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Abstract

Dysphagia is a swallowing impairment that affects the food, liquid, or saliva transit
from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspira-
tion of the bolus into the respiratory system, which can lead to pneumonia with subsequent
death. Dysphagia is produced by a set of neurogenic and neuromuscular conditions with va-
riable incidence and prevalence. This condition is under-recognized and under-diagnosed.
However, physical, economic, social, and psychological burdens have been clearly identi-
fied.

The clinically accepted methods for dysphagia diagnosis and follow-up are invasive,
uncomfortable, expensive, and experience-dependent. Furthermore, the reliability of some
methods is still discussed. In this way, biosignals-based approaches that try to solve the
aforementioned problems have been proposed, but no conclusive and hardly reproduci-
ble results have been achieved. Otherwise, such strategies generally ignore some physical
aspects of the swallowing process.

Therefore, this work explored non-invasive strategies to objectively assess dyspha-
gia. To evaluate different physical aspects of the swallowing process, a multi-modal
asynchronous analysis was performed with three biosignals: surface electromyography,
accelerometry-based cervical auscultation, and speech. Such biosignals contributed to
analyzing the swallowing-related phenomena in electrophysiological, mechanical, and
acoustic dimensions. This thesis was focused on understanding oral and pharyngeal phases
of the swallowing process by the use of the aforementioned signals. The following metho-
dological steps were proposed to develop the dysphagia assessment scheme: 1) design of
an acquisition protocol for the three biosignals in patients with dysphagia and healthy con-
trols; 2) characterization of such biosignals in different mathematical domains, leading
to the proposal of interpretable biomarkers; 3) construction of representation spaces and
modeling of the swallowing patterns; and 4) evaluation of the multi-modal approach as a
reliable method for swallowing assessment.

All signals demonstrated their suitability for dysphagia screening by themselves, but
bi- and tri-modal scenarios with Support Vector Machines, Extreme Gradient Boosting,
k-Nearest Neighbors, and Gated Multimodal Units outperformed the uni-modal classifi-
cation results. Specific configurations retrieved outstanding results, i.e. all performance
measures obtained values ≥ 0,95. This thesis contributes to reducing the knowledge gap
about swallowing-related phenomena and alterations from non-invasive and multi-modal
points of view, with high potential to transfer and implement in clinical practice. It also
contributes to objectively assessing dysphagia in the consulting room, helping with the
diagnosis, follow-up, and rehabilitation of patients with dysphagia.
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Chapter 1

Introduction

1.1. Motivation

Dysphagia refers to alterations of at least one of the three swallowing phases: oral,
pharyngeal and esophageal [Morg 10]. When an alteration occurs, the control of the pro-
cess to move a bolus from the mouth to the stomach is reduced, and the risk of aspiration
appears (presence of bolus in the airway) [Lope 14]. Dysphagia affects between 8.4% and
16% of people worldwide [Gira 16]. Only in USA, over 16 million people suffer from
oropharyngeal dysphagia, whereas in Europe this number overcomes 40 million people
[Taki 16]. Between 400.000 and 800.000 new cases of neurological dysphagia appear an-
nually worldwide [Pfei 16]. Underestimated statistics show that around 3% of adult pa-
tients older than 45 years are diagnosed with dysphagia in the USA [Pate 17]. However,
incidence and prevalence at the local, regional, and national levels are still unknown.

Dysphagia is a direct effect of several diseases, disorders and injuries [Lope 14], such
as cerebral palsy, traumatic brain injury, stroke, multiple sclerosis, Amyotrophic Lateral
Sclerosis (ALS), myasthenia gravis, Parkinson’s disease, Alzheimer’s disease, and others.
Dysphagia reduces the capability of receiving oral feeding and causes malnutrition (weight
loss, muscle breakdown, decreased general health) and dehydration [Clav 06, Cich 12]. Si-
lent aspirations or aspirations without adequate cough response enhance the risk of pneu-
monia and even death [Clav 15, Youm 11]. Besides physical implications in patients,
dysphagia has substantial burdens in economic, social, and psychological dimensions
[Cich 12, Pate 17]. Dysphagia increases the length of hospital stay to 40% [Chen 16a],
and a systematic review reported a mean of 3.98 days longer compared to individuals with
no dysphagia [Attr 18]. A rough estimate indicates an economic burden of around 547
million USD per year only in the United States [Chen 16a], and a daily cost per patient of
around 2500 USD [Cich 12]. Although there is high variability between reports regarding
healthcare costs associated with dysphagia, an approximate cost increase of 40.36% was
estimated [Attr 18].

The diagnosis of dysphagia is a experience-dependent, costly and time-consuming pro-
cess. There is little information regarding the pattern of dysphagia produced by different
diseases and medical conditions [Clav 06]. The standard clinical evaluation is the bed-
side swallow examination, which is a clinical checklist made by trained speech-language
pathologists (SLP) [Carn 08]. However, most implementations are subjective, have poor
validity and rigor, and could ignore the presence of aspirations [Farn 14]. The instrumental

1
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techniques appear to overcome some of these lacks. The most widely used instrumental
assessment methods are the videofluoroscopic and fiberendoscopic evaluations of swallow-
ing, intended to detect aspiration and penetration (bolus in the larynx) [Lang 03, Hey 15].
Even though these methods are the gold standard in medical practice, they have several ma-
jor problems: reduced availability in the local health system; invasiveness; lack of stand-
ardized protocols and validated scoring systems [Lang 03]; and the diagnosis depends on
the professional expertise [McCu 01a, Farn 14].

With the aim of quantifying and reducing the invasiveness of current procedures to dia-
gnose dysphagia, several techniques based on biosignals have emerged, such as cervical
auscultation based on accelerometry [Dudi 15a] and swallowing sounds [Berg 14], surface
electromyography [Step 12], mechanomyography [Lee 09b], voice recordings [Ipin 18],
nasal flow measurements [Lee 11], and pulse oximetry [Sher 99]. Each biosignal describes
different physical properties of swallowing in mechanical, acoustic, bioelectric, or hemo-
dynamic dimensions. Thus, bearing in mind the complexity of the swallowing process,
pretending to model and addressing the phenomenon with only one source of information
could lead to false or biased conclusions. There is no consensus about which technique
best represents clinical variables of swallowing, and those methods are not enough convin-
cing to be regularly used in clinical practice. Furthermore, most of the existing approaches
have been addressed descriptively; works that apply robust techniques from the quantifica-
tion point of view, are mainly focused on the pharyngeal phase, disregarding the sequential
patterns of the process. Additionally, most of the studies have considered small databases,
which limits their analyses to very specific groups of patients with only one particular
disease, and not studying other etiologies.

Dysphagia diagnosis based on reliable non-invasive methods that quantitatively eval-
uate patterns in the swallowing process considering multiple sources of information is an
open research problem.

1.2. Theoretical Background and State of the art

1.2.1. Anatomy and physiology of swallowing

Swallowing is a complex neuromuscular process that implies the transit of specific
boluses from the mouth to the stomach. The World Health Organization (WHO) defines
swallowing as the set of “functions of clearing substances, such as food, drink or saliva
through the oral cavity, pharynx, and esophagus into the stomach at an appropriate rate
and speed" [ICF ]. It requires coordinated voluntary and involuntary movements of more
than 30 pairs of muscles in the mouth, tongue, pharynx, larynx, and esophagus bilaterally
[Palm 00, Erte 03, Hamm 14, Shaw 13] (see Figure 1.1). Moreover, the swallowing process
shares anatomical structures with breathing and phono-articulation functions, leading to
co-morbidity when one of them suffers alterations [Farn 17], but the neural processes by
which these functions are coordinated are not well understood [Bols 13].

A central pattern generator1 for human swallowing has been hypothesized in the
medulla oblongata [Erte 03, Shaw 13]. Normal swallowing responds to stimuli of the oro-
pharynx, larynx, and esophagus via sensory neurons of the cranial nerves V, VII, IX, X, and

1Self-contained neural circuits
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XII [Clav 15]. These cranial nerves have specific functions during the swallow [Shaw 13],
summarized as follows [Berg 14]:

Trigeminal (V): jaw opening.

Facial (VII): lips retraction and protrusion.

Glossopharyngeal (IX) and vagus (X): voice production (phonation, articulation, and
prosody [Erma 09]) and palatal elevation.

Hypoglossal (XII): tongue movements such as protrusion, lateralization, circular,
and strength against resistance.

Even though the accessory nerve (XI) is not usually considered to participate in the
neural control of swallowing, it could have motor innervation of the striated portions of the
esophagus, larynx, and pharynx [Cost 18]. However, the mechanism that would involve
such cranial nerve in the swallowing process remains unclear.

Figure 1.1: Sagittal view of anatomical structures related to swallowing. Adapted from
[Blau 13].

Swallowing has characteristics of bilaterality and there is interhemispheric asymmetry,
i.e., lateralization of the right hemisphere tends to be greater than of the left one, irrespect-
ive of handedness [Erte 03].

The entire process is highly dependent on the bolus size, bolus consistency, and age but
independent of the gender [Bolz 13, Youm 11, Aydo 15, Card 10]. Although there are no
well-defined patterns of swallowing, this process involves three phases, well-established
since 1813 with Magendie’s publications [Vaim 07]: oral, pharyngeal, and esophageal
[Gupt 14] -see Figure 1.2-. Swallowing phases are described below.

Oral phase: It is voluntary and depends on the viscosity of the bolus [Clav 15]. The oral
phase is controlled by cranial nerves V, VII, and XII [Walt 18]. In this phase, the soft palate
is sealed by the tongue, avoiding the pass of the bolus to the pharynx -see Figure 1.2-. This
phase is characterized by chewing, containment, control, swallow initiation, propulsion,
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Figure 1.2: Diagram of the normal swallowing process. A) End of the oral preparatory
phase. B) Bolus propelled from the mouth to the pharynx (end of oral phase). C) Beginning
of the pharyngeal phase: elevation of the soft palate, nasopharynx closure, and upward-
forward movement of the larynx. D) End of pharyngeal phase: upper esophageal sphincter
opens, tongue contacts the pharyngeal wall. E) Esophageal phase: Soft palate descends,
pharynx and larynx open again. From [Mats 08b] with written permission.

and transport of the bolus [Cich 12]. Impaired control of the tongue and dental problems
produce disorders that affect this phase [Palm 00]. Some authors divide the oral stage
into oral initial (labial sealing) and oral final (tongue squeezing against the hard palate)
[Vaim 04a], whilst others divide it into oral preparatory and oral transit (or propulsive)
phase [Shaw 13, Walt 18]. This division based on non-overlapped phases is known as the
four sequence model. However, for solid food, a refinement of the oral phase in the four-
sequence model has been proposed, in which there is a gradual bolus aggregation in the
oropharynx simultaneously with the food processing in the oral cavity. This is known as
the process model [Mats 09].

Pharyngeal phase: It is involuntary, although it may be initiated consciously [Dudi 15a],
and it involves also the clearing of residues [Cich 12]. This phase is initiated with the
propulsion of the bolus by the tongue and the opening of the upper-esophagic sphincter
[Clav 15] -see Figure 1.2-. Although cranial nerves IX and X participate in the trigger-
ing mechanism mediated by the medulla [Walt 18], the whole process is not well-known
[Erte 03]. The suprahyoid muscles -see Figure 1.5- pull the hyoid bone toward the mandible
[Gurg 13, Poor 14], the larynx rises and the vocal cords close, locking the air-flow through
the glottic plane [Mats 08b, Poor 14]. It has been documented that the suprahyoid muscles
activate before the motion of the anterior and posterior tongue [Li 17]. Subsequently, the
infrahyoid muscles -see Figure 1.5- descend the hyolaryngeal complex toward the sternum
[Poor 14]. Such displacement moves the larynx under the base of the tongue and closes
the laryngeal vestibule before opening the upper esophageal sphincter [Mats 08b]. Thus,
there is a sealing of the unwanted pathways including the oral cavity by the tongue, the
nasopharynx by the soft palate and the larynx by the epiglottis2, observed as an apneic

2Fibrocartilage anterior to the laryngeal inlet [Walt 18]



1.2. Theoretical Background and State of the art 5

period and it is followed by exhalation [Dudi 15a] -see Figure 1.2-. The airway protec-
tion depends on the integrity of the pharyngeal phase [Youm 11, Bols 13]. Since oral and
pharyngeal phases are highly correlated, they are commonly known as “oropharyngeal".
This integrated phase has an extraordinary complexity and velocity [Erte 03]: the activa-
tion of the muscles implied in this phase are ballistic-like (less than 600 ms) [Bols 13]. This
phase is also the most critical from a health preservation point of view [Mart 08].

Esophageal phase: It is completely involuntary [Dudi 15a], and it is simpler and slower
than the oropharyngeal one [Erte 03]. This phase lasts 5-6 s approximately [Walt 18]. It
involves the relaxation of the upper esophagic sphincter, its opening by the movement of
the hyoid bone and the larynx, the contact between the posterior pharyngeal wall and the
posterior surface of the tongue (clearing the pharynx of residues) -see Figure 1.2-, and
consequently peristaltic propulsion of the bolus from the lower esophagic sphincter to the
stomach, mainly by the action of smooth muscles [Chen 16a, Palm 00, Erte 03]. During
liquid intake, the gravity force helps to the bolus passage if the person lies in an upright
position [Walt 18]. The lower esophagic sphincter closes after the passage of the bolus
in order to prevent gastroesophageal reflux [Palm 00]. When weakness or incoordination
of esophageal musculature appears, the esophageal propulsive force may be affected. By
contrast, overactivity of the esophageal musculature may lead to loss of effectiveness in
the transport of food through the esophagus due to spasms [Palm 00]. The esophageal
phase is separated from the oropharyngeal one, because they are controlled by distinct
neuroanatomic circuits [Brou 00].

1.2.2. Dysphagia

The term dysphagia refers to abnormalities in the swallowing process. Dysphagia
can be classified as oropharyngeal or esophageal, depending on the affected swallowing
phase. Oropharyngeal dysphagia is related to difficulties in swallowing initiation, cough-
ing, choking, repeated swallows, voice changes, or nasal regurgitation [Chen 16a], as well
as to malfunction of the airway protection mechanism, that leads to penetration -meal in
the laryngeal vestibule and above true vocal folds- or aspiration -meal pass through the
trachea- [Palm 00]. On the other hand, sensations of food “getting stuck" at the chest level,
heartburn, chest pain, or odynophagia (swallowing-related pain) could indicate esophageal
dysphagia [Chen 16a]. An increase in the number of swallows per standard boluses is re-
ported also as a sign of dysphagia [Berg 14]. However, distinguishing between both types
of dysphagia is difficult because they share signs and symptoms, such as slow swallowing
speed, piecemeal deglutition, wet voice after swallowing, etc [Kang 17, Palm 00].

Although the prevalence of dysphagia in hospitalized patients is estimated in 12–13%
(up to 30% in elderly people) [Chen 16a], in patients under intensive care or at-home nurs-
ing care the prevalence can increase up to 60% [Pfei 16, Ekbe 02].

Some muscular, peripheral and central nervous structures malfunctioning may cause
neurogenic dysphagia, which is manifested by neurological3 or neuromuscular4 conditions
[Pfei 16]. Both conditions are known as functional dysphagia (see Figure 1.3). Other

3Compromise in peripheral or central nervous system
4Alterations in neuromuscular junctions or muscles of pharynx and esophagus
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causes such as iatrogenic, infectious, mechanical, and structural may trigger dysphagia
too [Sase 17]; however, these origins of dysphagia are out of the scope of this Ph.D. thesis.
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Figure 1.3: Scheme of the physical burden and causes of functional dysphagia.

Neurological conditions are the origin of 75% of oropharyngeal dysphagia manifesta-
tions [Erte 03]. It includes brainstem tumors, traumatic brain injury (27-50% of dyspha-
gia’s incidence), stroke (between 8.1% and 80% of incidence, 20% of them with aspira-
tion pneumonia), cerebral palsy, Guillain-Barré syndrome, Huntington’s disease, multiple
sclerosis (44% of incidence), amyotrophic lateral sclerosis (60% of incidence), Parkin-
son’s disease (prevalence between 18.5% and 100%), dementia (45% of institutionalized
patients with clinical evaluation, and up to 95% with instrumental evaluation in advanced
states), Alzheimer’s disease (limited evidence about incidence and prevalence), among
others [Cook 99, Ekbe 02, Clav 06, Chen 16a, Baij 09, Taki 16, Ozsu 20]. On the other
hand, myopathic conditions include dermatomyositis, myasthenia gravis, myotonic dys-
trophy, oculopharyngeal dystrophy, polymiositis, among others [Erte 03, Cook 99, Ekbe 02,
Clav 06, Chen 16a, Baij 09]. Furthermore, studies conducted in different countries with no
consistent age of the population, number of individuals and evaluation methods, show dif-
ferences in dysphagia prevalence: from 1.7% in China (between 18 and 70 years old), to
up to 55% in Spain (>70 years old in patients with pneumonia) [Rode 13]. Disparate or
missing epidemiological data associated to some mentioned conditions are an indicator of
the gap in swallowing research [Taki 16].

Functional dysphagia can lead to malnutrition, dehydration, recurrent upper respiratory
infections, and possible pneumonia (if aspiration occurs) with subsequent death [Pfei 04,
Clav 15]. The mortality due to aspiration episodes increases when it is associated with
dysphagia (27% in patients with safe swallowing vs. 55% in patients with dysphagia
[Cich 12]). Although physical and to a lesser extent economic effects of dysphagia have
been studied, psychological and social burdens have been neglected [Farr 07]. Dyspha-
gia can produce important effects on quality of life from both social and emotional points
of view [Farr 07], destroying the social opportunities -and pleasure- of mealtimes because
the patients feel embarrassed, affecting the quality of relationships between them and care-
givers, isolating the patients and generating anxiety, with subsequent affectations on the in-
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dividual’s dignity [Ekbe 02, Farr 07]. Dysphagia is related to the reduction of self-esteem,
exercise, security, work capacity, and leisure time [Gust 91]. Figure 1.4 summarizes the
burden of dysphagia.
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Figure 1.4: Dysphagia-related burden.

Diagnosis of dysphagia
Although dysphagia is under-recognized, under-diagnosed and under-managed

[Ekbe 02, Rode 13], its clinical diagnosis can be divided into three components: screen-
ing, Clinical Swallow Examination -CSE- and instrumental evaluation [Gira 16, Berg 14].

The screening implies preliminary tests and checklists aiming to determine whether the
patient requires a more detailed examination [Dudi 15a], i.e. it aims to identify the pres-
ence or risk to develop dysphagia [Berg 14]. Several screening methods are used such as
initial assessment of cognitive status, water swallow test, pudding swallow test, gag re-
flex, voluntary cough, evaluation of voice changes, repetitive swallow saliva test, among
others [Hass 14, Carn 08, Yagi 17]. However, only the 3-oz water swallow test has been
validated to perform screening [DePi 92, Carn 08]. Most of the available screening meth-
ods have questionable reliability due to their subjectivity [Lesl 04] and lack of quantitative
analysis [Yagi 17]. In addition, it is common to find hospitals with different protocols
for the detection of dysphagia with the aforementioned lack of validation. It is estimated
that the number of such protocols increased by around 20 % in the last decade [Fest 16].
Furthermore, most of the available screening methods are intended to evaluate the stroke
population, disregarding other diseases and conditions that produce dysphagia [Mozz 17].
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Table 1.1: Regularly used scales for CSE

Test Classification Characteristics References

EAT-10
Healthy,
oropharyngeal dysphagia without aspiration,
and oropharyngeal dysphagia and aspiration

Ten points
Easy to apply and interpret
Validated for Spanish language (Colombia)

[Sifr 14, Gira 16]

PAS
From 1 (Material does not enter the airway)
to 8 (Material enters the airway, passes below
the vocal folds, and no effort is made to eject)

Eight points
Classification according to the aspiration risk [Rose 96]

MPAS Five-points simplification of PAS Simpler to implement that PAS [Kang 17]

DOSS From 7 (normal swallows) to 1 (severe dysphagia)
Evaluate the severity of dysphagia using videofluoroscopy
Subjective by far
Controversial inter-rater reliability

[Zark 18, ONei 99]

MASA Mild, moderate and severe dysphagia
5- and 10- rating scale
Validity comparable to other clinical scales
Not evaluated in non-neurological patients for long-term

[Carn 08, Crar 13a, Anto 10]

SWAL-QOL From 1 to 5 (or 6, depending on the item)
Ninety-three items
No disease specific
Time consuming

[McHo 00a, McHo 00b, Guti 15]

Another limitation of most swallowing screening studies is that they tend to correlate dys-
phagia only to the presence of aspiration. However, it is only one component of dysphagia
and not always an obligatory symptom, and it may be intermittent [Carn 08].

The CSE is a clinical assessment procedure oriented to the diagnosis, treatment, and
management of dysphagia. It could also include the follow-up and education of the patient
[Berg 14, Carn 08]. Even though some authors consider the screening as part of the CSE
[Hass 14, Carn 08], there are well-defined examples of CSE-related methods: the 10-item
self-perception Eating Assessment Tool (EAT-10); the Penetration-Aspiration Scale (PAS)
and its modified version MPAS; the Dysphagia Outcome and Severity Scale (DOSS); the
Mann Assessment of Swallowing Ability (MASA); and the self-perception tool for evalu-
ation of quality-of-life and quality-of-care outcomes (SWAL-QOL). Some characteristics
of these methods are shown in Table 1.1. Although other scales and scores are avail-
able, most of the methods are disease-specific, lack sufficient validation or have reported
contradictory sensitivity and specificity [Carn 08, Crar 05, List 90, Hill 89]. The CSE is
considered to be insensitive to different forms of pharyngeal dysphagia, especially when
silent symptoms are present, i.e. in approximately 50% of the cases [Youm 11]. Although
non-instrumental tests have shown high sensitivity for detecting aspiration, specificity is
too low [Dudi 18a]. Another limitation of the CSE is the subjectivity and questionable re-
liability because it depends on the professional’s expertise and its variability compared to
the gold standard instrumental methods [Lesl 04].

Finally, after the screening and CSE, the diagnosis is confirmed by instrumental meth-
ods such as the VideoFluoroscopic Study of Swallowing -VFSS- and the Fiberoptic En-
doscopic Evaluation of Swallowing -FEES- [Gira 16]. Although the VFSS is considered
the gold standard in swallowing examination, it has shown limited inter- and intra-judge
reliability [Lesl 04]. Otherwise, several studies have shown that FEES has a high level of
agreement with VFSS, which suggests that both methods provide the same effectiveness
for patient management [Aviv 00]. Although VFSS and FEES are the reference methods
for instrumental assessment, both share the lack of standardized protocols and scoring sys-
tems, which makes them highly subjective and expert-dependent [Lang 03]. Furthermore,
when VFSS is used several times for follow-up examinations, the radiation-related risks in-
crease, e.g. induced cancers, tissue reactions, and damage in the lens of the eyes [Earl 19].
In addition, this method is sometimes unavailable, time-consuming, and it increases health-
care costs [Wils 12]. Regarding FEES, it provides limited information in comparison with
VFSS, because it investigates only the pharyngeal phase and it does not quantify the bolus
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inhaled under aspiration conditions [Nacc 08]. Moreover, FEES is uncomfortable and fre-
quently associated with gagging, vomiting, and more rarely, complications such as laryn-
gospasms [Nacc 08]. These drawbacks motivate the research community to address other
less invasive and more objective methods [Zora 10].

1.2.3. Biosignals for swallowing evaluation

Aiming to objectify the assessment of swallowing functions and to overcome the lim-
itations related to invasiveness, objectivity, availability, and reliability, different strategies
based on signal acquisition and processing have been proposed. Most of them are based
on sounds acquired with stethoscopes or microphones, and laryngeal motion recorded with
accelerometers [Yagi 17, Sejd 18]. Furthermore, other authors have explored evaluation
techniques based on surface electromyography [Vaim 09, McKe 02, Hsu 13], respiratory
flow [Lee 09a, Lee 11], piezoelectric sensors [Kala 15], pulse-oximetry [Brit 18], and even
voice recordings [Ipin 18].

The aforementioned techniques require different approaches in terms of processing,
characterization, modeling, and analysis because they are produced by particular phe-
nomena related to different swallowing dimensions, concepts which will be explained in
Chapter 3. In this thesis, three biosignals are considered to expand the understanding
of dysphagia: surface electromyography, accelerometry-based cervical auscultation, and
speech. A brief description of each kind of biosignal is shown next.

Accelerometry-based cervical auscultation (Acc)

In principle, the cervical auscultation signals are acoustic waves generated in the
pharyngeal region during the swallowing process [Lee 08]. Such signals in swallow-
ing are produced by propagating pressure waves through the aerodigestive tract with its
valves (lips, velopharyngeal region, larynx and cricopharyngeal muscle) [Dudi 15a]. They
have been used as a clinical assessment tool for dysphagia screening [Lee 08, Dudi 15d,
Mova 17b]. These signals provide information about the frequency and duration of swal-
lowing, the number of gulps, cough, and post-swallow breathing [Laga 16]. Most re-
search related to cervical auscultation in swallowing has been focused on the analysis of
the sources of signals, the best placement for signal acquisition, denoising and segment-
ation methods, and classification between normal and abnormal swallows [Mova 17b].
The use of accelerometers, stethoscopes, and microphones become popular to study the
swallowing process; however, there is no consensus about the validity of this approach
[Sanc 18, Nozu 17],

Cervical auscultation signals have been mainly acquired using microphones [Yagi 17],
and to a lesser extent by stethoscopes [Sanc 18, Lesl 07, Haml 94, Zenn 95, Lesl 04]. One
of the main drawbacks of the stethoscope is its poor suitability for transmitting frequen-
cies above 1 kHz [Haml 94]; this is a limitation for analysis of patients with dysphagia
because they have shown higher spectral components than healthy individuals [Dudi 18b].
Three events are associated with the main swallowing sounds registered by microphones
[Bolz 13, Hann 10, Berg 14]: 1) the laryngeal elevation -and lingual propulsion-, 2) the up-
per esophageal sphincter opening [Hamm 14], and 3) the laryngeal release, also described
as glottal release [Laza 04]. When a flushing sound of the bolus is heard prior to the ini-
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tiation of the pharyngeal swallow, or when the breathing sound is wet or stridor after the
swallow, it is reasonable to suspect aspiration [Shir 14, Dudi 15a].

Notwithstanding, cervical auscultation using single, dual, or tri-axial accelerometers
placed at the cricoid cartilage has been used recently also for cervical auscultation. How-
ever, this kind of sensor does not measure the acoustic but the mechanical dimension of
swallowing; it is intended to detect vibrations caused by movements of oropharyngeal
structures in superior-inferior (S-I), anterior-posterior (A-P) and medial-lateral (M-L) axes
[Lee 08, Mova 17a]; hyolaryngeal excursion is the primary physiological source of in-
formation in this case [Zora 10]. Accelerometry signals have highly concentrated spec-
tral information below 300 Hz, much lower than swallowing sounds [Jest 14, Mova 17b], a
strong indication that accelerometry is more related to mechanical than acoustic phenom-
ena [Lee 11, Yagi 17]. Although M-L movements could appear in patients with dysphagia,
they are not detected in VFSS and this axis has shown pretty similar behavior to A-P and
S-I [Mova 17a]. Entropy analysis suggests that A-P axis provides more information due to
its bigger amplitude (signal power) [Lee 08], although maximum hyoid excursion in older
individuals is reduced in the anterior direction, and patients could have S-I amplitude lar-
ger than A-P [Zora 10, Mova 17a]. Several studies have been oriented to describe only
A-P and S-I axes through time, information-theoretic, frequency, and time-frequency do-
main characterizations [Lee 08, Lee 11, Dudi 18b]. However, the works that reported the
use of accelerometers for cervical auscultation have limitations in terms of gender and
age matching along with a careful protocol design for the evaluation of different volumes.
Furthermore, few works have addressed comparisons between healthy individuals and pa-
tients with dysphagia. There is a gap in neurological evaluations of the patients recruited
in these studies, which hinder the sensitivity when confirming their condition; in fact, sev-
eral works reported individuals with suspected rather than confirmed dysphagia. Table 1.2
illustrates the works that have addressed swallowing evaluations using accelerometry only
or combined with other biosignals.

