2.2 Hyper-parameters selection

To properly implement the PSO, several factors must be considered to favor convergence and avoiding explo-
sion of the swarm. Those considerations are expressed in a set of configuration parameters that need carefully
selected.

Regarding the constriction and inertia factors, solutions have been proposed by Van Den Bergh and Engel-
brecht (2006) and Clerc and Kennedy (2002) in which, depending on the kind of selected velocity equation, the
values for Ê or ‰ are dynamically assigned, whether by using random generated numbers to introduce a chaos
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Table 6.1: PSO hyper-parameters.

Parameter Symbol Description References
Inertia or Constric-
tion factor

‰ Control convergence time Shi and Eberhart (1998),
del Valle et al. (2008)

Velocity max. limit Vmax Setting the velocity limit to avoid
explosion of the swarm

Parsopoulos and Vrahatis
(2010)

Social coe�cient „2 Relative importance of social be-
havior to calculate next position

Wang et al. (2018),
Carlisle and Dozier (2001)

Self-knowledge co-
e�cient

„1 Relative importance of individ-
ual best performance.

Wang et al. (2018),
Carlisle and Dozier (2001)

mechanism into the system or by having a calculation rule. Despite of how carefully the number is theoreti-
cally obtained, the designer must fine-adjust these values to avoid premature convergence hence reaching local
minima. Shi and Eberhart (1998) suggested to set the parameter to [0.9, 1.2] and a linearly time-decreasing
inertia weight to significantly enhance the PSO performance. Further researches suggested the use of quadratic
functions to adjust the parameter along the iterative process (Tang et al., 2011). In general, the adoption of an
adaptive mechanism that reduces the inertia as the iterative process advances, has a significant impact in the
positive performance of the algorithm.

As for the learning factors or social and self-knowledge coe�cients, let us recall that their function it to pull par-
ticles toward the particle best and the global best. These values have been obtained mainly through empirical
evidence. They are usually selected to be 2.0 but experiments have proved that setting values to „1 = 2.8 and
„1 = 1.3 can be beneficial for certain types of optimization problems (Carlisle and Dozier, 2001). An interesting
work is presented by Mashayekhi et al. (2019) in which a parametric study is performed for di�erent scenarios
of a simulated optimization problem.

Finally the velocity limit must be set. The selection of this parameter is not as straight forward as one may
think due to the lack of knowledge regarding of how good a choice is. Moreover, if we use a dynamic inertia
factor, the velocity limit should vary through the iterative process as well. Furthermore, a velocity limit must
be set for each variable involved in out optimization problem, therefore the velocity limit is an n-dimensional
array, not just a single value to govern the dynamics of each particle. A common choice is to use the available
range of each variable to set velocity within those limits, for instance, if a variable x1 has a x1max = 10 and
x1min = 3, its dynamic range is 7 thus the velocity is maintained in that range,

Vmax = Xmax ≠ Xmin

2 (6.21)

Other alternatives are open such as having a dynamically reduced velocity according to the success of search or
linearly decreased with time, however, there is situation that need to be looked after that is avoiding particles
flying out of the physical solution space.

6.2.2.3 Absorbing walls

In this research we introduce a novel implementation of a method call absorbing wall or bouncing technique.
Though this method is implemented in the optimization of electromagnetic systems (Robinson and Rahmat-
Samii, 2004), but it is the first time is has been implemented to optimize a quadrature hybrids for radio
astronomy applications.

Let us consider an initial point in a two-dimensional search space, X = [x1, x2]. As we know, the variables
have a range defined by its max and min values. It is possible that a new position obtained by the particle
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Figure 6.5: Reflecting wall or bouncing method.

position update equation 6.18, throws the particle outside of the feasible region, which is called invisible wall.
An immediate solution is to restrain the particle to leave the search space by setting the new position to the
boundary values x1max, x2max, x1min or x2min, if the calculation overcomes the limits. This solution harms the
free movement of the particle around the search space hence a�ecting the convergence of the algorithm.

There are three approaches to allow the point (ball) to return into the search space thus keeping the exploration
inside the feasible region. The first is called absorbing walls which sets the velocity to zero for the dimension
which hits its boundary namely upper or lower limit. The boundary absorbs the energy of the particle and
eventually during the iterative process, the velocity will change in the opposite direction.

A second approach is the reflecting wall. When the particle hits the boundary, the sign of the velocity is imme-
diately changed in that dimension so the particle is reflected back into the solution space.

This research implements the third approach known as damping boundaries. In this case the boundaries behave
like dampers which absorb energy but reflects the ball in the opposite direction with a smaller velocity magnitude.
As it seems, this is a hybrid solution between the absorbing and reflecting methods.
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PSO Architecture for Quadrature

Hybrid Optimization

The on-going e�ort to develop a quadrature hybrid that fully covers the ALMA Band 2+3 is a driver for this
work to take place. Many parties got involved but, in particular, the work done by Restrepo and Lucero (2020)
must be acknowledged. They provided an initial implementation of the PSO for a blade and bow-tie antenna
intended to operate in the Mapper of the IGM Spin Temperature (MIST) experiment. From there, improvements
and new techniques where applied to fulfill the quadrature hybrid requirements and to improve the algorithm’s
performance.

• The code was developed to fulfill the coding best practices, including modularity, attending the DRY
principle and avoiding of memory leaks.

• Python 3 was the language of choice not only to have a faster development process but for the available
tools to apply posterior data analysis as well; this is a key activity to implement the surrogate-based
optimization.

• A fitness function is proposed in which multiple optimization objectives and constraints are condensed.
The function was constructed using a weights transformation and a Tikhonov-like penalty term.

• A fully functional version of the code can be found at this github repository. The user must have a
fully operational version of the ANSYS HFSS commercial software to perform the simulations during the
optimization process.

7.1 Surrogate-based meta-heuristics and particle encod-
ing

Before getting into details of the classes and coding structures used along the solution, we want to introduce
the global optimization framework which contains within itself the PSO algorithm.

Surrogate-base optimization (SBO) technique is based on the use of surrogate models to speed up the finding
of optima points. At some point, other algorithms are considered as sub-optimization as the surrogate model
allows for a faster but raw selection of the feasible solution space and, through and iterative process, the selec-
tion in refined by adding information from previous optimization batches. Although the method can be coded
and automated a “manual” version can be applied by reviewing the optimization results and analyzing them to
fine adjust parameters.

The central concept is the one of surrogate model which consists of a raw approximation of the model to op-
timize. In our research the surrogate is a raw model of the quadrature hybrid represented by three vectors
namely the nominal model, maximum and minimum ranges.
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Figure 7.1: Surrogate-based meta-heuristics.

Every quadrature hybrid design is described a nominal vector whose entries are the physical dimensions to
reproduce it at every point during of the optimization process. Let us consider the quadrature hybrid depicted
in Fig. 7.2. This model is not necessarily supposed to be a hybrid that fully complies with all the requirements
for our problem but it is a auxiliary model to search for an optimized version. The model is describe by a vector
which, in fact is the particle containing the n-dimensional information of our optimization problem.

Figure 7.2: Meta-model for a quadrature hybrid.

There are a number of ways to write a vector that could represent our geometry, depending on the attributes
of our surrogate model. For instance, let us conceive a quadrature hybrid whose branches and separations are
all the same, therefore a vector to describe the geometry could take the following forms,

particle = [a, b, c, h, d, L] (7.1)
particle = [a, b, d, c, c, c, c, c, c, c, h, h, h, h, h, h, h, h, L] (7.2)

In a highly symmetric hybrid in which the periodic structure is recurrent all along the device, these vectors
should be enough to reconstruct it. If want to try more flexible geometries in which all branches have a di�erent
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height, then the particle vector must incorporate that new information in some way, for example,

particle = [a, b, d, c, c, c, c, c, c, c, h1, h2, h3, h4, h5, h6, h7, h8, L] (7.3)

We still have to account for three factors to fully define a quadrature hybrid in terms of an optimization object:

• The analytical model: In Chap. 4 the quadrature hybrid was fully defined thus we must take into
account all prior knowledge at this step of the optimization process. The end-to-end symmetry is critical
to obtain a feasible quadrature hybrid, hence the branch height for the opening and closing branches
must be the same. In fact, the whole device must be symmetric with respect to the plane P showed in
Fig. 7.2.

• The simulation tool: In this research we have used the ANSYS HFSS software as the tool to simulate
every proposed design encoded in the particle vector. The software must have an interface through which
our algorithm can easily pass the vector and to receive the simulated results back. In our case, a base
model must be created beforehand to work as a template on which the dimensions are put in to draw
the proposed geometry.

• The range of the variables: The maximum and minimum ranges must be encoded in vector form as
well. Furthermore, in our surrogate-based process, these vectors become the key object to put all the
knowledge gained in every optimization batch. For example, a max vector for our proposed particle 7.1
takes the form,

xmax = [amax, bmax, cmax, hmax, dmax, Lmax] (7.4)
xmin = [amin, bmin, cmin, hmin, dmin, Lmin] (7.5)

As the reader may notice, these vectors are the key resource to establish the hyper-dimensional bound-
ary to apply the absorbing wall technique, moreover, they are the place where search space regions are
defined. Recall that, as we refine the selection of portions of our search space, we are getting closer to
global minima while simultaneously reducing the computational cost of optimization process

After defining our particle vectors, the surrogate-based model operates as showed in Fig. 7.1. An initial model
is submitted to be sub-optimized by the PSO algorithm, which throws a resulting quadrature hybrid design
after a full optimization batch. Therefore, the SBO assists the core PSO optimizer in narrowing the search
space but the heavy lifting is done by the PSO algorithm as showed in Fig. 7.3. This graph resumes the op-
timization process stemming from the more general PSO flow introduced in Fig. 6.4 but customized to our needs.

After a full optimization batch, the final design must be reviewed by an expert to assess the quality of the
resulting hybrid as the goal is to provide a refined surrogate model for the next full optimization batch of the
PSO algorithm. To achieve this goal, the expert must adjust the nominal model but, higher priority must
be assigned to modify the max/min vectors to produce a narrower search region for the PSO. This may seems
di�cult at first, but as the number of optimization runs increases, so does the experience of the expert regarding
the particular optimization problem.

7.1.1 Core PSO process
To implement the PSO every optimization problem must be assessed to precisely understand how every step
applies. Optimizing an electromagnetic system such as the power dividers and antennas, requires a mean to
obtain electromagnetic performance information of every model proposed by the algorithm. As the reader may
notice, these performance measure will change from one problem to another, furthermore, the fitness function
will be certainly di�erent. As for electromagnetic and microwave devices the designer has two alternatives either
a) to develop an analytical model of the device and hard-code its own simulation tool or b) to use a commercial
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Figure 7.3: Quadrature hybrid optimization architecture using PSO algorithm and HFSS simulation tool.

simulation tool.

In this research we adopted the second approach by using ANSYS HFSS simulation software. The software
provides an interface that enables users to run python scripts to share information back and forth, moreover,
it allows an external execution control which in our case is very convenient to manage the launch of every
simulation and to receive back specific reports like S11, S21, S31, S41, �Amp and �„.

The optimization process is divided in two stages. The first stage is a single iteration through all randomly
generated particles to submit every one of them to the simulation process and, consequently, to receive back
the electromagnetic performance data. The information is shared back to the algorithm in CSV files which are
used to calculate the fitness measure for every particle. Recall that the fitness will provide a measure to sort
particles thus identify the best global and individual position. Finally, the velocities are calculated allowing for
the new positions to be obtained.

The second stage is an iterative process of recurrent executions of simulation, evaluation, selection and particle
updates. Is during this stage that the optimization takes place by a continuous cycle of mutation and application
of the principles of the PSO, to be ended either by exhausting the number of pre-set iterations or by finding a
convergence point.

73



7. PSO Architecture for Quadrature Hybrid Optimization

7.2 PSO classes
The use of object-oriented programming (OOP) became one of the most salient features of the main-stream
languages today. Though commonly mentioned, it is rarely consciously used being applied more as a default
feature in many frameworks. Let us recall that the idea is to encapsulate data structures and procedures into
separate entities which can be treated as objects. These objects can be further instantiated into child entities
thus allowing a replications of the parent object while maintaining its features.

Figure 7.4: UML diagram for Swarm and Particle classes.

The PSO algorithm has a particular component that matches perfectly with the OOP paradigm namely the
population-based characteristic. In this research we developed two main objects to implement a robust version
of the PSO: Swarm and Particle Classes. These basic abstractions allowed a solution that easily generates and
replicates particles.

There are many benefits on using this type of programming paradigm, for instance, if there is distributed-
processing environment (cluster) where multiple instances of the PSO can concurrently run, we could easily
have many optimization threads simultaneously executing.

There are multiple advantages in this proposed structure, most of them related to the traceability and man-
agement of the optimization process. There is self-describing relation between the swarm and the particle
population as the population is treated as an array of particles. We can also track the global behavior of the
PSO algorithm encapsulated in the gbest, pbest and pg variables. As for the particles, we can have reproducible
entities with homogeneous methods in which every particle has a unique randomly-generated identifier to track
it throughout the full optimization batch.