Surface electromyography (sEMG)

The sEMG is intended to record the electrical activity of muscles [Poor 17], i.e. to eval-
uate the electrophysiological dimension of swallowing. sEMG has been used over the past
decades for the assessment of swallowing impairments [Poor 17], and it is an appropriate
technique to detect piecemeal deglutition and delays between phases produced by dys-
phagia [Erte 14]. sEMG allows to analyze the temporal pattern of sequential and orderly
contractions, a neuromuscular characteristic of the swallowing process [Erte 03, Palm 89].
However, sEMG has not been considered so far in the list of evaluation techniques of swal-
lowing pathophysiology [Vaim 09]. In contrast to other methods to study the swallowing
process, sEMG is non-invasive, time-saving and inexpensive [Vaim 09]. Identification of
swallowing events by sEMG has demonstrated acceptable accuracy and reliability for ex-
perienced and naïve judges [Crar 07]. However, its reliability depends on the patient’s age
and type of ingested bolus [Poor 17]. Furthermore, it shows to be unable to accurately dia-
gnose neurologically induced dysphagia [Vaim 09]. Thus, further validation is necessary
in order to standardize its use in clinical practice [Poor 17],

The electrode placement is a critical point to report any study conducted with sEMG
[Merl 99]. In swallowing, it has to be consistent with the small size of the involved
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Table 1.2: State of the art of engineering related contributions in swallowing evaluation

Paper Brief data description sEMG Acc Speech Other Goal
[Gall 98] 12 HC • Event detection
[Laza 04] 15 HC, 11 DP • Healthy vs. dysphagic
[Afka 07] 1 HC • • • Swallow detection
[Sejd 09] 408 HC • Swallow segmentation
[Lee 09a] 17 HC • • Swallow segmentation

[Sejd 10] 408 HC • Vocalization detection &
swallow detection

[Nikj 11] 30 DP • Safe vs. unsafe swallows
[Lee 11] 24 DP • • Normal vs. abnormal swallows
[Sejd 12] 408 HC • Swallow segmentation
[Sejd 13] 40 DP • Healthy vs. dysphagic swallows
[Stee 13] 40 DP • Aspiration detection

[Hsu 13] 26 Pa • • Discrimination of dysphagia
severity

[Schu 14] 31 HC, 41 DP • • Swallow detection
[Dudi 15d] 23 DP • Swallow detection
[Kala 15] 30 HC • • Swallow detection
[Papa 16] 14 HC • • Chewing detection
[Cons 18] 10 HC, 10 Pb • Swallow detection
[Dudi 18a] 55 HC, 53 DP • Healthy vs. dysphagic swallows
[Ipin 18] 6 Pc • Dysphagia detection
[Mao 19] 114 DP • Anatomical structure tracking
[Rieb 19] 41 DP • • Onset detection
[Stee 19] 305 DP • Safe efficient swallow detection
[Dono 20] 116 DP, 15 HC • • Event detection
[Suzu 20] 8 HC • Swallow detection
[Khal 20a] 248 DP • • Swallow detection
[Khal 20b] 116 DP • • Event detection
[Dono 21b] 51 HC, 20 DP • • Healthy vs. dysphagic
[Dono 21a] 171 HC, 170 DP • • Compare features event detection
[Dono 21c] 114 DP • • Anatomical structure tracking
[Mao 21] 16 HC, 120 DP • • Event detection
[McNu 21] 5 HC, 5 Pd • Event detection

[Dono 22a] 70 HC • • Reference values &
healthy vs. dysphagic swallows

[Dono 22b] 36 HC • • Non-effortful vs. effortful swallows

[Park 22] 449 Pe • Mild vs. severe dysphagia &
Risk of respiratory complications

[Zhao 22] 83 HC, 143 DP • Dysphagia detection
HC: Healthy controls. DP: suspected of confirmed patients with dysphagia. P: patients with specific conditions.
a: Myasthenia gravis. b: Head and neck cancer. c: Parkinson. d: Total laryngectomy. e: Post-stroke

muscles [Palm 89, Step 12]. However, there is no a standardized protocol to place the elec-
trodes in swallowing studies [Step 12]. Most of them are focused on the pharyngeal phase
[Erte 98, Ding 02, Perl 99] and others on the oral phase [Must 17, Dell 18] separately, but
few have assessed the muscle activity during the oropharyngeal phase. These works have
evaluated four regions mainly [Vaim 07, Zare 17]: masseter muscles (MS), orbicularis oris
(OR), and the groups of suprahyoid (SH) and infrahyoid muscles (IH). sEMG in SH cap-
tures activity from the anterior belly of the digastric, the mylohyoid, and the geniohyoid
muscles, whilst in the IH, sEMG captures activity from sternohyoid, omohyoid, and ster-
nothyroid -see Figure 1.5-. Some protocols acquire only four sEMG channels [Vaim 07],
disregarding bilateral differences present in patients with hemiparesis or even in healthy
subjects, especially in the oral phase [Dell 18].
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Figure 1.5: Muscles involved in the oropharyngeal phase of swallowing. a) Lateral view
of syprahyoid muscles; b) Frontal view of infrahyoid muscles. From [Jone 17b, Jone 17a]
with written permission.

The application of sEMG in swallowing has potential as a dysphagia screening clin-
ical tool for optimal patient management [Step 12, Vaim 09] and it is still an open field of
research [Dell 18]. However, there are some limitations in the use of sEMG for dyspha-
gia screening: 1) it cannot detect silent aspirations in patients with dysphagia; 2) sEMG
can record only the initial part of the esophageal phase [Vaim 09, Vaim 04a]; 3) the gold
standard to detect swallowing-related neuromuscular sequences is the visual inspection
(VIS) [Vaim 09], which is time-consuming and has moderate reproducibility and repeatab-
ility [Cart 15]; and 4) sEMG acquisition in supra- and infra-hyoid muscles is challenging
because they have small size and overlapping fibers, which produces cross-talk and low
signal-to-noise ratio (SNR) [Step 12, Mona 08]. The latter problem makes the detection of
muscle activations (bursts) difficult. Furthermore, the works have investigated only amp-
litude and temporal related features to characterize and represent the muscle activations
during swallowing tasks; there is no consensus about the protocol of acquisition (type of
bolus, volumes, repetitions, database), decreasing the outcome of the technique [Vaim 09];
and the databases that have been used are limited in the number of healthy controls and
patients, with some exceptions [Aydo 15, Vaim 04b, Vaim 04c, Vaim 04d]. Table 1.2 illus-
trates the works that have addressed swallowing evaluations using only sEMG or combined
with other biosignals, by the application of engineering-related techniques.

Speech

Speech-language pathologists widely use the perceptual evaluation of voice quality
during clinical swallow examinations because it gives valuable clues regarding swallowing
malfunctioning [Wait 11, Hass 14]. Although Linden et al. suggested that voice abnormal-
ities should alert about aspiration risk [Fest 16], its use as an indicator of laryngeal P/A is
controversial [Dudi 15a, Wait 11], and there is a lack of clinical evidence supporting this.
Voice-quality assessment is subjective by far, and some authors suggest that evaluation
of voice-related perceptual features has variable reliability, especially when the signs are
subtle [Dani 15]. Despite the vast literature about dysphagia and voice disorders separately,
surprisingly the studies that investigate their association are scarce [Sant 15, Farn 17]. One
remarkable exception is the work carried out by Festic et al., who found statistically sig-
nificant associations between dysphagia and diadochokinetic assessment (rapid repetition
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of /puh/,/tuh,/kuh/), especially in patients with confirmed aspiration [Fest 16]. Addition-
ally, few works have addressed the evaluation of speech-related information in patients
with dysphagia from an engineering point of view (see Table 1.2). From the list of works,
there is one that reported the use of classical machine learning algorithms and voice fea-
tures to detect the severity of dysphagia in terms of oral feeding and the risk of respiratory
complications in post-stroke patients [Park 22]. Another paper implemented feature engin-
eering with classical speech-related descriptors extracted from a throat vibrator instead of
microphones to detect dysphagia with machine learning algorithms [Zhao 22].

Two voice-quality alterations (clinical or perceptual features) are detected routinely by
speech-language pathologists in dysphagic or aspirated patients [Lede 02, Dani 15]5: wet
voice and dysarthria.

The wet voice, also known as wet phonation or gurgly voice [Kang 17], describes the
bubbling sound produced by stasis of secretions, liquids or food in the laryngeal vestibule
[Bass 14]. Wet voice is easy to recognize, and the agreement percentage of detection is
high, pre- and post-swallow [Dani 15]. Wetness has shown relatively good post-swallow
specificity but poor sensitivity [Wait 11, McCu 01b, Samp 14], but Groher et al. found
moderately high sensitivity, low specificity and accuracy dependent on the bolus viscosity
[Groh 06]. Again, contradictory results about its correlation with P/A are reported in the
literature [Fest 16]. Although its reliability is poor by itself [Sant 15], wet voice helps
to increase it considerably when combined with cervical auscultation or 3-oz water test
[Cavi 10]. Even though the wet voice has been implemented as a clinical predictor of
aspiration in clinical care setting [Cavi 10], it remains unclear and debatable whether the
wet voice can be used for assessment of dysphagia or risk of aspiration [Kang 17, Chan 12].

Dysarthria, a speech disorder resulting from impaired neuromuscular control, produces
weak, uncoordinated, abnormal tone, slowing, and inaccurate oral and vocal movements
[Ende 08]. There is a significant co-morbidity and correlation between dysarthria and dys-
phagia [Morg 10, Fals 09, Lapa 17], because dysarthria produces weakness or incoordina-
tion of the tongue and orofacial muscles (the most important articulators), which play a key
role in the swallowing process [Kuma 14]. Although there are no known clinical predictors
of the binomial dysphagia-dysarthria [Flow 13], dysarthria has been reported as a moder-
ate predictor of dysphagia severity [Dani 97], especially for oral stage problems rather than
pharyngeal impairments [Bahi 16]. Furthermore, the capability of dysarthria to predict P/A
in clinical evaluations is controversial [Keag 17, Okub 12], but these conclusions have been
made in limited pathologies.

The presence of speech-related alterations in patients with dysphagia is supported by
the fact that both processes, i.e. speech production and swallowing, share anatomical struc-
tures and some networks at the neurological level; particularly, the glossopharyngeal nerve
(co-responsible for the oropharyngeal swallow response through palatal elevation) and the
vagus nerve (primary peristalsis of the esophagus), participate in voice production (phon-
ation, articulation and prosody) [Clav 15, Erma 09, Berg 14]. Figure 1.6 shows a flowchart
of the functional and anatomical relationship between the swallowing and speech produc-
tion processes.

5The other clinical identifiers of aspiration risk are dysphonia, abnormal volitional cough, abnormal gag
reflex, and cough after swallow [Lede 02].
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Figure 1.6: Swallowing (blue) and speech (red) processes in a counter way. The purple
structures are shared by both processes. Relevant structures involved in each phase of the
swallowing and speech production processes are included.

Open questions in swallowing-related biosignals

In general, the aforementioned signals have shown limitations that have impeded their
use in the consulting room for the evaluation of dysphagia. One of these limitations is the
contradictory reliability when assessing dysphagia. Another restraint is the number of indi-
viduals recruited for each experiment published in the literature. Most of the limited studies
that assessed both healthy controls and patients with dysphagia, either lack age and gender
matching, or report descriptive results only, i.e. such works do not provide performance
measures such as sensitivity or specificity. Systematic scientific evaluation and validation
are required, also the number of participants needs to be increased to report stronger con-
clusions. On the other hand, the swallowing process lacks of standardized characteristics
(features or descriptors) to quantitatively describe each swallowing dimension. Works that
intended to characterize different non-invasive biosignals report contradictions about which
descriptors represent well swallowing-related phenomena under different conditions such
as gender, age, swallowing task, or dysphagia severity. Additionally, there are not confid-
ent models based on non-invasive biosignals with reliability comparable to the reference
methods, which limits their use for swallowing evaluation.

1.3. Contributions to the research on swallowing evalu-
ation

This thesis proposes different machine learning-based methodologies for the evaluation
of functional oropharyngeal dysphagia. Two acquisition protocols were designed, one for
the evaluation of electromyography and accelerometry during different swallowing tasks,
and another for the evaluation of speech recordings before and after such tasks. In age and
gender matched databases of healthy individuals and patients with confirmed functional
oropharyngeal dysphagia, different feature domains were extracted from each biosignal, so
various biomarkers of normal and abnormal swallowing processes are proposed. Addition-
ally, machine learning and deep learning-based models were implemented and evaluated
to figure out how each biosignal is capable to represent each swallowing dimension under
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healthy and dysphagic status. Furthermore, a multimodal approach of the three sources
of information, i.e. sEMG, accelerometry-based cervical auscultation, and speech record-
ings, was performed in order to increase the generalization capability of the implemented
models. All of the proposed biomarkers and models were evaluated quantitatively by the
computation of clinically accepted performance measures intended to evaluate diagnostic
tests.

This work proposes an approach for dysphagia evaluation with non-invasive, low cost
and objective strategies, with a combination of signals not previously proposed. Since this
approach is exploratory, its results are preliminary and it is not intended to replace invasive
reference methods for swallowing examination. In fact, this work is in the first stage in
terms of the development of diagnostic tests (an exploratory study in descriptive discrim-
ination stage [Zhou 09]), in which an exploration of the behavior of the signals in healthy
and dysphagic populations is performed (see Figure 1.7). However, the advantage of this
non-invasive strategy is its possibility to perform multiple evaluations in cross-sectional
studies and long-term follow-up examinations without risk of radiation and other risks re-
lated to the existing methods. This work has potential application in the screening phase of
the dysphagia evaluation, previous to the clinical bedside swallow examination and instru-
mental evaluation by VFSS (see Figure 1.7), which is typically used to identify patients
with functional oropharyngeal dysphagia associated with neurological and neuromuscular
disorders.

Screening 
Identification of individuals with 

functional oropharyngeal dysphagia

Clinical evaluation 
Clinical bedside swallow 

examination

Instrumental evaluation 
VFSS

Stage 1: development
Exploration of signal behavior in healthy 

and neurological patients

Stage 2: validation 
Phases I, II, III and IV

Stage 3: validation status 
retention

Phases of dysphagia evaluation

Stages in the development of a diagnostic test

Contribution of this work

Figure 1.7: Location of the contributions of this work within the phases involved in the
dysphagia evaluation and the stages in the development of diagnostic tests.

1.4. Structure of this work
Chapter 2 describes the clinical and epidemiological data of the volunteers recruited

for each experiment. Inclusion and exclusion criteria are provided. A detailed description
of the acquisition protocol for each biosignal is also provided.

Chapter 3 introduces the concept of swallowing dimensions and explains how this
thesis contributes to their analysis. This chapter presents a review of the features applied
to sEMG, Acc, and speech-related signals in the context of swallowing evaluation.
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Furthermore, a detailed mathematical description of the feature domains and feature
selection methods implemented in this work is provided.

Chapter 4 provides a detailed description of the experiments performed related to the
selection of features and contribution of each sEMG acquisition channel, Acc axis, and
speech dimension. The description of the results is followed by an extensive discussion of
the proposed swallowing biomarkers.

Chapter 5 includes the detailed mathematical formulation of the discrimination
models of machine learning and deep learning implemented in this work, oriented to the
classification of healthy and dysphagic states. It also describes the validation methods to
obtain generalized results.

Chapter 6 provides a detailed description of the experiments performed regarding
classification/detection performance. The description of the results is followed by an
extensive discussion of algorithms and models.

Chapter 7 presents a general description of lessons learned during the protocol design
and data collection, as well as an outlook on future research in swallowing evaluation
driven by objective methods from engineering-related fields.

Chapter 8 summarizes the main contributions of this thesis in the context of dysphagia
screening and the repercussion of the experimental results.

Chapter 9 summarizes the publications emerging from the development of this thesis.



Chapter 2

Data collection

2.1. Database description
Two groups of subjects were evaluated in this thesis: one with healthy individuals and

another one with patients with confirmed diagnosis of functional oropharyngeal dyspha-
gia produced by neurological or neuromuscular etiologies. All subjects were selected by
convenience sampling. The following inclusion criteria were set for each group:

Healthy individuals: age above 18 years old, male or female, healthy; absence of
diagnosed dysphagia; and absence of central or peripheral neuropathies, or neur-
omuscular pathologies.

Patients with dysphagia: age above 18 years old, male or female; clinical mani-
festations of oral or oropharyngeal dysphagia; confirmed diagnosis of neurological
or neuromuscular etiology, responsible of oral or oropharyngeal dysphagia; Spanish
EAT-10≥3.

Additionally, the following exclusion criteria were defined:

Healthy individuals: the presence of dental pathology; the presence of congenital
malformations in the mouth; to have active inflammatory processes in the mouth,
head or neck; to have strange elements in the mouth such as piercing, retainers,
braces, or dental prosthesis; to have diagnosed cognitive impairment; and to have
cardiorespiratory impairments.

Patients with dysphagia: the presence of esophageal or mechanical dysphagia; pa-
tient with active treatment for cancer in facial or cervical regions; the presence of
orofacial or cervical edema or hematoma; recent surgical dissection in face or neck
(the last three months); severe hypoxemia (oxygen saturation below 80%); and to
have a deep brain stimulation device.

The patients and controls who fulfilled these criteria are described in Tables 2.1 and 2.2,
respectively. Each subject signed a language-specific informed consent approved by the
Ethics Committee of the Universidad Pontificia Bolivariana (Medellín, Colombia), by au-
thorization issued on 07.01.2017. The Ethics Committee is conformed by the internal
Resolution 80 of 12.17.2008.

17
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Table 2.1: Clinical information of the patients with dysphagia. The use of data in the
different experiments is indicated with bullets.

Code Age Sex Etiology EAT-10
Experiment

Code Age Sex Etiology EAT-10
Experiment

#1 #2 #3 #4 #1 #2 #3 #4

P001 49 F Myasthenia gravis 3 • • • • P052 52 F Motor neuron disease 13 • • • •
P002 76 M Motor neuron disease 3 • • P053 27 M Myasthenia gravis 28 • • •
P004 39 M Dementia 14 • • • P054 59 M Cerebral palsy 13 • •
P005 62 M Motor neuron disease 18 • • P055 31 M Cerebral palsy 9 • • •
P006 19 M Duchenne muscular dystrophy 33 • • P056 67 F Amyotrophic lateral sclerosis 27 •
P007 71 F Dementia 36 • • P057 26 M Rubinstein-Taybi syndrome 21 • •
P008 76 F Dementia 24 • • P058 26 M Stroke 4 • •
P010 20 M Stroke 34 • • P059 28 F Cerebral palsy 13 • • •
P011 50 M Neuropathy 15 • • • P060 31 M Stroke 15 • •
P013 71 M Dementia 35 • • P063 84 F Parkinson’s disease 15 •
P014 41 M Ischemic stroke 35 • • • • P064 65 F Neurocognitive disorder 13 • • •
P015 68 F Ischemic stroke 20 • • P065 80 M Dementia 13 • •
P016 42 M Ischemic stroke ND • • • • P067 54 F Myasthenia gravis 10 • • •
P017 57 M Dementia 31 • • • P070 40 M Dementia 8 • • • •
P018 50 F Myasthenia gravis 13 • • • • P081 66 M Dementia ND •
P019 44 F Ischemic stroke 29 • • • • P082 20 F Muscular dystrophy 15 • • • •
P020 68 M Dementia 9 • • P083 67 F Ischemic stroke 10 •
P021 65 F Muscular dystrophy ND • P086 79 F Ischemic stroke 35 • •
P022 61 M Dementia 13 • • P087 60 F Inflammatory myopathy 25 • • • •
P023 73 M Myasthenia gravis 40 • • P088 66 F Dementia 4 • •
P025 67 M Myasthenia gravis 8 • • P089 65 F Dementia 10 • •
P026 53 F Myasthenia gravis 15 • • • • P090 42 M Muscular dystrophy 12 • • •
P027 77 M Ischemic stroke 12 • P091 38 M Muscular dystrophy 17 • •
P028 64 F Motor neuron disease 20 • • • P092 60 M Ischemic stroke 9 • •
P029 65 F Amyotrophic lateral sclerosis 10 • • • P095 50 M Amyotrophic lateral sclerosis 17 •
P030 64 M Dementia 3 • P096 67 M Ischemic stroke 17 •
P031 67 F Dermatomyositis 35 • P097 65 F Neurocognitive disorder 16 •
P032 58 M Ischemic stroke 14 • • • P098 69 M Progressive Supranuclear Palsy 22 •
P033 71 F Dementia 21 • • P099 28 M Cerebellar ataxia 17 •
P036 48 F Myasthenia gravis 6 • • • • P100 64 F Frontotemporal dementia 18 •
P037 70 M Ischemic stroke 16 • P101 73 M Motor neuron disease 17 •
P038 19 M Cerebral palsy 32 • P102 68 M Motor neuron disease 22 •
P039 75 F Neuropathy 8 • • P103 64 M Parkinson’s disease 17 •
P040 33 M Stroke 13 • • • P104 61 M Parkinson’s disease 15 •
P041 77 M Thalamotomy (essential tremor) 9 • P105 37 F Muscular dystrophy type 1 13 •
P042 68 F Myasthenia gravis 16 • • P106 46 M Stroke grave 5 •
P043 55 M Dementia 18 • • • P107 60 M Parkinson’s disease 9 •
P044 66 F Cerebellar ataxia 18 • • P108 73 M Parkinson’s disease 10 •
P045 55 M Myasthenia gravis 17 • • • P109 71 F Amyotrophic lateral sclerosis 25 •
P046 53 F Myasthenia gravis 19 • • • • P111 57 M Parkinson’s disease 8 •
P047 58 F Motor neuron disease 27 • • • • P112 66 F Juvenile Parkinson’s disease 23 •
P048 78 M Amyotrophic lateral sclerosis 18 • • P113 69 M Parkinson’s disease 16 •
P049 57 M Ischemic stroke 26 • P114 50 F Ischemic stroke 12 •
P051 50 M Motor neuron disease 9 • • •
TOTAL 19 16 33 40 TOTAL 10 14 13 40

Surface electromyography (sEMG), accelerometry-based cervical auscultation (Acc),
and speech recordings were collected from two groups of volunteers divided into healthy
individuals (controls) and patients with functional oropharyngeal dysphagia. Patients were
also classified according to neurological or neuromuscular conditions. Four experiments
were performed:

Experiment #1: Only sEMG (unimodal)

Experiment #2: sEMG and Acc (bimodal)

Experiment #3: Only speech (unimodal, pre-swallowing recordings)

Experiment #4: sEMG, Acc and -post swallowing- speech (multimodal)
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The experiments were carried out as the total database was built, which meant that
each one of them was performed using a subset of the total volunteers. Although one
single database was created, this was partitioned according to the experiment requirements,
such as the balance of sex and age. Next, the demographic data of the volunteers and the
acquisition protocol designed for each biosignal are presented in Tables 2.1 and 2.2.

Table 2.2: Demographic information of the healthy individuals. The use of data in the
different experiments is indicated with bullets.

Code Age Sex
Experiment

Code Age Sex
Experiment

Code Age Sex
Experiment

#1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4
C482 54 F • C653 39 M • C714 60 F •
C537 28 M • C655 54 M • C715 62 F •
C541 59 F • C657 51 F • C716 67 F •
C542 28 M • C658 53 F • C717 66 M •
C543 58 M • C660 48 F • C718 75 F •
C550 36 M • • C661 51 F • C719 58 M •
C553 84 F • • C665 78 F • C720 66 F •
C554 62 F • • C666 75 F • C721 82 F •
C555 32 M • C667 22 F • C723 69 M •
C556 29 F • C668 29 M • C724 60 M •
C563 26 F • C669 23 M • C725 66 F •
C564 34 M • • C670 35 M • C726 63 F •
C565 30 F • • C671 61 F • C727 61 M •
C568 32 M • • C672 59 F • C728 69 F •
C571 32 F • C673 62 M • C729 64 F •
C572 26 M • C674 64 M • C730 63 M •
C575 30 M • C675 22 M • C731 68 F •
C578 28 F • • C680 58 F • C732 66 F •
C585 29 M • • C681 61 F • 001E* 49 M •
C587 26 F • C682 22 M • 002E* 69 F •
C588 25 F • C683 64 F • 003E* 72 M •
C590 34 M • • C684 56 F • 004E* 53 F •
C591 28 M • • C686 73 M • 005E* 50 F •
C592 26 M • C687 68 M • 006E* 64 M •
C599 32 M • • C688 53 M • 007E* 63 F •
C608 27 M • C689 42 F • 008E* 70 F •
C613 25 F • C690 68 F • 009E* 66 M •
C616 51 F • • • C691 64 F • 010E* 53 F •
C618 27 F • C692 68 F • 011E* 71 F •
C628 54 F • • C693 56 F • 012E* 63 F •
C629 33 F • C694 70 F • 016E* 50 F •
C630 66 F • • C695 71 F • 018E* 65 M •
C631 63 F • • • C696 90 F • 020E* 75 M •
C632 76 M • • C697 58 M • 021E* 73 M •
C633 55 M • • • • C698 68 F • 022E* 78 M •
C634 68 M • • • • C699 65 F • 023E* 63 M •
C635 38 M • • • C700 60 M • 024E* 70 M •
C636 35 F • • C701 62 M • 025E* 68 M •
C637 26 F • C702 60 F • 026E* 70 M •
C638 57 F • • • • C703 76 M • 029E* 79 M •
C639 53 M • • • • C704 63 M • 030E* 50 F •
C640 43 M • • • • C705 59 M • 031E* 56 M •
C642 57 F • • C706 72 M • 033E* 68 M •
C643 49 F • • • C707 62 M • 034E* 64 F •
C646 52 M • C708 65 F • 035E* 62 F •
C647 38 F • C709 65 F • 036E* 74 F •
C648 58 M • C710 64 M • 037E* 53 F •
C649 55 M • C711 61 F • 038E* 56 F •
C650 48 F • C712 72 M •
C651 40 M • C713 64 M •
TOTAL 31 30 16 12 TOTAL 0 0 0 50 TOTAL 0 0 30 18
* Healthy controls of the PC-GITA database, composed of Colombian Spanish speakers [Oroz 14]. Only pre-swallowing recordings

were analyzed (see Section 4.4).



20 Chapter 2. Data collection

2.1.1. Database description per experiment
Clinical and demographic data for each experiment are detailed below, including the

matching-related distribution and statistical tests.

Experiment #1 The database consisted of two groups: one with 31 healthy subjects
(14 female and 17 male, 45.29 ± 16.22 years old), and the other one with 29 patients with
dysphagia (13 female and 16 male, 45.69 ± 11.92 years old). Both groups were matched by
age [Mann-Whitney U test, Z0.95 = 0.17, p = 0.865] and sex [χ2(95) = 6.74× 10−4, p =
0.979]. Further details are provided in Table 2.3.

Table 2.3: Clinical and demographic data of the experiment #1. The age is given in mean
± standard deviation.

Patients Controls
Sex [M/F] 16/13 17/14
Age [M/F] 43.25±11.45 / 48.69±12.25 41.41±15.02 / 50.00±16.90

Etiology [M/F]

Multiple sclerosis: 2/6
Ischemic stroke: 4/1
Dementia: 4/0
Motor neuron disease: 1/3
Traumatic brain injury: 3/0
Muscular dystrophy: 0/1
Cerebral palsy: 1/1
Neuropathy: 1/0
Inflammatory myopathy: 0/1

N/A

Experiment #2 The database comprised two groups: one with 30 control individuals
with normal deglutition (15 female and 15 male, 39.10 ± 15.05 years old), and the other
one with 30 patients with dysphagia (15 female and 15 male, 41.23 ± 14.45 years old).
Both groups are matched by age [Mann-Whitney U test, Z0.95 = 0.666, p = 0.505] and sex
[χ2(95) = 0, p = 1.00]. Further details are provided in Table 2.4.

Experiment #3 Two groups of Colombian Spanish native speakers were assessed: one
with 46 healthy subjects (23 female and 23 male, 60.17 ± 11.93 years old), and the other
one with 46 patients with dysphagia (23 female and 23 male, 60.04 ± 12.37 years old).
Both groups were matched for age [t(99) = −0.0515, p = 0.96] and sex [χ2(95) = 0, p =
1.00]. Further details are provided in Table 2.5.



2.2. Protocol of swallowing and speech tasks 21

Table 2.4: Clinical and demographic data of the experiment #2. The age is given as mean
± standard deviation.

Patients Controls
Sex [M/F] 15/15 15/15
Age [M/F] 31.60±8.49 / 50.87±12.71 39.80±15.98 / 38.40±14.59

Etiology [M/F]

Multiple sclerosis: 1/6
Cerebrovascular disease: 2/1
Neurocognitive disorder: 1/1
Motor neuron disease: 0/4
Traumatic brain injury: 4/0
Muscular dystrophy: 3/0
Cerebral palsy: 2/1
Myopathy: 0/2
Parkinson disease: 1/0
Cerebellar ataxia: 1/0

N/A

Table 2.5: Clinical and demographic data of the experiment #3. The age is given as mean
± standard deviation.

Patients Controls
Sex [M/F] 23/23 23/23
Age [M/F] 59.8±11.9/60.3±13.0 61.3±13.4/61.2±10.2

Etiology [M/F]

Ischemic stroke: 4/3
Dementia: 9/6
Muscular dystrophy: 1/2
Spinocerebellar ataxia: 0/1
Motor neuron disease: 4/3
Multiple sclerosis: 2/6
Myastenia gravis: 1/0
Neuropathy: 1/1
Cerebral palsy: 1/0
Inflammatory myopathy: 0/1

N/A

Experiment #4 Two groups of Colombian Spanish native speakers were included: one
with 80 healthy subjects (43 female and 37 male, 58.90 ± 13.32 years old), and the other
one with 80 patients with dysphagia (35 female and 45 male, 57.41 ± 15.73 years old).
Both groups were matched for age [Mann-Whitney U test, Z0.95 = 0.101, p = 0.92], and
sex [χ2(95) = 1.60, p = 0.21]. Further details are provided in Table 2.6.

2.2. Protocol of swallowing and speech tasks
Prior to data collection and signal acquisition, all subjects were evaluated by a neuro-

logist. In this stage, inclusion and exclusion criteria were verified. Additionally, a neurolo-
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Table 2.6: Clinical and demographic data of the experiment #4. The age is given as mean
± standard deviation.

Patients Controls
Sex [M/F] 37/43 45/35
Age [M/F] 54.51±18.26/60.17±13.69 55.26±16.99/61.74±11.66

Etiology [M/F]

Ischemic stroke: 13/5
Dementia: 8/6
Myastenia gravis: 4/7
Parkinson’s disease: 8/2
Motor neuron disease: 5/3
Amyotrophic lateral sclerosis: 2/3
Muscular dystrophy: 3/2
Cerebral palsy: 4/1
Neurocognitive disorder: 0/2
Neuropathy: 1/1
Spinocerebellar ataxia: 1/1
Inflammatory myopathy: 0/1
Dermatomyositis: 0/1
Rubinstein-Taybi syndrome: 1/0
Essential tremor: 1/0

N/A

gical evaluation was made by a neurologist or by a neuro-rehabilitation specialist with the
aim to validate inclusion and exclusion criteria. The analysis of clinical variables collected
from this evaluations is out of the scope of this thesis.

For the acquisition of sEMG and Acc signals, the protocol introduced by [Samp 14] was
adapted, and subjects were asked to swallow the following consistencies: 5, 10, and 20 mL
of yogurt (namely yogurt5, yogurt10, and yogurt20, respectively), saliva (dry swallow), 5,
10 and 20 mL of water (namely water5, water10, and water20, respectively), and 3 g of
cracker approximately. The latter was not used to acquire Acc signals due to the high
propagation of the masticatory vibrations. These consistencies have been used to assess
penetration/aspiration in dysphagia [Samp 14]. Water and yogurt were delivered to the oral
cavity with a 1.5 oz cup. In patients, only safe consistencies and volumes were delivered
by a trained speech-language pathologist. One swallow per consistency was executed, in
order to prevent fatigue-like effects associated with multiple swallows while guaranteeing
the majority of swallowing tasks per subject.

Speech recordings were collected before and after the aforementioned swallowing
tasks. The following speech tasks were recorded, based on the protocol described
in [Vasq 18] for assessment of patients with Parkinson’s disease:

Sustained vowels /a/, /e/, /i/, /o/, and /u/, pronounced during at least 3 seconds

Diadochokinetic task: rapid repetitions of the syllables pa-ta-ka

Reading: a phonetically balanced text which contains all of the Spanish sounds
(spoken in Colombia) [Oroz 14], is read by the subject. The text is as follows: Ayer
fui al médico. ¿Qué le pasa? Me preguntó. Yo le dije: ay doctor, donde pongo el
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Figure 2.1: Acquisition protocol.

dedo me duele. - ¿Tiene la uña rota? - Sí. - Pues ya sabemos qué es. Deje su cheque
a la salida [Translation: Yesterday I went to the doctor. What happened to you? He
asked me. I told him: ah doctor! Where I put my finger it pains me. - Do you have
a broken nail? - Yes. - Then we now know what is happening. Leave your check at
the exit.]

Continuous speech: a spontaneous monologue with approximately 90 s of duration,
in which participants speak about what they did during the current day or week, their
family, their job, or their interests

Figure 2.1 summarizes the complete protocol for data collection. Henceforth, this pro-
tocol will be divided into three minor protocols for readability:

Protocol #1: oropharyngeal sEMG only

Protocol #2: cervical accelerometry and supra/infrahyoid sEMG

Protocol #3: speech recordings only

The instrumentation used for data collection is described in the following lines.

2.3. Instrumentation

2.3.1. Multi-channel sEMG acquisition
The electrical activity of the bilateral masseters, suprahyoid and infrahyoid muscles

(see Figure 2.2), was acquired with the Noraxon UltiumTM EMG (Noraxon USA, CMMR
> 100 dB, 16 bits A/D converter) and non-polarizable, bipolar, disposable and pre-gelled
Ag/AgCl electrodes (Ref. 2228, 3M - 30 mm x 35 mm, 15 mm diameter in gel area,
and interelectrode distance of 25 mm). The electrodes are placed in the most significant
positions for evaluation of swallowing movements [Zare 17].

The swallowing tasks were video-recorded synchronously frame by frame with the
sEMG signals to visualize the hyoid movement.
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Figure 2.2: Placement of sEMG electrodes. RM and LM: right and left masseters, respect-
ively; RSH and LSH: right and left suprahyoid muscles, respectively; RIH and LIH: right
and left infrahyoid muscles, respectively.

sEMG signals were acquired with a sampling rate of Fs = 2 kHz. Pre-processing, stor-
age, and visualization of the raw signals were carried out with the MR3 software (Noraxon
USA). Offline analysis was performed using custom scripts and open-source functions in
Python 3. Signals were filtered with a 5th order band-pass Butterworth filter with cut-off
frequencies of 10 and 500 Hz [Merl 99].

Signals were also filtered with a denoising method based on the Discrete Wavelet Trans-
form. Optimal parameters for the sEMG related denoising were found in a study in the
framework of this thesis and published in [Rold 20]: mother wavelet db5, five decompos-
ition levels, soft thresholding, and minimax rule for threshold selection. See Appendix B
for details.

2.3.2. Tri-axial Acc acquisition

The kinematic (mechanical) related activities were collected by Acc signals with the
tri-axial accelerometer MMA7361 (NXP, Eindhoven, The Netherlands), the NI-DAQ 6215
(National Instruments), and the custom software MODAC (Acquisition Module of Ac-
celerometry, Instituto Tecnológico Metropolitano, Medellín, Colombia). A sampling rate
of 10 kHz and a bandpass filter with cut-off frequencies of 0.1 Hz and 3 kHz were ap-
plied [Dono 21b]. The accelerometer was placed on the cricoid cartilage (see Figure 2.3).
This sensor measures laryngeal movements during swallowing in three axes: anterior-
posterior (AP), superior-inferior (SI), and medial-lateral (ML). Notice that upward-forward
movements are analyzed to describe the physio-mechanical characteristics of the pharyn-
geal phase [Mats 08b].

Likewise for sEMG, wavelet denoising was applied for Acc signals to maximize their
signal-to-noise ratio (SNR). The SNR was computed from spectrograms in which the pres-
ence of background noise and swallow events were manually labeled. Since all parameters
exhibited a similar behavior in the three axes, the following combination was selected:
mother wavelet db2, nine decomposition levels, soft threshold and heuristic SURE for
threshold selection, and no re-scaling.
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Figure 2.3: Placement of the accelerometer on the neck area. The three axes are also
illustrated.

2.3.3. Speech signals acquisition
Speech signals were acquired with a Logitech H390 USB headset which is equipped

with a noise-canceling microphone. The microphone was placed parallel to the lip’s
commissure (see Figure 2.4). The audio recordings were collected using the software
Audacity® at a sampling rate of 44.1 kHz with 16 bit-resolution.

All signals were analyzed with custom codes in Python. Aiming to create homogeneous
acoustic conditions along the complete set of speakers, a channel normalization process
was applied, intended to simulate channel conditions of a regular mobile network. This
normalization is based on the Global System for Mobile Communications standard (GSM)
full-rate compression. The channel normalization process was performed with the Sound
eXchange (SoX) software, as follows [ETSI 00]: each signal was converted to monophonic,
its bit rate was reduced to 13 bps and down-sampled to 8 kHz, the compression factor
was set at 8, and the band-pass filter was set between 0.2 and 3.4 kHz (bandwidth of a
telephone channel). After the acoustic normalization procedure, the features described in
Section 3.3.2 were extracted.

Figure 2.4: Placement of the headset for speech acquisition.



Chapter 3

Characterization of biosignals

This chapter introduces the concept of swallowing dimensions, which is created to
address the dysphagia-related alterations comprehensively. Afterward, the context of the
characterization of the signals evaluated in this thesis is presented. Finally, a detailed
mathematical formulation of the features extracted in this thesis is provided.

3.1. Swallowing dimensions

The different phenomena implied in the swallowing process can be compartmentalized
by well-defined deglutition aspects, in other words, by different swallowing dimensions.
Although this name has not been previously defined or used neither in the medical nor in the
engineering-related field, this concept is proposed to address the swallowing phenomenon
having in mind the interconnected anatomical structures and physiological events as well.
The criteria to define a swallowing dimension are established as follows:

To have differential aspects with respect to the other dimensions

To have at least one assessment technique to evaluate it

To be affected in well-described ways by the dysphagia-related etiologies

To -potentially- allow the definition of normality patterns

With the aim to contribute to the establishment of a formal analysis for this phenomena,
the proposed swallowing dimensions are explained next.

Electrophysiological: This dimension gives information about the state of the elec-
trical communication between the nervous system and the muscles required to execute
the normal deglutition. The electrophysiological study of swallowing investigates pat-
terns in timing, activation amplitudes, and sequentiality in the oral and pharyngeal phases
under different neurological conditions [Alfo 13]. The electrophysiology of swallow-
ing can be assessed by needle or surface electromyography [Step 12, Suzu 20], and
mechanomyography [Cons 17].

26
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Mechanical: This aspect is related to kinematic events performed during the swallowing,
such as hyoid bone and larynx movements, as well as opening and closure of the laryngeal
vestibule and the upper esophageal sphincter [Dono 22a]. This dimension allows analyzing
temporal patterns in all phases, although most of the related studies focused on the pharyn-
geal one. The -high resolution- accelerometry based cervical auscultation [Dono 22b],
piezoelectric sensors [Kala 15], and VFSS [Zhan 21], provide information about the mech-
anical swallowing dimension.

Acoustic: This dimension is related to the sounds produced by different events during
swallowing, particularly the glottic closure [Sanc 18]. The duration, intensity, and fre-
quency of the acoustic swallowing signal are intended to analyze the pharyngeal phase
mainly [Youm 05]. In general, sensors placed at the patient’s neck are used for acoustic
evaluation of swallowing [Youm 11]; the stethoscope and microphone-based cervical aus-
cultation [Haml 94, Dudi 18b] are the most common methods for the acoustic evaluation
of swallowing, but the accelerometry based auscultation has been also investigated from
an acoustical point of view [Dudi 18b]. This dimension also covers speech production.
The main assumption is that a person with swallowing problems might produce abnormal
movement while swallowing and also while speaking. However, few dysphagia-related
works have addressed acoustic studies based on speech recordings [Ipin 18].

Neurological: It describes only the central and peripheral neurological components
rather than the effectors. The central components of the neurological dimension are cor-
tical, nuclear, brainstem, cerebellum, and spinal cord [Suar 18]; the peripheral components
are the cranial nerves, neuromuscular junctions, and the enteric nervous system [Suar 18].
Evaluations of the neurological dimension are performed by CSE and instrumental meth-
ods. The physical CSE identifies signs of oropharyngeal dysphagia by the neurological
evaluation of the head and neck, as well as inspection, palpation, and auscultation of struc-
tures from the digestive and upper respiratory system, face, and neck [Suar 18]. Moreover,
instrumental evaluations based on electroencephalography allow mapping of brain net-
works during swallowing in different conditions [Jest 16], whilst functional Magnetic Res-
onance Imaging and Positron Emission Tomography allow examinations of cortical repres-
entations of swallowing [Erte 03].

Cardiorespiratory: The normal swallowing shares anatomical space with breathing, so
both processes must be well coordinated in order to protect the airway through the pre-
dominant pattern “exhale-swallow-exhale” [Mats 09]. When this coordination fails during
dysphagia, the food or fluid could enter to the airway in aspiration episodes, producing
bronchospasms or airway obstruction, with the subsequent mismatch of the ventilation-
perfusion and reduction in oxygen saturation [Mari 17]. This justifies the proposal of a
cardiorespiratory dimension, which can be assessed by pulse-oximetry (even though its
use has been systematically rejected [Mari 17]), nasal airflow measurements [Inou 18],
plethysmography [Mats 08a], and arterial blood gases [Han 19].

Symptomatic: The signs and symptoms of abnormal swallowing are well character-
ized [Fine 03, Clav 15]. Early screening in populations at risk is a crucial step of an
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appropriate dysphagia treatment [Spey 13]. This dimension is mainly evaluated by CSE
in two ways, by the functional health status (FHS) and the health-related quality of life
(HRQoL) [Spey 13]. FHS aims to identify how the dysphagia affects particular functional
aspects, whilst HRQoL is intended to observe how the patient perceives such condition not
only in terms of the physical burden but also in the economic, psychological, and social as-
pects (see Figure 1.4). FHS and HRQoL are evaluated by anamnesis and self-administered
questionnaires (or scales), respectively. However, FHS and HRQoL are frequently evalu-
ated jointly in clinical practice, since it is hard to separate the disease-related functioning
and the disease-related alterations of the quality of life perceived by the patient [Spey 13].

Structural: The normal swallowing process not only depends on the appropriate neur-
ological functioning but also on the integrity of the anatomical structures involved in the
deglutition. Structural alterations can produce dysphagia [Hira 18]. Structural dysphagia
refers to strictly mechanical alterations despite an intact nervous system [Pfei 16]. In
general, diverticula (e.g. Zenker’s diverticulum), head and neck cancer (malignancy,
esophageal tumors), muscular rings, inflammation-derived scarring, and fibrosis can cause
structural oropharyngeal dysphagia [Chen 16a, Barr 14, Pfei 16]. The methods to evaluate
structural lesions are the instrumental explorations based on X-Rays (i.e. VFSS) and the
clinical exploration [Clav 15, Wang 17].

In this thesis, three swallowing dimensions were addressed: the electrophysiological
by surface electromyography (sEMG), the mechanical by accelerometry-based cervical
auscultation (Acc), and the acoustic by speech recordings. The following sections explain
the characterization of such signals in the context of swallowing evaluation.

3.2. Characterization of electrophysiological and mech-
anical dimensions

3.2.1. Context of electrophysiological characterization in swallowing
The sEMG is intended to record muscular activity non-invasively. Even though there

is a huge amount of studies oriented to the sEMG-related analysis in large muscles, spe-
cifically in upper and lower limbs, such studies are not necessarily comparable to those
performed in swallowing-related muscles, because they differ in terms of size, signal-to-
noise ratio (SNR), discharge frequency, amplitude, and temporal pattern [Rest 17, Klah 99].
Also, not all swallowing-related muscles can be assessed via sEMG because of their depth.
Only some muscles of the face (e.g. orbicularis oris, buccinator), mastication (e.g. tem-
poralis and masseter), suprahyoid (mylohyoid, stylohyoid, anterior belly of digastric),
and infrahyoid regions (sternohyoid, superior and inferior bellies of omohyoid), allow
the measure of their electrophysiological activity with surface electrodes [Step 12]. Other
swallowing-related muscles are hindered by others as well as anatomical structures that im-
pede their recording. These ideas motivate the research on the characterization of sEMG
signals of swallowing-related muscles.

Feature extraction in sEMG could be affected by many intrinsic attributes such as the
individual skin formation, blood flow velocity, skin temperature, tissue composition, and
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the measuring site [Chow 13, Step 12]. For instance, small differences in fat content of the
swallowing-related regions affect greatly the amplitude of the measured sEMG [Step 12].
Several features have been used for quantitative characterization, at the time, frequency,
time-frequency, and non-linear dynamics domains [Phin 13, Phin 12a, Phin 12b, Engl 01].
Notwithstanding, not all these features could be extrapolated to swallowing tasks. For
example, the maximal voluntary contraction is one of the most used indexes in sEMG
analysis, including masseter and orbicularis oris signals [Sfor 11, Lope 17]; however, it is
not practical for pharyngeal phase analysis.

In general, only amplitude-based estimations (root mean square, average rectified and
filtered sEMG), duration, and frequency domain features (median frequency and spectral
coherence) have been used in swallowing assessment [Vaim 04a, Step 12, Poor 17]. Other
indexes usually analyze the abnormal timing (prolongation), the abnormal amplitude (at-
tenuated), and the abnormal shape (lack of peaks) [Vaim 09]. Although some authors have
found a significant correlation between timing and bolus volume and viscosity, other re-
searchers did not [Palm 99, Poor 17, Watt 15]. More consistent results have been reported
for the amplitude [Palm 99, Perl 99]. Although amplitude could be an inappropriate feature
for inter and intra-subject analysis in the multichannel acquisition, it can be partially solved
with normalization techniques [Step 12]. On the other hand, gender and age do not affect
either the amplitude or the duration [Enge 12, Watt 15, Dell 18]. Otherwise, variation of
these features is specific for the clinical conditions and reveals different patterns per dis-
ease [Cons 18, Grac 12, Vaim 08, Vaim 06, Crar 97, Enge 13, Arch 13, Erco 13, Hsu 13].

3.2.2. Context of mechanical characterization in swallowing

There is no consensus about what are the key features that represent the cervical aus-
cultation signals [Dudi 15a]. Notwithstanding, statistical and frequency domain features
have shown significant differences between A-P and S-I in healthy subjects [Lee 08]. These
features depend on the age group and bolus characteristics, although viscosity has a lar-
ger influence than volume [Hann 10, Youm 11, Sejd 09]. The thickness of liquid boluses
seems to affect specific features, and viscosity strongly influences the frequency and time-
frequency domain features [Lee 10, Hann 10, Jest 14]. Entropy rate, Lempel-Ziv complex-
ity (LZC), wavelet entropy, and frequency domain features have shown statistically signi-
ficant differences between healthy and non-healthy thin swallows [Dudi 18b, Mova 17b].
In discrete swallows, entropy rate and LZC suffer variations in A-P and S-I axes, as well as
the skewness (only in A-P). Otherwise, for sequential swallows, the entropy rate is sensitive
in both axes but LZC is sensitive only in S-I axis, as well as the wavelet energy [Lee 10].
It is not clear yet if the aforementioned features have statistically significant differences
by gender in healthy or non-healthy subjects since contradictory results have been found
[Dudi 15c, Dudi 15b, Mova 17a, Dudi 18b, Jest 13].

Another meaningful feature is the swallowing duration [Youm 11]. It is affected by
the bolus consistency [Hann 10, Sejd 09]: dry swallows last longer than wet swallows.
The mentioned feature has shown dependency on liquid thickness in discrete and sequen-
tial swallows [Lee 10]. The duration measured by accelerometers has shown significant
dependence on gender (possibly due to anatomical differences in the oropharyngeal mech-
anism), and age (explained by decoupling of oral and pharyngeal phases in elderly people)
[Hann 10, Youm 11], but not on body mass index in healthy subjects [Sejd 09]. However,
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it is difficult to make conclusions since some works have reported contrary results, i.e. the
duration does not depend significantly on the sex and age [Dudi 15b].

The frequency of spontaneous swallows may be another feature for dysphagia evalu-
ation. It has been used in patients with Parkinson’s disease and acute stroke acquired with
microphones, with variable sensitivity and specificity [Crar 13a, Gola 14]. This feature
decreases in elderly individuals and patients with dysphagia [Crar 13b, Crar 13a].

Detection of penetration-aspiration (P/A) in patients with dysphagia has been ap-
proached with time and time-frequency domain characterization. Stationarity, normality,
dispersion ratio, zero crossings, and energy features were used for aspiration detection in
children with moderate results [Lee 06]. In contrast to simple statistical features, wavelet
packet was applied on A-P and S-I axes successfully [Sejd 13, Dudi 16]; however, results
could be overestimated since it is not clear if cervical auscultation is capable to detect the
occurrence of aspiration by itself [Dudi 16].

3.2.3. Feature extraction in sEMG and Acc signals
Feature extraction has paramount importance to obtain better classification perform-

ance [Nazm 16]. Features in different domains described next were extracted from each
sEMG channel and Acc axes by the sliding window method illustrated in Figure 3.1. This
procedure retrieves one vector per feature and acquisition channel. Subsequently, six func-
tionals were extracted: mean, standard deviation (SD), skewness, kurtosis, maximum and
minimum. They were computed per feature vector to create a static and compressed repres-
entation of each feature. Window size for Acc and sEMG was experimentally set at 100 ms
and 250 ms, respectively. Step size of 50% in both cases. For missing data, imputation
over the mean of each group (i.e. patients, controls) was performed.

Step

Window

Feature computation

Pre-processed biosignalPre-processed biosignal

Feature vectorFeature vector

Feature computation Feature computation

Extracted featuresExtracted features

Functionals (e.g. statistical moments)Functionals (e.g. statistical moments)

Figure 3.1: Sliding window method for feature extraction.
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Time domain features

The implementation of time domain features is, in general terms, simple and does
not demand high computational costs. An additional advantage is their direct clinical
interpretability. However, they assume stationarity of the biosignal ignoring changes of
statistical properties in time [Phin 12a]. The following time domain features were eval-
uated in this study: variance (VAR), root mean square (RMS), integrated EMG (iEMG),
log-detector (LOG), waveform length (WL), the difference of absolute standard deviation
(DASDV), Teager-Kaiser Energy Operator (TKEO), zero-crossing (ZC), Willison amp-
litude (WAMP), and myopulse (MYOP). The WAMP, ZC and MYOP are driven by the
following thresholding function:

ϕ(x) =

{
1 if x ≥ ϵ
0 otherwise (3.1)

where the threshold is given by ϵ = mean + h× std, with h = 3 [Soln 10], and mean
and std are computed from the first 50 ms of each recording (without activation). The
mathematical formulation of each feature is shown in Table 3.1.

Table 3.1: Mathematical formulations of time domain features (based on [Phin 12a])

Feature Equation Feature Equation

VAR
1

N − 1

N∑
i=1

x2i RMS

√√√√ 1

N

N∑
i=1

x2i

iEMG
N∑
i=1

|xi| LOG exp

(
1

N

N∑
i=1

log(|xi|)

)

WL
N−1∑
i=1

|xi+1 − xi| DASDV

√√√√ 1

N − 1

N−1∑
i=1

(xi+1 − xi)2

WAMP
N−1∑
i=1

ϕ(|xi − xi+1|) MYOP
1

N

N∑
i=1

ϕ(xi)

ZC
N−1∑
i=1

(xi × xi+1 < 0) ∩ ϕ(|xi − xi+1|) TKEO x2i − xi+1xi−1

Abbreviations: xi: i-th sample of the sEMG signal; N : length of the sEMG signal; ϕ(•):
thresholding function.

Frequency domain features

These features typically describe properties of the power spectral density. The fre-
quency domain features extracted in this study were: frequency ratio (FR), mean power
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(MNP), mean frequency (MNF), median frequency (MDF), and peak frequency (PKF).
The mathematical formulation of each feature is shown in Table 3.2. Low and high bands
were considered to estimate FR. Since sEMG energy is mostly contained between 10 and
500 Hz [Merl 99], the low band was set between 10 and 250 Hz, whilst the high band was
set between 250 and 500 Hz. These bands were also considered for Acc signals, but it was
expected more spectral content below 100 Hz [Lee 09a].

Table 3.2: Mathematical formulations of frequency domain features (taken from
[Phin 12a])

Feature Equation Feature Equation

FR
ULC∑

j=LLC

Pj

/
UHC∑

j=LHC

Pj MNP
1

M

M∑
j=1

Pj

MNF
M∑
j=1

fjPj

/
M∑
j=1

Pj MDF
MDF∑
j=1

Pj =
1

2

M∑
j=1

Pj

PKF argmax
f

{P}

Abbreviations: M : length of the power spectral density; Pj:
power spectral density evaluated at the j-th frequency fj; ULC
and LLC: upper and lower cutoff frequency of the low frequency
band, respectively; UHC and LHC: upper and lower cutoff fre-
quency of the high-frequency band, respectively.

Time-frequency domain features

The time-frequency domain has been widely explored in sEMG signals. In fact
swallowing-related electrophysiological events have been analyzed with continuous and
discrete wavelets [Rest 17], in order to filter as well as to improve burst detection in the
muscles assessed in the current work. Furthermore, wavelet-related energies and en-
tropy have been successfully applied in kinematic signals for the automatic detection of
swallowing-related events [Lee 10, Rebr 18].

The Discrete Wavelet Transform (DWT) is suitable to analyze non-stationary sig-
nals [Duan 16]. The DWT scales and shifts the signal x[n] in discrete steps by the following
dyadic expression in time and frequency axes [Zhan 10]:

DWT(j, k) =
1√
2j

∑
n

ψ
(
2−jn− k

)
x[n] (3.2)

where ψ(•) is a function called mother wavelet; j, k and n are integers; j is the num-
ber of decomposition levels and n is the time counter; and the term 1/

√
2j is an energy

normalization factor [Zhan 10]. The DWT does not retrieve always an analytical solution,
so numerical algorithms are required [Duan 16]. Mallat proposed a decomposition-based
algorithm to define a complete and orthogonal multiresolution representation called “the
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wavelet representation” [Mall 89]. Figure 3.2 illustrates such algorithm. The original dis-
crete signal is decomposed in two downsampled signals, one obtained by the application
of a low-pass decomposition filter H̃ , namely the first approximation coefficient cA1, and
another obtained by the application of a high-pass decomposition filter G̃, namely the first
detail coefficient cD1. Afterward, cA1 is decomposed again in the other two downsampled
coefficients cA2 and cD2. Subsequently, each approximation coefficient is decomposed
until the maximum decomposition level J is achieved.

cA j−1

↓2

↓2

cA j

cD j

~H

~
G

cA1cD1

x [n]

cD2 cA2

cAJcD J

cAJ−1
⋱

(a) Decomposition at level j

cA j

↓2

↓2

cA j+1

cD j+1

~H

~
G

cA1cD1

x [n]

cD2 cA2

cAJcD J

cAJ−1
⋱

(b) Decomposition tree for J levels

Figure 3.2: Wavelet decomposition. H̃ and G̃ denote the decomposition low-pass and
high-pass filters, respectively; ↓ 2 indicates a downsampling by 2; cAj and cDj are the j-th
approximation and detail coefficients, respectively.

Relative energies of the decomposition levels from the discrete wavelet transform were
computed. Each detail coefficient is a decimated, dilated, and translated version of the ori-
ginal signal. Five and nine decomposition levels were applied for sEMG and Acc signals,
respectively. Thus, the energies of the decomposition coefficients were distributed in the
following frequency ranges:

sEMG: cD1 in 500∼1000 Hz, cD2 in 250∼500 Hz, cD3 in 125∼250 Hz, cD4 in
62.5∼125 Hz, cD5 in 31.25∼62.5 Hz, and cA5 in 0∼31.25 Hz.

Acc: cD1 in 1500∼3000 Hz, cD2 in 750∼1500 Hz, cD3 in 375∼750 Hz, cD4 in
187.5∼375 Hz, cD5 in 93.7∼187.5 Hz, cD6 in 46.9∼93.7 Hz, cD7 in 23.4∼46.9 Hz,
cD8 in 11.7∼23.4 Hz, cD9 in 5.9∼11.7 Hz, and cA9 in 0.1∼5.9 Hz.

The relative energy of each detail coefficient EDj was computed as follows [Lee 10]:

EDj =
1

ET

NcDj∑
i=1

{cDj}2 × 100% (3.3)

whereNcDj is the length of the j-th coefficient. This equation also applies to the energy
of the J-th approximation coefficient EAJ

. The total wavelet energy ET was estimated as
follows:

ET =
1

100

(
EAJ

+
J∑

j=1

EDj

)
(3.4)
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Aiming to evaluate the information distribution in the time-frequency domain, the
wavelet entropy Went was computed as follows:

Went = −ET log2ET (3.5)

Nonlinear dynamics -NLD- related features

Nonlinear measures have been used in studies of accelerometry-based cervical aus-
cultation signals in patients with dysphagia [Dudi 15a], as well as for sEMG-related ap-
plication in large muscles [Phin 12b]. Extraction of NLD features requires representing the
signal in an embedded space (also known as phase-space) with M reconstructed points, as
defined by [Rose 93]:

X = [Xm(1)Xm(2) · · · Xm(M)]T (3.6)

Such trajectories form figures known as diffeomorphic attractors, because they hold
the topological properties of the dynamical system [Trav 17]. Each row of X is a phase-
space vector; Xm(i) is the state of the system at the discrete time i and it is reconstructed
as follows:

Xm(i) = [xi xi+τ · · · xi+(m−1)τ ] (3.7)

Where τ and m are the embedding parameters, namely lag and embedding dimension,
respectively. Thus, the trajectory matrix X ∈ RM×m. According to Taken’s theorem,
τ > 0 and m > 2d, where d is the number of axes of the original system. The parameter m
was found with the method proposed by [Cao 97], and τ was chosen as the distance where
the auto-correlation function drops below 1 − 1/e times its maximal value [Rose 93]. For
a time series with N points, the number of the reconstructed points M is related to the
embedding parameters by the formula M = N − (m− 1)τ . Based on the aforementioned
basis, the extracted NLD-related features are presented below.

Sample entropy - SampEn
This measure quantifies the rate of information production. It is widely used in the study of
biological signals. It was introduced by [Rich 00], and it is intended to compute the com-
plexity and regularity of time series. This is an improvement of the approximate entropy
since it does not depend on the signal’s length. It was computed as follows:

SampEn(m, r) = lim
N→∞

[
−lnA

m(r)

Bm(r)

]
(3.8)

Where r is the tolerance for accepting matches, and Am(r) and Bm(r) are the
probabilities that two phase-space vectors will match for m + 1 and m points, respect-
ively [Rich 00]. One match is met when the distance between two phase-space vectors is
smaller than r.

Largest Lyapunov exponent - LLE
LLE measures how sensible is a dynamic system to changes of its initial conditions, that
is, it allows to assess the divergence differences in the trajectories of the system that could
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derive in the presence of chaos. The average divergence between two trajectories at time t
is given by [Rose 93]:

d(t) = Ceλ1t (3.9)

where λ1 is the LLE and C is a constant. For small data sets, the LLE is calculated from
the slope of the following equation [Rose 93]:

ln dj(i) ≈ lnCj + λ1(i∆t) (3.10)

where dj(i) is the distance from the j-th point of the trajectory to its nearest neighbor
after i discrete-time steps, and ∆t is the sampling period. Note that the equation 3.10
describes a family of lines, thus the LLE is computed using the least-squares method from
the line [Rose 93]:

y(i) =
1

∆t
⟨ln dj(i)⟩ (3.11)

where ⟨⟩ denotes the average slope over the family of lines.

Hurst exponent - HE
This is a measure of the “long-term” memory, i.e. long-term dependencies in a time
series [Trav 17]. For a given time series with a range R and standard deviation σ, the
following relationship is observed [Hurs 57]:

R/σ = (N/2)K (3.12)

where N is the number of samples of the time series, and K is the called Hurst exponent.
For white noise (uncorrelated series), K = 0.5; for series with negative auto-correlation,
0 < K < 0.5, while for series with positive auto-correlation 0.5 < K < 1 [Trav 17].

Correlation dimension - CDim
The CDim is intended to describe the geometry of chaotic attractors, i.e. the CDim is a
measure of the space dimensionality of such attractors [Trav 17]. For an M points traject-
ory and any positive number r, the correlation sum is defined as the fraction of pairs of
points with distance smaller than r [Gras 04]:

C(r) =
2

M(M − 1)

∑
i<j

θ(r − ||Xm(i)−Xm(j)||) (3.13)

where θ is the Heaviside step function. The dimension of the system is defined as follows:

D = lim
r→0

logC(r)

log r
(3.14)

If C(r) decreases proportionally to rD, then D is called the correlation dimension. The
Grassberger-Procaccia Algorithm is intended to compute the CDim, by fitting a straight
line into the log-log plot of C(r) vs. r.

Detrended fluctuation analysis - DFA
The DFA, like the HE, measures long-term dependencies in the time series. Additionally,
the DFA combines the benefits of the time and time-frequency domains, without the
requirement of proper selection of a wavelet basis function [Phin 12b]. In this way, it has
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been used for the characterization of sEMG signals in upper limbs, improving the classi-
fication accuracy of movements in combination with traditional feature spaces [Phin 12b].
The extraction process of DFA was made by a modified version of the random walk
process [Phin 12b]: 1) the iEMG of the detrended signal was computed: 2) the resulting
profile was windowed without overlapping; 3) each resulting frame was least-square fitted,
thus a local trend appeared per frame; 4) the profile of each frame was detrended with the
trend found in the previous step; 5) the RMS was computed of each detrended profile of
each frame; 6) the process was repeated with different windows’ lengths; 7) a log-log plot
of the previously found RMS vs. window’s length was computed, and the slope of such
curve represented the scaling exponent [Aria 10].

Shannon Entropy
The Shannon entropy is commonly used as a measure of disorder in biological signals, e.g.
in the characterization of kinematic events related to swallowing [Dudi 15b]. The Shannon
entropy of a sequence X is computed as follows:

Shannon(X) = −
M∑
i=1

p(xi) log2 p(xi) (3.15)

where p(xi) is the probability that X = xi.