74



7. PSO Architecture for Quadrature Hybrid Optimization

Table 7.1: Swarm and Particle Classes detailed.

Class Method Description
Swarm init Initilizes the swarm instance by defining the

number of particles, the number of variables
of the optimization problem. Also initializes
the max/min boundaries and velocities array
as well.

Swarm create This method is used to create the population
of particles as an array of particles. It invokes
the Particle class to randomly create as many
particle objects are required.

Swarm nuevas_particulas This is the core method in which the parti-
cles are updated by using the velocity equa-
tion hence this is the place where „1, „2, ‰
and damping coe�cient are used.

Swarm get_particle_best_fit Reports the index of the best particle from
the whole population. This index is important
to use it as reference the global best particle
through the full optimization process.

Particle init A particle is an array named values_array
which has the same dimensionality as the
problem. As the particle is created the ar-
ray is filled with random values taken from a
uniform distribution.

Particle fill_zeros_array This method provides a mean to easily reset
the values in the array.

7.3 Parameters
Section 6.2.2.2 gives an introduction to the PSO’s hyper-parameters and its selection based on prior experi-
mental findings. Herein is given a briefly description of the actual set of hyper-parameters and how the tuning
process was applied to our specific optimization problem.

Since the hyper-parameters are mainly related to the velocity equation, we ended up working with the equation
6.19. Though tests were performed using the equation 6.20, the most promising results were obtained with
the former. An computationally feasible optimization problem in which the simulation process is relatively fast
namely in the range of 0.1≥10 seconds, the population size can be of the order of hundreds of particles while
the number of iterations can be in the range of 50≥100. In a situation like that, there is enough room for con-
vergence to take place but, as it happens in our case, a single particle simulation can easily take ≥250 seconds
thus limiting the computational resource and therefore imposing limits to the number of particles and iterations.

In our initial simulations, every run could take around 30 iterations with a population of 10≥15 particles, but
under those conditions, we had to count with a convergence control. We found this to be reachable by using
the fore-mentioned equation and the parameters Ê. This parameter provided a tool to have control over the
convergence time.

As already mentioned, the literature suggest that this parameter could be dynamically changed through iter-
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Table 7.2: PSO hyper-parameters.

Parameter Symbol Value

Inertia or Constriction factor Ê 0.85 · Êiteration≠⁄
0 w0 = 0.9 ⁄ = 0.15

Velocity max. limit Vmax
3(x̨max≠x̨min)

5

Social coe�cient „2 2.1

Self-knowledge coe�cient „1 2.0

Damping damping 0.7

ations to favor the convergence by starting the process with a relatively high inertia a allowing the system to
get looser as the iterations pass. We finally came up with an empirical equation that controls the dynamics of
the convergence time,

Ê = 0.85 · Êiteration≠⁄

0 (7.6)

where w0 = 0.9 is the initial inertia coe�cient to be modified as the current iteration number increases. The
value ⁄ = 0.15 can be modified to accelerate the convergence at convenience.

By using this setting, the PSO can easily reach a quadrature hybrid optimized model between the 8 and 12
iterations. This is a great accomplishment similar to the convergence obtained by Han and Zhang (2012) who
used the surrogate model to optimize an airplane wing design.

As for the velocity limit, the calculation is straightforward with the help of equation,

V̨max = 3(x̨max ≠ x̨min)
5 (7.7)

where x̨max and x̨min are vector containing the maximum and minimum values a variable can take in our
search space. Regardless of the fraction, this equation is similar to equation 6.21, both having the same swarm-
explosion issues as well.

Finally the values for „1 and „2 are showed in table 7.2, where both are the result of a trial-and-error evaluation.
Although many researches support a value of 2 for both parameters, we evaluated the impact of using a di�erent
relation between them. A first trial consisted of assigning a higher weight to the social factor, furthermore,
the used values were „1 = 16 and „2 = 2.0. The outcome was that the first proposed global solution did not
allowed for other particles to explore the search space, which is an unwanted behavior. In an ideal scenario the
best global particle allows for other individual to improve their own behavior and to compete between them to
take the best global position.

Moreover, as we switched the emphasis in favor of the best individual performance, the particles were inclined
to follow their best historical value therefore producing a very long convergence time, if ever happened. Conse-
quently, the best performance coincided with the one suggested by the literature, with a small di�erence in the
social parameters, which provided an extra push for particles to follow the best global particle.
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7.3.1 Absorbing wall implementation
As mentioned in Sec. 6.2.2.2, this work introduces a novel implementation the reflecting wall or bouncing
technique as there is no reference in the literature that suggests this method has been previously applied in
radio astronomy optimization.

Algorithm 2 Absorbing wall implemented algorithm
1: for part Ω 1 to m do
2: for var Ω 1 to n do
3: if velocity[part][var] > Vmax[var] then
4: velocity[part][var] Ω Vmax ú sgn(velocity[part][var])
5: end if
6:
7: particlenew.array[var] Ω particleold.array[variable] + velocity[part][var]
8:
9: if particlenew[var] > xmax[var] then

10: velocity[part][var] = damping ◊ velocity[part][var]
11: particlenew.array[var] Ω xmax[variable] ≠ |velocity[part][var]|
12:
13: else if particlenew[var] < xmin[var] then
14: velocity[part][var] = damping ◊ velocity[part][var]
15: particlenew.array[var] Ω xmin[variable] + |velocity[part][var]|
16:
17: else
18: particlenew.array[var] Ω particleold.array[variable] + velocity[part][var]
19: end if
20: end for
21: end for
22: return particlenew,velocity

Our goal is to properly deal with exploding-swarm condition, which is usually contained by using a very restric-
tive Vmax value not without negatively degrading the convergence of the algorithm. Thus the absorbing wall
method allows for a more convenient way to deal with the particles crossing the boundaries of the search space.

In the algorithm 2 we present the detailed procedure to implement the bouncing wall. First thing to notice are
the nested loops running through all particles and simultaneously running through each variable within each
particle. There is Vmax vector which contains very maximum velocity for each dimension of the search space.

The bouncing wall and the particle update operation are applied simultaneously thus every new particle is
calculated based on a damped velocity. In the line 7 we find a first approximation to the new particle without
prior knowledge of the particle leaving the search space. From line 9 through 19, each dimension of the recently
updated particle is evaluated to conclude if the upper or lower boundaries are infringed. If those limits are
crossed, the point is forced in the opposite direction with a reduced velocity by a damping factor. In case the
maximum boundary of an specific variable is crossed, the particle is updated according to,

Particlenew[dimension] = Xmax[dimension] ≠ |velocity[dimension] · damping| (7.8)

Alternatively, if the minimum is violated, the operation to update the particle is,

Particlenew[dimension] = Xmin[dimension] + |velocity[dimension] · damping| (7.9)
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7.4 Constraints
To appropriately define the fitness function, a deeper understanding of our optimization problem is required in
terms of the constraints. With explanatory purposes, some of the early optimized quadrature hybrids will be
used, to depict with more detail some of the problems the algorithm will encounter frequently to evaluate the
fitness of the proposed design.

Figure 7.5: Initial Amplitude imbalance (a), phase imbalance (b) and S-parameters (c,d) for an 8-branch
quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

In the Fig. 7.5, preliminary results are displayed for a quadrature hybrid in the 67 – 116 GHz Band. This plot
presents the specific behaviors to be found with almost every quadrature hybrid. Let us concentrate on the plot
d, where S31 and S21 are showed.

The band can be partially divided in three regions namely, lower-band (Region 1), mid-band (Region 2) and
upper-band (Region 3). Every region present its own characteristic behaviors, particularly, the R-1 and R-3
regions tend to deviate significantly from the -3dB mark established in 5. Remember that our expectation
is to stay in the range [-3.5dB , -2.5 dB] for the device to produce a �A < 1. Another characteristic of
these regions is the oscillatory behavior, evident in the form of undesired spikes as they degrade the perfor-
mance of a microwave device that is supposed to operate with very faint signals coming from interstellar objects.

The mid-band region behaves di�erently as it is usually continuous and smooth. As we studied in preceding
chapters, this region is seriously a�ected as we add branches to our hybrid with the goal of extending the band
coverage. The amplitude imbalance in this region (Fig. 7.5.a) does not comply with the constraint of staying
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below the 1 dB mark, thus a bigger e�ort must be made to keep the S31 and S21 within the [-3.5dB , -2.5 dB]
gap, furthermore, as they are pushed closer to the -3 dB mark the �A gets lower.

Therefore, to properly represent the oscillatory and well behaved functions in three separate regions, we devel-
oped python methods to split the data for each variable in three sub-bands, namely 65-70GHz, 71-110GHZ and
111-115GHz. Though this limits were established on the basis of experience, they can easily modified to test
di�erent regions.

Moreover, in every region we evaluate five constraints. Here we provide the constraint established in mid-band
region, but these values are di�erent for the upper and lower sub-bands.

Table 7.3: Mid-band smooth and oscillatory constraints.

Constraint
-3.5dB<S31< -2.5 dB.
-3.5dB<S21< -2.5 dB.
0<�A< 1 dB.
-3.5 dB<OvershootS31 < -2.5 dB.
-3.5 dB<OvershootS21 < -2.5 dB.

An important observation is that we use neither S11, S41 and �„ as these parameters will respond the the
improvement he obtain in the �A, S31 and S21 parameters thus all optimized candidate designs must be
manually inspected to ensure the proposed quadrature hybrid does comply operate under ALMA’s observatory
constraints.

7.5 Fitness function
Since our optimization problem shows all the stated behaviors namely oscillation in the lower an upper regions
and a smooth activity in mid-band region, the fitness function has to include them in its final form.

First and foremost we evaluate the S-parameters and �A vis-à-vis the pre-set constraints. For instance, we
take the S31 measure which spans from 65 through 115 GHz, and evaluate every point of the data against the
expected constraints resulting on binary results informing us if the S31 complies with each constraint. The same
parameter is evaluated in the three regions as every one has its own set of limit values to comply with a) being
within the [-3.5dB , -2.5 dB] gap and b) its value staying below the overshoot limit.

Afterwards, the penalties functions are applied as we need to punish the parameter under review depending on
how much it complies with the constraints. Let us consider the same S31 example. If the parameters complies
with the [-3.5dB , -2.5 dB] constraint along the full range of frequencies (65-115 GHz), hence the evaluated
constraint would be a stream of binary ‘1’s telling us that the figure had a perfect “score”. On the contrary, if
the figure has some point out of limits, the evaluation will throw a stream of ‘1’s and ‘0’s.

As every merit figure is evaluated using the same method, the final result is a binary representation showing
how every figure do or do not comply with the established constraints. This is valuable as it provides a mean
to give a quality measure of the whole figure encoded in a real value between 0 and 1, as follows,

79



7. PSO Architecture for Quadrature Hybrid Optimization

penaltyS31 = 1 ≠ E(x) ; x œ Binary : E = evaluated_constraintS31 (7.10)
penaltyS21 = 1 ≠ F (x) ; x œ Binary : E = evaluated_constraintS31 (7.11)

penaltyS31Overshoot = G(x) ; x œ Binary : G = evaluated_constraintS31Overshoot (7.12)
penaltyS21Overshoot = H(x) ; x œ Binary : H = evaluated_constraintS21Overshoot (7.13)

penaltySAmpImb = I(x) ; x œ Binary : I = evaluated_constraintAmpImbalance (7.14)

Since the weights are defined to emphasize certain behaviors in specific regions, the next step is, by penalizing
them, to a�ect how each behavior adds into the full fitness function. Let us recall that the weights and the
penalties are matrices thus,

W =

S

WWWWWU

w11 w12 w13
w21 w22 w23
w31 w32 w33
w41 w42 w43
w51 w52 w53

T

XXXXXV
(7.15)

(7.16)

Penalties =

S

WWWWWU

p11 p12 p13
p21 p22 p23
p31 p32 p33
p41 p42 p43
p51 p52 p53

T

XXXXXV
(7.17)

where the columns represent each of the three defined regions for our problem and the rows represent each of
the five constraints to evaluate. A penalized version of the weights is obtained by,

Wpenalized = 100 ◊

S

WWWWWU

w11 w12 w13
w21 w22 w23
w31 w32 w33
w41 w42 w43
w51 w52 w53

T

XXXXXV
+

S

WWWWWU

p11 p12 p13
p21 p22 p23
p31 p32 p33
p41 p42 p43
p51 p52 p53

T

XXXXXV
(7.18)

To be consistent, this result must be normalized to keep all weights in the range 0 ≥ 1,

wmax = max (Wpenalized) (7.19)
wmin = min (Wpenalized) (7.20)

Wpenalized = Wpenalized ≠ wmin

wmax ≠ wmin

(7.21)

In despite of having obtained weights and penalties applied, there is one missing task that is to calculate the
actual amount of oscillation or deviations from the target marks as these numbers are our actual measure to
calculate the fitness value. Two functions are used to obtained those numbers,

deviationS11,S21... = MSE (SimulatedS11,S21..., IdealS11,S21...) (7.22)
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and

Y = Ò2SimulatedS11,S21... (7.23)

Oscillation_intensity =

-----

⁄
fmax

fmin

Y dx

----- (7.24)

The equation 7.22 calculates the Mean Squared Error for each simulated parameter against the ideal or expect
value, thus a parameter like the S31 is expressed as single MSE real value. The same applies for parameter
hence we obtain a matrix with the measure of the adjustment of each figure to the expected behavior. As for
the oscillatory behavior, by using the equation 7.23 we evaluate the intensity of the spikes or the overshoot from
one point to the next by derivation. The result is a data set with very acute angles where a significant change
in amplitude happens. If the data in a particular region is smooth and well behaved, the final outcome must
be a flat zero-centered plot, but as the data presents intense oscillations, the outcome is a number higher than
0, which represents the presence of oscillations.