Lempel-Ziv Complexity (LZC)
The LZC indicates the presence of patterns in the data, by conversion of the raw data
into a binary dictionary. After the computation of the complex envelope of the signal, the
binarization process was done by thresholding. The count of different patterns in the binary
signal retrieved the LZC [Scha 15]. Finally, the binary sequence is scanned from the left to
the right; when a segment (symbol) that has not been seen before is found, it is stored in a
dictionary. The LZC is the number of binary symbols in the dictionary [Trav 17].

3.3. Characterization of the acoustic dimension

3.3.1. Context of acoustic characterization in swallowing
Although there is a huge amount of papers in the field of computational paralinguist-

ics, i.e. the study about how something is said1 [Pir 15], few works have assessed voice-
quality changes in patients with dysphagia from a quantitative point of view. These lim-
ited works have characterized voice changes with the following features: fundamental fre-
quency (F0), the relative average perturbation (RAP, variability of pitch-to-pitch interval),
shimmer (cycle-to-cycle amplitude variability), jitter (cycle-to-cycle frequency variabil-
ity), the harmonic-to-noise ratio (HNR) and the voice turbulence index (VTI). Even though
such features have been used also for pathological speech analysis, they are highly depend-
ent on gender and acoustic environment [Meky 15]. Furthermore, contradictory results in
dysphagic or aspirated patients have been found. Additionally, the lack of a consensus
about whether speech evaluation is an appropriate strategy to evaluate swallowing impair-
ments [Dos 21], is remarkable.

1Contrary to the Automatic Speech Recognition, which is concerned about what is said [Pir 15]
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Whereas Ryu et al. found that RAP, shimmer, HNR and VTI increase significantly in
patients with dysphagia and reported that these indexes have high sensitivity in pair-wise
combinations [Ryu 04], Chang et al. found that these features do not identify the presence
of P/A [Chan 12]. Kang et al. found that RAP, jitter, and HNR, as well as F0 (the latter
for the manly population only), could be useful for the detection of aspiration risk before
swallowing tasks [Kang 17], but Ko et al. did not find a correlation between the maximum
phonation time extracted from the sustained vowel /a/, and the presence of P/A in patients
with Parkinsonism [Ko 18]. Otherwise, Waito et al. showed that jitter, shimmer, and SNR
have poor sensitivity [Wait 11], whilst Groves-Wright found that RAP, jitter, shimmer and
absolute shimmer increase significantly when the material is observed on the vocal folds
during phonation [Grov 07]. Furthermore, de Bruijin et al. found (in patients with oral
and oropharyngeal cancer), that intensity of the vowels /a/, /i/, and /u/ is highly correlated
to the amount of P/A and swallowing impairment, whilst F0 is significantly associated to
swallowing inefficiency [Brui 13]. Likewise, Vogel et al. also found that F0 has statist-
ically significant differences between patients with dysphagia and progressive ataxia, and
controls (pitch control on vowels), as well as reduced speech rate in readings and auto-
matic series (weekdays task), and increased pauses in monologues [Voge 17]. Otherwise,
patients with aspiration risk exhibit reductions in the perturbation and noise parameters, ap-
parently due to the increase in their vocal effort after swallowing, improving voice quality
[Kang 17]. Additionally, Ramig et al. hypothesized that wet voice could be related to shim-
mer increase, but from a longitudinal case study in a single patient with ALS [Rami 90].
Otherwise, Murugappan et al. carried out an in-vitro experiment, which detected that wet-
ness could increase the phonation threshold pressure, jitter, and shimmer, and reduce the
amplitude of subglottal pressure [Muru 10].

Despite the aforementioned ideas, to the best of my knowledge, perceptual features
have been characterized in only two papers by acoustic parameters in patients with dys-
phagia: [Zhao 22] extracted some of the features described previously to classify between
healthy and dysphagic individuals (jitter, RAP, PPQ, F0, shimmer, among others), but their
discrimination capability is not clear because statistical analyses were not provided, and
authors applied feature selection without semantic. On the other hand, [Park 22] reported
that APQ11-shimmer and RAP from the sustained vowel /e/ are potential digital biomark-
ers to detect the severity of dysphagia according to the oral feeding and risk of respiratory
complications in post-stroke patients.

3.3.2. Feature extraction in speech signals

Different features have been studied in the field of automatic speech processing and
understanding with several aims, for instance, to model abnormal patterns observed in the
speech produced by patients suffering from Parkinson’s disease [Oroz 18]. Since there is
a relationship between several health conditions like Parkinson’s disease and dysphagia,
and considering that there is a lack of quantitative analyses on this topic, Parkinson-related
features were extracted and evaluated to model abnormal patterns in the speech of patients
with dysphagia. To address this task, the open-source software for Parkinson’s speech ana-
lysis called Neurospeech [Oroz 18], was adapted. The modules related to phonation, artic-
ulation, and prosody were implemented in combination with the software Praat [Boer 01]
which is commonly used to extract different phonation and articulation features. The cus-
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tomization of this software for dysphagia-specific analysis was performed in Python 3.
Details of the extracted features are presented below.

Phonation analysis in sustained vowels

Phonation is perhaps the most typical speech dimension in studies with dysphagic
patients [Chan 12, Wait 11, Brui 13, Farn 17]. The main reason is that phonation changes
are usually related to food or liquid residuals at the laryngeal vestibule [Muru 10], which
is directly linked to abnormal vibration of vocal folds and abnormal control of the air that
is generated in the lungs to produce speech. In spite of this, descriptions of how phonation
is influenced by swallowing impairments are scarce [Yama 18]. In this study, phonation
features were extracted from the sustained Spanish vowels: /a/, /e/, /i/, /o/, and /u/.

Fundamental frequency
Denoted as F0, it is the frequency at the maximum correlation of the sound sig-
nal [Boer 93], i.e. the fundamental frequency related to the vibration of the vocal folds.
The perceived fundamental frequency is associated with the concept of pitch. Without
loss of generality, in this study, F0 and pitch are equivalent variables. F0 was extracted
from each frame using Praat. Since Praat extracts 4 pitch values per frame of 40 ms, the
mean of those values is computed to create the F0 value for the given frame. Afterward,
the mean, standard deviation, skewness, and kurtosis of the resulting feature vector from
each recording were computed (see Figure 3.1). These four statistical functionals are also
estimated for all of the features considered in this study.

Jitter
It measures short-term temporal perturbations of the voice signal. Details can be found
in [Hadj 02]. Its computation is according to:

Jitter(%) =
100

N ·max(F0)

N∑
i=1

|F0(i)]−max(F0)| , (3.16)

where N is the number of frames in the utterance, max(F0) is the maximum value of
F0 in all frames, i.e. max{F0(1), ...F0(N)}, and F0(i) is the value of F0 in the i−th frame.

Shimmer
It measures short-term amplitude perturbations in the voice signal and it is defined as fol-
lows [Hadj 02]:

Shimmer(%) =
100

N ·max(A)

N∑
i=1

|A(i)−max(A)| , (3.17)

where N is the number of frames in the utterance, max(A) is the maximum amplitude
value of the signal, and A(i) is the amplitude of the i−th frame, i.e. the maximum value
of such frame.
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Amplitude and Pitch Perturbation Quotients – APQ and PPQ
These measures are used to estimate the long-term variability of the peak-to-peak amp-
litude and F0 of the signal, respectively [Hadj 02].

PQ =
1

L

L∑
i=1

∣∣∣ 1k ∑k
j=1D(i+ j − 1)−D(i+m)

∣∣∣∣∣∣ 1
M

∑M
n=1M ·D(i)

∣∣∣ , (3.18)

where L = M − (k − 1), D(i) is the pitch period sequence (PPS) when computing
the PPQ or the pitch amplitude sequence (PAS) when computing the APQ, M is the
length of PPS or PAS, k is the length of the moving mean (tipically 11 for APQ and 5 for
PPQ), and m = (k − 1)/2. In this case, a window length of 150 ms was used with 50%
overlapping [Oroz 18].

Energy
It is related to speech loudness. The energy content in logarithmic scale within one frame
is computed as follows:

logE = log

(
N∑
j=1

|xi(j)|2
)
, (3.19)

where xi(j) is the j-th sample of the i-th frame and N is the frame’s length.

Articulation analysis in sustained vowels

The articulation relates to passive and active modifications of the sound energy in the
vocal tract (supra-glottic cavities), composed of two kinds of signals, non-periodic (noise)
and periodic (glottic sound) [Farn 17]. While the consonants have an oral source of noise
and a laryngeal source of the sound, the vowels have a laryngeal source articulated by the
tongue, palate, pharynx wall and lips [Farn 17]. The following features are extracted from
recordings of sustained vowels with the aim to model articulation characteristics of the
speaker:

Formants
The acoustic analysis of vowels is mainly based on the extraction of the first and second
formants, F1 and F2 respectively, since these are the most relevant metrics for the
production and perception evaluation of vowels [Nade 19]. They are generated by an
energy reinforcement in the vocal tract [Farn 17]. In this case, formants are computed
using the Praat software [Boer 01]. Furthermore, the first and second derivatives of each
formant are also computed to include information about the dynamics of vowel production.

Teager-Kaiser Energy operator (TKEO)
It is a nonlinear operator widely used in the signal-processing field. For example, it
has been used for burst detection in electromyographic recordings in swallowing ana-
lysis [Rest 17], and also to model different speech disorders [Oroz 15]. The TKEO is
defined by:

TKEO {x[n]} = x[n]2 − x[n− 1] · x[n+ 1], (3.20)
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where x[n] is the n-th sample of the speech signal. The output of this operation describes
the contour of the speech signal.

Mel-frequency cepstral coefficients (MFCC)
The vocal tract shape determines how the sound is produced. This shape is associated with
the envelope of the short-time power spectral density of the utterance, which is associated
with the MFCC introduced by [Davi 80]. MFCCs are also related to perceptual information
in the human hearing range. A bank of triangular filters is built with central frequencies
given by the Mel scale frequencies:

Mel(f) = 1127 · ln
(
1 +

f

700

)
, (3.21)

Where f is the frequency in Hz. The filter bank is multiplied to the Fourier transform of
each segment. The output of the filters is given by:

Xf (m) = ln

(
N−1∑
k=0

|X(k)Hm(k)|

)
, (3.22)

wherem is a counter of filters, N is the length of each segment, k is a counter of frequency,
X(k) is the Fourier transform at the k-th frequency, and Hm(k) is the frequency response
of the m-th triangular filter. Subsequently, MFCCs are computed as follows [Sanc 18]:

MFCC[l] =
M−1∑
m=0

Xf (m) cos

(
lπ

M

(
m− 1

2

))
; l = 1, ...,M, (3.23)

where M is the number of filters. A total of 12 coefficients is extracted along with their
first and second derivatives.

Vowel triangle analysis

The vowel triangle gives an idea of the capability of a speaker to hold the tongue in a
certain position during the production of vowels. Particularly, it is based on the production
of the so-called corner-vowels /a/, /i/, and /u/. The triangle is created on the F1 vs. F2

plane so each edge of it is given by the frequency value of the two formants. The vowel
triangle is part of the features that evaluate the articulatory dimension of voice because it
allows to evaluate vertical movements of the tongue (related to F1) and also the tongue
advancement (related to F2) [Oroz 18, Nade 19]. In this study, three indexes from the
vowel triangle were extracted:

Vowel Space Area (VSA)
It is a measure of the articulatory capability of a speaker [Oroz 18]. It has been used to
analyze dysarthric speech, where it is expected to be compressed in comparison to healthy
speech [Sapi 10]. The VSA is computed as follows:

V SA =
|F1i (F2a − F2u) + F1a (F2u − F2i) + F1u (F2i − F2a)|

2
, (3.24)
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where Fij is the i−th formant associated with the vowel j.

Vowel Articulation Index (VAI)
It reflects the vowel centralization and it has been reported to be more sensitive to deficits
in vowel articulation than the VSA [Rusz 13]. It is computed as shown in the following
Equation:

V AI =
F2i + F1a

F1i + F1u + F2u + F2a

, (3.25)

Formant Centralization Ratio (FCR)
It has been introduced by [Sapi 10] as an alternative to computing the VAI but minimizing
the inter-speaker variability due to sex and age [Nade 19]. It is computed as follows:

FCR =
F2u + F2a + F1i + F1a

F2i + F1a

, (3.26)

Articulation analysis in continuous speech

The level of articulation impairment has been assessed in continuous speech, partic-
ularly in patients with Parkinson’s disease [Oroz 16a]. In this case, the Bark frequency
scale has been used to model the transition between starting and stopping the vocal fold
vibration in continuous speech recordings. Hence, two cases are possible in those trans-
itions: onset, which describes the transition between unvoiced to voiced segments; and
offset, which describes the transition from voiced to unvoiced segments. Voiced and un-
voiced segments were found with the software Praat according to the presence or absence
of F0 values, respectively. Typically, 25 scales are computed from the speech signals as
follows [Zwic 80]:

Bark(f) = 13 arctan

(
0.76

f

kHz

)
+ 3.5 arctan

(
f

7.5kHz

)2

, (3.27)

where f is the frequency in kHz. Considering that the channel normalization process
down-samples the signal to 8 kHz, only 18 Bark bands can be computed per transition
(onwards BBE_on and BBE_off, respectively), and the mean and standard deviation are
obtained. The articulation analysis in continuous speech retrieves a feature vector per
recording with 18 Bark-band energies, and 2 statistical moments in the voiced and unvoiced
segments (18× 2× 2 = 72 features).

Diadochokinetic analysis

One of the most common methods to evaluate articulatory skills is based on the
diadochokinetic (DDK) analysis, which consists of a rapid repetition of the pairs of plosive
consonant-vowel. This task allows evaluating the movements of articulators such as lips,
tongue, and velum [Rusz 11, Oroz 16a]. [Fest 16] reported that DDK has the ability to pre-
dict moderate or severe dysphagia. The most common DDK tasks involve the syllables
/pa/-/ta/-/ka/, and combinations of them like /pa-ta-ka/, /pa-ka-ta/, or /pe-ta-ka/, [Oroz 18].
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In this work, the participants were asked to produce rapid repetitions of /pa-ta-ka/. The
DDK-related features extracted from recordings were [Oroz 18]:

Pitch (F0): Details are presented in section 3.3.2.
Energy: Details are presented in Section 3.3.2.
DDK (syllable vocalizations): Syllable rate (syllable vocalizations per second), mean

and variance of the syllable duration were computed.
Pauses related segments: Similarly to the previous feature, pauses rate, together with

the mean and variance of the pause duration were computed.
The syllable vocalizations and pauses were extracted automatically with Praat.

Prosody analysis

This speech dimension is related to timing, intonation, speech rate, and pauses pro-
duced while naturally speaking [Oroz 18, Vasq 18]. Despite the high number of studies
related to phonation and articulation analysis in pathological speech, the acoustic features
of prosody have been scarcely analyzed [Ramo 20]. In this work, the following prosody
features were considered: pitch (F0), logarithmic energy, and duration of voiced and un-
voiced segments. Maximum values along with the four functionals are estimated per fea-
ture. The voiced and unvoiced segments were extracted automatically with Praat. Table
3.3 summarizes the features as well as the functionals extracted from speech recordings.

3.4. Feature selection strategies

The sliding window method was used to return one vector per feature. Thus, a feature
space X′ ∈ Rm×n with m samples (individuals) and n features was obtained. Z-score
normalization was applied to standardize the feature space, i.e.:

X =
X′ − µ′

X

σX
, (3.28)

where µ′
X and σX are the mean and standard deviation vectors of the analyzed pop-

ulation, respectively, computed on the columns of the matrix X′. Thus, X =
(
x
(i)
j

)
∈

Rm×n, i = 1, . . . , n, and j = 1 : m, where x(j)i denotes the normalized j-th feature of
the i-th individual.

Different feature selection schemes were applied to prevent overfitting and to provide
model interpretation, optimization, sparsity, and data understanding [Guyo 03]. There are
three main approaches to select features [Bolo 13]:

Filter methods: selection of features based on their intrinsic properties, individual
or jointly, such as statistical independence, mutual information, correlation, or in-
herent power of discrimination. These methods are independent of the classification
algorithm.

Embedded methods: the feature selection depends on the classification algorithm in
the training process.
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Table 3.3: Summary of features and functionals evaluated by speech dimension.

Dimension Features Functionals

Phonation

APQ
PPQ
Jitter

Shimmer
F0 (∆0, ∆1, ∆2)

logE

(One feature per vowel)
MV, SD, SK, Kurt

Sustained vowels
F1 (∆0, ∆1, ∆2)
F2 (∆0, ∆1, ∆2)

MFCC[1 ∼ 13] (∆0, ∆1, ∆2)
TKEO

(One feature per vowel)
MV, SD, SK, Kurt

Vowel triangle
VSA, VAI, FCR

Continuous speech
Articulation

BBE_on[1 ∼ 18]
BBE_off[1 ∼ 18]

MV, SD

F0 SD
logE Max, MV, SDDiadochokinesia

DDK & Pauses Rate, MV, SD
F0 & logE Max, MV, SD, SK, Kurt

Prosody
Voiced & Unvoiced segments Rate, MV, SD, SK, Kurt

Abbreviations: MV: mean value; SD: standard deviation; SK: skewness;
and Kurt: kurtosis.

Wrapper methods: it also depends on the classification algorithm, but the selection
is performed by an optimization process (greedy search).

Only filter methods were considered in this thesis because they have lower compu-
tational cost and good generalization capability since they do not depend on the classi-
fier [Bolo 13]. The latter is the most desired property for the application under study in this
work since it seeks possible biomarkers of dysphagia, which should not depend on specific
algorithms, in order to prevent the risk of overfitting, as well as lack of generalization or
physiological interpretability. Next, the filter methods applied in this work are explained.

Minimal Redundancy - Maximal Relevance (mRMR) The mRMR is one of the most
robust methods for multivariate filter of features, and it has been also used successfully for
channels selection in sEMG [Mesa 14]. This algorithm is based on the mutual information
criterion. For two variables x and y, with marginal probabilities p(x) and p(y), respect-
ively, and joint probabilistic function p(x, y), the mutual information I is computed as
follows [Ding 05]:

I(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
(3.29)
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The mRMR method seeks to find a set of features S that are maximally dissim-
ilar between them, as well as to maximize the relevance of these features regarding the
classes h = {healthy, dysphagic}. This is summarized in the next optimization condi-
tions [Ding 05]:

min
1

|S|2
∑
i,j∈S

I(i, j) , max
1

|S|
∑
i∈S

I(h, i) (3.30)

where |S| denotes the number of features in S.

Principal components analysis (PCA) based selection PCA is, in principle, a power-
ful technique to reduce dimensionality. It is based on an orthogonal transformation of the
original feature space into another with the highest contribution in variance. Given the
normalized feature matrix X, the covariance matrix is found as Σ = 1

m
XTX, Σ ∈ Rn×n

[Daza 09]. The Singular Value Decomposition method (SVD) retrieves the eigenvectors U
and eigenvalues Λ from Σ. The trace of Λ returns the percentage of explained variance.
The eigenvalues which sum an explained variance given by a threshold (e.g. 90%) are
retained and their corresponding eigenvectors form a reduced matrix V′. Then the uncor-
related principal components (PC) are found by PC = XV′. However, PCs are usually
hard to interpret, that is, they have no semantics. In this way, we used the projection of
X onto the PCs, i.e. projPCX. In this projection, the weight of each original feature is
computed per PC. In this way, only those features with the highest weights on PCs that
retain a certain amount of variance, are selected, without losing semantic and interpretab-
ility. A threshold of 0.8 of the explained variance was set ad-hoc to select the features for
the classification stage.

Hypothesis tests Hypothesis tests are used to make inferences about populations from
samples [Maru 10]. In this case, such tests were used to determine the inherent capability of
discrimination of the features extracted from each biosignal. The null hypothesisH0 is that
there is no statistically significant difference between the values of the feature Xi extracted
from healthy controls and patients with dysphagia. The goal is to reject hypothesis; in this
case, the feature Xi will be taken as a possible biomarker. The p-value of the statistical
test is the probability to obtain a random difference which is higher than the observed
one. A typical criterion says that if p < 0.05 one could reject H0 [Moli 17]. Since the
collected data come from two unpaired samples, the Mann–Whitney U test is the most
recommended test to find features with significantly different values (the median) between
groups [Maru 10].

Due to the recent criticism regarding the use of the p-value for statistical inference in
diagnostic tests [Amrh 19], this kind of comparison was performed only in Experiment
#3 (see Chapter 2). To compensate the problem of multiple comparisons, the Bonferroni
correction was applied, with a family-wise error rate of 0.01. It also helps to prevent type-I
errors (reject H0 given that it is true), leading to more conservative conclusions.

Additionally, since hypothesis tests are highly dependent on the sample size [Tomc 14],
the eta-squared (η2) was computed in order to analyze the effect size as follows:

η2 =
Z2

N
, (3.31)
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whereZ is the standardized value of the Mann-Whitney U, andN is the number of samples.
If η2 = 0.01, there is a small effect size, η2 = 0.09 means medium effect size, and η2 =
0.25 means large effect size [Frit 12].

Area under the ROC curve (AUC) The analysis of the Receiver Operating Character-
istics curve (ROC) is paramount in the Machine Learning community [Powe 11]. To deep
inside its definition, the following concepts must be clarified:

True positives (TP): number of patients with dysphagia that the algorithm classifies
as with dysphagia

True negatives (TN): number of healthy individuals that the algorithm classifies as
healthy

False positives (FP): number of healthy individuals that the algorithm classifies as
with dysphagia

False negatives (FN): number of patients with dysphagia that the algorithm classifies
as healthy

The area under the ROC curve (AUCROC) is a univariate feature selection method used
to measure the equilibrium between the true positive rate (TPR) and the false positive
rate (FPR). For ordinal-like data of the features extracted in this thesis, one probability
distribution is obtained per group, i.e. per class (see Figure 3.3).

Healthy
controls

Dysphagic
patients

TP

FN

TP

FP

TN

ThF Classified as dysphagicClassified as healthy

Figure 3.3: Illustration of the distribution values of a specific feature in healthy and dys-
phagic individuals. ThF : feature threshold; TP: true positives; FN: false negatives; TN:
true negatives; FP: false positives.

A moving threshold ThF is set for each feature Xi in the range [min(Xi),max(Xi)].
Thus, as ThF increases, the number of TN, FN, FP, and TP changes, i.e. the number
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of the correctly classified individuals changes. In Figure 3.3, low values of ThF tend to
classify all individuals as dysphagic, but high values of ThF tend to classify all individuals
as healthy. Each value of ThF produces a point in the ROC (TPR vs. FPR):

(FPR,TPR)ROC →
(
1− TN

TN + FP
,

TP
TP + FN

)
(3.32)

In the context of binary classification, an AUC score between 0.7 and 0.8 is acceptable,
between 0.8 and 0.9 is excellent, and more than 0.9 is outstanding [Mand 10]. Thus,
a selection threshold of 0.7 was defined, i.e., features with AUCROC≥0.7 were selected
for classification. As a limitation, in contrast to the mRMR and PCA-based method, the
AUCROC does not retrieve any information about correlations between features of the input
space. This method was used in order to determine the individual discrimination capability
of each feature.



Chapter 4

Feature analysis and proposal of
swallowing biomarkers

In this chapter, the results of the signal characterization are presented per experiment.
Several swallowing biomarkers are also proposed.

Since the experiments of this thesis were conducted in different stages of the research
and with different databases1, different combinations of feature selection methods were
performed for each experiment. Table 4.1 summarizes the feature selection methods used
for each experiment.

Table 4.1: Summary of feature selection methods used for each experiment.

Experiment PCA-based mRMR H0 AUCROC

Experiment #1 • • •
Experiment #2 •
Experiment #3 •
Experiment #4 •

4.1. Experiment #1: Electrophysiological biomarkers
This section and the number 6.1 were excerpted with some modifications

from the following journal paper: Roldan-Vasco, Sebastian, Andres Orozco-
Duque, and Juan Rafael Orozco-Arroyave. "Swallowing disorders analysis us-
ing surface EMG biomarkers and classification models." Digital Signal Processing
133 (2023): 103815. This article can be found on the publisher’s web-
site at https://www.sciencedirect.com/science/article/abs/pii/
S1051200422004328. The journal’s homepage is located at https://www.
sciencedirect.com/journal/digital-signal-processing, and the pub-
lisher’s copyright information can be found at https://www.elsevier.com/

1Volunteers recruitment, including healthy and dysphagic individuals, lasted approximately five years,
with the COVID-19 pandemic in between.
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about/policies/copyright/permissions. In this experiment, the evaluation
of sEMG-related features as biomarkers was performed

4.1.1. Contribution of individual features

The feature space used as input to the classifiers that will be detailed in Section 6.1, was
formed with four functionals per feature (mean, standard deviation, maximum and min-
imum), which were extracted from every channel (two bilateral channels are considered
per muscle group). Therefore, the representation space was formed as follows: 4 function-
als × 6 channels = 24 features. Figure 4.1 shows a bubble-matrix chart to visualize the
number of functionals retrieved by each feature (rows) extracted from each muscle group
(columns). The bubble size indicates the number of swallowing tasks in which some func-
tional of a specific feature was retrieved by a specific feature selection method. There are
eight different sizes of the bubbles, with the smallest indicating that the feature was re-
trieved in just one swallowing exercise and the largest indicating that it was retrieved in all
tasks. Otherwise, the quantity of functionals retrieved across all swallowing activities is
shown by a color scale; the more functionals engaged, the darker the color. This graphic
offers a broad overview of feature selection patterns across feature domains. Neither in
terms of feature domain nor in terms of muscle groups, the PCA-based selection did not
show any discernible pattern.

The majority of the features in all sEMG channels were retrieved even if the selection
criterion was set at 80% of variance, regardless of the swallowing task. No clear pattern
was found either with mRMR. In contrast to PCA, mRMR selected a sparse set in terms
of features and muscle groups (see Figure 4.1). Adding up to the inconvenience of using
these feature selection methods, mRMR does not allow to analyze the relevance of indi-
vidual features in terms of discrimination and PCA is based on the maximization of the
representation space variance, which limits specific analyses with individual features.

In contrast, a distinct pattern in terms of muscle groups and feature domains was re-
covered by the AUCROC based selection (see Figure 4.1). Features in the time domain
extracted from supra- and infrahyoid muscles were more frequent than other domains and
muscles (see Figure 4.1). In this way, VAR, RMS, iEMG, LOG, WL, and DASDV from
bilateral suprahyoid muscles, WAMP and MYOP from the left suprahyoid, and the fre-
quency domain feature MNP from bilateral suprahyoid, are clearly highlighted in terms
of AUC for most of the swallowing tasks. Time domain features are also present in most
of the swallowing tasks (water and yogurt) in the infrahyoid muscles. Figure 4.2 shows
colormaps with information on the number of functionals selected by the AUCROC method,
distributed along the muscle groups and swallowing tasks.

4.1.2. Proposal of electrophysiological biomarkers

In this experiment, different feature sets were evaluated, which had not been explored
previously in the state-of-the-art of swallowing based on sEMG signals.

Despite PCA and mRMR selection methods retrieved good classification performances
(shown in Section 6.1), they were not appropriate to find biomarkers that enable possible
clinical interpretation. Even though the AUCROC based selection method does not allow to
analyze how features and muscles interact or correlate among them, this selection criterion

https://www.elsevier.com/about/policies/copyright/permissions
https://www.elsevier.com/about/policies/copyright/permissions
https://www.elsevier.com/about/policies/copyright/permissions
https://www.elsevier.com/about/policies/copyright/permissions
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Figure 4.1: Bubble-matrix chart with the features obtained by each selection method. The
bubble size shows the occurrence of features along the different swallowing tasks (rows)
in different muscle groups (columns). The colormap indicates the number of functionals
per feature.

allowed to find the features that yielded higher discrimination results, so this method was
used for biomarkers selection.

It is noticeable that the time-domain features extracted from suprahyoid muscles were
the most prevalent in all swallowing tasks. Figure 4.2 also illustrates that muscle activation
is volume dependent: masseter-related features show good discrimination capability in
water5 and yogurt5, while the intake of greater volumes does not show good classification
performance. An effortful swallow was observed during the intake of such small volumes,
especially for yogurt, which supports the fact that time domain features –most of them
measures of contraction force–, retrieved high classification accuracies. Such effort is
characterized by a suction-like praxis with slight masseteric contraction in many patients
with dysphagia. This behavior could be related to the piecemeal deglutition produced by
20 mL in neurogenic patients, known as dysphagia limit [Aydo 15]. This double or even
triple activation attenuates the effect of one struggling swallowing in terms of amplitude
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Figure 4.2: Colormaps of features selected by the AUCROC method distributed along
muscle groups and swallowing tasks. Wx: x mL of water; Yx: x mL of yogurt; S: saliva;
C: 3 g of cracker.

or duration which are among the underlying aspects that are modeled with time-domain
features.

Although other feature domains did not show consistent results for dysphagia discrim-
ination, the MNP from suprahyoid muscles yielded AUC≥0.7 in most of the swallow-
ing tasks (Figure 4.1); this result agrees with a paper developed in an early stage of this
work [Rold 18], in which MNP was the most accurate frequency-domain feature for the
classification of swallowing phases. NLD and time-frequency features did not exhibit
individual capability of discrimination. Even though wavelets have been used for burst
detection during swallowing tasks [Rest 17], the wavelet performance is highly dependent
on the proper selection of the mother wavelet. The parameters used in this experiment
were recommended for sEMG-based classification [Chow 13], but such recommendations
were made on typical applications of sEMG, i.e. upper and lower limbs-related myoelec-
tric control, whose muscle fibers have different activation patterns and discharge rate in
comparison with the swallowing related muscles evaluated in this work. Regarding the
NLD features, it is difficult to hypothesize a physiological reason behind the low perform-
ance, but it could be related to the absence of well-defined patterns of the phase spaces: no
visual differences were detected in the graphics of the attractors of healthy individuals, and
patients with dysphagia.

On the other hand, this experiment strengthens the findings of a previous one [Rold 18],
and the following features are proposed as potential electrophysiological biomarkers for
swallowing studies based on sEMG signals: VAR, RMS, iEMG, LOG, WL, DASDV,
WAMP, MYOP, TKEO, and MNP. Despite MYOP and WAMP were not accurate for auto-
matic detection of the swallowing phases in [Rold 18], in this experiment the threshold
was modified (functionals of the first 50 ms instead of the whole recording), and the results
improved.
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4.2. Experiment #2: Electrophysiological and mechanical
biomarkers

This section and the number 6.2 were excerpted with some modifications from
the following journal paper: Roldan-Vasco, Sebastian, et al. "Analysis of elec-
trophysiological and mechanical dimensions of swallowing by non-invasive biosig-
nals." Biomedical Signal Processing and Control 82 (2023): 104533. This article
can be found on the publisher’s website at https://www.sciencedirect.
com/science/article/pii/S1746809422009879?dgcid=author. The
journal’s homepage is located at https://www.sciencedirect.com/journal/
biomedical-signal-processing-and-control, and the publisher’s copy-
right information can be found at https://www.elsevier.com/about/
policies/copyright/permissions. In this experiment, the evaluation of
the combination of sEMG and Acc-related features was performed.

4.2.1. Electrophysiological and mechanical biomarkers
Table 4.2 shows the contribution of each feature to the classification results obtained

with the mRMR selection method. Only the best results are shown. The last column
illustrates the relative contribution of each feature. Notice that MYOP achieved the highest
contribution, although for this feature the algorithm only selected measures extracted from
the sEMG channels. This behavior was to some extent predictable because this feature
is mainly intended to describe sEMG signals [Phin 12a]. Notice that MYOP was present
for all sEMG channels, but for the specific case of the saliva intake, that feature was not
required to achieve the best classification result.

When analyzing the results regarding domains, it can be observed that in time, there
were other three features that achieved high occurrence: RMS, INT, and LOG. However,
they were not as consistent as MYOP. For the frequency domain, these features were not
systematically selected by the algorithm, along swallowing tasks. They show to be strongly
related to the Acc axes. The MDF is shown neither in Table 4.2 nor in Figure 4.3, because
is was not selected for any swallowing task. Regarding time-domain features, there were
a total of 44 occurrences in which one or more measures were selected along the swal-
lowing tasks and recording channels. Notice that 16 out of those 44 occurrences (36%)
correspond to measures of the AP axis and 10 (23%) correspond to SI, both associated to
Acc biosignals. Furthermore, Went also retrieved a high relative contribution, but it was not
selected by the algorithm for the classification during the intake of water5 and yogurt10. Its
participation to characterize information from different channels is not consistent. Finally,
for the NLD features, it can be observed that SampEn and LLE, which were computed for
the Acc axes only due to the results obtained in Experiment #1, the relative contribution
was high. SampEn was retained for at least one Acc axis in all swallowing tasks, and LLE
was retained in the AP axis for all water tasks and yogurt10.

Figure 4.3 shows heat maps for the AUC values computed for the features selected ac-
cording to Table 4.2. Since each feature provides six functionals per acquisition channel
and task, only the maximum AUC is shown for displaying purposes. Notice that most of
the AUC values achieved by the time, frequency and NLD domains vary between 70%
and 80%, indicating that the selected features have good or acceptable capability of dis-
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Figure 4.3: Heat maps of the AUC for the features selected by the mRMR method, by
acquisition channel and swallowing task.

crimination [Mand 10]. The AP axis yielded the highest AUC regardless of the swallowing
task: 0.81 in water5, water10, and yogurt20; 0.82 in water20; 0.79 in saliva; and 0.77 in
yogurt5 and yogurt10. The LSH channel also achieved AUC>70% for most of the features
and intakes. However, its AUC decreases for yogurt (5 mL and 10 mL). In contrast, the
other two sEMG-related channels did not achieve high AUC values in most of the cases.
The LLE calculated for water20 achieved the highest AUC along the experiments (82%).
Actually, NLD features systematically achieved AUC>70% in all swallowing tasks. There
were only exceptions, SampEn in yogurt20 and LLE in water5. Other features such as RMS,
INT, MNF, LOG, FR, and Went also show values higher than 80% for different swallowing
tasks.

4.2.2. Information per sEMG channel and Acc axis

The last row of Table 4.2 illustrates the number of features selected from each ac-
quisition channel and axis. The Acc-related axes contribute consistently with most of the
features in all tasks: in water5, water10, and water20, with 70.5%, 76.2%, and 64.7%, re-
spectively; in saliva, the contribution was 70%; and for yogurt5, yogurt10, and yogurt20,
the contribution of the Acc axes was 76%, 57.1%, and 63.6%, respectively. Addition-
ally, the AP axis provided the highest contribution in terms of the number of features,
in all swallowing tasks, with the exception of yogurt5 in which the SI axis retrieved the
highest number (36.0%). In contrast, the RIH channel retrieved the smallest contribution
(< 12% in all swallowing tasks). Otherwise, the LSH muscle group retrieved the most of
the sEMG-related features in almost every task: 60% in water5, yogurt10, yogurt20, and
saliva, and 50% in water20.



54 Chapter 4. Feature analysis and proposal of swallowing biomarkers

Regarding the swallowing tasks, there is not a clear pattern related to the number of fea-
tures necessary to discriminate between healthy and dysphagic individuals: whilst yogurt10

requires 12 features, yogurt5 requires 23. In this way, neither the consistency nor the
volume seems to be correlated to the number of features required. Otherwise, water10,
water20, saliva, and yogurt10 were characterized by the elimination of one channel or axis:
RIH, RSH, RIH, and ML, respectively.

4.2.3. Regularity of electrophysiological biomarkers and proposal of
mechanical ones

The selection of a feature in one specific Acc axis does not mean that it will also be
selected for the other axes because they have different movement range within healthy and
dysphagic individuals. The mRMR method also discarded similarities in features selected
in two or three acquisition channels. For instance, PKF has shown statistical dissimilar-
ities between AP and SI axes [Lee 08], and VAR, LZC and Went have exhibited tri-axial
directional differences with variable consistencies [Mova 17a].

It also explains that the ML axis did not contribute to the best classification res-
ults in yogurt10; although the ML movement is hard to detect visually because it is
quite subtle, it may provide information about symmetry alterations of hyolaryngeal
muscle contractions [Mova 17a]. Furthermore, one study reported statistically signific-
ant differences between ML-related features extracted from healthy and dysphagic popu-
lations [Dono 21b], which agrees with the results obtained for the other consistencies in
which this axis provided information for the best classification results, even with more
features than another Acc axis (see Table 4.2).

Some features extracted here have been intensively analyzed in Acc axes [Kuro 19]:
standard deviation, PKF, MDF, Went, LZC and entropy rate. SampEn was computed
instead of the Shannon entropy rate, because SampEn is based on a generalization al-
gorithm of the Shannon entropy, originally developed for time series analysis in clinical
research [Delg 19]. In general, works oriented to statistical comparisons between features
extracted from healthy and dysphagic individuals, have reported some inconsistencies,
maybe produced by database-related bias. Even though [Dudi 16] did not find statistically
significant differences between safe and unsafe swallows regardless the liquid viscosity,
the comparisons were made with dysphagic individuals only. In contrast, [Dudi 18b] found
significant differences between healthy and non-healthy individuals, in all of the aforemen-
tioned features in AP and SI axes during thin swallows, as well as during viscous swallows
except for PKF in AP axis, and skewness and kurtosis of the amplitude in SI. Moreover,
[Dono 21a] found statistically significant differences between healthy and non-healthy pa-
tients in LZC (AP axis) and the bandwidth (SI axis) extracted during thin liquids delivered
by cups. However, when the liquids were swallowed by a spoon, more differences were re-
trieved (LZC in AP and SI, MDF and bandwidth in the three axes, and Went in AP). Another
study reported significant statistical differences of standard deviation, LZC, entropy rate,
PKF, MDF, and Went, in healthy and dysphagic individuals deferentially in the three axes,
during swallows of thin liquids [Dono 21b]. Some of these features were also retrieved
by the proposed approach using swallows of water, specifically the LZC (SI axis, 5 mL,
AUC=0.75), the entropy (ML axis, 5 and 10 mL, AUC=0.73 and 0.79, respectively), the
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PKF (M axis, 5 and 10 mL, AUC=0.76 and 0.69, respectively), and Went (AP axis, 10 mL,
AUC=0.78).

Regarding sEMG-related features, in swallowing applications, only one work in the
framework of this thesis was published [Rold 18], as mentioned in Experiment #1. The
current approach retrieved consistent results in terms of the features selected: the LOG
was returned in the current experiment in one sEMG channel during all volumes of yogurt,
and it was one of the features with the highest occurrences for sEMG; DASDV was retained
in water20 and saliva; MYOP was the biomarker with the highest occurrence of the entire
feature space and with the highest AUC in comparison with other extracted from sEMG
channels in yogurt and water20 (see Table 4.2). One divergent result was retrieved by MNF,
which was not associated with any sEMG channel.

Analysis of the contribution of sEMG channels and Acc axes

The AP axis yielded the highest AUC values in all swallowing tasks (Table 4.2). This
result is in line with the fact that the anterior and superior movements of the hyoid bone
and the larynx characterize the pharyngeal phase as a response of a series of different neur-
omuscular activations [Mats 08b]. But, in general, AP, SI, and ML have shown some cap-
ability to detect aspiration/penetration in dysphagic patients [Sejd 13], because the anterior-
posterior, superior-inferior, and in a lesser extent of medial-lateral movements, are critical
during deglutition [Mao 19]. Thus, the analysis of the kinematic dimension of swallowing
using triaxial Acc seems to be potentially useful for clinical dysphagia analyses.

Regarding sEMG, the mRMR method retrieved a few infrahyoid-related features,
which is surprising because these muscles have paramount functions in the swallowing
process. It could indicate that the features of this channel are redundant with respect to
the suprahyoid ones because both have a close relationship with the hyoid and laryngeal
movements [Suzu 20]. This unexpected behavior could be also associated with the low
signal-to-noise ratio of the infrahyoid movements, maybe produced by cross-talk, shallow-
ness, and size [Rest 17]. Additionally, the RSH did not contribute to the classification in
the intake of water20. In contrast, the LSH had a contribution in all swallowing tasks (Table
4.2).

The same muscles also achieved the highest AUC among the group of the sEMG-
related features, for almost all swallowing tasks, contrarily to the AUC achieved by the few
features selected for the RIH (see Figure 4.3). These observations agree with [Erte 03],
who claimed that the best way to pick up EMG activity is superficially for suprahyoid, i.e.,
sEMG, while for infrahyoid the use of needle EMG is required.

Regarding the feature selection, although the use of the mRMR algorithm is repor-
ted in the literature as a good strategy for classification purposes, it limits the analysis of
dysphagia biomarkers; mRMR does not consider information about the localization of the
information sources (channels, axes), which is a valid strategy for classical classification
schemes, but it avoids more complete analyses behind the deglutition phenomenon. The
use of less sophisticated but easy to interpret selection methods, such as the AUCROC-based
selection method, could be more suitable for this kind of analyses. Subsequently, this was
considered for multi-modal analysis performed in Experiment #4 (see Section 6.4).
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4.3. Experiment #3: Acoustic biomarkers
This section and the number 6.3 were excerpted with some modifications from

the following journal paper: Roldan-Vasco, Sebastian, et al. "Machine learning
based analysis of speech dimensions in functional oropharyngeal dysphagia." Com-
puter Methods and Programs in Biomedicine 208 (2021): 106248. This article
can be found on the publisher’s website at https://www.sciencedirect.
com/science/article/abs/pii/S0169260721003229. The journal’s
homepage is located at https://www.sciencedirect.com/journal/
computer-methods-and-programs-in-biomedicine, and the publisher’s
copyright information can be found at https://www.elsevier.com/about/
policies/copyright/permissions. In this experiment, the evaluation of the
features extracted from different speech dimensions was performed using statistical tests.

4.3.1. Statistical tests for feature selection per speech dimension
To prevent optimistic or misleading results, statistical tests were made upon 80% of the

original database described in Section 6.3, randomly chosen but ensuring age and gender
balance between groups. Those features that retrieved significant statistical differences
between groups in the 80% of the data, were used as input to train the classifiers.

Phonation features

Few features were significantly different between the two groups of subjects. None of
the features were significantly different in all of the five vowels, but the standard deviation
of logE significantly differentiates the two groups in four of the five vowels. Similarly,
the standard deviation of jitter and F0 showed significant differences between groups in
three vowels (specifically, /i/, /o/, and /u/). Furthermore, the standard deviation of the jitter
retrieved p = 0.01 for /o/, p < 0.01 for /i/, and p < 0.001 for /u/. Figure 4.4 illustrates the
separability of the mentioned features in the vowel /i/.

These observations suggest that changes in the stability of F0 during the vibration of
the vocal folds is a potential biomarker of dysphagia. A complete list with the results of
statistical tests is provided in Table A.1 of Appendix A.

Figure 4.5 shows the box-plots corresponding to the particular case of the standard
deviation of logE measured over the five vowels. A clear (and significant) separability is
observed for all vowels, except for /a/. Besides, it is important to highlight that such feature
shows higher values in the dysphagic group than in the control one. Furthermore, there is
more variability in the dysphagic group than in the healthy control. These two results are
clear signs of abnormal vocal folds vibration in patients with dysphagia.

Articulation features extracted from sustained vowels

Figure 4.6 shows an illustrative example of the behavior of the vowel triangle in one
healthy and another dysphagic individual. Note that the triangle of the control speaker
is larger than the one of the patient, which is consistent with the fact that VSA showed
significant differences between groups (η2 = 0.217, p < 0.001). Formants were also less
sparse for the control subjects, and this difference was reflected in the VAI (η2 = 0.183, p <

https://www.sciencedirect.com/science/article/abs/pii/S0169260721003229
https://www.sciencedirect.com/science/article/abs/pii/S0169260721003229
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Figure 4.4: Box plots of phonation-related features with p < 0.01 extracted from the
sustained vowel /i/.

0.001) and the FCR (η2 = 0.153, p < 0.001). Figure 4.7 shows clear differences between
the healthy controls and patients with dysphagia in the vowel triangle-related features.

The set of articulation features extracted from sustained vowels included a total of 172
additional features which correspond to four functionals computed over 43 measurements:
12 MFCCs, F1, and F2, with their corresponding first and second derivatives, and the
TKEO. Due to space limitations, the results of the statistical tests are presented per func-
tional in Tables A.2, A.3, A.4, and A.5 of Appendix A. The skewness and kurtosis values
did not show significant differences between groups in almost none of the vowels and,
in those features that had statistical differences, they appeared in only one or two vowels.
Conversely, the standard deviation of MFCC1, ∆MFCC1 and ∆2MFCC1 was significantly
different in four or five vowels. This result is in line with previous studies in pathological
speech signals where MFCCs coefficients showed good detection results [Frai 09]. How-
ever, their main limitation is the lack of direct interpretable outcomes for clinicians. When
having a look at the results obtained with the formant F1, which has a direct relationship
with the tongue movement, the standard deviation of F1, ∆F1 and ∆2F1 was significantly
different in four of the five vowels, while the mean of ∆F1 showed significant differences
in three of them. This is also a promising result that confirms abnormal patterns in the
articulation of patients with dysphagia. For the rest of the features and their corresponding
functionals, it is hard to find a well-defined pattern.

Articulation features extracted from continuous speech

Articulation features were also extracted from monologues. A total of 18 BBEs were
measured in onset and offset transitions (Table A.6, Appendix A). The first Bark band



58 Chapter 4. Feature analysis and proposal of swallowing biomarkers

Figure 4.5: Box plots of the standard deviation of logE in the five vowels.

Figure 4.6: Vowel triangles computed in one healthy control (left), and one dysphagic
patient (right).

showed statistical differences between groups systematically in both functionals computed
over the onsets and offsets. This was also seen on the standard deviation of the second band.
Figure 4.8 shows the box-plots resulting from evaluating all of the 18 Bark bands in onsets
and offsets. Patients had higher values than the controls, especially in the mean of BBE_1
(onsets and offsets). This pattern was previously observed as present in dysarthric speech
signals [Oroz 16b]: Parkinson’s patients apparently made more effort to start the vocal fold
vibration, which results in higher energy in onsets. In contrast, patients with dysphagia
tend to have less standard deviation than healthy controls in offsets (See BBE_1, BBE_2,
and BBE_[6 ∼ 13] in Figure 4.8).
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Figure 4.7: Box plots of vowel triangle-related features.

Figure 4.8: Box plots of the Bark-band energies for the onsets (first row) and offsets
(second row) of the utterances. The first column shows the mean, and the second one
shows the standard deviation.

Articulation features extracted from DDK tasks

Although DDK is related to the articulation dimension, speech tasks designed to eval-
uate them are different. Thus, their discrimination capability is not necessarily the same.
This capability was evaluated from pa-ta-ka recordings. The results obtained are shown
in Table A.7 (Appendix A). The mean and variance of the logarithmic energy, as well as
the DDK-related features (mean, rate and regularity), were significantly different between
groups. It is remarkable that despite the DDK-related features seeming to be suitable to
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discriminate between groups (see Figure 4.9), the rate, duration, and regularity of pauses
were not. Although all DDK-related features (mean, rate and regularity) retrieved suf-
ficient evidence of significant statistical difference, DDK_mean and DDK_reg had the
smallest corrected p-values (< 0.001). Not only the values of such features were higher
in patients than in controls, but also the variability of data, which is an indicator of con-
sistency in the DDK dimension from healthy recordings: DDKHealthy

mean = 58.79 ± 19.39
vs. DDKPatients

mean = 140.66 ± 247.14; DDKHealthy
reg = 4478.23 ± 4529.37 vs. DDKPatients

reg =
214581.62 ± 1102980.95. This is explained by the articulation impairments produced by
the conditions leading to dysphagia (see section 4.3.2).

Figure 4.9: Box plots of the DDK features with the lowest p-values for controls vs. patients.

Prosody features

Results with the prosody features indicate that only the standard deviation was the
feature with significant differences when comparing patients with dysphagia and healthy
subjects (see Table A.8, Appendix A). Since the DDK-related features retrieved statistic-
ally significant differences, a careless interpretation could lead to expect similar perform-
ance not only for energy but also for voiced segment-related features. However, this is
not true since diadochokinetic tasks are completely different from spontaneous speech, in
which variations of intonation and rhythm are irregular since each volunteer made his/her
own monologue. This kind of non-homogeneity in the recordings of all patients produced
p-values of one for almost all prosody features, with the exception of logE and some stat-
istical functionals of voiced and unvoiced segments. Consistently, the effect size of the
energy indicates that this was the only feature with practical significance (η2 = 0.355).

4.3.2. Speech features as an indicator of dysphagia
To the best of my knowledge, this experiment is the most comprehensive study of

speech dimensions (i.e. phonation, articulation, diadochokinesia, and prosody) oriented to
the quantitative analysis of swallowing impairment. Obtained results are discussed below.

Phonation: Some authors have worked with commonly used phonation-related fea-
tures to determine changes in speech production from patients with dysphagia [Kang 17,
Ryu 04]. Although [Ryu 04] found that RAP, shimmer, noise-to-harmonic ratio, and voice
turbulence index have significant changes after swallowing in a heterogeneous group of
patients, [Kang 17] only found significant variations for RAP. Despite the contradictory
results, the use of such features is supported by the fact the presence of foreign material
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at the larynx, e.g. in dysphagic patients with aspiration or penetration produces acoustic
changes in phonation [Muru 10].

In this Experiment, different phonation-related descriptors were found that differenti-
ate between “dysphagic” and healthy conditions. The jitter (mean and standard deviation),
as well as the standard deviation of F0 and logE were larger and more sparse in patients
with dysphagia. This makes sense because the phonatory system may be affected by re-
siduals of food or liquids in patients with dysphagia [Grov 07]. Figure 4.4 is an interesting
example of the separability of such features in the vowel /i/. It is noteworthy that the men-
tioned features have significant statistical differences only in the vowels /i/, /o/, and /u/,
but neither in /a/ nor in /e/ (except for logE). It could be related to the effort made by pa-
tients to pronounce and sustain the tongue and lips positions during the utterances: whilst
Spanish vowels /a/ and /e/ have low and mid-front tongue positions, respectively, as well
as unrounded lips position, the vowel /i/ has high-front tongue position, and vowels /o/ and
/u/ have back positions of the tongue and rounded lips [Gari 19]. However, further and
detailed phonatory analyses should be made to confirm such hypothesis.

Interestingly, most of the phonation-related features that retrieved significant changes,
do so in the corner vowels (/i/ and /u/), similar to what was observed by [Brui 13] in patients
with oropharyngeal cancer.

Articulation: Besides the confirmation of previously reported observations, articulation
and prosody dimensions of speech were included in this work, which has been scarcely
studied in dysphagia. Mathematical descriptors that could characterize patients with dys-
phagia based on such speech dimension were found. For the articulation dimension as-
sessed via sustained vowels, the VSA, VAI and FCR from the vowel triangle (see Fig-
ure 4.7), the standard deviation of F1 and its first and second derivatives, the mean of its
first derivative, the first derivative of F2, as well as the zero, first and second order deriv-
atives of MFCC1, retrieved significant statistical differences between groups. On the other
hand, the articulatory analysis in continuous speech showed that the mean and standard
deviation of the first two BBEs had antagonistic results for onset and offset segments, i.e.,
the mean of BBEs was significantly higher in patients than in controls, but the standard
deviation was converse.

DDK: On the other hand, the DDK analysis in pa-ta-ka recordings indicates that the most
suitable descriptors to analyze voice changes in patients with dysphagia were logE (mean
and standard deviation), and the DDK-related features, i.e. rate, mean duration, and reg-
ularity. The fact that DDK-related features differed in patients with dysphagia, not only
agrees with manifestations of dysarthria [Dani 15] but also suggests that such dysarthria-
related conditions could be most noticeable in such patients. This has been studied in
patients with Parkinson’s disease, and alterations in DDK are apparently related to irreg-
ular articulation due to imprecise articulation (e.g., lack of velar contact), which suggests
impairment of velopharyngeal control [Mont 18]. In swallowing, the integrity of the velo-
pharyngeal mechanism is paramount, because it provides the necessary seal to isolate the
nasopharynx and the aerodigestive tract, preventing reflux [Smit 90]. The normal process
requires properly opening or closing events at velopharyngeal junction [Clav 15]. Thus,
the observed differences between DDK-related features in patients and controls could be
explained by the delayed laryngeal vestibule closure present in the early oropharyngeal
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phase in patients with dysphagia, which leads to unsafe swallowing [Clav 15]. It is consist-
ent with the fact that the vowel triangle-related features also showed significant differences.
Since these features were extracted in the most extreme articulatory positions of the tongue,
it is expected to find large differences between healthy and dysphagic individuals. Further
studies oriented to quantification of dysarthria in patients with dysphagia with well-defined
scales, e.g. Frenchay dysarthria assessment, are needed to confirm such observation.

Prosody: In the case of the analysis of monologues, only the second statistical moment
of the energy contour was statistically different between groups. Note that this feature was
also present in the DDK analysis. However, unlike DDK, the duration and rate of voiced
and unvoiced segments did not show significant differences in the monologue. Since that
monologue is highly variable between individuals, other speech tasks such as the reading of
pre-established texts could be considered to analyze the prosody dimension. Such types of
texts have been applied to patients with Parkinson’s disease [Vasq 18]. This was considered
in Experiment #4.

Speech features selected for classification: The criterion of the selection of features
for the feeding of the classifiers in Experiment #3 (see Section 6.3.1), was based on the
significant differences (p < 0.01) between patients and controls. The combination of the
selected feature subsets was also evaluated. For the features extracted from the vowels, the
following were the criteria to include them in every speech dimension:

Phonation: to show significant differences in at least three vowels.

Articulation: to show significant differences in at least three vowels, with at least two
of those vowels to be the corner ones (/a/, /i/, and /u/). For generalization purposes,
once a certain feature was selected, it was extracted from the five vowels.

Table 4.3 summarizes the features that met the selection criteria and were used as input
for the classifiers. For all speech-related dimensions, those features that retrieved corrected
p-value smaller than 0.01, exhibited medium or large effect size, which confirms that such
features actually represent substantial differences between healthy individuals and patients
with functional oropharyngeal dysphagia.

It is important to clarify that, in the prosody analysis, considering that only the standard
deviation of logE retrieved p < 0.001, also the mean and skewness were included in the
feature set. Despite not showing statistical differences between groups, they were included
because retrieved p < 0.05 and the η2 value showed medium or large effect size. Fig-
ure 4.10 illustrates that the distributions of the mentioned features have clear patterns: the
mean and skewness of logE were slower in healthy controls while the standard deviation
was higher in this group.

4.4. Experiment #4: Comprehensive biomarkers in three
swallowing dimensions

Even though the previous experiments suggested some swallowing biomarkers for dys-
phagia analysis, the database size was considerably increased in Experiment #4. Thus, this
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Table 4.3: Summary of features selected for classification purposes.

Dimension Speech tasks Features

Phonation Sustained vowels
Jitter_mean, Jitter_std

F0_std
logE_std

Sustained vowels
/a/, /e/, /i/, /o/, /u/

∆F1_mean
(∆0, ∆1, ∆2)F1_std

∆F2_std
(∆0, ∆1, ∆2)MFCC1_std

Sustained vowels
/a/, /i/, /u/ VSA, VAI, FCR

Articulation
Continuous speech

BBE_on1_mean, BBE_on1_std
BBE_on2_std

BBE_off1_mean, BBE_off1_std
BBE_off2_std

BBE_off[6∼13]_std

DDK
Repetition of
/pa-ta-ka/

logE_mean, logE_var
DDK_rate, DDK_mean, DDK_reg

Prosody Continuous speech logE_mean, logE_std, logE_skew

Figure 4.10: Box plot of the prosody-related features chosen for classification purposes.

experiment was intended to confirm or reject the aforementioned notions about biomarkers.
The analysis of the largest database is provided per acquisition protocol.

Protocol #1: sEMG

Bearing in mind that AUCROC showed a well-defined pattern in Experiment #1, it was
used as the feature selection method with a threshold of 0.7. Protocol #1, i.e., only sEMG
signals acquired in RM, LM, RSH, LSH, RIH, and LIH, retrieved 321 features. Figure 4.11
shows the number of features retrieved by each muscle group and swallowing task. For all
swallowing tasks, most of the features were obtained from supra- and infrahyoid muscles.
In contrast, masseter muscles retrieved so few features, even in cracker, which produces
high activation of such muscles. This observation agrees with Experiment #1 (see Fig-
ure 4.2). Furthermore, features retrieved from the RIH achieved the highest AUCROC (al-
most all with AUCROC> 0.75).

In contrast to the findings in Experiment #1, the most prevalent domain in the feature
set was the frequency one. Actually, WAMP was not retrieved in any muscle or task.
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Figure 4.11: Colormap of sEMG related channels that retrieved features with AUCROC≥
0.7, in protocol #1. Wx: x mL of water; Yx: x mL of yogurt; S: saliva; C: cracker.

Figure 4.12 shows colormaps that illustrate the number of functionals retrieved by each
feature and muscle group per swallowing task. Despite saliva retrieved a majority of time
domain features, the other tasks were characterized mostly with MNF, MDF, and PKF from
the frequency domain, as well as ED1, ED2, and Went from the time-frequency domain.
Just one feature achieved AUCROC= 0.80: maximum of the DFA from the RIH in water20.
The remaining features achieved 0.70 ≤ AUCROC < 0.80.

Protocol #2: sEMG+Acc

Otherwise, Protocol #2 retrieved 308 features from both suprahyoid and right infrahy-
oid muscles, as well as the three Acc axes. Time domain features and MNP were the most
retrieved by the selection method, like in Experiments #1 and #2 (see Figure 4.13). Addi-
tionally, ED5 and Went were retrieved by any sEMG channel in almost all tasks, with the
exception of saliva.

Additionally, AP and ML axes retrieved the majority of the Acc-related features, in
particular for saliva, and yogurt20. However, sEMG retrieved more features than Acc, with
a high contribution of the LSH (226 vs. 82, see Figure 4.14).

Protocol #3: speech

Regarding the speech-related features, a separate analysis per speech dimension was
performed because each of them has specific features, extracted from pre-swallowing re-
cordings in contrast to the Experiment # 3. Figure 4.15 shows that most of the phonation-
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Figure 4.12: Heatmaps of sEMG related features selected by the AUCROC method dis-
tributed along the muscle groups and swallowing tasks, in protocol #1. Color intensity
represents the number of functionals per feature.

related features were retrieved (or discarded) by the AUCROC criterion consistently among
vowels, with the exception of APQ (not retrieved in /e/, and /i/). The most prevalent feature
was the Jitter (four functionals in all vowels); in contrast, like in Experiment #3 with fewer
data, PPQ was not retrieved for any vowel (see Table 4.3). Table C.9 shows the AUCROC

of the features selected and illustrates that Jitter, the first two statistical moments of Shim-
mer, the standard deviation, and skewness of F0, the standard deviation and kurtosis of
(∆,∆2)F0, and the standard deviation of logE, were retrieved in all vowels. In this way,
they are proposed as dysphagia biomarkers.

The vowels were also used for articulation analysis. Figure 4.16 shows the colormap
extracted from sustained vowels in such speech dimension. Most of the features were
also consistent among vowels and agreed with results obtained in Experiment #3 (see
Table C.10): (∆0,∆1,∆2)F1 (standard deviation), ∆F2 (mean), (∆0,∆1,∆2)MFCC1
(standard deviation and additionally the mean for the latter), and MFCC5 (standard de-
viation). In contrast to Experiment #3, vowel triangle-related features were not retrieved.

Furthermore, each volunteer was asked to read the text described in Chapter 2, after
swallowing tasks. Even though in Experiment #3 the individuals performed a free mono-
logue before swallowing different consistencies, it is highlighted that BBE_on1_mean,
BBE_on1_std, BBE_on2_std, BBE_off1_mean, BBE_off1_std, and BBE_off2_std were
retrieved in both experiments. In Experiment #4 the AUCROC was high (between 0.79
and 0.85, see Table C.11). Notwithstanding, other features were also retrieved in this
Experiment: the mean of BBE_on2 and BBE_off2, the standard deviation of BBE_on3,
BBE_off3, BBE_on6, and BBE_off6, as well as the mean of BBE_on[7, 8, 10∼17], and
the mean of BBE_off[13∼18].
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Figure 4.13: Colormaps of features extracted in protocol #2 and selected by the AUCROC

method distributed along sEMG channels and Acc axes, by swallowing task. Color intens-
ity represents the number of functionals per feature.