This numbers are written in matrix form as,

F =

S

WWWWWU

f11 f12 f13
f21 f22 f23
f31 f32 f33
f41 f42 f43
f51 f52 f53

T

XXXXXV
(7.25)

in which every row represents a constraint and the columns represent each region of the operational band, thus
the entries are the calculated measures of fit to the established constraints.
The next step is to apply the penalized weights to the equation 7.25 therefore a new matrix is obtained in which
every entry is a measure of the fitness of each feature, either amplified or damped, as follows,

product = Wpenalized · F (7.26)

where the dot operation is done using the numpy’s “dot” function. The importance of these values reside in the
diagonal of the matrix thus a python diagonal operation is applied. As these numbers could have wild variation
hence producing extremely big or small fitness values, a logarithmic function is applied.

logscaled = log 100 ◊ product (7.27)
diagonal = Diag(logscaled) (7.28)

where diagonal is a 5-entries vector each of them representing the cost for each one for the constraints through-
out the full operational bandwidth.

Since we want to segregate the e�ect of the S-parameters from the oscillatory behavior, we use a functional
used in regularization problems called Tikhonov method (Queipo et al., 2005). The equation is divided in two
parts, the first contains the loss or cost functions to quantify our empirical error while the second has a penalty
term. In Tikhonov regularization the second term is frequently used with a derivative term that penalizes high
local curves. Therefore, the first term enforces closeness to the data while the second provides information of
the smoothness of the curves.

fitness =
jÿ

i=1
Costi + ⁄

⁄
ÎDmfÎdx (7.29)

where ⁄ is the regularization term and Dm is a m-order derivative of the function f . As we already applied a
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method to evaluate the oscillatory behavior, our function reduces to,

fitness =
mÿ

i=1
Costi + ⁄

nÿ

j=1
Oscj (7.30)

In the equation 7.30 i runs through all smooth functions and j does the same for the functions that evaluate
oscillatory behavior, hence our diagonal vector must be divided into two namely the entries that represent the
cost for S31, S21, �A, and the entries that evaluate the oscillatory behavior OvershootS31 and OvershootS21 ,

fitness =
3ÿ

i=1
diagonal[i] + ⁄

2ÿ

j=1
diagonal[j] (7.31)

which yields a final fitness real value. First thing to notice is that, the fitness equation allows for new costs to be
included as far as they are part of the diagonal cost vector. In addition, after a series of trials to fine-tune the
algorithm, the ultimate ⁄ = 0.008 value is the one allowing a better mix between the smooth and the oscillatory
parts of the fitness function.

7.6 Initial optimization results
In order to fine tune the algorithm an 8-branch model was selected to be our meta-model due to the available
information and designs the could be used as a benchmark. This type of hybrid was studied in Sec. 4.2 and
simulated in 5.2, the latter being our reference to assert that the optimization process actually works.

In the table 7.4 the optimization settings are showed. Attention must be paid to the vectors, which finally
encode the geometry of the meta model and the allowed ranges to each variable that define the search space.
These vectors, as mentioned in Sec. 6.2.2.2, are subjected to modification by the expert as the knowledge of
the system increases thus refining the search space to speed up the optimization.

Table 7.4: PSO optimization settings.

Setting Value
Id ac5717cd
Iterations 20
Nominal Vector [0, 0.287, 0.251, 0.242, 0.129, 0.3, 1.3, 2.3, 3.2, 0.9, 2.8, 1.4] mm
Xmin [0, 0.15, 0.15, 0.15, 0.15, 0.2, 1.0, 2.0, 3.0, 0.75, 2.6, 1.35] mm
Xmax [0, 0.8, 0.8, 0.8, 0.8, 1.1, 2.2, 3.2, 5.0, 1.0, 3.1, 1.54] mm

Table 7.5: PSO optimization results.

Iteration Particle Array
0 0 [0.0, 0.5269, 0.6301, 0.257, 0.278, 0.29766, 1.4875, 2.458, 3.215, 0.855, 2.7178, 1.535] mm
1 1 [0.0, 0.527, 0.4270, 0.257, 0.279, 0.298, 1.488, 2.458, 3.215, 0.856, 2.718, 1.536] mm
9 1 [0.0, 0.325, 0.325, 0.193, 0.193, 0.26, 1.0, 2.0, 3.0, 0.75, 2.6, 1.35] mm
18 1 [0.0, 0.325, 0.325, 0.325, 0.325, 0.45, 1.0, 2.0, 3.0, 0.75, 2.6, 1.35] mm

After executing the full optimization batch, the obtained results are resumed in 7.5. In this table we find how
the best global particle changes along the process, furthermore, the best particle in iteration 0 namely the
random-generated particle, belong to the member 0, but as the iterations go by, the new best particle title
belong to the member 1. Something to notice is that the best particle is changing its entries, even though the
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Figure 7.6: Optimization progress through iterations 0 (a), 1 (b), 9 (c) and 18 (d)for an 8-branch quadrature
hybrid set for ALMA Band 2+3 (67 – 116 GHz).

results at iteration 9 and 18 are very close, both particles still have di�erences.

All these results can exposed and understood by plots 7.6 and the geometric view of the quadrature hybrids in
7.7. Fig. 7.6.a shows the S-parameters for the best global particle in the initial iteration. As the reader may
notice, these results are far from the ideal behavior depicted in the Fig. 5.2. Let us recall that S31 and S21
must be as close as possible to the -3 dB mark, which is not happening for the winner particle.

Something promising happens when the particles are updated by using the process mentioned in previous sec-
tions. Both figures S31 and S21 start to move towards the established mark, though many oscillations still occur
in the region 3 (upper band). The fitness function must be able to penalize this type of behavior to achieve
smoother figures, which certainly happens for iterations 9 and 18, where the global behavior approaches the
expectation presented in 5.2. In iteration 9, the S31 violates the [-3.5dB, -2.5 dB] range, something that gets
fixed as the iteration 18 is reached, where a more desirable operation of the device. Moreover, the The S11 and
S41 both descend below the -20 dB mark, while their shapes are getting closer, which is a desirable behavior as
well.
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Figure 7.7: Quadrature hybrid geometry changes through the iterative process during the optimization.

Finally, the Fig. 7.7 shows the geometries represented by the particles. Fig. 7.7.a is the random generated
quadrature hybrid over the 8-branch template. As the process advances, it is evident how the geometry is
progressively changing.

An additional but significant finding is the fact that the obtained quadrature hybrid design has an irregular
separation between branches, contrary to the reeds hybrid. The constant distance between branches is a
simplification of a more general case, which our optimization process revealed without imposing an specific
constraint in that regard.

7.7 PSO Validation
To validate the results obtained from the algorithm, our approach consisted in using a quadrature hybrid ge-
ometry previously studied for ALMA Band 5. The selected geometry consists of and 8-branch design with flat
main waveguides.

As we will show, the resulting optimized design greatly improved amplitude imbalance when compared to the
results presented by Billade et al. (2011). Hence, the operation of the algorithm and the fitness function as
well, were validated. The trials demonstrated that the algorithm can e�ectively enhance the figures from other
quadrature hybrid designs.

7.7.1 Band-5 hybrid benchmark
Billade et al. (2011) presented a first production cartridge for ALMA Band 5, covering frequencies from 163
to 211 GHz. The device is a side-band separating heterodyne receiver which involves the use of a 8-branch
RF hybrid with the goal of a broadband performance. The hybrid used for this receiver had equally-spaced
branches (380µm) and equally-sized branches (175µm).
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Since our intention is to prove the e�ectiveness of the proposed method to generate optimized designs under cer-
tain constraints, including the operational band. Though our objective band is di�erent, the algorithm should
still provide feasible solution under a di�erent regime.

The structure of the particle vector is defined on the basis of the 8-branch geometry presented in the Fig. 7.8,
in which every entry represent a free geometric parameter. Thus a vector we provided to HFSS through the
interface has the following form,

particle = [0, b1, b2, b3, b4, d1, d2, d3, d4, h, a, b] . (7.32)

The bx entries correspond to the size of every branch and, as you may notice, despite working with an 8-branch
hybrid, four dimensions are enough due to the end-to-end symmetry. The same situation happens with the
location dx for each branch, which is measured from the middle plane. The length L is constant throughout
the optimization process and is equal to 6.482mm.

Figure 7.8: 8-branch quadrature hybrid particle structure.

7.7.2 Optimization results
After applying the optimization process introduced in former sections, we obtained a geometry that improves
the results presented by Billade et al. (see Fig. 7.9). There are some remarkable outcomes worth of mention.
The amplitude imbalance �A is greatly improved as the optimized version in under 0.5 dB while the initial

design has an imbalance over 0.75, which is equivalent to a 33%.The phase imbalance �„ is also well behaved
as it remains within the desired gap of ±1¶. Let us recall that there is compromise between these two variables
thus while one improves its counterpart degrades.

It is evident that the S31 and S21 are closer to the -3 dB mark than its benchmark counterpart. The S11 and
S41 behave as expected as both figures are very similar. This happens in our optimized hybrid, not without a
consequence resulting from the improved imbalance; ideally, these figures should stay below the -20 dB mark,
but in our case, they are moved upwards when compared to the benchmark figures. This is the result of a
modified geometry that improves the amplitude imbalance, but not without a cost. In the figures 7.8 and 7.10
is presented the resulting design, which is expressed in vector form as,

[0, 0.142, 0.128, 0.143, 0.134, 0.214, 0.47619, 0.95238, 1.42857, 0.35714, 1.2380, 0.6428] millimeter (7.33)
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Figure 7.9: 8-branch quadrature hybrid optimized for ALMA Band 5.

Finally, the resulting design is very appealing for two reasons. First, the separation of the branches are all
di�erent hence breaking a very symmetric traditional design. The same happens with the size of the branches
as, in our design, all are di�erent. Our design uses completely flat main waveguides which is an advantage when
thinking about fabrication costs.

(a) (b)

Figure 7.10: Simulated (a) E-field and (b) H-field for an optimized 3-dB 8-branch quadrature hybrid for
ALMA Band 5.
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At this point we have studied the physics behind the directional couplers, modeled and simulated a quadra-
ture hybrid and provided evidence of an e�ective optimization process for quadrature hybrids compliant with
ALMA’s performance requirements.

Multi-branch couplers are widely used in heterodyne receivers, but special attention has been paid to standard
designs as those studied so far in this document. Thus far, Srikanth and Kerr (2001) designed and fabricated
eight-branch model which proved to comply with the requirements for ALMA Band 3. Still, the problem re-
mains on how to extend the operational band while complying with all constraints, hence it has been proposed
by Gonzalez et al. (2017) to increase the number of branches or to use overmoded waveguides to extend the
operational band. Further significant modifications have been introduced to the hybrid geometry by drilling
extra cavities to the main guides to modify the impedance along the main guides and, consequently, to add
ripples to the signal and consequently reducing the amplitude imbalance at the center of the band (Ding et al.,
2019; Rashid et al., 2016; Hamid and Yunik, 1967).

In this section we present the optimization results of applying our method to 8-, 12- and 14-branch geometries,
while also including extrusions in the main waveguide to assess their impact on the amplitude imbalance. Ad-
ditionally, a fabrication constraint has been considered as the branches get tighter as a consequence of adding
branches to extend the operational band. The size of the branch sets a fabrication limit as the use of standard
drilling tools is highly desirable for cost reduction and ease of fabrication for other small-size application. For
specific radio astronomy receivers which require cost-e�ective devices, the access to standard fabrication facili-
ties and tools is of great help to speed up the design and commissioning process.

This fabrication restriction to allow the use of standard drilling tools, is defined as the ratio between the height
of the main waveguide and the width of the branches (Æ 7) according to

Relation = a/2
branchsize

(8.1)

where the variable a corresponds to the main waveguide width. The 1/2 factor is present due to the fabrica-
tion technique called “split block” in which the hybrid is split in two halves while the drilling process takes place.

Thus, as we obtain di�erent quadrature hybrid prospects, the relation must be kept. To facilitate the optimiza-
tion process, the drilling limit is included as an added tolerance quantity to the xmax and xmin vectors used
in the optimization process. Therefore, the allowed upper and lower limits for the branches are higher. This
restriction imposes an actual physical limit to the process of adding branches to widening the operational band
hence it is possible that the standard quadrature hybrid geometries herein studied are not su�cient to achieve
a 100% band coverage for the ALMA Band 2+3 (67-116 GHz).

Let us begin by recalling that as we extend the operational band by adding branches to our design, the amplitude
imbalance degrades at mid-band thus the addition of ripples to the S31 and S21 to produce a intertwined waves
thus lowering the amplitude imbalance is proposed and studied by Ding et al., achieving a �A = 0.8dB in W
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Band (75 to 110 GHz). A similar approach is proposed by Rashid et al. with an ultra-low amplitude imbalance
for the 159 - 216 GHz which easily covers the ALMA Band 5 (163 – 211 GHz). Their design uses waveguides
discontinuities placed symmetrically along the main guides to achieve the ripple e�ect.
Therefore, the vector structure of each particle must vary according to the geometry under review. In Fig.
8.1 we show a proposed vector structure involving the cavities drilled in along the main guides, moreover, the
dimensions ex correspond to the depth of the extrusion in the outwards direction.

Figure 8.1: 8-branch quadrature hybrid particle structure for an extruded main guide design.

As for the particle’s vector form, the bx dimension correspond to each branch size, thus the particle looks like,

particle = [0, b1, b2, b3, b4, d1, d2, d3, d4, h, a, b, e2, e1] . (8.2)

Alternatively, we described the geometry by using a second vector structure (see Fig. 8.2). Conversely, in
the previous cases the position for each branch is measured from the middle plain, with this representation
we provide directly the separation between adjacent branches. Though the vector looks exactly the same, the
meaning behind each variable and how the HFSS interprets the vector to reconstruct the geometry is very
di�erent.
In despite of the great volume of tests and optimization results gathered following the structure presented in
Fig. 8.3, we provide the most representative and significant quadrature hybrids. As the reader may notice,
di�erent number of branches and operational bands with the goal in mind of finding the best quadrature hybrid
for each band of interest.

Multiple optimization runs were performed with two objectives namely to find optimized geometries for quadra-
ture hybrids intended to operate in ALMA Band 2+3 or ALMA Band 3. Two main categories were used to
discriminate the hybrids under test: Flat main guides and Extruded main guides; thus optimization runs were
set to appropriately use vector describing those geometries.

The use of 8 branches as lower limit and 14 as the higher is due to prior information of the former being the
most tested and implemented geometry throughout the literature, while the latter constitutes, as we will show,
a constructive limit as the branches get so narrow that the fabrication relation restriction is not met.

Finally, the reader will find tables with brief information of the geometry and the optimization results, including
a) the optimized particles which dimensions are given in millimeters, b) the fabrication ratio (see Sec. 8) and c)
the directivity for the operational band. Supplementary information is provided in the appendix which contains
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Figure 8.2: 8-branch quadrature hybrid alternative particle structure.

Figure 8.3: Taxonomy of the optimization experiments.

the graphical display of the simulated geometries and its fields
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8.1 ALMA Band 2+3

8.1.1 8-branch hybrid
The optimized geometry and the vector structure coincides with the one presented in the Fig. 7.8 with the
di�erence of being set to work on the ALMA 2+3 Band.

Table 8.1: 8-branch hybrid uniform main guides.

Setting Value
Id b8dc6220
Band ALMA 2+3 (67-116 GHz)
Operational Band 75.66 - 107 GHz
Optimized vector [0, 0.264, 0.260, 0.264, 0.274, 0.245, 1.229, 2.260, 3.491, 0.741, 2.611, 1.305]

mm
Fabrication Ratio a = 2.611, b1 = 4.95, b2 = 5.02, b3 = 4.95, b4 = 4.76
Directivity > 22.5 dB

Figure 8.4: 8-branch quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

The final design showed in Fig. B.1, presents the optimized hybrid with flat main guides, unequal branch sizes
and non-uniform distance between branches. As for the physical dimensions, the fabrication ratio is well be-
low the limit of 7 which means that this proposed geometry can be easily fabricated with standard drilling tools.

The Fig. 8.4 shows an interesting result as the �A remains below the -1 dB mark in the 75-106 GHz range. The
S11 and S41 show a good performance in the sense of they staying below the -15dB while their waves behave
similarly. Finally, though the great part of �„ stays within the desired range, a crossing occurs at some specific
points.
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This quadrature hybrid is still a narrow-band device, not fully compliant with ALMA Band 2+3 constraints,
however is valuable hybrid as it can be re-scaled resulting in device useful to operate in other bands.

To reach an improved amplitude imbalance, as learned in prior sections, a design is introduced by adding extra
cavities to the main guides with the purpose of creating ripples to make mid-band S31 and S21 waves tighter
to the -3 dB constraint hence reducing the �A. This design still has 8 branches thus the expected optimized
hybrid must resemble the previous with a lower �A.

Table 8.2: 8-branch hybrid extruded main guides.

Setting Value
Id 3ef9a9f4
Band ALMA 2+3 (67-116 GHz)
Operational Band 77.66 - 110 GHz
Optimized vector [0, 0.254, 0.278, 0.2614, 0.307, 0.786, 0.7678, 0.7875, 0.778, 0.766, 2.515, 1.25, 0.19, 0.1859]mm
Fabrication Ratio a = 2.515, b1 = 4.95, b2 = 4.52, b3 = 4.81, b4 = 4.1
Directivity > 20 dB in the range of 66.6 - 108 GHz

Figure 8.5: 8-branch extruded quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

As depicted in Fig. 8.5, evidently the expected ripple is added therefore the amplitude imbalance gets lower.
Although this behavior es desirable, there is a trade-o� between �A and other figures namely �„ and S11 ≠S41.

Adding the ripple has a negative impact in �„ producing a parameter that is way out of the gap. As for the
S11 ≠ S41, the wave are very close to each other at mid-band but the -20 dB mark is compromised. This result
clearly shows the di�culties of improving one figure while degrading the others.

A valuable insight is that an 8-branch flat hybrid would be a more feasible device as it has simpler geometry
thus reducing the fabrication cost.
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8.1.2 10-branch hybrid
An important part of the work is to further evaluate the impact of adding branches to the hybrid design. In
this part we introduced 2 additional branches and proceeded to optimize the design.

Table 8.3: 10-branch hybrid extruded main guides.

Setting Value
Id 2d60535f
Band ALMA 2+3 (67-116 GHz)
Operational Band 75.66 - 104 GHz
Optimized vector [0, 0.207, 0.3454, 0.7823, 0.721, 2.766, 1.355, 0.1046, 0.1216]mm
Fabrication Ratio a = 2.766, binner = 6.68, bouter = 4.0
Directivity > 21.1 dB

Figure 8.6: 10-branch extruded quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

A couple of relevant things can be noticed. First, the ripple is e�ectively introduced but the e�ect is not as
considerable as in the previous 8-branch case. Second, the device still has a narrow band, moreover, the addition
of just two branches do not provide a significant increase in the band coverage.

With this in mind, we proceed to optimized quadrature hybrids with a greater number of branches in order to
find out if there is a feasible hybrid to cover ALMA 2+3 Band. Recall that, as we add branches, the design
requires to have smaller branch sizes, thus a fabrication limit is set.

8.1.3 12-branch hybrid
Since the preceding hybrids remain in the narrow-band regime, further modification of the geometry must be
introduced which in this case means the addition of two more branches.
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At this point, it is clear that, while adding branches to extend the band, other parameters are negatively im-
pacted namely the �A. This has been partially solved by adding ripples to waves through main waveguides
modifications. Optimizing devices with flat main guides with a great number of branches do not provide mean-
ingful results, therefore optimizing the extruded designs is a better research objective.

In this section we make use of two di�erent ways to describe the hybrid’s geometry; the first is, as we call it, the
Rashid-Reed vector due to the way these two authors treat the free parameters of the hybrid, and the second,
is a “flexible vector” design. The former keeps the separation between branches all the same along the hybrid’s
length, while the former allows for di�erent separation size, hence this is equivalent to the vectors used before.

The tables 8.4 and 8.5 contain the optimized vectors, in which the Rashid-Reed vector structure can be ap-
preciated. The first entry corresponds to the size of inner branches while the second corresponds to the size
of the outer branches. The third entry is the separation between branches. The remaining entries are all the
equivalent to the used in equation 8.2.

Table 8.4: 12-branch hybrid extruded main guides.

Setting Value
Id 8df72fd2
Band ALMA 2+3 (67-116 GHz)
Operational Band 80.66 - 113 GHz
Optimized vector [0, 0.187, 0.323, 0.724, 0.743, 2.58, 1.29, 0.185, 0.1730]mm
Fabrication Ratio a = 2.580, binner = 6.9, bouter = 3.99
Directivity > 21.5 dB

Figure 8.7: 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

The first thing to notice in this set of results (see Fig. 8.7 and 8.8), using the most symmetric version of the ex-
truded quadrature hybrid, is that the band is not e�ectively extended thought there is significant improvement
in the �A, even reaching values under 0.2 dB. As the S11 ≠ S41 figure reveals, there is a sacrifice in isolation
and return losses thus the curve barely stay under -15 dB. This can be seen in the simulations B.4 and B.5 in
which a residual power is traveling through Port 4. This result coincide with those of Rashid et al. (2016) for
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ALMA Band 5.

Table 8.5: 12-branch hybrid extruded main guides.

Setting Value
Id a0ed
Band ALMA 2+3 (67-116 GHz)
Operational Band 77.33 - 108 GHz
Optimized vector [0, 0.175, 0.313, 0.828, 0.819, 2.530, 1.265, 0.143, 0.1683]mm
Fabrication Ratio a = 2.530, binner = 7.23, bouter = 4.04
Directivity > 20 dB

Figure 8.8: 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67 – 116 GHz).

Whereas the �A is improved, the �„ is degraded presenting phase changes greater than ±2¶, which coincides
with the findings of Rashid et al. (2016) confirming that the introduction of the extra cavities create this sort
of response.

The second approach, in which the parameters describing the inter-branch distance are loosen, is used. In this
case, in the table 8.6 can be seen the optimized vector which allows for distinct branch sizes and separations as
well.

The Fig. 8.9 shows a behavior which is better than the preceding designs in the regard that the �A stays under
1 dB mark while the S11 ≠ S41 stay well below ≠15 dB, which manifests itself in a smaller flow of power in Port
4 (see Fig. B.6). As for the �„, its values are more controlled staying within the tolerance gap.
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Table 8.6: 12-branch hybrid extruded main guides.

Setting Value
Id 8ba81ea3
Band ALMA 2+3 (67-116 GHz)
Operational Band 76 - 108 GHz
Optimized vector [0, 0.178, 0.17, 0.17, 0.179, 0.17, 0.216, 0.435, 0.55, 0.477, 0.604,

0.75, 0.42, 0.79, 2.62, 1.31, 0.18, 0.182]mm
Fabrication Ratio b1 = 7.36, b2 = 7.71, b3 = 7.71, b4 = 7.32, b5 = 7.71, b6 = 6.06
Directivity > 22.3 dB

Figure 8.9: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67
– 116 GHz).

8.2 ALMA Band 3
ALMA Band 3 spans the range between 84 and 116 GHz, which is of particular scientific interest as it can be
used to observe small-scale structure in cold gas clouds and to explore into galaxies to study how stars form.
For this reason, there is a need to continuously improve the instruments to reduce atmospheric noise for the
sake of higher quality observations.

With that purpose in mind, the use of our method can support a sustained improvement in the microwave
devices used in this particular band. Based on the previous optimization results, it is clear that our optimized
geometries could potentially improve those of other researches for quadrature hybrids set for specific bands as
ALMA Band 3, as similarly proven for ALMA Band 5 during the validation stage (see Sec. 7.7).

The optimization focuses on 12-branch hybrids due to our prior knowledge of good performance while widening
the operational band of the device. An 8-branch extruded design optimized to evaluate how such a hybrid
behaves for the ALMA Band 3 regime, while a 14-branch optimization is performed to establish the trade-o�
of adding extra branches beyond 12.
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8.2.1 8-Branch hybrid
As our first optimization goal is the 8-branch design, it makes sense to include the feature that could improve
the amplitude imbalance namely adding the extruded discontinuities to the main guides.

The result is very compelling as it actually improves the �A performance while maintaining the �„ within
acceptable limits. This outcome is supported by the S11 ≠ S41 staying below the -20 dB line for most of the
bandwidth and under -15 dB mark for the 100% of the band.

Table 8.7: ALMA Band 3, 8-branch hybrid with extruded main guides.