Consistent results between Experiments #3 and #4 were also consistent in DDK and
prosody (see Table C.12) since almost the same features were retrieved in both experi-
ments: the DDK mean and rate, as well as the variance of logE were selected from pa-ta-ka
recordings, whilst the 2nd, 3rd, and 4th statistical moments of logE were retrieved from
the reading of a preset text for prosody analysis. See Table 4.3 for comparison.

4.4.1. A concluding analysis of multimodal biomarkers

This Experiment confirmed some findings obtained with the uni-modal experiments.
Even though masseter muscles have paramount participation in the mastication of solids
[Shaw 13], their related features showed a limited capability of discrimination between
populations in the current experiment. Likewise in Experiment #1, did not retrieve a signi-
ficant contribution in cracker. Additionally, sEMG was well-characterized by time domain
features in saliva, and by frequency and time-frequency domains in the other tasks.

In contrast to Experiment #2, the majority of the selected features were extracted from
sEMG instead of Acc, which may be related to the fact that such experiment implemented
mRMR for selection, whilst in Experiment #4 the method was AUCROC, i.e., the selection
was performed regardless the redundancy. Furthermore, the highest AUCROC values were
achieved by suprahyoid-related features.
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Figure 4.14: Colormap of acquisition channels that retrieved features with AUCROC≥ 0.7,
in protocol #2. Wx: x mL of water; Yx: x mL of yogurt; S: saliva.

Figure 4.15: Heatmap of phonation-related features extracted in protocol #3 and selected
by the AUCROC method distributed along vowels. Color intensity represents the number of
functionals per feature.

Otherwise, AUCROC was higher in speech-related features than in extracted from sEMG
(sEMGP1 and sEMGP2), and Acc; for instance, the mean of the Jitter achieved AUCROC≥
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Figure 4.16: Heatmap of articulation-related features extracted in protocol #3 and selected
by the AUCROC method distributed along vowels. Color intensity represents the number of
functionals per feature.

0.80 for all vowels (see Table C.9), whilst most of the electrophysiological and mechanical
features achieved AUCROC< 0.75. Only two features in Experiment #1 (maximum of
DFA from RIH in water10, and minimum of ZC from the same muscles in saliva), and
one feature in Experiment #2 (standard deviation of ED5 from LSH in yogurt5), achieved
AUCROC= 0.80.

Another interesting finding is that in features extracted from sustained vowels in phon-
ation and articulation, the most retrieved functional was the standard deviation. Thus, as
expected, the variability of acoustic parameters in patients with dysphagia was higher than
in healthy individuals.

Agreement between Experiments #3 and #4 is remarkable in all speech dimensions
because the first one was carried out in pre-swallowing recordings, whilst the second one
was performed using post-swallowing tasks. Additionally, in Experiment #3 the features
were selected with hypothesis tests, whilst in Experiment #4 the selection method was the
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AUCROC. This indicates the generalization capability of the obtained results in terms of
speech-related biomarkers of dysphagia. There was just one important difference between
Experiments #3 and #4: vowel triangle-related features were retrieved in the first exper-
iment but not in the second one. This could be an effect of the swallowing tasks that,
even though they do not produce a change in the discrimination capability (at least ob-
servable given the consistency of the results), they appear to affect the distribution of the
formants in healthy individuals, maybe due to some prandial material after subsequent
deglutitions [Grov 07].

These biomarkers were tested in uni-modal classification scenarios. The performance
measures outperformed the achieved with no feature selection in most cases (see Section
6.4.1). This is an indicator of the convenience to use the proposed biomarkers since they
provide information on different swallowing and speech tasks, different acquisition chan-
nels for sEMG and Acc, and different speech dimensions.

Finally, the feature-related functionals describe static electrophysiological patterns
rather than dynamics. This could hide temporal characteristics related to the sequential-
ity of the swallowing process. However, such analyses require other strategies that imply
a completely different approach, and further works in this way should be implemented.
Notwithstanding, the outcomes indicate that the spatial distribution of the biomarkers from
both populations is separable, and the screening capability between healthy individuals and
patients with dysphagia is more dependent on the biomarkers than on the models used to
build some separation surface in a high dimensional space.



Chapter 5

Machine and Deep Learning algorithms
in swallowing evaluation

5.1. Overview of automatic algorithms in the context of
swallowing

5.1.1. sEMG-based models
Several models have been proposed to classify gestures or movements using sEMG sig-

nals [Nazm 16, Liu 14], such as Artificial Neural Networks (ANN), fuzzy models, hybrid
neural networks, Support Vector Machines (SVM), Decision Trees (DT), and Bayesian
models [Yous 14]. The main advantage of these methods is that they are not affected by
human fatigue, emotional states, or habituation [Suba 12], i.e., they are systematic. Most of
the works that model myoelectric behavior are in the field of myocontrol, mainly dealing
with large muscles in upper or lower limbs [Duan 16, Phin 13]. In swallowing assessment,
only a few simple statistical models have been used [Cons 18].

Although sEMG provides information on the timing and amplitude patterns in oral,
pharyngeal and esophageal diseases [Vaim 09], automatic evaluation of swallowing-related
sequences by using sEMG signals has not been addressed so far. The sequential activation
pattern has shown a degree of population variance and high intersubject variability that
difficult to draw a unique model of muscular recruitment [Dell 18, Perl 99]. Thus, despite
the sequentiality pattern is an indicator of healthy/unhealthy swallows, few works have
been focused on this kind of analysis via sEMG based on automated algorithms.

One work used a fuzzy logic-based system and characterized sEMG signals from sub-
mental muscles and sound signals from a microphone for automatic discrimination of dys-
phagia severity in patients with myasthenia gravis [Hsu 13]. The authors reported an ac-
curacy of 82.2%, overcoming other strategies reported in the literature like those based on
k-means, DT and ANN. Another study introduced a method where background, oral and
pharyngeal phases were detected in multichannel sEMG recordings [Rold 18]. Time and
frequency domain features were extracted to train a SVM and ANN, with an accuracy of
about 90%. Finally, another study reported two classification schemes based on classical
Machine Learning (MaL) and Deep Learning (DL) methods to model sEMG recordings
collected from 8 healthy young males. Signals from supra- and infrahyoid muscles using a
sensor array were considered. The classification accuracy of effortful swallows was higher

70
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with the DL scheme [Suzu 20]. In this way, the lack of work oriented to the automatic
discrimination between healthy and dysphagic individuals using sEMG is remarkable.

5.1.2. Acc-based models

Different models applied to cervical auscultation signals have been proposed from
the classical point of view: linear discriminant analysis, neural networks, probabilistic
neural networks, k-nearest neighbors, support vector machines, Bayesian classification,
fuzzy c-means, among others [Lee 06, Lee 11, Shir 14, Dudi 18b, Sazo 10, Inou 18, Sejd 13,
Spad 09, Nikj 11, Sanc 18].

The pioneering work of Lazareck and Moussavi in 2004 [Laza 04] opened the field of
computational deglutition using Acc signals. In a small database of healthy and young
dysphagic individuals, they used discriminant analysis to classify healthy and dysphagic
swallows with an overall accuracy of 94.8 %. In the next years, many works were intended
to segment and filter Acc recordings, to obtain a clear profile of real swallows instead of
unrelated events [Sejd 09, Lee 09a]. During the last decade, the increase in the number of
works that applied ML to Acc signals is noticeable. For instance, a reputation-based clas-
sifier was used to detect safe and unsafe swallows, with acceptable performance measures
(accuracy = 80.48±5.0 %, sensitivity = 97.1±2 %, and specificity = 64±8.8 %) [Nikj 11].
Best results were obtained with Bayes classification and wavelet packet features (accuracy
= 94.6 %, sensitivity = 92.5 %, and specificity = 95.6 %) [Sejd 13]. A Linear Discrimin-
ant Analysis for the detection of abnormal swallows, retrieved a sensitivity of 90.4 % and
a specificity of 60.0 % [Stee 19]. Bayesian classifiers, which have been used to classify
aspirations in normal swallowing in people with dysphagia, achieved an accuracy of 90 %
[Dudi 18b]. More recently, classical ML algorithms were used to discriminate swallows
from healthy and dysphagic individuals with Acc signal and a microphone [Dono 21b];
authors obtained impressive sensitivity, specificity, and accuracy with logistic regression
(99 %), but the results can be optimistic due to the small and unbalanced database, in addi-
tion to the bias that swallows by demand could introduce into the results.

Aforementioned models have been used mostly to classify normal and abnormal swal-
lows, but they could be unhelpful in the consulting room. Classification between aspirated
and non-aspirated patients could be more useful but the capability to detect aspirations with
cervical auscultation remains unclear.

More recently, DL architectures have been performed for the classification and de-
tection of the hyoid bone movement [Mao 19], detection of upper esophageal sphinc-
ter [Khal 20b] and laryngeal vestibule closure/opening [Dono 22a]. Such models have been
implemented to track different swallowing-related movements using videofluoroscopy im-
ages and Acc signals [Khal 20a, Dono 20]. The best results have been achieved for eso-
phageal sphincter closure detection [Dono 22b]. Additionally, deep belief networks were
used for healthy and non-healthy swallow detection [Dudi 18a], with good performance
(accuracy = 91.3 %, sensitivity = 85.7 %, and specificity = 96.9 %). Even though the differ-
ence with the performance obtained in [Sejd 13] does not seem remarkable, the importance
of this result is the generalization capability of the work by Dudik et al., because of the
number of individuals and the control group.

In summary, the Acc signal has been widely approached for swallowing evaluation,
but the models implemented for analysis are far to be used in the consulting room because
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they have achieved a modest (and even contradictory) equilibrium between sensitivity and
specificity. Furthermore, the clinical validation of the aforementioned results is still open.

5.1.3. Speech-based models
As mentioned in Section 3.3.1, the literature in computational paralinguistics is extens-

ive, e.g. works oriented to the automatic assessment of dysarthria, Parkinson, dementia, or
speech in patients with cochlear implants or cleft lip and palate [Vasq 18, Pere 22, Aria 21,
Vasq 20]. This is a topic with academic increasing interest because it supports the develop-
ment of computer-aided tools for diagnosis [Vasq 20]. There are recent works oriented to
automatic pathology detection by speech analysis [Barr 20, Moha 20, Vasq 21].

Several automation strategies have been implemented, such as classical machine
learning methods (e.g. linear regression, SVM, Bayesian classifiers, hidden Markov
models, dynamic time warping, random forest, gaussian mixture models, and neural
networks) [Vasq 18, Trav 17, Much 17, Bhat 17, Ijit 17, Gill 17, Vyas 16]. More re-
cently, deep learning approaches have been applied such as convolutional, recurrent and
combined convolutional-recurrent neural networks, autoencoders, or gated multimodal
units [Aria 21, Vasq 20, Alos 21].

Nevertheless, they have performed in dysphagia-related applications in a limited num-
ber of papers: one intended to classify wet voice with support vector machines on the
utterance of "aeiou" prior to and immediately following swallowing, with promising ac-
curacy but with a limited database [Ipin 18]; another paper evaluated the performance of
logistic regression, decision trees, random forest, support vector machines, Gaussian mix-
ture models and extreme gradient boost to detect dysphagia severity (oral vs. non-oral
feeding) and risk of respiratory complications in post-stroke patients [Park 22]. An ad-
ditional paper trained a multilayer perceptron-based integrated classifier, using a support
vector machine and an adaptive boosting internally [Zhao 22]. This scheme was used to
detect dysphagia from throat vibrators using speech analysis. By the way, Table 1.2 shows
that. In this manner, the application of computational para-linguistics in dysphagia has a lot
of research opportunities in order to answer questions such as: are the speech recordings
good descriptors of swallowing disorders?; does the speech have related biomarkers with
discrimination capability between healthy individuals and patients with dysphagia?; are
there differences between algorithms to classify healthy and dysphagic individuals? These
questions were addressed in the current thesis.

5.2. Machine learning algorithms implemented in this
thesis

A ML algorithm learns from data [Good 16]. The term “machine" refers to an auto-
mated system that could be implemented, for example, in software [Guyo 08] The follow-
ing definition of learning has become the reference in the ML field: “a computer program
is said to learn from experience E with respect to some class of tasks T and performance
measure P , if its performance at tasks in T , as measured by P , improves with exper-
ience E" [Mitc 97]. In ML, the task T could be classification, regression, transcription,
translation, anomaly detection, imputation, synthesis and sampling, and denoising, among
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others [Good 16]. In the current thesis, the task T is the classification of healthy and dys-
phagic individuals, the experience E is the training data (see Section 5.3 for details), and
the performance measure P is the AUC1. The learning model can be seen as the function:

f : X → Y (5.1)

The function f transforms the objects of X to the set of target values Y , also called
labels [Gero 22]. In this way, the learning algorithm is asked to produce f , which usually
depends on adaptive parameters [Guyo 08]. These parameters are obtained by training
processes using a sequence of data D defined in the space X × Y [Guyo 08]:

D = {⟨x(1), y1⟩, ⟨x(2), y2⟩, . . . , ⟨x(m), ym⟩} = ⟨X, Y ⟩ (5.2)

When y = f((X)), the model assigns a numeric code or label y(i) to an input described
by the n-dimensional vector x(i) [Good 16]; this input is the feature space or feature ob-
servations of the i-th individual (described in Section 3.4). This work focuses on bi-class
classification, i.e. |Y| = 2. For convenience, it is often assumed that Y = {−1,+1},
Y = {0, 1} or Y = {1, . . . , c} [Guyo 08] For the i-th sample, that is, for the i-th subject in
the database, the label was:

y(i) =

{
0, if healthy
1, if dysphagic

(5.3)

Since the training data of the subjects are labeled by the desired solutions, this thesis ad-
dresses a supervised learning problem2. The goal is to build the function f that maximizes
the performance P .

5.2.1. Classical machine learning algorithms

The most important supervised ML algorithms are [Gero 22]: k-Nearest Neighbors, Lo-
gistic Regression, Support Vector Machines, Decision Trees, Random Forests, and Neural
Networks. These algorithms were implemented in this thesis, in addition to Linear Dis-
criminant Analysis and Extreme-Gradient Boosting. The fundamentals of these algorithms
are explained next.

Linear Discriminant Analysis (LDA)

The simplest representation of linear discriminant functions is [Bish 06]:

y(x) = wTx+ b, (5.4)

where w is a weight vector, and b is the bias term. The classification is performed as
follows [Bish 06]:

1Accuracy, F1 score, precision, sensitivity, and specificity were also computed, but the maximum AUC
was the optimization criterion to learn models (further details are provided in Section 5.3)

2Neither unsupervised learning, in which there are no labels for the data, nor semi-supervised learning,
are not covered in this document.
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y =

{
C1, if f(x) ≥ 0

C2, otherwise
(5.5)

The decision boundary, i.e. the n-dimensional curve that retrieves the minimum prob-
ability of misclassification, is defined by the relation f(x) = 0 (see Figure 5.1)

Class 1

Class 2

Decision boundary

x1

x2

LDA projection

Figure 5.1: Representation of a linear decision boundary for a bi-class classification prob-
lem, assuming only two features x1 and x2. The LDA projection represents w that maxim-
izes the between-class variance while minimizing the within-class one.

The decision boundary is an (n-1) dimensional hyperplane within an n dimensional
feature space [Bish 06]. The vector w is perpendicular to the decision boundary. In case
such hyperplane does not exist, the problem would be linearly inseparable [Guyo 08]. One
way to determine the linear discriminant function is by Fisher’s linear discriminant. It is
based on the means computed over the two classes:

µ1 =
1

m1

∑
i∈C1

x(i), µ2 =
1

m2

∑
i∈C2

x(i), (5.6)

where µk and mk are the mean vector and number of points of the class Ck, respect-
ively [Bish 06], and x(i) is the feature vector of the i-th sample (individual). The goal is to
maximize the distance between the projected averages µ1 and µ2, as follows [Guyo 08]:

µ2 − µ1 = wT (µ2 − µ1) (5.7)

The final Fisher criterion is [Guyo 08]:

J(w) =
(µ2 − µ1)

2

s22 + s21
, (5.8)

where s2k is the within-class variance of the class Ck, and (µ2−µ1)
2 is the between-class

variance. So, the Fisher criterion maximizes the ratio of the between-class variance to the
within-class variance [Bish 06], and it is usually written in matrix form, as follows:

J(w) =
wTΣBw

wTΣWw
, (5.9)

where ΣB is the between-class covariance matrix to maximize, given by:
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ΣB = (µ2 − µ1)(µ2 − µ1)
T, (5.10)

and ΣW is the within-class covariance matrix to minimize, given by:

ΣW =
∑
j∈C1

(xj − µ1)(xj − µ1)
T +

∑
j∈C2

(xj − µ2)(xj − µ2)
T (5.11)

Eq. 5.9 can be represented as:

max
w

wTΣBw subject to wTΣWw = 1 (5.12)

Likewise in PCA, this is a generalized eigenvalue problem suitable to handle via SVD,
where w is given by the largest value of Σ−1

WΣB [Hast 09]. In this way, the problem can
be expressed with Lagrange multipliers:

max
w

{wTΣBw − λwTΣWw} (5.13)

Although LDA is a classification algorithm, it is also used as a feature selection method
since it learns the most discriminative axes between classes [Gero 22], as can be seen in
the purple line in Figure 5.1.

Logistic Regression

Logistic regression is used for both regression and classification. A general opinion es-
tablished that logistic regression has fewer assumptions, and is safer and more robust than
LDA, but both models produce similar results [Hast 09]. In binary classification applica-
tions, it is used to estimate the probability that an instance belongs to a class [Gero 22].
The estimated probability is computed as follows [Gero 22, Bish 06]:

p(y = 1|x;θ) = hθ(x) = σ
(
θT · x

)
=

1

1 + e−θT ·x , (5.14)

where θ is the vector of parameters, and σ(·) is the sigmoid function, also called logistic
function. The output of σ(·) will be always between 0 and 1. If the probability is greater
than 0.5, the classifier assigns one class, otherwise, another class is assigned [Gero 22]:

ŷ =

{
1, if hθ(x) ≥ 0.5

0, if hθ(x) < 0.5
(5.15)

The training process consists in finding the parameters θ such that the probability be
high for y = 1 and low for y = o. The loss function (error) of one single sample, i.e. one
individual, is given by:

Loss (hθ(x), y) =

{
− log (hθ(x)) , if y = 1

− log (1− hθ(x)) , if y = 0
(5.16)

Thus, if the actual label is y = 1 and hθ(x) → 0, the cost will be high (bad classifica-
tion), but if hθ(x) → 1, the cost will be low (good classification). In contrast, if the actual
label is y = 0 and hθ(x) → 1, the cost will be high (bad classification), but if hθ(x) → 0,
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Figure 5.2: Behavior of the loss function in the logistic regression.

the cost will be low (good classification). Figure 5.2 illustrates this behavior. Eq. 5.16 can
be re-written as follows:

Loss (hθ(x), y) = −y log (hθ(x))− (1− y) log (1− hθ(x)) (5.17)

The cost function is the mean of the loss functions of all instances, as follows [Gero 22]:

J(θ) =
1

m

m∑
i=1

Loss
(
hθ(x

(i)), y(i)
)

= − 1

m

m∑
i=1

y(i) log
(
hθ(x

(i))
)
+ (1− y(i)) log

(
1− hθ(x

(i))
) (5.18)

The goal is to find the values of θ that minimize J(θ), but it is nonlinear in θ and it
has not closed-form [Good 16, Hast 09]. However, J(θ) is convex, so there are techniques
to find the global minimum, such as the Gradient Descent. The formula to update the
parameters is given as follows[Bish 06]:

θ
(τ+1)
j = θ

(τ)
j − η

∂

∂θj

J(θ), (5.19)

where θ(τ)
j is the j-th parameter computed in the τ -th iteration, η is the learning rate (re-

commended to be small [Bish 06]), and the partial derivative is given as follows [Gero 22]:

∂

∂θj

J(θ) =
1

m

m∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j , (5.20)

where x(i)j is the j-th feature of the i-th individual.
In order to control the over-fitting risk, regularization over the cost function is recom-

mended, which produces a parameter shrinkage [Bish 06] Note that Eq. 5.18 is data de-
pendent. The regularization adds an error term that depends on the parameters θ. The
general regularized cost function is given by [Bish 06]:
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Jreg(θ) = J(θ) +
λ

2

n∑
i=1

|θi|q, (5.21)

where λ is the regularization coefficient that controls the relative importance of J(θ),
and q determines the type of regularization. If excessive large λ, there will be the risk
of underfitting, but if λ → 0 there will be risk of overfitting [Good 16]. If q = 0, no
regularization is applied; if q = 1, the so-called LASSO3 or L1-norm regularization is
applied, which produces some parameters to be driven to zero; and if q = 2, ridge or
L2-norm regularization is applied, which produces smaller penalization than L1. Since L2
regularization is a good default [Gero 22], it was used in this thesis.

Artificial Neural Networks (ANN)

Many problems cannot be modeled properly with logistic regression; so an extension
of this model is performed to capture non-linear relationships, a technique known as feed-
forward neural network, also called multilayer perceptron [Guyo 08], onward ANN. The
basic unit of an ANN is the neuron, represented by a node (see Figure 5.3a).

ŷz
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(a) A neuron (b) Four-layer fully connected ANN

Figure 5.3: Computational representation of a single neuron and an ANN fed with n fea-
tures

The output of the neuron is highly related to the decision boundaries in LDA and lo-
gistic regression:

z = wTx+ b, (5.22)

where z is a scalar. The weight vector is given w = [w1, w2, . . . wn], where wi denotes
the connection of the i-th input to the node. An activation function ϕ(·) is applied, and the
final output is given as follows:

ŷ = ϕ (z) (5.23)

The most implemented activation function are the logistic (sigmoid) one, hyperbolic
tangent (tanh), and Rectified Linear Unit (ReLU 4). The basic ANN, has one input layer

3Acronym for Least Absolute Shrinkage and Selection Operator regression [Gero 22]
4ReLU(x) = max(0, x)
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with the features, one or more intermediate layers, known as hidden layers, and one output
layer (see Figure 5.3b). When all neurons of a layer are connected to all neurons of the next
one, the ANN is called as fully connected network [Huds 00]. The hidden layer contains
multiple neurons in parallel, each representing a vector-to-scalar function [Good 16]. The
governing equations for the l-th are:

z[l] = W[l]a[l−1] + b[l] (5.24)

a[l] = ϕ[l]
(
z[l]
)

(5.25)

The weight matrix is W[l] =
(
w

[l]
ij

)
∈ Rn[l]×n[l−1] , where w[l]

ij represents the connection

between the i-th node of layer l−1, and the j-th node of the l-th layer [Huds 00], and n[l] is
the number of neurons in the l-th layer. Furthermore, b[l] is the bias term of the l-th layer;
a[l−1] and a[l] are the input and output of the l-th layer, respectively; and ϕ[l] is the activation
function of the l-th layer. In this way, for an L-layer ANN, a[0] = x and a[L] = ŷ. The
weights of the input layer indicate the contribution of each feature; however, the weights
of the other layers are difficult to interpret [Huds 00].

The initial weights should be small to avoid z becoming extremely large or small,
especially for DNN. The training process of the network involves two stages in counter-
flow [Wyth 93]: the forward propagation or activation (see Eq. 5.24), and the backward
propagation of error (backpropagation). The backpropagation is a type of non-linear Gradi-
ent Descent [Huds 00]. Similar to Eq. 5.17, the error function of any layer can be defined
as the cross-entropy cost:

J = − 1

m

m∑
i=1

y(i) log
(
a[L](i)

)
+ (1− y(i)) log

(
1− a[L](i)

)
, (5.26)

where m is the number of training samples and a[L](i) represents the estimated output
of the last layer L. The backpropagation governing equations are the gradients of the cost
with respect to the activations, weights, and biases:

∂J

∂z[l]
=
[
W[l+1]

]T ∂J

∂z[l+1]
⊙ ϕ′[l] (z[l]) (5.27)

∂J

∂W[l]
=

∂J

∂z[l]
[
a[l−1]

]T
(5.28)

∂J

∂b[l]
=

∂J

∂z[l]
, (5.29)

where ⊙ denotes the Hadamard product, and ϕ′[l] is the derivative of the activation
function used in the l-th layer. The derivative in the output layer is given by ∂J

∂z[L] =

a[L] − y. At each iteration, gradients can be computed over the entire training samples
(Batch Gradient Descent), over a fraction of the training samples (MiniBatch Gradient
Descent), or over one random sample (Stochastic Gradient Descent - SGD) [Good 16].
The perceptron learning rule to update the weights and biases for each iteration is quite
similar to Eq. 5.19 [Gero 22, Huds 00, Wyth 93]:
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W[l] = W[l] − η
∂J

∂W[l]
(5.30)

b[l] = b[l] − η
∂J

∂b[l]
, (5.31)

where η is the learning rate. Selection of the proper η is not trivial since it has an
important effect on model performance [Good 16]. Subsequently, computationally efficient
algorithms with adaptive learning rate have been introduced for optimization of the weights
and biases such as gradient descent with momentum, AdaGrad, RMSProp, and Adam5.
Further details are provided in [King 14]. In this thesis, SGD and Adam were used for
learning.

Support Vector Machines (SVM)

The SVM classifier is intended to find linear or highly nonlinear boundaries in the
feature space [Guyo 08], even with large (or infinite) dimension [Hast 09]. SVM does not
provide posterior probabilities [Bish 06], that is p(y|x). The main concept of the SVM
is the hyperplane which separates different classes with maximal margin [Guyo 08]. The
hyperplane is defined in a similar way as the linear discriminant function:

wTx+ b = 0, (5.32)

where w is perpendicular to the hyperplane. The margin is the distance between the
hyperplane and the closest training point of any class [Guyo 08]. Otherwise, the margin is
defined as the distance between the support vectors, which are the hyperplanes wTx+ b =
±1 (see Figure 5.4). Thus, the goal is to maximize the minimum distance between support
vectors and the hyperplane [Guyo 08]:

max
w,b

min{||x− x(i)|| : wTx+ b = 0, i = 1, . . . ,m} (5.33)

The distance between two parallel hyperplanes defined by wTx + b1 = 0 and wTx +
b2 = 0 is equal to |b1 − b2|/||w||; thus, the distance between the support vectors, i.e. the
margin, is equal to 2/||w|| [Guyo 08]. The optimization problem requires maximizing this
distance, that is, to maximize ||w||−1, which is equivalent to minimizing ||w||2, and the
following optimization is proposed[Bish 06]:

min
w,b

1

2
||w||2 subject to y(i)(wTx+ b) ≥ 1 i = 1, . . . ,m (5.34)

Notwithstanding, if data are not linearly separable, the construction of optimal hyper-
planes is not possible [Guyo 08]. This is solved with the soft margin hyperplane [Cort 95].
The goal is to separate the training set with a minimal number of errors. For non-negative
variables ξi, equation 5.34 becomes in [Cort 95]:

min
w,b

1

2
||w||2 + C

m∑
i=1

ξi subject to y(i)(wTx+ b) ≥ 1− ξi i = 1, . . . ,m, (5.35)

5Acronym for ADAptive Moment estimation
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Figure 5.4: Representation of a SVM hyperplane for a bi-class classification problem,
assuming only two features. The vector w is perpendicular to the hyperplane.

where C > 0 is a constant that controls the balance between training accuracy and margin
width [Guyo 08].

Equation 5.34 illustrates a quadratic programming problem that can be solved by the
following Lagrangian function [Bish 06, Guyo 08]:

L(w, b, α) = 1

2
||w||2 −

m∑
i=1

αi{y(i)(wTx+ b)− 1}, (5.36)

where αi ≥ 0 are Lagrange multipliers. This function minimizes with respect to w and
b, but maximized with respect to α[Bish 06]. The minimization of L(w, b, α) leads to the
following conditions[Bish 06]:

m∑
i=1

αiy
(i) = 0 w =

m∑
i=1

αiy
(i)x(i) (5.37)

With these conditions combined with the Karush-Kuhn-Thucker ones (see [Gord 12]
for details), the decision function can be written as follows [Guyo 08]:

f(x) = sgn

(
m∑
i=1

αiy
(i)xTxi + b

)
(5.38)

One way to learn models efficiently is by the use of the so-called kernel trick. It allows
to use convex optimization techniques for nonlinear functions of x [Good 16], and it is
explained in the following lines.

Kernel trick: This technique expresses the learning algorithm in terms of dot products
between training examples. A transformation of the original space into a feature function
ϕ(x) is performed. The function k(x,x(i)) = ϕ(x) · ϕ(x(i)) is called kernel [Good 16].
This transforms the feature space into another where linear separation exists. In this way,
Equation 5.38 becomes in:

f(x) = sgn

(
m∑
i=1

αiy
(i)k(x,x(i)) + b

)
(5.39)
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The most popular kernel functions are [Hast 09]:

d-th Degree polynomial: k(x,x′) =
[
1 + xT · x′]d

Gaussian6: k(x,x′) = exp (−γ||x− x′||2), where γ is the inverse of the standard
deviation of the kernel

Sigmoid: k(x,x′) = tanh
(
γ
[
xT · x′]+ θ

)
In this thesis, the linear approach as well as the RBF and sigmoid kernels were used.

k-Nearest Neighbors (kNN)

kNN is a family of non-parametric techniques intended for classification or regres-
sion [Good 16]. kNN classifies a test sample in a n-dimensional space according to the
class of the k training samples that are closest to it. These training samples are known
as nearest neighbors, defined in the set Nk(x). The best k can be estimated via cross-
validation [Guyo 08].

Different measures are used to compute how close the neighbors are, such as the
Minkowski distance, the Canberra measure, or the Chebyshev function. The Minkowski
distance is given by [Guyo 08]:

Dα
M(x,x′) = α

√√√√ n∑
i=1

|xi − x′i|α (5.40)

In this thesis, Dα
M with α = 2 was used, which is the Euclidean distance. Thus, the

predicted output can be estimated as follows [Hast 09]:

ŷ(x) =
1

k

∑
x(i)∈Nk(x)

y(i), (5.41)

where Nk(x) is the neighborhood of x defined by the closest points x(i) [Hast 09].
In this way, the kNN algorithm finds the closest points in the n-dimensional space and
averages their outputs.