Setting Value
Id 0ec1a
Band ALMA 3 (84-116 GHz)
Operational Band 86.13 - 117.8 GHz
Optimized vector [0, 0.29, 0.28, 0.39, 0.29, 0.58, 0.55, 0.69, 0.5, 0.62, 2.54, 1.27, 0.18, 0.2]mm
Fabrication Ratio a = 2.54, b1 = 4.8, b2 = 4.53, b3 = 3.27, b3 = 4.38
Directivity > 23.4 dB

Figure 8.10: Simulation of an optimized 8-branch extruded quadrature hybrid set for ALMA Band 3 (86 –
116 GHz).
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8.2.2 12-Branch hybrid
This optimization is performed using a full-length flexible vector to enable the use of di�erent branch and sep-
aration sizes.

Table 8.8: ALMA Band 3, 12-branch hybrid with extruded main guides .

Setting Value
Id b11083
Band ALMA 3 (84-116 GHz)
Operational Band 83.06 - 114 GHz
Optimized vector [0, 0.187, 0.188, 0.178, 0.173, 0.173, 0.232,

0.408, 0.35, 0.49, 0.478, 0.33, 0.247, 0.726, 2.506, 1.253, 0.208, 0.327]mm
Fabrication Ratio a = 2.506, b1 = 6.70, b2 = 6.66, b3 = 7.03, b4 = 7.24, b5 = 7.24, b6 = 5.4
Directivity > 24 dB in the 80-106 GHz range; >21 dB in the 106-116 GHz range

Figure 8.11: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 3 (86 –
116 GHz).

In the Fig. 8.11, the results are presented. There is a good performance with respect three markers. The first
is the amplitude imbalance �A staying below the 0.5 dB mark, moreover, there is a range between 106 and
115 GHz in which a ultra-low imbalance takes place; secondly, the S11 ≠ S41 stays under the -15 dB line, even
better, the figure presents stays below -20 dB level for a great part of the band. Finally, the phase imbalance
�„ behaves smoothly within the ±1¶ range. Consequently, the isolation is as good as in the classical 8-branch
devices (see Fig. B.9) while fully covering the 84-116 GHz band.

A remarkable result is the fabrication relation of the branches which value stays under 7. This ratio has a
tolerance due to a 10µm fabrication margin of error hence the resulting values in the table 8.8 can be accepted
or adjusted by tuning the branch sizes, moreover, the actual sizes adequate for fabrication purposes require not
more than two decimal places due to the tooling error margin.
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Two additional results of our interest are presented in table 8.9 and 8.10. In the Fig. 8.12 a better amplitude
imbalance is presented in the operational band, lower than 0.3 dB; on the other hand, in the Fig. 8.13, we find
a �A under 0.5 dB with a good performance for the return loss, isolation, namely S11 ≠ S41, and the �„.

Table 8.9: ALMA Band 3, 12-branch hybrid with extruded main guides .

Setting Value
Id 0bd63
Band ALMA 3 (84-116 GHz)
Operational Band 83.6 - 115.86 GHz
Optimized vector [0, 0.17, 0.2, 0.18, 0.19, 0.2, 0.2, 0.32, 0.4,

0.46, 0.38, 0.67, 0.37, 0.68, 2.57, 1.285, 0.17, 0.18]mm
Fabrication Ratio a = 2.57, b1 = 7.55, b2 = 6.425, b3 = 7.14, b4 = 6.76, b5 = 6.426,

b6 = 6.425
Directivity > 22.5

Figure 8.12: S-parameters and imbalances of an optimized 12-branch extruded quadrature hybrid set for
ALMA Band 3 (84 – 116 GHz).

Table 8.10: ALMA Band 3, 12-branch hybrid with extruded main guides .

Setting Value
Id 70fc2
Band ALMA 3 (84-116 GHz)
Operational Band 83.86 - 116.4 GHz
Optimized vector [0, 0.17, 0.2, 0.18, 0.19, 0.2, 0.2, 0.32, 0.4,

0.46, 0.38, 0.67, 0.37, 0.68, 2.57, 1.285, 0.17, 0.18]mm
Fabrication Ratio a = 2.57, b1 = 7.55, b2 = 6.425, b3 = 7.14, b4 = 6.76, b5 = 6.426,

b6 = 56.425
Directivity > 22.5
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Figure 8.13: S-parameters and imbalances of an optimized 12-branch extruded quadrature hybrid set for
ALMA Band 3 (84 – 116 GHz).

8.2.3 14-branch hybrid
In order to test the limits of the classical branch geometry regarding the fabrication restriction imposed by the
standard drilling relation, we add two extra branches to the design. In this case a Rashid-Reed vector is used
to ease the optimization by reducing the number of free parameters.

Table 8.11: 14-branch hybrid extruded main guides.

Setting Value
Id 3dfd6337
Band ALMA 3 (84-116 GHz)
Operational Band 80.5 - 116.5 GHz
Optimized vector [0, 0.157, 0.154, 0.364, 0.705, 2.587, 1.2935, 0.186, 0.234]mm
Fabrication Ratio a = 2.587 b1 = 8.2388 b2 = 8.399
Directivity > 22 dB

The results are valuable as they present a quadrature hybrids that complies with the established constraints.
The �A stays under 1 dB for an 80-116 GHz range, hence spanning a 36 GHz bandwidth, which is wider than
any other so far. The S-parameters fit the expected behavior while the �„ stays within the tolerance ranges
for most of the band.

Of greater importance is the fact that the inner branches (b1) and the outer branches (b2) as well, both have
sizes that yield a fabrication relation higher than the factor of 7 which guarantees that standard drilling tools
can be used (see Sec. 8). To achieve the fabrication of a geometry like this, a customized drilling tool is required
thus elevating the fabrication cost.

As comparing this result with the ones with a smaller number of branches, we conclude that, while the number
of branches grows the band coverage is widened, and therefore requiring narrower branches. An mentioned in
previous sections, this is highly undesirable as the drilling of the hybrid gets more di�cult hence more expensive.
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Figure 8.14: Simulation of an optimized 14-branch extruded quadrature hybrid set for ALMA Band 3 (84 –
116 GHz).

8.3 Quadrature Hybrid Performance Benchmarks
The quadrature hybrids and, in particular, directional couplers are extensively studied microwave devices hence
there are plenty of bibliographical resource in which we could find simulated and experimental measurements
to understand how those devices behave. In contrast, as the field of application is narrowed down, the number
of sources and experimental results are dramatically reduced.

Moreover, as we focus on our research objective namely the ALMA 67-116GHz band, there is handful of results
worth of mention in order to rule out the quality of the designs obtained through our method. Hereafter a
concise comparison is made between some of those designs and our optimization results.

The reader must be aware of two things. In the first place, the designs are intended to operate in the 75-110GHz
range which happens to be the intersection between ALMA Band 2 (67 - 90 GHz) and ALMA Band 3 (84 –
116 GHz). Second thing is that there is no reference in the literature that shows a quadrature hybrid design
that fully covers the ALMA Band 2+3 (67 - 116 GHz), which for practical purposes classify as a ultra-wide band.

8.3.1 Quadrature hybrid for W-Band (75-110GHz) by Ding et al.
This paper reports an 8-branch hybrid in which the low amplitude imbalance is reached by using the main
waveguides extrusions and discontinuities. The reported amplitude imbalance is under 0.8 dB while the phase
imbalance 90¶(+2.38¶/ ≠ 4.25¶).

One of the most interesting features of this design is the changes in the main guides, which proved to be bene-
ficial to improve the �„. The hybrid was manufactured and measured proving a) S11 ≠ S41 under -16 dB, b)
a S21 ≠ S31 figure not fully complying with the -3 dB mark which has the negative impact on the return loses
and c) a �A fully covering the band under 0.8 dB.
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Figure 8.15: 3-dB 8-branch hybrid designed for W Band. Source: Ding et al., 2019

As we compare the initial results provided by Ding et al. to our optimization of a flat quadrature hybrid (see
Fig. 8.4), we find that an optimized version can easily improve the performance in the band of interest. Now,
as we introduce the inner extrusions, the optimization gives an improved amplitude and phase imbalance, as
showed in the Fig. 8.5.

8.3.2 Quadrature hybrid (75-110GHz) by Srikanth and Kerr
This ALMA memo presents a number of results using the Quick Wave EM simulator. The authors had the
same objective of finding those designs with �A < 1dB.

In the design proposed by Srikanth and Kerr, they use di�erent sizes for the outer most branches and di�erent
branch separations as well. Though other results were obtained, the Fig. 8.16 and Fig. 8.17 are the more
interesting findings as they throw the lowest �A.

(a) (b)

Figure 8.16: Simulated 6-branch hybrid with Quickwave (a) S-parameters (b) amplitude and phase
imbalance.Source: Srikanth and Kerr, 2001
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An interesting fact is that S11 ≠ S41 figure stays under -20 dB during a great part of the band. In contrast to
the previous cases, the S31 ≠ S21 looks more centered at -3 dB which is important to have a better �„. Though
the amplitude imbalance is 0.5 dB at mid-band, it does not fully cover the band, furthermore, it e�ectively
covers the region between 82.6 and 106.5 GHz.

(a) (b)

Figure 8.17: Simulated 6-branch hybrid with Quickwave (a) S-parameters (b) amplitude and phase
imbalance.Source: Srikanth and Kerr, 2001

These results can be easily outperformed by using our 8-branch optimized design in Fig. 8.4, without compro-
mising the simplicity of the flat hybrid and ensuring the use of standard drilling tools.

8.3.3 Quadrature hybrid W-Band (75-110GHz) by Monasterio et al.
This report do not strictly focuses on the quadrature hybrid itself, but on a complete design of a side-band
separating down converter. The central device in a heterodyne receiver is the mixer which is based on the 90¶

hybrid, hence the same constraints must be fulfilled.

The multi-branch hybrid consists of WR-10 main guides based on the reed design to cover the full ALMA 2+3
Band. As showed in the report, the simulation (see Fig. 8.18) do not present the expected behavior due to the
fabrication restrictions. However, the design was set to cover the upper-band hence showing a good performance
in range between 85 and 118 GHz approximately.

This quadrature hybrid is particularly well behaved regarding the S11 as the figure stays below the -20 dB line.
Unfortunately they do not provide information for the �A thus limiting the objective evaluation against our
optimized designs. Nevertheless, the design of 12 branches corresponding to the figures are showed in Fig. 8.11,
can be considered to improve the performance, mainly due to the low �A and smooth �„.

8.3.4 Quadrature hybrid ALMA Band 3 by Andoh and Minamidani
Andoh and Minamidani (2003), presented a set of quadrature hybrids designed for ALMA Band 3 to 10. As in
our case, they used HFSS as simulation tool to optimize quadrature hybrids to comply with the �A and �„
requirements.
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Figure 8.18: Scattering parameters of a 3-dB 90¶ hybrid designed for ALMA Band 3 Source: Monasterio
et al., 2019

Of particular interest is the proposed design for ALMA Band 3. They used a flat 5-branch coupler, which
behavior is presented in the Fig. 8.19. As in any flat design, the S11 ≠ S41 is very well behaved, staying un-
der -20 dB for the whole band, even lower. So is the case of the phase imbalance which remains within the limits.

As we compare this design with our optimized hybrids on the basis of the fore-mentioned parameters, there is
no immediate alternative to improve this performance. Now, as we take a look to the amplitude imbalance,
Andoh and Minamidani’s design is in the limit of �A = 1dB at mid-band.

If priority is given to the amplitude imbalance and the trade-o� of degraded S11 ≠ S41 is accepted, then an
extruded design can do the trick. In such a case, our Fig. 8.11 provides a feasible solution to improve the
performance in ALMA Band 3.

Figure 8.19: 3-dB 5-branch quadrature hybrid designed for ALMA Band 3 Source: Andoh and
Minamidani, 2003

8.4 Assessment of Quadrature Hybrid Fabrication
The culmination of the development of an optimization process like ours, is to have a set of feasible geometries to
be finally fabricated and deployed in an radio astronomy receiver. Though the scope of our work do not involve
the fabrication and characterization of a quadrature hybrid, we want to set the ground for those subsequent
stages of the project.
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The key feature to consider is that a standard tolerance for a CNC machining service is typically ±0.127mm,
the tightest machining tolerances possible are in the range of ±0.0127mm, though some milling machines like
the KERN CNC could reach the 0.002mm accuracy (Rashid et al., 2016). Though higher precision can be
obtained, custom tools should be made thus making the fabrication process very expensive. Our interest in
having a fabrication ratio to constraint the branch sizes, relies in avoiding the use of customized tools while
keeping the best performance possible for the optimized geometry.

In despite the good results showed by other geometries, the optimized geometries with the best performance are
the ones in the tables 8.9, 8.9 and 8.10 for ALMA Band 3, due to their band coverage, fabrication ratios and
amplitude imbalance. Additionally, a remarkable result is the �„ = ±3¶ for very low amplitude imbalances, as
the one obtained in the upper band of the Fig. 8.11; this result improves the �„ = ±4¶ for �A near to 0.15dB,
as reported by Rashid et al. (2016).

Let us take the case of the geometry represented by the vector in table 8.8. In this particular case, the branches
3, 4 and 5 are the those with the highest fabrication ration namely with the tighter branch size. We want to
assess the behavior of the hybrid as the branches are bigger hence yielding a lower fabrication ratio. In the Fig.
8.20 we present a sweep analysis of the hybrid’s behavior under changes in the branch sizes constrained to a
±0.01 milling accuracy. As for the S31 ≠ S21 we find a good behavior in the regard of both figures keeping its
shape and staying within the desired range. On the other hand, the �A slightly changes in the lower part of
the band, while in the upper-band there is a more significant change reaching levels closer to 0.25dB. Conse-
quently, the �„ is well behaved during the most part of the band only reaching levels greater than 3¶ around
the 110GHz, which still is viable if compared with the results reported by Rashid et al.

Another feasible design is the one in 8.8 which parametric analysis is presented in the Fig. 8.21. These results
show a well behaved design even under the application of fabrication tolerance measure on the branch sizes. In
particular, the �„ stays under 3¶ in every one of the tested settings.

In the table 8.12 the nominal fabrication vectors to model two quadrature hybrid is provided complying with
the fabrication ratio that ensures that a standard tool can be used for the machining process.

Table 8.12: Nominal vectors recommended for fabrication. Dimensions are given in millimeters.

Id Nominal Vector
b11803 [0, 0.18, 0.18, 0.19, 0.18, 0.18, 0.23, 0.41, 0.35, 0.49,

0.48, 0.33, 0.25, 0.72, 2.5, 1.25, 0.21, 0.33]
0bd63 [0, 0.18, 0.19, 0.18, 0.18, 0.2, 0.2, 0.32, 0.4, 0.46,

0.38, 0.67, 0.37, 0.68, 2.57, 1.285, 0.17, 0.18]

104



8. Quadrature Hybrid Optimization

Figure 8.20: Parameter sweep to evaluate the performance under branch size change within the tolerance
range.

Figure 8.21: Parameter sweep to evaluate the performance under branch size change within the tolerance
range.
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Conclusion

After carefully studying the underlying concepts of microwave devices and guiding structures, an electromag-
netic and transmission-line model was provided for the directional couplers and the multi-branch quadrature
hybrid. This research approached the design challenges imposed by the highly demanding standards of radio
astronomical observations. Moreover, measures as the amplitude (�A) and phase (�„) imbalances, determine
a set of constraints to satisfy in order for the hybrid to be eligible for fabrication and characterization stages in
observatories as ALMA and others.

To facilitate the design process of microwave devices, in this thesis was introduced a novel optimization method
based on the genetic algorithm, PSO. Dealing with an algorithm of stochastic nature gives advantages such as a
random exploration of the search space, a property that is reinforced by the use of a population-based technique
hence allowing for a robust exploration method of the solution space.

Our objective of getting the best �A possible while complying with the set of constraints imposed to the
S-parameters was achieved after coding and fine tuning the algorithm. Likewise, a fabrication restriction is
imposed to allow the use of standard drilling tools, which creates an additional side-issue of setting a limit to
the size a branch can take. This unwanted e�ect was addressed in our method to reach our goal of producing
a device that operates in wider-band regime than the classical quadrature hybrids while presenting a feasible
design for fabrication purposes.

The use of the Particle Swarm algorithm together with the Surrogate-Based meta-heuristics, produced optimized
multi-branch quadrature hybrids that comply with the set of constraints, improving other designs intended to
operate in ALMA Band 3 and ALMA Band 5. The optimized quadrature hybrids can fully cover either the
ALMA Band 2 or 3, spanning a 32 GHz bandwidth.

As the objective geometries correspond to the classical hybrids namely those with flat main guides and multi-
branch designs, the improvement in �A is reached by using added cavities within the main guides while extension
in the operational bandwidth is achieved by the addition of branches to our meta-models.

In despite of the successful deployment of the algorithm to provide optimized geometries, the results show that
there exists physical restrictions manifested in constructive limits that impede the use of classical quadrature
hybrids to achieve an extended operational bandwidth of 49 GHz corresponding to the ALMA Band 2+3 (67 -
116 GHz). Therefore, a subsequent step in this line of research is the pursue of novel designs expressed as new
meta-models to extend the operational bandwidth in a more e�ective fashion.

Our resulting optimized designs provide feasible alternatives for ALMA W-Band and Band 3. Evidence of the
performance improvement is provided as we use the benchmark established by di�erent authors in the field.

In order to take further steps in the path that leads to a quadrature hybrid deployment in a production car-
tridge intended to operate in ALMA Band 3, this research provides two fully optimized and simulated designs
presented in the table 8.12. Both geometries comply with the constraints set along this thesis as well as with a
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9. Conclusion

suitable fabrication ratio to allow the use of standard milling tools. Furthermore, both have good �A (<0.5dB),
and �„ (±3.15¶). A parametric analysis was performed to study how these geometries behave under di�erent
branch sizes which could stem from the drilling accuracy. This analysis showed very reliable designs even under
changes due to the fabrication errors.

Finally, this work can be of great help for other observatories, for instance, those looking for lower commissioning
cost of their receivers without sacrificing the quality of their measurements. By allowing the use of standard
drilling tools, we enable a better cost-benefit relation for radio astronomy receiver’s design and fabrication.
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A
Appendix 1

A.1 Solving Maxwell’s equations
The idea of energy transport in the electromagnetic fields can be further modeled in terms of propagation of
waves. This assumption means that there is a dependence on the factor ejÊt, allowing a solution in the Fourier
domain.

We can express fields in harmonic form with complex amplitude coe�cients,

Ę = E0ejÊt (A.1)
H̨ = H0ejÊt (A.2)

(A.3)

Therefore, Maxwell’s equations can be rewritten,

Ò ◊ Ę = ≠jÊB̨ (A.4)
Ò ◊ H̨ = jÊD̨ + J (A.5)

Ò · D̨ = fl (A.6)
Ò · B̨ = 0 (A.7)

Equations A.4 and A.5 can be rearranged by replacing D̨ and B̨ by their fields counterparts; J is substituted
using 2.8, to get the phasor form of Maxwell’s equations. The phasor form is commonly used to work with
oscillatory waves. Jordan and Balmain (1968) provide a clear and comprehensive description of the phasor
representations,

Ò ◊ Ę = ≠jÊµH̨ (A.8)
Ò ◊ H̨ = (‡ + jÊ‘)Ę (A.9)

From A.8 and A.9 we can derive the Helmholtz wave equation by solving for one of the two variables. Hence we
obtain a general wave equation for the particular field Ę in a lossy medium,

Ò2Ę + Ê2µ‘
1

1 ≠ j
‡

Ê‘

2
Ę = 0 (A.10)

Moreover, if we consider a lossless medium the Helmholtz equation becomes,

Ò2Ę + Ê2µ‘Ę = 0 (A.11)

or in terms of H̨,
Ò2H̨ + Ê2µ‘H̨ = 0 (A.12)
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We can then define the wave number k as,
k = Ô

µ‘Ê (A.13)

In order to simplify our analysis, we can think about a plane wave with the propagation direction in the z axis
and a electric field in the x direction. The solution to the Helmholtz equation for Ę in the frequency domain is,

Ex = E+e≠jkz + E≠ejkz (A.14)

which is evidently composed by two traveling waves in opposite directions where E+ and E≠ are complex
functions. The calculation of the H̨ can be made by applying A.14 and A.8,

Hy = 1
÷

[E+e≠jkz + E≠ejkz] (A.15)

where we define the wave impedance ÷ = Êµ/k =


µ/‘, which can be seen as the intrinsic impedance of the
medium. More important it the fact that Ę and H̨ are orthogonal to the direction of propagation and to each
other.

A.2 Rectangular cross section - TE mode
Solving the equation 2.44 can be done by using separation of variables, as presented by Jordan and Balmain
(1968) and Montgomery et al. (1987), where Hz = X(x)Y (y). If we substitute this expression for Hz in the
wave equation, we get

Y
ˆ2X

ˆx2 + X
ˆ2Y

ˆy
+ (“2 + Ê2‘µ)XY = 0 (A.16)

Next step is to divide by XY what leaves the third term as a constant that must be equal to the first and
second terms allowing the separation of A.16 into,

1
X

ˆ2X

ˆx2 = ≠k2
x

(A.17)

1
Y

ˆ2Y

ˆy2 = ≠k2
y

(A.18)

where k2
x

+k2
y

= (“2+Ê2‘µ). By multipying each equation by X and Y respectively results in typical one-variable
di�erential equations,

ˆ2X

ˆx2 + k2
x
X = 0 (A.19)

ˆ2Y

ˆy2 + k2
y
Y = 0 (A.20)

The solutions are also familiar,

X = A cos(kxx) + B sin(kxx) (A.21)
Y = C cos(kyy) + D sin(kyy) (A.22)

The coe�cients must be determined from boundary conditions of the problem; in this case we look for solutions
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that make zero every tangential component of the field Ę,

Ey(x = 0) = 0 (A.23)
Ey(x = a) = 0 (A.24)
Ex(y = 0) = 0 (A.25)
Ex(y = b) = 0 (A.26)

If we use these boundary conditions together with A.21 to calculate required fields from equations 2.39, the
results are,

≠Asin(kx · 0) + Bcos(kx · 0) = 0 (A.27)
≠Asin(kx · a) + Bcos(kx · a) = 0 (A.28)
≠Csin(ky · 0) + Dcos(ky · 0) = 0 (A.29)
≠Csin(ky · b) + Dcos(ky · b) = 0 (A.30)

hence B and D must be zero, finally reducing the solution to,

sin(kxa) = 0 (A.31)
sin(kyb) = 0 (A.32)

The parameters kx and ky are the wave numbers in x̂ and ŷ. From A.31 and A.32 we can deduce that,

kx = mfi

a
, m = 0, 1, 2, 3... (A.33)

ky = nfi

b
, n = 0, 1, 2, 3... (A.34)

In consequence, in every direction we get discrete harmonics that stem from the parameters m and n. Remem-
bering that “ is the phase propagation constant of the waves and that k2

x
+ k2

y
= (“2 + Ê2‘µ), ultimately we

find,

“ =
Ú1mfi

a

22
+

1nfi

b

22
≠ Ê2‘µ (A.35)

which is only valid for some specific values of Ê allowing for the propagation to occur in the z direction, found
if “ is an imaginary value. In the situation of real-valued “, the propagation is not allowed since attenuation is
occurring. The critical value, usually known as cut-o� frequency, is the one that satisfies,

Êc =

Û
1
‘µ

51mfi

a

22
+

1nfi

b

226
(A.36)

Here we can stop to make some considerations about the cut-o� frequency. This critical value explicitly depends
on the geometric size of the cross-section of the waveguide and, at the same time, depends on the values m and
n, thereby di�erent cut-o� frequencies can be found for “higher” modes, namely higher values of m and n. This
principle plays a role in novel designs which consider the use of overmoded waveguides to modify the behavior
of the electromagnetic wave, for example, to expand the operational band.
Let us remember that “ is the propagation constant, which can be divided into real and imaginary parts. The
latter is called phase constant, and is usually established as equal to the wave number k̨, what is perfectly valid
for TEM devices such as coaxial cables but not so for TE or TM waves. We can still derive information from
A.35 by recalling that “ is related to the wavelength by,

“ = j
2fi

⁄g

(A.37)
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where ⁄g is the wavelength of the wave in the waveguide. Another important relation resulting from the
free-space wave velocity (Pozar, 1998) is

Ê = “
Ô

µ‘
(A.38)

what also applies for the cut-o� frequency, thus

Ê2
c

=
2fi

⁄c

µ‘
. (A.39)

We can use A.37 and A.39 to replace into A.35, thus,
3

2fi

⁄g

42
=

3
2fi

⁄

42
≠

1mfi

a

22
≠

1nfi

b

22
(A.40)

and finally we get the wavelength of the guide,

⁄g = ⁄Ú
1 ≠

1
⁄

⁄c

22
(A.41)

The variable ⁄ is the wavelength corresponding to the material filling the waveguide namely dielectric, air, etc.
If we define ⁄0 as the wavelength of a TEM wave in the free-space,

⁄0 = ⁄

Ú
‘µ

‘0µ0
(A.42)

we can then rewrite A.41,
⁄g = ⁄0Ú

‘µ

‘0µ0
≠

1
⁄0
⁄c

22
(A.43)

One final observation must be that when assigning values to m and n, specific modes arise and, simultaneously,
cut-o� frequency changes. As for the particular case of TE waves, modes are notated by using subscripts TEmn;
for instance, TE10 yields,

Êc = fi

‘µa
(A.44)

⁄c = 2a. (A.45)

A.3 Impedance for TEM waves in parallel plates
Let us briefly explore the parallel plates case. As in every other case, Maxwell’s equations can be solved for
the boundaries defined by our objective geometry, parallel plates as depicted in Fig. A.1. Boundary conditions
considering perfect conductors are Etang. = 0 and Hnormal = 0. Wave equations can be derived (Jordan and
Balmain, 1968) using similar arguments as in the previous sections,

ˆ2Ę

ˆx2 + (“2 + Ê2µ‘)Ę = 0 (A.46)

ˆ2H̨

ˆx2 + (“2 + Ê2µ‘)H̨ = 0 (A.47)

Solutions can be found for the TE, TM or TEM waves. Let us take the TE waves again for explanatory purposes.
The wave equation can be rewritten as,
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ˆ2Ey

ˆx2 + (“2 + Ê2µ‘)Ey = 0 (A.48)

By using the same methods from earlier sections, this simple-harmonic equation is solved yielding,

Ey = C1 sin
1mfi

a
x

2
e≠“z (A.49)

Hz = ≠ mfi

jÊµa
C1 cos

1mfi

a
x

2
e≠“z (A.50)

Hx = ≠ “

jÊµ
C1 sin

1mfi

a
x

2
e≠“z (A.51)

where a is the separation between the plates and C1 is a constant to be determined. This looks di�erent when
compared to the rectangular waveguide, as there are no boudaries in every direction; the parallel plates case
presents a boundary set by the two plates meanwhile running to the “infinite” in ŷ and ẑ.