Trees and Forests

Decision trees (DT) are hierarchical models with tree nodes described by logical condi-
tions based on single features [Guyo 08], in which a sequence of questions are made until
a leaf node is achieved (see Figure 5.5) [Hart 00]. They are capable to fit into complex
datasets [Gero 22], and perform an internal feature selection [Hast 09]. This algorithm has
high interpretability (for small feature spaces) and provides information about the relev-
ance of a particular feature, which is advantageous for several applications such as med-
ical diagnosis [Guyo 08]. Actually, after the explosion of deep learning models, DT was
the most popular algorithm in data mining [Hast 09]. DT is a recursive process useful to
return important features even if they are only relevant in a small region of the feature

6Also known as Radial Basis Function (RBF)
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space [Guyo 08], and they work well in many cases, including those with few data prepar-
ation [Gero 22]. A DT model is characterized by the number of nodes, leaves, branches,
branch length, tree depth, and class labels, among others [Guyo 08])

Root node

Decision node

Leaf node (Classes)Branch

Figure 5.5: Representation of a decision tree.

One key point in the DT is to find the best split [Chen 16b]. The most common split
selection criterion is the impurity. For a split s and node N , it is given by [Guyo 08,
Hast 09]:

∆I(s,N) = I(N)−
∑
i

piI (N
s
i ) , (5.42)

where I is an impurity measure, N s
i is the i-th subnode of N resulting from split s, and

pi is the probability to fall into this node. One common impurity measure is the Gini index,
given as follows [Guyo 08]:

IG (N) = 1−
∑
y∈Y

[p (y|N)]2 (5.43)

where p (y|N) is the ratio of instances of the class Y among the training instances in
the node N [Gero 22]. For a node with all samples belonging to the class Y , the impurity
will be zero. Otherwise, the Shannon entropy and log-loss (see Eq. 5.17) are also used
as impurity measures [Guyo 08]. However, they do not provide important differences and
Gini impurity is a good default [Gero 22]: even though it tends to isolate the most frequent
class in its own branch, it is slightly faster to compute. Thus, the Gini impurity was used
in this thesis.

The construction of DT models has been addressed with different methods. The
CART 7 method is the most used to train DT, and it is actually the method implemen-
ted in the Scikit-Learn library for Python [Gero 22]. The CART method chooses a specific
feature xj and a threshold thj . Afterwards it searches for the pair (xj, thj) that produces
the purest nodes [Gero 22]. The cost function after the split is given as follows [Gero 22]:

J(xj, thj) =
mleft

m
I leftG +

mright

m
IrightG , (5.44)

where InodeG is the impurity of the specific node after the split, i.e. right or left, mnode

is the number of instances in such node, and m is the number of training samples. This

7Acronym for Classification And Regression Tree
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process is applied recursively until it reaches the maximum depth or if it cannot find a
split that reduces the impurity [Gero 22]. The limitations of DT are [Gero 22, Hast 09]:
they tend to have orthogonal decision boundaries since they partition the feature space in
a set of rectangles, and they are very sensitive to small variations in the training set, so the
generalization capability is limited.

On the other hand, a Random Forest classifier (RF) is just an ensemble of DT (see Fig-
ure 5.6), and it is capable to handle multi-class problems directly [Gero 22]. It applies many
DT and obtains the class predicted by all of them. Finally, the predicted class is such that
gets the majority of votes, therefore this procedure is known as majority voting [Gero 22].
The voting scheme can be hard (when the class is assigned to the most voted by the weak
classifiers), or soft (predictions are made as a vote by the trees in the forest, based on their
weighted probabilities [Hart 00], i.e. the class with the highest probability across the trees
is assigned). Soft voting was implemented in this thesis. RF is usually performed using the
same tree with different -and random- subsets of the training set, such as one sample can
appear many times in the subsets for each classifier, i.e. with replacement. This ensemble
method is known as bootstrap aggregating, or simply bagging [Gero 22]. Even though RF
can be trained without replacement (known as pasting), in this thesis the bagging method
was implemented since it is the most preferred for RF.

Root node

Decision node

Leaf node (Classes)Branch

Tree 1 Tree 2 Tree n

...

Majority voting

Class

Figure 5.6: Representation of a random forest with decision trees. The final predicted class
is obtained by -hard- majority voting.

Finally, another algorithm based on decision trees is known as Extreme Gradient
Boosting (XGBoost). It is a computationally efficient and scalable for classification. It
has shown very good very good performance in different famous machine learning and
data mining challenges during the last decade [Chen 16b]. This method is based on the
Gradient Boosting algorithm, which adds sequential predictors to an ensemble, each one
correcting its predecessor trying to fit the new predictor to the residual errors made by
the predecessor [Gero 22]. Most existing implementations of the XGBoost, e.g. Scikit-
Learn for Python (used in this thesis) and GBM for R, are based on the exact greedy
algorithm [Chen 16b], which splits until it achieves the highest score using the first and
second order gradient statistics on the loss function. See [Chen 16b] for further details.
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5.2.2. Gated-Multimodal Units (GMU)

Deep Learning (DL) models are the state-of-the-art in many applications such as image
classification, speech recognition, generative art, etc [LeCu 15]. When an ANN has two
or more hidden layers, it is called Deep Neural Network (DNN) [Gero 22]. Thus, DL is
based on DNN with different configurations or architectures, such as convolutional neural
networks (CNN) and recurrent/recursive neural networks (RNN) [Good 16]. CNNs are in-
spired in the organization of the cat’s visual cortex [Miot 18]; they are intended mostly
for image analysis by the use of convolutional filters, they are typically composed by more
than ten convolutional and pooling layers, and require large datasets to be trained [Miot 18].
Otherwise, RNNs are specialized in sequence data and are composed of one network that
performs the same task for every element of the sequence, while keeping dependencies on
the previous computations [Miot 18], i.e. they have memory. However, they are not inten-
ded when the interpretability of a phenomenon is a paramount point, such as in swallowing
and dysphagia. DL overcomes the performance of ML algorithms only for big datasets due
to their data-driven orientation [Mukh 21, LeCu 15] (see Figure 5.7).

Figure 5.7: Performance of different machine learning algorithms depending of the amount
of available data. Taken from [Mukh 21].

For cases where there are more than one source of information, i.e., two or more mod-
alities, a different kind of architecture for multi-modal problems based on RNN was pro-
posed, namely Gated Multimodal Units (GMU) [Arev 20]. Like other architectures such
as LSTM 8 or GRU9, GMUs are composed by gated recurrent networks. GMU combines
multiple inputs in a single operation, i.e. for information fusion, rather than to assume
temporal dependencies among data [Arev 20]. GMU combines the concepts of early fu-
sion (feature sets of multiple sources of information are combined to feed a classification
algorithm) and late fusion (combines the output of different classifiers, one per modality,

8Long-Short Term Memory
9Gated Recurrent Units
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and makes a prediction by consensus, e.g. majority voting) [Arev 17]. Figure 5.8 illustrates
the GMU architecture for a bi-modal approach and for three or more modalities.

Figure 5.8: Scheme of GMU. a) Architecture for three or more modalities. b) Bi-modal
approach. Taken from [Arev 17].

Let xk ∈ Rnk a column vector of the k-th modality. For the bimodal approach, the
GMU extracts hidden representations for each modality as follows [Arev 20]:

h1 =tanh
(
w1x

T
1

)
(5.45)

h2 =tanh
(
w2x

T
2

)
, (5.46)

where wk is the -learnable- weight vector for the k modality. An additional parameter
is computed as follows:

z = σ
(
wz [x1,x2]

T
)
, (5.47)

where [., .] is the concatenation operator and wz ∈ Rn1+n2 . The output activation is
given by [Arev 20]:

h = z ⊙ h1 + (1− z)⊙ h2 (5.48)

Thus, the GMU tunes how each modality affects the output. When more than two
modalities are available, the internal connections of the GMU differ:
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hk =tanh
(
wkx

T
k

)
(5.49)

z =σ
(
wz [x1, . . . ,xkmax ]

T
)

(5.50)

h =
kmax∑
k=1

zk ⊙ hk (5.51)

In this thesis, the following combinations of modalities were applied: {sEMG,
Speech}, {sEMG, Acc}, {Acc, Speech}, and {sEMG, Acc, Speech}. The binary cross-
entropy was used as a loss function and the Adam optimization was also implemented. The
GMU-based models were trained using the validation methods described in Section 5.3.
Ten epochs were used to train the models.

5.2.3. Hyperparameters tuning of classification algorithms
The hyperparameters of each classifier were tuned in a grid search, in order to con-

trol over-fitting and to improve the classification performance. The lines below illustrate
parameters range for each classification strategy.

SVM: C ∈ {10−4, 10−3, ..., 103, 104}; γ ∈ {10−4, 10−3, ..., 103, 104}; kernels: lin-
ear, RBF and sigmoid (with θ = 0).

ANN: hidden layer size ∈ {10, (10, 10), (10, 50), 50, (50, 10), (50, 50), (50, 100),
100, (100, 50), (100, 100)}; α ∈ {10−4, 10−3, ..., 103, 104}; activation functions:
ReLU, tanh, logistic; and solvers: Adam and SGD.

RF: number of trees N ∈ {5, 10, 20, 30, 50, 100}; and maximum depth D ∈
{2, 5, 10, [0]20, 30, 50, 100}

Logistic regression: penalty parameter C ∈ {10−4, 10−3, ..., 103, 104}; and regular-
ization norms: L1, L2.

LDA: solvers ∈ {singular value decomposition, least squares solution}

DT: maximum depth D ∈ {2, 5, 10, 20, 30, 50, 100}

XGBoost: maximum depth D ∈ {2, 5, 10, 20, 30, 50, 100}; and ratio of negat-
ive/positive classes R ∈ {1, 10, 25, 50, 75, 99, 100, 1000}.

GMU: hidden layer size ∈ {64, 128, 256, 512}; learning rate ∈ {10−3, 10−2, 10−1}.

5.3. Model validation
One of the most used methods for model selection and hyperparameter optimization

is the minimization of the cross-validation (CV) estimate of the generalization perform-
ance [Wain 21]. The flat k-fold CV splits the database into k chunks of approximately
the same size; it takes k − 1 chunks, namely training sets, to fit the model and optim-
ize the hyperparameters. The resulting model is tested with the remaining chunk, and the
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classification error is obtained. Thus, k iterations are performed, and the generalization
performance is the average of the k obtained performances, one per chunk [Wain 21]. Not-
withstanding, this procedure introduces bias and could be very optimistic for small-size
databases [Vaba 19]. To overcome this limitation, the nested CV was introduced. The nes-
ted CV is similar to the flat one, with an additional iteration level, i.e. a nested CV with
kinner chunks is performed inside the main CV with kouter chunks. In the outer chunks,
the hyperparameters are tuned independently and used to train the model with the inner
chunks. So, the outer CV minimizes the inner CV estimate of generalization perform-
ance [Wain 21], and whilst inner loops are used for hyperparameter optimization and model
training, outer loops are used for error estimation. The nested approach produces an almost
unbiased and robust estimate of the performance [Vaba 19].

The CV is often applied under a stratified scheme, an approach that guarantees in each
partition almost the same class ratio of the entire database [Berr 19]. For the case of this
thesis it refers to the same proportion of healthy and dysphagic subjects in each parti-
tion. It aims to provide a sample proportion as an unbiased estimate of the population
one [Berr 19]. For stratified CV, k = 10 partitions are recommended [Berr 19].

Consequently, two stratified nested CV (snCV) schemes for model validation were
applied, with kinner = 5 and kouter = 10. For experiments #1, #2, and #3, no test sets
were implemented and the entire database was divided into training and validation sets
(see Figure 5.9).
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Figure 5.9: Stratified nested cross-validation without test set for Experiments #1, #2 and
#3.

For the case of experiment #4, a separate test set was considered. Thus the database
was divided into a train-validation (train-val) and a test set. The train-val set was the input
of the snCV. The hyperparameters of the ten tuned models of the outer partitions were
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retrieved. A new model with the mode of such hyperparameters was tested with the test
set, and the generalization performance, not the average of the partitions, was obtained
(see Figure 5.10). No volunteer of the test set was used in the train-val stage. Different
proportions of test/train-val were evaluated to figure out how sensible was the model to
the partition size: 10%/90%, 15%/85%, 20%/80%, 25%/75%, 30%/70%, 35%/65%,
and 40%/60%. Each test set was selected randomly. This procedure was repeated five
times with different -and random- composition of each test, aiming to avoid biased results.
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Figure 5.10: Stratified nested cross-validation with a test set for experiment #4.

5.3.1. Performance measures

The classifiers were evaluated by the use of different performance measures that
provide specific information about the capability of discrimination between the two pop-
ulations assessed. Each measure is described next, using the definitions of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) provided in Sec-
tion 3.4. The following measures are recommended to be reported not only in machine
learning-related works but also in clinical diagnostic accuracy studies [Cohe 16].

AUC: Equilibrium between TPR and FPR. Described in Section 3.4. Even though
it was used also as a feature selection method, in the validation stage the AUC was
used to describe the discrimination capability of the classifier instead of the feature
space10. This was the selection criterion for hyperparameters tuning in the snCV
schemes.

10To avoid confusion in this document, AUCROC denotes the feature selection method, and AUC denotes
the performance measure of the classifier.
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Accuracy: a measure of the numbers of individuals that were correctly classified,
defined as acc = TP+TN

TP+TN+FP+FN
. This is not a good measure for unbalanced data-

bases.

Precision: also called as confidence in data mining is a measure of predicted positives
that are actually positives [Powe 11]. Computed as precision = TP

TP+FP

Sensitivity: also called recall in machine learning, is a measure of the real positives
that were classified as positives [Powe 11]. Computed as se = TP

TP+FN

Specificity: also called as inverse recall in machine learning, is a measure of the real
negatives that were classified as negatives [Powe 11]. Computed as sp = TN

TN+FP

F1-score: it is the harmonic mean of the sensitivity and precision, computed as F1 =
2× se×precision

se+precision



Chapter 6

Classification experiments

As mentioned in Section 3.4, the experiments were conducted in different stages of
the research and with different databases, so different combinations of classifiers were
performed for each experiment. As experiments were carried out, the best methods in
terms of interpretability and simplicity were selected. Table 6.1 summarizes the machine
learning algorithms used for each experiment.

Table 6.1: Summary of feature selection methods and classification algorithms used for
each experiment.

Experiment SVM XGBoost kNN ANN RF LR LDA DT GMU

Experiment #1 • • •
Experiment #2 • • • •
Experiment #3 • • • • • •
Experiment #4 • • • •

6.1. Experiment #1: Automatic detection of dysphagia us-
ing electrophysiological biomarkers

In this experiment, the discrimination capability of classification algorithms for dyspha-
gia screening was evaluated. The following hypothesis was proposed: there are differences
between sEMG recordings of healthy individuals and patients with dysphagia, that can be
detected in a new representation domain, i.e. a feature space.

Figure 6.1 shows an example of a healthy and a dysphagic sEMG recordings during
dry swallowing (saliva). This differential behavior of piecemeal deglutition in patients
using different consistencies was evidenced in several subjects, which motivates the use of
machine learning models for identifying dysphagia-related patterns.

6.1.1. Classification using individual features
Table 6.2 shows the classifiers that achieved AUC≥0.75 when considering individual

features. Note that such results are in the line of those presented in the section 4.1: time

90
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Figure 6.1: Example of multi-channel sEMG generated from one dysphagic patient and
one healthy control. The amplitude is given in micro-volts. RM and LM: right and left
masseter; RSH and LSH: right and left suprahyoid; RIH and LIH: right and left infrahyoid
muscles.

domain features achieved the highest discrimination capability between healthy and dys-
phagic sEMG recordings.

Table 6.2: Classification results obtained with individual features. Only classifiers with
AUC≥0.75 are shown. Values≥0.80 are highlighted in bold.

Feature Task Classifier AUC F1 Accuracy Precision Sensitivity
FR W20 SVM 0.76 ± 0.16 0.74 ± 0.18 0.74 ± 0.16 0.82 ± 0.18 0.75 ± 0.27

iEMG W5 SVM 0.77 ± 0.19 0.76 ± 0.21 0.76 ± 0.20 0.83 ± 0.22 0.77 ± 0.26

SVM 0.82 ± 0.17 0.79 ± 0.19 0.81 ± 0.17 0.88 ± 0.18 0.75 ± 0.23Saliva ANN 0.80 ± 0.16 0.76 ± 0.20 0.79 ± 0.16 0.92 ± 0.17 0.68 ± 0.24

ANN 0.77 ± 0.18 0.77 ± 0.17 0.76 ± 0.18 0.84 ± 0.21 0.73 ± 0.20
W5

XGBoost 0.77 ± 0.15 0.80 ± 0.16 0.78 ± 0.15 0.77 ± 0.17 0.87 ± 0.22

ANN 0.76 ± 0.18 0.76 ± 0.19 0.75 ± 0.20 0.84 ± 0.22 0.77 ± 0.26

LOG

Y5
SVM 0.75 ± 0.17 0.77 ± 0.16 0.74 ± 0.19 0.81 ± 0.22 0.83 ± 0.22

RMS W10 ANN 0.76 ± 0.15 0.77 ± 0.16 0.76 ± 0.17 0.82 ± 0.20 0.82 ± 0.24

Wx: x mL of water; Y5: 5 mL of yogurt.

This evaluation also provides information related to swallowing tasks and classifiers.
SVM and ANN were the most accurate in saliva recordings using the log detector (LOG).
Their precision was close to 0.90 in both cases. For water5 and yogurt5, good results were
also obtained with both classifiers. Thus, the capability of discrimination seems to be
more related to the feature space and swallowing task rather than the classifier, indicating
that those features seem to be good candidates to create a set of promising biomarkers to
evaluate dysphagia. Another pattern that was observed is that the smaller the volume, the
higher the accuracy.



92 Chapter 6. Classification experiments

6.1.2. Classification per muscle group
Different feature sets were considered in this scenario: the entire feature set, features

selected with PCA, mRMR, and AUCROC, as well as features grouped by domain. This
scenario was computed separately by swallowing task and the evaluation intended to de-
termine if there are muscle groups with better discrimination capability for dysphagia eval-
uation than others. Table 6.3 shows the best classification results (only AUC≥0.80). The
column named “Feature set” refers to the different groups that were created to perform the
experiments.

It is remarkable that masseter and suprahyoid muscles yielded good results, in contrast
to infrahyoid that achieves AUC values smaller than 0.80 (not shown in the table). Another
relevant finding is that water achieved the highest performance, specifically 20 mL for mas-
seter and 10 mL for suprahyoid (AUC≥0.85 - Table 6.3). Actually, these tasks were the
most prevalent with good results in terms of AUC. Otherwise, saliva in suprahyoid muscles
and yogurt20 in masseter achieved AUC 0.80≤AUC≤0.84.

Table 6.3: Classification results obtained for different muscle groups, feature sets, and clas-
sifiers. Only cases with AUC≥0.80 are shown. Classifiers with AUC≥0.85 are highlighted
in bold.

Muscles Task Classifier Feature set AUC F1 Accuracy Precision Sensitivity
W5 SVM PCA 0.81 ± 0.17 0.83 ± 0.12 0.80 ± 0.16 0.88 ± 0.19 0.83 ± 0.17

ANN None 0.81 ± 0.15 0.82 ± 0.15 0.82 ± 0.14 0.88 ± 0.16 0.85 ± 0.24
W10

SVM Time-Freq 0.82 ± 0.12 0.82 ± 0.16 0.84 ± 0.12 0.92 ± 0.11 0.80 ± 0.26

ANN NLD 0.85 ± 0.17 0.87 ± 0.13 0.85 ± 0.16 0.83 ± 0.17 0.93 ± 0.13

AUCROC 0.88 ± 0.14 0.88 ± 0.13 0.88 ± 0.14 0.91 ± 0.14 0.88 ± 0.18W20
SVM

None 0.80 ± 0.16 0.80 ± 0.15 0.78 ± 0.18 0.87 ± 0.21 0.80 ± 0.21

NLD 0.83 ± 0.26 0.85 ± 0.22 0.84 ± 0.25 0.90 ± 0.21 0.82 ± 0.24

Masseter

Y20 ANN
Time-Freq 0.84 ± 0.13 0.85 ± 0.14 0.85 ± 0.12 0.88 ± 0.17 0.85 ± 0.19

ANN PCA 0.83 ± 0.19 0.85 ± 0.14 0.84 ± 0.17 0.92 ± 0.16 0.82 ± 0.19
Saliva

XGBoost AUCROC 0.82 ± 0.13 0.85 ± 0.12 0.83 ± 0.12 0.85 ± 0.15 0.88 ± 0.18

Freq 0.83 ± 0.12 0.86 ± 0.14 0.85 ± 0.11 0.84 ± 0.13 0.93 ± 0.20
W5 XGBoost

mRMR 0.83 ± 0.15 0.86 ± 0.16 0.85 ± 0.14 0.87 ± 0.14 0.90 ± 0.21

AUCROC 0.82 ± 0.19 0.77 ± 0.29 0.80 ± 0.22 0.82 ± 0.33 0.78 ± 0.32
ANN mRMR 0.86 ± 0.10 0.86 ± 0.11 0.86 ± 0.09 0.95 ± 0.10 0.82 ± 0.19

AUCROC 0.86 ± 0.17 0.87 ± 0.16 0.86 ± 0.16 0.94 ± 0.13 0.87 ± 0.22
mRMR 0.82 ± 0.15 0.83 ± 0.13 0.82 ± 0.14 0.91 ± 0.14 0.78 ± 0.18
None 0.81 ± 0.16 0.83 ± 0.14 0.82 ± 0.14 0.85 ± 0.19 0.85 ± 0.19

SVM

Time 0.82 ± 0.16 0.85 ± 0.11 0.82 ± 0.14 0.84 ± 0.17 0.90 ± 0.15

W10

XGBoost Time 0.82 ± 0.14 0.84 ± 0.12 0.81 ± 0.14 0.82 ± 0.18 0.90 ± 0.15

W20 XGBoost Time 0.81 ± 0.18 0.82 ± 0.19 0.82 ± 0.19 0.82 ± 0.20 0.88 ± 0.24

Suprahyoid

Y20 ANN mRMR 0.80 ± 0.16 0.81 ± 0.14 0.79 ± 0.16 0.85 ± 0.19 0.80 ± 0.16

Wx: x mL of water; Y20: yogurt20.

None of the feature selection techniques or feature sets significantly outperformed the
others, so there were no conclusive results in this regard. The AUCROC selection approach
was used with the SVM classifier in two of the four instances where AUC≥0.85 (high-
lighted in bold in Table 6.3). The other two cases featured ANN models, one of which had
features chosen with mRMR (suprahyoid, water10), and the other of which had features
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chosen using only nonlinear features (masseter, water20). Despite Table 6.3 displays four
classifiers with features selected by mRMR or AUCROC, and three with the entire feature
space or with all time domain features, it is not possible to conclude that this result is a
predictor of which feature space should be used. Similarly, SVM and ANN seem to be the
most suitable, and XGBoost only exhibited AUC≥0.80 in suprahyoid muscles.

On the other hand, some classifiers had sensitivity or precision values higher than 0.90.
The highest sensitivity was only attained with water intakes, even when the classifiers
with the highest precision showed no pattern in terms of the muscle group, feature set, or
swallowing task. In contrast, the XGBoost produced a sensitivity of 0.90 in three instances;
all of them involved suprahyoid muscles and water, despite not being the most accurate
classifier in these studies.

6.1.3. Classification per swallowing task
Features extracted from the three muscle groups (six channels) were considered sim-

ultaneously to assess the discrimination capability of swallowing tasks. Table 6.4 sum-
marizes the classification outcomes with AUC≥0.80. SVM had much fewer occurrences,
whilst the XGBoost and ANN appeared most frequently. The three results highlighted in
bold were the ones with AUC≥0.85: saliva with time-related features, and water10 with
ANN considering two feature sets: without selection and time domain features. The most
frequent feature sets were those selected with AUCROC and mRMR; actually, all swallow-
ing tasks with AUC≥0.80 involved at least one of these selection methods. No improve-
ment in classification accuracy was observed with the combination of swallowing tasks.

Table 6.4: Classification results obtained with all muscle groups. Only classifiers with
AUC≥0.80 are shown. Classifiers with AUC≥0.85 are highlighted in bold.

Task Feature set Classifier AUC F1 Accuracy Precision Sensitivity
AUCROC XGBoost 0.82 ± 0.13 0.87 ± 0.09 0.83 ± 0.12 0.82 ± 0.16 0.97 ± 0.10
mRMR XGBoost 0.81 ± 0.15 0.82 ± 0.13 0.81 ± 0.15 0.89 ± 0.16 0.78 ± 0.18

PCA XGBoost 0.82 ± 0.13 0.84 ± 0.14 0.83 ± 0.12 0.83 ± 0.17 0.88 ± 0.17

ANN 0.86 ± 0.10 0.83 ± 0.11 0.85 ± 0.10 0.97 ± 0.10 0.75 ± 0.16
Saliva

Time
SVM 0.81 ± 0.13 0.80 ± 0.13 0.81 ± 0.12 0.91 ± 0.14 0.78 ± 0.23

AUCROC ANN 0.81 ± 0.21 0.82 ± 0.20 0.81 ± 0.20 0.86 ± 0.22 0.85 ± 0.24
Freq XGBoost 0.81 ± 0.18 0.86 ± 0.17 0.83 ± 0.16 0.81 ± 0.16 0.93 ± 0.19

ANN 0.81 ± 0.20 0.73 ± 0.32 0.80 ± 0.23 0.85 ± 0.32 0.72 ± 0.37
W5

mRMR
XGBoost 0.83 ± 0.18 0.83 ± 0.18 0.83 ± 0.17 0.90 ± 0.15 0.80 ± 0.22

AUCROC XGBoost 0.82 ± 0.14 0.84 ± 0.12 0.82 ± 0.14 0.80 ± 0.18 0.93 ± 0.13

ANN 0.82 ± 0.21 0.85 ± 0.16 0.82 ± 0.21 0.87 ± 0.21 0.88 ± 0.18
mRMR

XGBoost 0.83 ± 0.13 0.86 ± 0.11 0.84 ± 0.12 0.82 ± 0.15 0.93 ± 0.13

None ANN 0.86 ± 0.16 0.84 ± 0.17 0.84 ± 0.17 0.95 ± 0.14 0.77 ± 0.20
PCA ANN 0.84 ± 0.16 0.84 ± 0.14 0.82 ± 0.18 0.87 ± 0.20 0.87 ± 0.16

W10

Time ANN 0.86 ± 0.14 0.86 ± 0.13 0.84 ± 0.17 0.88 ± 0.19 0.90 ± 0.15

Y10 mRMR XGBoost 0.82 ± 0.18 0.84 ± 0.18 0.83 ± 0.18 0.86 ± 0.18 0.87 ± 0.22

Cracker AUCROC ANN 0.82 ± 0.17 0.80 ± 0.29 0.84 ± 0.15 0.76 ± 0.29 0.87 ± 0.31

All tasks None ANN 0.82 ± 0.13 0.79 ± 0.16 0.82 ± 0.14 0.88 ± 0.18 0.77 ± 0.21

Wx: x mL of water; Y10: yogurt10.
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6.1.4. Analysis of discrimination capability of sEMG
This is the first study that uses ML algorithms on multichannel sEMG to classify indi-

viduals as healthy or dysphagic. Despite other works have used ML models in swallow-
ing evaluation, they have been mainly oriented to swallow detection [Suzu 20, Cons 17,
Schu 14], as well as onset detection and segmentation [Rieb 19, McNu 21]. Other works
are more descriptive in terms of how some features, e.g. duration and amplitude, vary ac-
cording to the type of bolus [Watt 15], or age [Wang 15]. This point is highly related to the
novelty of this experiment.

Contribution of individual features

Section 4.1.2 indicated that the most suitable electrophysiological biomarkers are VAR,
RMS, iEMG, LOG, WL, DASDV, WAMP, MYOP, TKEO, and MNP. The classification
results confirmed this: the individual features that achieved the highest performance were
also in the set of features selected by the AUCROC: iEMG, LOG and RMS (see Table 6.2).

Classification results obtained with individual features can be compared only with two
works: [Miya 20] used a SVM applied on swallowing sounds in 27 healthy young controls
and 143 patients with dysphagia, achieving modest results (F1 = 78.9%, accuracy = 77%,
precision = 73.7%, and recall = 87%). Otherwise, [Dono 21b] used cervical accelero-
metry and sounds to differentiate between swallows from 51 healthy people and 20 patients
with suspected dysphagia. They achieved impressive classification results with classical
ML algorithms: accuracy and specificity of 99%, and sensitivity of 100%, but the results
could be biased and optimistic because of the unbalanced database.

Contribution of muscle groups and swallowing tasks

When the classifiers were fed with features grouped by muscles instead of individual
features, the performance improved. While the highest AUC value obtained with individual
features was 0.82 and there were only two cases with AUC≥0.80, the classification on
muscle groups returned 21 cases with AUC≥0.80, and four cases with AUC≥0.85. This
behavior was expected because the complex nature of the swallowing process should not
be well explained by only one single feature.

Bearing in mind that infrahyoid muscles participate in all swallowing phases [Li 17],
one could expect that such muscles contribute to the classification performance. Surpris-
ingly, in contrast to masseters and suprahyoid muscles, infrahyoid ones did not retrieve
good results in terms of AUC. Furthermore, the classification scenario with all muscle
groups simultaneously did not outperform the results obtained with separated muscles in
any of the evaluated performance measures (see Tables 6.3 and 6.4). However, Figure 4.2
shows some relevance of time-domain features extracted from infrahyoid muscles, mainly
for the intake of 5 and 10 mL of liquids (water and yogurt). Therefore, it is not convenient
to neglect the contribution of such muscles in the analysis of the swallowing process.