Figure A.1: Parallel plates guiding structure.

Once we have expressions for the fields, we can compute the corresponding impedance as the relation between
E and H fields. Recall from equation 2.32, that the general “ is a complex number, but for perfectly conducting
plates is an imaginary number —, ----

Ey

Hx

---- = Êµ

—
= ÊµÒ

Ê2µ‘ ≠
!

mfi

a

"2
(A.52)

which happens to be the impedance in the z direction and, additionally, is constant over the cross section of
the guide.

Let us consider an additional example. A guide made of two ideally conductive parallel plates in which we
transport TEM waves and, if we set the propagation direction along z axis, then we have a magnetic field
H̨ = ≠Hxx̂ parallel to the surface. Thus, we have a current density in the surface flowing in the z direction
J̨s = n̂ ◊ H̨, which is simply J̨sz = ≠H̨x.

By applying the same procedure, we can compute fields for a TEM wave between parallel plates, which is of
major importance, as it is the type of wave propagated along two-conductor transmission lines furthermore it
is usually know as the principal wave. For the entirely transverse waves we can get the fields from the resulting
equations for TM or TE waves,

Hy = C1e≠j“z (A.53)

Ex = “

Ê‘
C1e≠j“z (A.54)

Ez = 0 (A.55)
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These results can be used to calculate the impedance for TEM waves in parallel plates,
----
Ex

Hy

---- = —

Ê‘
=

Ú
µ

‘
. (A.56)

In the more general case of not perfect conductivity, there is a surface impedance Zs of the conductor that needs
to be overcome by the surface current, creating the need for a tangential component of Ę (Jordan and Balmain,
1968). The importance relies on the fact that, as we include the surface impedance, we are working with a
complex quantity which further involves a change in the phase of the electric wave. When an electromagnetic
wave is guided by a structure, it is done along the surface of the conductor; currents are flowing in the conductor
and charges manifest in its surface.

A.4 S-matrix for four-port devices
Condition 3.106 must be used to derive the entries of the matrix. Let us take n = 1, m = 2, while k = 1...4;
recall that the sum must be equal to zero if n ”= m,

Sú
11S12 + Sú

21S22 + Sú
31S32 + Sú

41S42 = 0 (A.57)
Sú

31S32 + Sú
41S42 = 0 (A.58)

Similarly, by applying the same process to all cases in which n ”= m, a set of equations are obtained,

Sú
31S32 + Sú

41S42 = 0 , n = 1 , m = 2 (A.59)
Sú

21S23 + Sú
41S43 = 0 , n = 1 , m = 3 (A.60)

Sú
21S24 + Sú

31S34 = 0 , n = 1 , m = 4 (A.61)
Sú

12S13 + Sú
42S43 = 0 , n = 2 , m = 3 (A.62)

Sú
12S14 + Sú

32S34 = 0 , n = 2 , m = 4 (A.63)
Sú

13S14 + Sú
23S24 = 0 , n = 3 , m = 4 (A.64)

keep in mind that all other possible combinations are redundant because of the symmetry of the matrix. The
next step is to iterate while taking n = m, for instance, if n = m = 2,

Sú
12S12 + Sú

22S22 + Sú
32S32 + Sú

42S42 = 1 (A.65)
|S12|2 + |S32|2 + |S42|2 = 1 (A.66)

As for the n ”= m case, a set of equations may be obtained,

|S21|2 + |S31|2 + |S41|2 = 1 , n = m = 1 (A.67)
|S12|2 + |S32|2 + |S42|2 = 1 , n = m = 2 (A.68)
|S13|2 + |S23|2 + |S43|2 = 1 , n = m = 3 (A.69)
|S14|2 + |S24|2 + |S34|2 = 1 , n = m = 4 (A.70)

The behavior of an specific device can be modeled as specific entries of the matrix and, in consequence, deter-
mines the rest of the entries. For instance, if the expected feature is that of no coupling should occur between
port 1 and 4, hence S14 = S41 = 0. Same happens if ports 2 and 3 are expected to be isolated, thus S23 = S32 = 0.

Take A.59 and A.63 while considering the property of the symmetry of the matrix. It allows to rewrite entries
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in the form S31 = S13 hence,

Sú
13S23 + Sú

14S24 = 0 (A.71)
Sú

13S14 + Sú
23S24 = 0. (A.72)

Now multiply the first by Sú
23 and the second by Sú

14, and subtract to get,

Sú
13

1
|S23|2 ≠ |S14|2

2
= 0 (A.73)

As our device is expected to have coupling between port 1 and 3 thus S13 ”= 0, and in consequence,

S23 = S14 = 0. (A.74)

Further results can be obtained from (A.67 - A.70), for instance, by using the first two equations we can conclude
that,

|S13| = |S24| (A.75)

Operating the same way with other pair of equation, other relations are determined,

S21 = S12 = S34 = S43. (A.76)

Thus the S-matrix takes the form,

S =

S

WWU

0 S12 S13 0
S12 0 0 S24
S13 0 0 S34
0 S24 S34 0

T

XXV (A.77)

There is something that still needs to be addressed. Though we already identified how entries distribute, the
specific values have not been deduced, moreover, the phase at every port must be found with respect a reference
phase. Let us consider that port 1 is the reference as entry point for an incident wave. Let us also recall
equations 3.52, 3.67 and 3.71 and it is evident that if an incident wave from port 1 is fully transferred into port
2 namely there are no reflected waves, the wave at the end of the line must have a phase change due to the
impedance along the waveguide. If we consider a lossless guide thus – = 0 then,

S21 = v≠
2 (Z=l)

v+
1 (Z=0) = V +

0 ej—l

V +
0

= ej—l (A.78)

The same happens if other coupling route is chosen, from port 1 to port 3, for instance. Let

S21 © aej◊ , S31 © bej„ (A.79)

With this two equivalences at hand, let us replace them into A.62 while recalling the symmetries found until
this point,

ae≠j◊bej„ + be≠j„aej◊ = 0 (A.80)

which can be reduced to,
e≠j(◊≠„) + e+j(◊≠„) = 0 (A.81)

Since the last relation can be treated as a trigonometric identity, we obtain,

◊ ≠ „ = ±
1fi

2 + nfi
2

n = 0, 1, 2... (A.82)

Frequently, both ◊ and „ are chosen in a way that the device has a characteristic response, for example, by
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choosing ◊ = 0, the following is obtained,

S =

S

WWU

0 a bej„ 0
a 0 0 bej„

bej„ 0 0 a
0 bej„ a 0

T

XXV (A.83)

which is simplified by directly replacing a value for „,

S =

S

WWU

0 a bj 0
a 0 0 bj
bj 0 0 a
0 bj a 0

T

XXV (A.84)

Finally, we need to account for the values of a and b. These values can be obtained by complying to the relations
(A.67-A.70) in the following form,

|S21|2 + |S31|2 + |S41|2 = |a|2 + |bj|2 = a2 + b2 = 1. (A.85)

There are possible solutions to A.85, all of which can be assessed based on the expected behavior. One solution
is a = b = 0, which is trivial as it implies S12 = S13 = S24 = S34 = 0; this case corresponds to a fully decoupled
network. Another solution comes from the fact that the expectation is a coupling to occur between ports 1-2
and ports 1-3, hence a and b must also comply to a power relation. For instance, in directional couplers where
the coupling factor is 3-dB, the coe�cients are determined,

a = b = 1/
Ô

2. (A.86)

The complete S matrix has the form,

S = 1Ô
2

S

WWU

0 1 j 0
1 0 0 j
j 0 0 1
0 j 1 0

T

XXV (A.87)

A.5 Even- and Odd-Mode theory for four-port devices
This method is very useful as it enables a simpler analysis by dividing the four-port network into two-port lines,
each one to be studied separately. This is specially useful for symmetrical directional couplers as they can be
treated by means of the superposition principle in which the circuit is decomposed into even- and odd-mode
excitation.

Figure A.2: Symmetry planes in a quadrature hybrid.

The even-mode corresponds to the use of two in-phase inputs (excitation) while the odd-mode corresponds to
two out-of-phase inputs, with the conditions that as both solutions are superposed, yields the original expected
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behavior. Let us think about the quadrature hybrid; the design demands that the input at port 1 is 1 while
the resulting signal at port 4 must be zero, by the isolation principle. Thus, as soon as the circuit separation
takes place in even and odd modes, the signal at port 1 is 1/2 while the signal at port 4 is 1/2 (even mode)
and ≠1/2 (odd mode), where the in-phase/out-of-phase condition is accounted by the positive or negative value.

Consider a symmetrical four-port device as showed in Fig. 4.3, in which a plane of symmetry can be drawn
horizontally. If a signal of equal magnitude and phase ae is introduced into port 1 and 4, the plane of symmetry
behaves as an open circuit or magnetic wall. Thus the scattering parameters become,

S

WWU

b1
b2
b3
b4

T

XXV =

S

WWU

S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

T

XXV

S

WWU

ae

0
0
ae

T

XXV (A.88)

By solving the equations, it can be found that,

b1 = ae(S11 + S14) (A.89)
b2 = ae(S21 + S24) (A.90)
b3 = ae(S31 + S34) (A.91)
b4 = ae(S41 + S44) (A.92)

This can be further developed by recalling the symmetry relations A.77 and A.76, allowing to reshape the entries
of the matrix, hence,

b1 = b4 = ae(S11 + S14) (A.93)
b2 = b3 = ae(S12 + S13) (A.94)

After having found the incident and reflected quantities, the transmitted and reflected coe�cients can be
obtained,

�1 = b1
ae

= (S11 + S14) (A.95)

�4 = b4
ae

= (S11 + S14) (A.96)

T1 = b3
ae

= (S12 + S13) (A.97)

T4 = b2
ae

= (S12 + S13) (A.98)

The odd-mode relations are obtained by exciting the device with opposite-phase waves causing the plane of
symmetry to work as an electric wall or short-circuit.

Figure A.3: Eve and odd sub-circuit.

As showed in Fig. A.3, two sub-circuits are then created thereby leaving a two-port transmission line with stubs
along the guide. The stubs are open-ended, in the even-mode case, or short-circuit, in the other case.
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B.1 Optimized Quadrature Hybrids simulations

Figure B.1: Simulation of an optimized 8-branch quadrature hybrid set for ALMA Band 2+3 (67 – 116
GHz).

Figure B.2: Simulation of an optimized 8-branch extruded quadrature hybrid set for ALMA Band 2+3 (67 –
116 GHz).
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Figure B.3: Simulation of an optimized 10-branch extruded quadrature hybrid set for ALMA Band 2+3 (67
– 116 GHz).

Figure B.4: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67
– 116 GHz).

XI



B. Appendix 2

Figure B.5: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67
– 116 GHz).

Figure B.6: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 2+3 (67
– 116 GHz) using a flexible branch distribution.
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Figure B.7: Simulation of an optimized 8-branch extruded quadrature hybrid set for ALMA Band 3 (84 –
116 GHz).

Figure B.8: Simulation of an optimized 14-branch extruded quadrature hybrid set for ALMA Band 3 (84 –
116 GHz).
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Figure B.9: Simulation of an optimized 12-branch extruded quadrature hybrid set for ALMA Band 3 (84 –
116 GHz).
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Abstract—We introduce a novel optimization method 

based on the evolutionary algorithm Particle Swarm 

Optimization (PSO). Simulations were conducted for the 

design of quadrature hybrids intended to operate in the 85-

115 GHz band using a fully tuned and validated version of 

the algorithm. We present quadrature hybrids designs 

which are optimized with respect to operational 

requirements for the scattering parameters and amplitude 

imbalance. Furthermore, the resulting designs take into 

account machining constraints related to cost and feasibility 

requirements. This method can be easily extended to 

optimize other microwave devices and waveguides for radio 

astronomy applications, with the benefit of speeding up the 

design process as well as reducing the computational costs. 
Keywords—quadrature hybrid, directional coupler, 

optimization algorithm, amplitude imbalance, millimeter and 
submillimeter device. 

I. INTRODUCTION 
Radio astronomy has highly demanding standards for 

microwave devices, often requiring ultra-wide band 
operability, high sensitivity, and noise rejection. For this 
reason, research into the design of microwave 
components for band widening within realistic 
manufacturing constraints is an ongoing effort [1][2]. In 
this paper we introduce a novel geometry optimization 
based on an evolutionary algorithm, that has been applied 
to quadrature hybrids operating in ALMA (Atacama 
Large Millimeter/submillimeter Array) Band 3 (85-115 
GHz). Our reported results are part of an ongoing 
research project focusing on the design of a quadrature 
hybrid covering the ultra-wide ALMA Band 2+3 (67-115 
GHz). Our approach to the problem of quadrature hybrid 
optimization is based on the exploration of the geometric 
parameter space of standard multi-branch couplers using 
the Particle Swarm algorithm.  

 

II. CLASSICAL QUADRATURE HYBRIDS 
 

Multi-branch couplers are widely used in heterodyne 
receivers. Special attention has been paid to standard 
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designs consisting of two main waveguides connected by 
branches without further modifications to the guides [4]. 
Even though an eight-branch model has been proven to 
comply with the requirements for ALMA Band 3 [3], it 
has been proposed to increase the number of branches or 
to use overmoded waveguides to extend the operational 
band [2]. Further significant modifications have been 
introduced to the hybrid geometry by drilling extra 
cavities to the main guides, to add ripples to the signal 
and consequently reducing the amplitude imbalance at 
the center of the band [5]-[7]. We applied our method to 
8-, 12- and 14-branch geometries, while also including 
extrusions in the main waveguide to assess their impact 
on the amplitude imbalance. 

III. QUADRATURE HYBRID OPTIMIZATION 
Our optimization method is based on the Particle 

Swarm (PSO) evolutionary algorithm together with the 
Surrogate-Based Optimization (SBO) heuristic method. 
The algorithm seeks to find the waveguide and branches 
dimensions stored in a vector called a particle, that 
minimizes a fitness function (FF), while complying with 
any electromagnetic constraints. In this work we have 
used those set by ALMA, namely: a) scattering 
parameters S31 and S21 are expected to be close to -3 ±0.5 
dB, which also ensures keeping the amplitude imbalance 
below 1 dB [5], and b) the S11 and S41 parameters must 
stay below -15 dB. To allow the use of standard drilling 
tools, we set an additional constraint, defined as the ratio 
between the height of the main waveguide and the width 
of the branches, with a maximum value of 7.   

As for hyperparameter and FF weights tuning, we 
settled on a scheme that we benchmarked against a well-
defined and characterized quadrature hybrid designed for 
ALMA Band 5 (163–211 GHz) [9]. After we ran several 
optimization batches with this geometry as a starting 
point to fine-tune the algorithm and validate our resulting 
hybrids, we obtained an optimized geometry that 
improves the result obtained in [9] (see Fig. 1(a)). 
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NOTES: 

 
Fig. 1. Optimized  quadrature hybrid designs (a)  for ALMA Band 5 

and (b) ALMA Band 3. 

 
Fig. 2.  Resulting (a) Amplitude imabalance, (b) phase imbalance 

and S-parameters (c,d) for a 12-branch quadrature hybrid 
incluiding extrusions optimized for ALMA Band 3. 

IV. RESULTS IN ALMA BAND 3 
The resulting quadrature hybrid designs obtained for 

ALMA Band 3 using our optimization method show an 
excellent simulated performance vis-à-vis the S-
parameter and amplitude imbalance requirements. 
Moreover, resulting geometries are found to be 
comparable or to improve upon prior results for ALMA 
Band 3 by fully covering the band with an amplitude 
imbalance below 1 dB. Fig. 1(b) shows the results for 
different standard geometries with amplitude imbalance 
under the expected value, with some hybrids staying 
below 0.5 dB. The 12-branch hybrid also shows a good 
S11-S41 behavior (Fig. 2) thus an excellent amplitude 
imbalance contributing to an appropriate IRR [8], all that 
making it subject of interest for the further analysis and 
possible fabrication. We performed an additional 
optimization batch based on our 14-branch hybrid result 
aimed at widening the current band by an additional 10 

GHz, yielding a band spanning from 80 GHz to 116 GHz 
with full compliance to the established constraints. 

V. CONCLUSIONS 
This novel optimization method provides validated 

and consistent results for quadrature hybrid designs that 
comply with electromagnetic constraints that would 
allow it to operate and improve upon current ALMA 
Band 3 designs. This method speeds up the design 
process and it can be extended to the development of 
other microwave devices for radio telescopes such as 
feedhorns, orthomode transducers (OMT) and even 
microstrips. We also found that standard geometries do 
not provide a viable solution to find a quadrature hybrid 
to fully cover the entire ALMA band 2+3, as we were 
only able to reach a solution compatible with (but not 
wider than) Band W under realistic manufacturing 
constraints. To achieve the whole coverage, attention 
must be paid to alternative and novel geometries that can 
be optimized using the tool herein proposed; this is part 
of our ongoing work. 
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Conclusions

We introduce a novel optimization method
based on the evolutionary algorithm Particle
Swarm Optimization (PSO). Simulations were
conducted for the design of quadrature
hybrids intended to operate in the ALMA Band
3 namely 85-115 GHz band using a fully tuned
and validated version of the algorithm.

We present quadrature hybrid designs
which are optimized with respect to
operational requirements for the scattering
parameters and amplitude imbalance.

Furthermore, the resulting designs consider
machining constraints related to cost and
feasibility requirements.

This method can be easily extended to
optimize other microwave devices and
waveguides for radio astronomy applications,
as used by Restrepo, O. et al. (in prep.), with
the benefit of speeding up the design process
as well as reducing the computational costs

Optimized Quadrature Hybrids

The resulting quadrature hybrid designs obtained
for ALMA Band 3 show an excellent simulated
performance vis-à-vis the S-parameter and amplitude
imbalance requirements. Moreover, resulting
geometries are found to be comparable or to improve
upon prior results for ALMA Band 3 by fully covering
the band with an amplitude imbalance below 1 dB.

The 12-branch hybrid also shows a good S11-
S41 behavior (Fig. 3) thus an excellent amplitude
imbalance contributing to an appropriate IRR [3],
all that making it subject of interest for the further
analysis and fabrication.

Extruded

Figure 2. ALMA Band 3 Quadrature Hybrid parametric sweep. Figure 3. ALMA Band 3 optimized Quadrature 
Hybrid.

1. The algorithm can effectively enhance the figures from
other quadrature hybrid designs.

2. This method speeds up the design process and it can
be extended to the development of other microwave
devices for radio telescopes such as feedhorns,
orthomode transducers (OMT) and even microstrips.

3. The 12-branch selected geometry fulfills the
constraints even under parametric sweep analysis.

4. Attention must be paid to alternative and novel
geometries that can be optimized using the tool herein
proposed to achieve ultra-wide band performance
namely ALMA Band 2+3.

[1] Billade, B., Nystr̈om, O., Meledin, D., Sundin, E., Lapkin, I.,
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Technology, vol. 7, no. 1, pp. 2–9, 2017.
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PSO Algorithm and Op2miza2on Process
Our method was applied on 8-, 12-

and 14-branch geometries, while also
including extrusions in the main
waveguide to assess their impact on
the amplitude imbalance.
The algorithm seeks to find the

waveguide and branches dimensions
stored in a vector called a particle, that
minimizes a fitness function (FF), while
complying with any electromagnetic
constraints. We have used those set by
ALMA, namely: a) scattering
parameters S31 and S21 close to -3 ±0.5
dB, which also ensures keeping the
amplitude imbalance below 1 dB [2],
and b) the S11 and S41 parameters must
stay below -15 dB.

Our approach to validate the method
consisted in using a quadrature hybrid
previously studied for ALMA Band 5 [1]. The
selected geometry consists of an 8-branch
design with flat main waveguides.
The algorithm effectively improves the prior

results by reducing the ∆ & , while fulfilling
other constraints as the ∆ ϕ = 90° ± 1°.

Flat

Figure 1. Validation results using ALMA Band 5 benchmark.
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Appendix 5

E.1 Poster presented in the VII CONGRESO COLOM-
BIANO DE ASTRONOMÍA Y ASTROFÍSICA (CO-

COA 2022)
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4FNIXMZS

Opঞmizar eѴ diseोo geom࣐trico y eѴ compor-
tamiento eѴectromagn࣐ঞco para un hझbrido en
cuadratura (HC) a trav࣐s deѴ uso deѴ aѴgoritmo
gen࣐ঞco ParࢼcѲe S�arm Opࢼmi�aࢼon, apѴicado
aѴ desarroѴѴo de un receptor en Ѵa banda ƒ (ѶƓ-
11ѵ GHz) para eѴ observatorio ALMA (Atacama
Large MiѴѴimeter/submiѴѴimeter Array).

2³XSHS

Se desarroѴѴॕ un nuevom࣐todo de opঞmizaciॕn
basado en eѴ aѴgoritmo evoѴuঞvo ParࢼcѲe S�arm
Opࢼmi�aࢼon (PSO), apѴicado aѴ diseोo de hझbri-
dos en cuadratura para receptores en Ѵa Banda
ƒ de ALMA. EѴ aѴgoritmo se desarroѴѴॕ con-
siderando como restricciones aqueѴѴas estabѴe-
cidas por ALMA: a) Ѵos par࢙metros S31 y S21
deben estar cerca de ≠3 ± 0.5 dB, asegurando
un desbaѴance de ampѴitud inferior a 1 dB, y b)
Ѵos par࢙metros S11 y S41 deben estar por debajo
de -1Ɣ dB [1].

)MWI¼S TEVE JEFVMGEGM¾R

Cॕmo resuѴtado ѴѴegamos a un diseोo opঞmizado para
operar en Ѵa Bamda ƒ de ALMA. EѴ diseोo cumpѴe con
Ѵas restricciones impuestas, Ѵo que Ѵo convierte en can-
didato para Ѵa etapa de fabricaciॕn.

Figure 1. Hझbrido en cuadratura opঞmizado
para operar en ALMA Banda ƒ (ѶƓ – 11ѵ
GHz).

†jorge.cardenasƒ@udea.edu.co
‡orestrepog@ecci.edu.co
§german.chaparro@udea.edu.co
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Las geometrझas haѴѴadas muestran mejores re-
suѴtados que diseोos previos para Ѵa Banda ƒ
con un desbaѴance de ampѴitud inferior a 1 dB.
La figura 2muestra eѴ resuѴtado de opঞmizaciॕn
de dos geometrझas est࢙ndar, con vaѴores de �A
que ѴѴegan a estar por debajo de 0.Ɣ dB [2].

Figure 2. �A para diferentes geometrझas de
HC opঞmizados para Ѵa ALMA Banda ƒ.

Con eѴ proceso de opঞmizaciॕn se encontrar-
ton HC que Őaő cumpѴen con Ѵas restricciones de
fabricaciॕn impuestas por ALMA y Őbő se ajus-
tan a una restricciॕn impuesta para garanঞzar Ѵa
fabricaciॕn usando herramientas de maquinado
est࢙ndar (ver Fig. ƒ).

(a) DesbaѴance de ampѴitud.

(b) DesbaѴance de fase

(c) Par࢙metros S31 ≠ S21

Figure ƒ. Par࢙metros deѴ hझbrido en cuadratura
seѴeccionado para fabricaciॕn.

(SRGPYWMSRIW

EѴ m࣐todo provee resuѴtados v࢙Ѵidos y
consistentes para eѴ diseोo de hझbridos en
cuadratura que saঞsfagan Ѵas restricciones
eѴectromagn࣐ঞcas para operar y mejorar
diseोos actuaѴes en Ѵa Banda ƒ de ALMA.
Este novedoso m࣐todo se puede extender aѴ
desarroѴѴo de otros disposiঞvos de
microondas como feedhorns y orthomode
transducers ŎOMTŏ, que son parte de
radioteѴescopios como ALMA.
Este trabajo es de gran ayuda para otros
observatorios que busquen poner en marcha
receptores a un menor costo sin sacrificar Ѵa
caѴidad de Ѵas mediciones.
Se obtuvieron geometrझas que cumpѴen con
Ѵas restricciones impuestas por eѴ
observatorio ALMA para Ѵos hझbridos en
cuadratura que operen en sus receptores.

5IVWTIGXMZEW

EѴ siguiente paso en esta invesঞgaciॕn es Ѵa
fabricaciॕn y caracterizaciॕn de un hझbrido
en cuadratura resuѴtante deѴ proceso de opঞ-
mizaciॕn que aquझ se reporta.

7IJIVIRGMEW
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