The intake of water was the most frequent task with good performance in the classific-
ation scenario per muscle group. Water tests are commonly used and have demonstrated
their suitability in clinical practice for bedside examination in dysphagia [Carn 08]. Also,
saliva-related tasks retrieved good performance in two cases with suprahyoid muscles.
Subsequently, saliva and water should be included in an automatic evaluation protocol
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based on sEMG, because they have shown differential activation patterns in literature: the
duration of the suprahyoid activity has been reported as longer for saliva than for wa-
ter swallows (5 and 10 mL) [Perl 99]. The saliva-related pattern is quite different and re-
quires more muscle activity. Thus, saliva swallowing is shorter in duration than water, but
higher in amplitude [Enge 12, Zhu 17]. This is in line with the results per muscle group,
in which saliva retrieved good discrimination capability in suprahyoid but not in masseter
(Table 6.3). Furthermore, water5 retrieved high sensitivity values in suprahyoid (≥0.90).
Such muscles have also shown high statistical discrimination capability between patients
with dysphagia with multiple sclerosis and healthy controls [Alfo 13]. It was also observed
in this work that saliva and water could be well modeled with the proposed approach,
especially when using ANN or SVM as classifiers (Table 6.2).

On the other hand, yogurt retrieved good performance for 20 mL in masseter and supra-
hyoid, as well as 10 mL using all muscle groups. Variations in liquid thickness have shown
also differential activation patterns [Enge 12]. The intake of water requires less muscle
activity and has a shorter duration than solids or thick liquids. Also, the contraction strength
increases when the liquid volume or density increases too [Zhu 17]. Thus, this task should
not be disregarded for the automatic screening protocol.

The classification performance using the combination of muscle groups confirmed
many observations found with individual groups: water5 and water10 were the most fre-
quent swallowing tasks with AUC≥0.80; saliva also retrieved similar results. The occur-
rence of good results with crackers is marginal. The best classification performances were
obtained also with time-domain features. Additionally, the performance was found to be
dependent on the consistency and on the feature domain but not on the feature selection
method or classifier.

Finally, despite the AUC was the criterion for hyperparameter tuning, sensitivity plays
also a key role in the development of diagnostic tests. In this case, scenarios of separated
muscle groups and their combination showed some cases with high sensitivity (≥ 0.90, in
Tables 6.3 and 6.4). This suggests that the obtained modeling schemes are suitable to the
development of automatic screening tests.

6.2. Experiment #2: Automatic detection of dysphagia us-
ing electrophysiological and mechanical biomarkers

The aim of this experiment was to study the potential use of multi-modal information
based on multi-channel sEMG and tri-axial Acc signals for the automatic classification of
individuals with normal swallowing and patients with functional oropharyngeal dysphagia.
Besides, the capability of discrimination of each muscle group and acceleration axis was
also studied.

6.2.1. Uni-modal and bimodal classification scenarios
One feature space was created per type of signal and swallowing task. Additionally,

the early fusion of features was considered through the concatenation of feature spaces
produced by each type of signal individually. In this way, each consistency was evaluated
under three scenarios (sEMG, Acc, sEMG+Acc), as well as four classifiers (SVM, ANN,
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XG Boost, and kNN), for a total of 84 schemes, following the same methodology as de-
scribed in Figure 5.9. Due to space limitations, only the best results per swallowing task
and scenario are shown in Table 6.5. The most remarkable finding is that the fusion of
signals retrieved the highest classification performance in all swallowing tasks, which sug-
gests that sEMG and Acc information are complementary. When evaluated individually,
the Acc signals yielded better results than sEMG in all tasks.

Table 6.5: Summary of the best classification results achieved by swallowing task and
signal-related scenario. Best results are highlighted in bold.

Task Scenario Classifier AUC F1 Accuracy Precision Sensitivity

W5
sEMG XGBoost 0.73 ± 0.11 0.72 ± 0.13 0.72 ± 0.11 0.74 ± 0.19 0.78 ± 0.24
Acc XGBoost 0.78 ± 0.11 0.77 ± 0.14 0.79 ± 0.11 0.81 ± 0.17 0.77 ± 0.20
Acc+sEMG SVM 0.86 ± 0.15 0.80 ± 0.29 0.86 ± 0.15 0.85 ± 0.30 0.78 ± 0.32

W10
sEMG XGBoost 0.71 ± 0.16 0.69 ± 0.18 0.71 ± 0.16 0.72 ± 0.21 0.73 ± 0.24
Acc XGBoost 0.83 ± 0.07 0.82 ± 0.08 0.82 ± 0.08 0.78 ± 0.15 0.90 ± 0.15
Acc+sEMG XGBoost 0.83 ± 0.07 0.82 ± 0.08 0.81 ± 0.09 0.78 ± 0.16 0.93 ± 0.13

W20
sEMG XGBoost 0.71 ± 0.16 0.71 ± 0.13 0.69 ± 0.17 0.66 ± 0.19 0.87 ± 0.21
Acc kNN 0.78 ± 0.26 0.69 ± 0.37 0.80 ± 0.24 0.80 ± 0.40 0.63 ± 0.37
Acc+sEMG kNN 0.82 ± 0.21 0.73 ± 0.38 0.84 ± 0.18 0.73 ± 0.39 0.73 ± 0.39

S
sEMG SVM 0.72 ± 0.17 0.68 ± 0.20 0.72 ± 0.17 0.78 ± 0.20 0.67 ± 0.26
Acc SVM 0.82 ± 0.12 0.79 ± 0.15 0.82 ± 0.12 0.88 ± 0.15 0.77 ± 0.21
Acc+sEMG SVM 0.83 ± 0.13 0.82 ± 0.15 0.83 ± 0.13 0.88 ± 0.16 0.83 ± 0.22

Y5
sEMG kNN 0.70 ± 0.15 0.68 ± 0.15 0.69 ± 0.15 0.76 ± 0.22 0.67 ± 0.21
Acc XGBoost 0.82 ± 0.16 0.84 ± 0.14 0.82 ± 0.16 0.81 ± 0.19 0.90 ± 0.15
Acc+sEMG XGBoost 0.87 ± 0.12 0.89 ± 0.10 0.87 ± 0.12 0.84 ± 0.16 0.97 ± 0.10

Y10
sEMG XGBoost 0.66 ± 0.19 0.66 ± 0.19 0.66 ± 0.20 0.68 ± 0.25 0.72 ± 0.25
Acc XGBoost 0.78 ± 0.17 0.77 ± 0.17 0.77 ± 0.17 0.74 ± 0.20 0.82 ± 0.19
Acc+sEMG XGBoost 0.85 ± 0.14 0.85 ± 0.14 0.84 ± 0.16 0.82 ± 0.20 0.93 ± 0.13

Y20
sEMG XGBoost 0.79 ± 0.15 0.73 ± 0.28 0.79 ± 0.13 0.67 ± 0.27 0.82 ± 0.32
Acc ANN 0.80 ± 0.16 0.74 ± 0.28 0.82 ± 0.14 0.79 ± 0.31 0.73 ± 0.32
Acc+sEMG XGBoost 0.84 ± 0.20 0.82 ± 0.22 0.84 ± 0.20 0.85 ± 0.24 0.82 ± 0.23

Wx: x mL of water; Yx: x mL of yogurt; S: saliva.

Among the classifiers, XGBoost was the one that achieved the highest classification
performance in most of the experiments, e.g., in all yogurt tasks and also in water10. The
SVM and kNN only showed the highest accuracy in one of the cases. The results obtained
with ANN are not reported in Table 6.5 because it only showed good results for Acc signals
in yogurt20 but it was not the best one in any of the cases. Furthermore, the best classifiers
within the same swallowing task stayed the same for uni-modal and multi-modal experi-
ments, which suggests that the representation spaces created in this experiment are stable
and not biased by swallowing tasks.
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6.2.2. Analysis of discrimination capability of combined sEMG and
Acc

To the best of my knowledge, this experiment was the first work exploring the combin-
ation of sEMG and Acc signals for automatic dysphagia screening. Obtained results are
discussed below.

In most of the cases, Acc signals yielded higher AUC values than those achieved with
sEMG signals, regardless of the swallowing task. When considering different tasks, some
of the cases in which this performance difference is more clear in water10 (0.71 with
sEMG, 0.83 with Acc), saliva (0.72 with sEMG, 0.82 with Acc), yogurt5 (0.70 with sEMG,
0.82 with Acc), and yogurt10 as well (0.66 with sEMG, 0.78 with Acc). Additionally,
the standard deviation was reduced when the kinematic signals were incorporated. This
behavior was also observed in other performance measures like sensitivity. This could
be related to the fact that the sEMG measures the electrophysiological dimension indir-
ectly, since it does not allow to record isolated muscles or activation patterns within a
muscle [Sejd 18, Step 12]. In contrast, the accelerometry directly records vibratory move-
ments on the throat during swallowing [Sejd 18].

Besides the improvement when using Acc signals, the multi-modal approach produces
better results, i.e., when merging information from Acc and sEMG. This is expected from
the signal processing point of view because the fusion of multiple sensors, i.e., multi-
modality, improves the quality of the information and the uncertainty reduction when
creating a model [Hack 90]. This theoretical claim was confirmed by the results of this
experiment, regardless of the swallowing tasks (see Table 6.5).

Furthermore, all the resulting AUC values when using the combination of sources were
above 0.80. Unfortunately, it is difficult to compare such results with others reported in the
literature, because: (1) there are no works where Acc and sEMG signals are combined for
dysphagia screening; (2) most of the works that combine sEMG with other sensors are de-
scriptive; (3) the multi-modal works in sEMG and Acc are focused on swallow detection,
rather than the discrimination between healthy individuals with normal swallowing and pa-
tients with dysphagia. Among the few studies where multi-modal information is considered
to model swallowing-related phenomena, [Schu 14] detected swallows from healthy and
dysphagic individuals using sEMG and bio-impedance. When only considering healthy
participants, the authors reported an accuracy of 96.6%, however, when considering the
patients with dysphagia the accuracy drooped down to 84.5%. Similarly, [Hsu 13] reported
an acc = 82.6% when discriminating different levels of dysphagia severity using sEMG
and acoustic signals recorded with a microphone. Apart from highlighting the scarcity of
related works, it is also necessary to stress the fact that the performance results found in
the literature are comparable to the found here.

Why did Experiment #1 (only sEMG) retrieve AUC>0.8 (Table 6.4), whilst Experi-
ment #2 in the uni-modal scenario with sEMG always retrieved AUC<0.8 (Table 6.5)?
The most probable reason is the reduced number of sEMG channels used in Experiment #2
(3 vs. 6 in Experiment #1). The lack of masseteric and left infrahyoid channels seems to
reduce dramatically the information, making it unsuitable to perform a proper dysphagia
screening. This conclusion is supported by results obtained in Experiment #4, explained
later.
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6.3. Experiment #3: Automatic detection of dysphagia us-
ing acoustic biomarkers

In this experiment, the discrimination capability of speech dimensions for dysphagia
screening was assessed using different classification algorithms. The obtained results are
presented next.

6.3.1. Classification per speech dimension
Different classification models were optimized for each speech dimension, and features

selected in sustained vowels, DDK, and monologues, were considered. The classification
performance of the assessed models is summarized in Table 6.6.

Although the classification scheme was also performed on the whole feature space,
without any feature selection (results not reported here), the best results were obtained
with the features selected after the aforementioned statistical tests.

On the other hand, there was consistency in terms of the classifiers and their hyper-
parameters. The RF achieved the highest performance in phonation and articulation di-
mensions. In both cases, the mode of the maximum depth was D = 2, i.e. few partitions
to retrieve information were required. The mode of the number of required estimators was
high (N = 50 for phonation, N = 100 for articulation), but this did not affect bias or
variance because the RF model did not overfit. Otherwise, LDA was the best model re-
garding the DDK and prosody dimensions, and the optimal solver for both cases was the
singular value decomposition for all partitions in the nested cross-validation. These simple
models strengthen the hypothesis that the evaluated speech dimensions, and particularly
the selected features, have the capability to discriminate between healthy and dysphagic
recordings. Figure 6.2 illustrates the normalized confusion matrices obtained with the best
classifier for each speech dimension. Since the classification scheme was based on nested
cross-validation, the values on each confusion matrix were the mean (normalized) value of
true positives, false positives, true negatives, and false negatives per fold. It is highlighted
that the articulation-related models outperformed the other dimensions in all metrics. This
observation has been also reported in previous studies with patients suffering from Parkin-
son’s disease [Oroz 16b, Vasq 18].

Thence, the articulation dimension was the most suitable to discriminate between
healthy and dysphagic individuals. Otherwise, the best classifiers in phonation, DDK,
and prosody dimensions, had comparable performance, but there were slight differences
among classifiers. Additionally, when all the selected features from the three dimensions
were combined, the results did not improve consistently in comparison to the articula-
tion dimension. Even though the AUC was the same, its standard deviation was five units
higher; furthermore, none of the other performance measures improved the results achieved
by the articulation alone.

Finally, aiming to improve the results, a voting ensemble scheme was applied. In such
scheme, the following classifiers were gathered: SVM, RF, LR, and LDA. Due to the high
computational cost produced by the voting ensemble together with the grid search and
nested cross-validation, the ANN classifier was disregarded. Additionally, since the RF
is an ensemble of Decision Trees, the DT model was also omitted in the voting ensemble
scheme. This approach improved the results obtained with individual models and dimen-
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Table 6.6: Classification performance for healthy controls vs. patients in Experiment #3.
The best results are shown in bold.

Dimension Classifier AUC F1 Accuracy Precision Sensitivity

Phonation

SVM 0.70 ± 0.18 0.54 ± 0.39 0.64 ± 0.24 0.50 ± 0.38 0.63 ± 0.44
ANN 0.59 ± 0.14 0.47 ± 0.33 0.52 ± 0.20 0.39 ± 0.30 0.66 ± 0.46
RF 0.80 ± 0.10 0.80 ± 0.08 0.80 ± 0.09 0.81 ± 0.15 0.82 ± 0.10
LR 0.74 ± 0.13 0.65 ± 0.27 0.71 ± 0.18 0.70 ± 0.29 0.66 ± 0.32
LDA 0.72 ± 0.08 0.72 ± 0.09 0.74 ± 0.08 0.77 ± 0.15 0.71 ± 0.15
DT 0.70 ± 0.12 0.69 ± 0.09 0.69 ± 0.13 0.74 ± 0.19 0.71 ± 0.17

Articulation

SVM 0.64 ± 0.19 0.51 ± 0.37 0.57 ± 0.24 0.43 ± 0.35 0.68 ± 0.47
ANN 0.63 ± 0.19 0.46 ± 0.41 0.60 ± 0.24 0.40 ± 0.38 0.57 ± 0.50
RF 0.86 ± 0.10 0.86 ± 0.10 0.85 ± 0.11 0.84 ± 0.18 0.91 ± 0.12
LR 0.84 ± 0.16 0.78 ± 0.30 0.80 ± 0.24 0.75 ± 0.31 0.86 ± 0.33
LDA 0.76 ± 0.16 0.76 ± 0.15 0.76 ± 0.15 0.77 ± 0.15 0.79 ± 0.24
DT 0.81 ± 0.12 0.80 ± 0.13 0.80 ± 0.11 0.83 ± 0.20 0.83 ± 0.20

DDK

SVM 0.73 ± 0.20 0.71 ± 0.20 0.73 ± 0.20 0.75 ± 0.24 0.72 ± 0.23
ANN 0.70 ± 0.21 0.67 ± 0.29 0.69 ± 0.23 0.66 ± 0.34 0.73 ± 0.32
RF 0.77 ± 0.17 0.75 ± 0.19 0.77 ± 0.18 0.81 ± 0.23 0.74 ± 0.22
LR 0.71 ± 0.20 0.64 ± 0.30 0.71 ± 0.22 0.68 ± 0.34 0.66 ± 0.34
LDA 0.78 ± 0.15 0.78 ± 0.14 0.78 ± 0.15 0.81 ± 0.21 0.79 ± 0.18
DT 0.69 ± 0.20 0.68 ± 0.21 0.69 ± 0.20 0.68 ± 0.25 0.71 ± 0.21

Prosody

SVM 0.69 ± 0.21 0.57 ± 0.36 0.66 ± 0.22 0.54 ± 0.36 0.64 ± 0.42
ANN 0.58 ± 0.16 0.45 ± 0.35 0.52 ± 0.22 0.40 ± 0.34 0.61 ± 0.48
RF 0.74 ± 0.15 0.71 ± 0.17 0.73 ± 0.14 0.73 ± 0.21 0.73 ± 0.18
LR 0.69 ± 0.22 0.66 ± 0.29 0.65 ± 0.25 0.63 ± 0.36 0.79 ± 0.32
LDA 0.84 ± 0.10 0.83 ± 0.12 0.84 ± 0.10 0.81 ± 0.15 0.87 ± 0.17
DT 0.79 ± 0.09 0.77 ± 0.11 0.77 ± 0.11 0.80 ± 0.21 0.79 ± 0.12

All dim.

SVM 0.69 ± 0.21 0.68 ± 0.28 0.65 ± 0.24 0.61 ± 0.33 0.85 ± 0.31
ANN 0.82 ± 0.19 0.72 ± 0.39 0.78 ± 0.26 0.66 ± 0.38 0.80 ± 0.42
RF 0.84 ± 0.11 0.83 ± 0.14 0.83 ± 0.11 0.85 ± 0.17 0.88 ± 0.23
LR 0.86 ± 0.15 0.81 ± 0.30 0.82 ± 0.24 0.76 ± 0.31 0.88 ± 0.32
LDA 0.60 ± 0.17 0.58 ± 0.18 0.61 ± 0.17 0.64 ± 0.24 0.60 ± 0.23
DT 0.81 ± 0.14 0.82 ± 0.11 0.80 ± 0.14 0.82 ± 0.21 0.86 ± 0.12
Ensemble 0.91 ± 0.10 0.90 ± 0.11 0.90 ± 0.11 0.88 ± 0.17 0.93 ± 0.11
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Figure 6.2: Normalized confusion matrices obtained with the best model of each speech
dimension.

sions assessed separately, as the performance of all measures shows (see Table 6.6). The
mode of hyperparameters was given by: SVM: C = 10, γ = 0.01, sigmoid kernel; RF:
N = 10,D = 2; LR:C = 10, L2 norm; and LDA: SVD solver. Parameters of RF and LDA
were similar to those obtained by the other models per speech dimension, with the excep-
tion of the number of trees which was smaller, as expected with a voting ensemble. Figure
6.3 shows the normalized confusion matrix obtained with the voting ensemble scheme.

6.3.2. Analysis of discrimination capability of speech

Classification results suggest that the studied groups exhibit well-defined patterns in
terms of speech dimensions such that allow the automatic discrimination between patients
with dysphagia and healthy controls. So, dysphagia produces quantifiable voice changes
regardless of the leading clinical condition.

Regarding the implemented classifiers, RF behaved better than DT in all cases, except
for prosody. It could be quite obvious since the random forest consists in an ensemble of
independent and uncorrelated decision trees, so random forests tend to outperform decision
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Figure 6.3: Normalized confusion matrix obtained with the voting ensemble scheme.

trees. Actually, the RF was the best model for phonation and articulation, whilst LDA had
the higher performance for DDK and prosody (see the Table 6.6). Hence, the nature of
the analyzed signals did not require complex algorithms to be modeled; it indicates that
features used for the characterization of speech dimensions were appropriate to discrimin-
ate healthy and dysphagic states in simple ways. Otherwise, the articulation-related AUC
excels because RF, LR and DT achieved excellent discrimination capability in this dimen-
sion. Additionally, the sensitivity of the RF in such dimension was 91%. It would be due to
the high separability driven by the vowel triangle, as well as the first derivative of the form-
ants or, in other words, by the distribution of the first and second formants in both groups.
This likely indicates that the capability to control the position of the tongue during speech
production is a clear biomarker of dysphagia produced by neurological conditions. On the
other hand, in phonation and prosody, only the RF and LDA, respectively, achieved ex-
cellent results in terms of AUC. For DDK, even with the best classifier (LDA), acceptable
results were achieved (see Table 6.6).

One important aspect to note is the high standard deviation of some models and metrics.
For instance, the standard deviation of the results obtained with some of the classifiers was
higher than 20%, particularly in SVM and ANN. This is a limitation of the reported models,
but it was addressed in Experiment #4 by increasing the database in order to reduce bias,
and with the execution of other speech tasks, in particular the reading of a predefined text.

Finally, when features selected on each dimension were combined, classification results
did not improve considerably in terms of AUC, except for ANN (between 58% and 70%
in individual dimensions vs. 82% in all dimensions combined). However, the sensitivity
was more consistent than in the individual speech dimensions, but with high standard devi-
ation. Notwithstanding, the classification strategy based on ensemble voting improved all
the previous results in terms of all performance measures (AUC, F1, accuracy and sensitiv-
ity ≥90%, see Table 6.6). Additionally, the standard deviation using this scheme decreased
or remained equal than in the best results of individual speech dimensions. This strategy
seems to be the most suitable to implement dysphagia screening from speech recordings. In
this way, although the articulation dimension showed better results individually, all speech
dimensions contribute to characterize the dysphagic patient. This would help in improv-
ing the diagnosis and quantification of dysphagia by considering simple, cheap, and fast
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speech tasks that can be carried out to complement traditional methods used in dysphagia
screening.

6.4. Experiment #4: Multi-modality for dysphagia detec-
tion

Previous experiments showed that non-invasive biosignals approaches are potentially
suitable for dysphagia screening. Also, Experiment #2 suggested that increasing the num-
ber of sources of information outperformed the automatic classification of healthy and dys-
phagic individuals. Subsequently, in this Experiment, different multi-modal classification
scenarios were analyzed. Results are presented next.

6.4.1. Classification effect of selected biomarkers
Once different biomarkers of dysphagia were proposed in electrophysiological, mech-

anical, and acoustic dimensions (see Section 4.4), it is appropriate to determine if the
selection actually improved or not the classification result. In this way, the feature se-
lection effect was evaluated, but only in uni-modal scenarios. Using the stratified nested
cross-validation scheme shown in Figure 5.10, repeated five times, the different classific-
ation algorithms were evaluated with and without feature selection, with the AUCROC as
criterion. Figure 6.4 summarizes the effect for sEMG in Protocols #1 and #2 (onwards
sEMGP1 and sEMGP2, respectively), Acc, and speech, for different test set cardinality.
Tables D.1, D.2, D.3, D.4, D.5, D.6, and D.7 of Appendix D, show in detail the effect in
performance measures of the feature selection for different test set partitions.

The behavior was dependent on the classifier and the test set size. In Speech, the
performance was the same with and without feature selection regardless of the test set
size and classifier, with subtle variations in standard deviation. For the other signals, the
feature selection tended to improve the classification performance, especially in XGboost
and kNN. Only the linear SVM tended to have a larger AUC without feature selection,
especially for sEMGP2 and Acc in almost all test set partitions.

Note the good classification results achieved in terms of the AUC, especially for speech,
with different classifiers. These uni-modal classification outcomes with feature selection
outperformed all the best results obtained in Experiments #2 and #3, but were slightly
smaller than in Experiment #1. For instance, with a test set size of 20%, the performance
measures {AUC, F1, accuracy, precision, sensitivity, specificity1}, achieved the following
results:

sEMGP1: {0.86 ± 0.14, 0.86 ± 0.13, 0.84 ± 0.17, 0.88 ± 0.19, 0.90 ± 0.15,-}Exp#1

with ANN and time domain features in water10 vs. {0.85 ± 0.04, 0.82 ± 0.05, 0.85
± 0.04, 0.95 ± 0.08, 0.73 ± 0.06, 0.96 ± 0.06}Exp#4 with kNN.

sEMGP2: {0.79 ± 0.15, 0.73 ± 0.28, 0.79 ± 0.13, 0.67 ± 0.27, 0.82 ± 0.32,-}Exp#2

with XGBoost, features selected with mRMR in yogurt20 vs. {0.86 ± 0.05, 0.85 ±
0.05, 0.86 ± 0.06, 0.89 ± 0.13, 0.82 ± 0.05, 0.90 ± 0.13}Exp#4 with sigmoid SVM.

1For Experiments #1, #2, and #3 the specificity was not computed.
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Figure 6.4: Effect of feature selection (AUCROC) in classical classifiers. Results are shown
with a test set size of 25% of the database. E1: sEMG in protocol #1; E2: sEMG in
protocol #2; A: accelerometry; S: speech.

Acc: {0.82 ± 0.16, 0.84 ± 0.14, 0.82 ± 0.16, 0.81 ± 0.19, 0.90 ± 0.15,-}Exp#2 with
XGBoost, features selected with mRMR in yogurt5 vs. {0.87 ± 0.05, 0.87 ± 0.05,
0.87 ± 0.05, 0.86 ± 0.04, 0.88 ± 0.08, 0.86 ± 0.05}Exp#4 with XGBoost.

Speech: {0.91 ± 0.10, 0.90 ± 0.11, 0.90 ± 0.11, 0.88 ± 0.17, 0.93 ± 0.11,-}Exp#3

with an ensemble of classifiers, features selected with hypothesis tests in all speech
dimensions vs. {0.95 ± 0.02, 0.95 ± 0.02, 0.95 ± 0.02, 1.00 ± 0.00, 0.90 ± 0.04,
1.00 ± 0.00}Exp#4 with kNN.

The standard deviation provided in Experiment #4 was clearly smaller than in the other
experiments, suggesting more reliable models.

6.4.2. Effect of the test set size in the results
The effect of the test set size in the classification performance was also evaluated in this

Experiment, varying from 10% to 40%. In the remaining experiments (#1, #2, and #3), this
evaluation was not performed due to the limited number of individuals, an issue addressed
by Experiment #4 by increasing the database. Bearing in mind that the feature selection
tended to improve the uni-modal classification results, henceforth outcomes will be shown
only with feature selection. Figure 6.5 shows barplots of the AUC achieved by classifica-
tion algorithms using different partitions. Detailed results are provided in Appendix D.

It was not observed a trend related to the increase in the database size. Even though
some particularities, it’s not possible to determine a pattern. In some cases, the reduction
of the AUC is more evident, for instance in Acc classified with RBF SVM, and it is natural
to expect some kind of decrease because it is hardest to fit a classifier with less training
data. The acid test is the exposure of the trained models to the test set and, in this case,
the experiments achieved AUC≥ 0.80 in several combinations of classifiers and test sizes.
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Figure 6.5: Effect of the test size on the AUC from classical algorithms, in uni-modal
scenarios considering feature selection. E1: sEMGP1; E2: sEMGP2; A: accelerometry; S:
speech.

This is an indicator of the outcomes’ strength: the classification results do not seem to be
highly dependent on the test size, in other words, results were not optimistic and classifiers
did not exhibit overfitting.

6.4.3. Classical multi-modal classification
The following bimodal and trimodal scenarios were assessed:

sEMGP1 + Acc

sEMGP1 + Speech

sEMGP2 + Acc

sEMGP2 + Speech

Acc + Speech

sEMGP1 + Acc + Speech

sEMGP2 + Acc + Speech

In order to confirm the generalization of the uni-modal-related findings, the effect of the
test set size was also evaluated in the multi-modal scenarios. Figure 6.6 shows barplots of
the AUC achieved by classification algorithms using different partitions in such scenarios.
Like uni-modal, multi-modal scenarios did not show performance dependencies; in other
words, classification was not improved or worsened with dependence on the increase of
the test set size. Detailed results for each partition size are shown in Appendix E.
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Figure 6.6: Effect of the test size on the AUC from classical algorithms, in multi-modal
scenarios considering feature selection. E1: sEMG in protocol #1; E2: sEMG in protocol
#2; A: accelerometry; S: speech.

Tables E.1, E.2, E.3, E.4, E.5, E.6, and E.7 show several data hard to analyze. In this
way, it is convenient to choose a single partition with feature selection, to compare multi-
and uni-modality in Experiment #4.

Table 6.7 shows the AUC achieved by the classical algorithms in different scenarios
using feature selection and 20% of the database. In terms of the AUC, the performance
was outstanding for almost all of the multi-modal scenarios, with the exception of sEMGP1

+ Acc, and sEMGP2 + Acc. The lowest performances were obtained with uni-modal con-
figurations. The latter scenarios also retrieved the lowest sensitivities and specificities (de-
tails in Appendices D and E). Even though some configurations retrieved sensitivity or
specificity equal to 1.00, in no case both measures achieved such value. However, several
bi- and trimodal scenarios reported a balance between sensitivity and specificity, in par-
ticular for trimodal scenarios, e.g. sEMGP1 + Acc Speech in kNN (AUC = 0.95 ± 0.03,
sensitivity = 0.90±0.06, and specificity = 1.00±0.00), or sEMGP2 + Acc Speech in linear
SVM (AUC = 0.94± 0.02, sensitivity = 0.91± 0.03, and specificity = 0.97± 0.04). An-
other interesting scenario is sEMGP1 + Speech, which achieved the highest value for two
performance measures with different classifiers, e.g. with RBF SVM (AUC = 0.96±0.02,
sensitivity = 0.94 ± 0.03, and specificity = 0.97 ± 0.04), sigmoid SVM (AUC =
0.95 ± 0.03, sensitivity = 0.90 ± 0.06, and specificity = 1.00 ± 0.00), and with XG-
Boost (AUC = 0.94± 0.05, sensitivity = 0.91± 0.03, and specificity = 0.96± 0.06). In
general, bimodal scenarios with speech achieved performance measures higher than 0.90

Additionally, the fact that all classifiers achieved outstanding performance measures
(≥ 0.90) in some scenario, is remarkable. Actually, Figure 6.6 and Appendix E show that
all classifiers achieved, for certain partitions and scenarios, measures equal to 1.00. There
were also cases that retrieved all performance measures equal or greater than 0.95: in 10%,
sEMGP1 + Acc + Speech (RBF SVM and kNN), sEMGP2 + Acc + Speech (all classifiers),
sEMGP1 + Speech (sigmoid SVM, XGBoost and kNN), and Acc + Speech (linear and
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Table 6.7: AUC achieved by classical machine learning algorithms and a test set size of
20%. The best results per classifier are highlighted in bold.

Modality Scenario SVM_lin SVM_RBF SVM_sigmoid XGBoost kNN

Unimodal

E1 0.85 ± 0.06 0.82 ± 0.05 0.75 ± 0.10 0.84 ± 0.03 0.85 ± 0.04
E2 0.77 ± 0.08 0.85 ± 0.07 0.86 ± 0.05 0.84 ± 0.03 0.84 ± 0.05
A 0.75 ± 0.07 0.77 ± 0.09 0.64 ± 0.19 0.87 ± 0.05 0.79 ± 0.08
S 0.94 ± 0.03 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.03 0.95 ± 0.02
E1+A 0.90 ± 0.05 0.87 ± 0.02 0.85 ± 0.04 0.85 ± 0.06 0.87 ± 0.02
E2+A 0.85 ± 0.06 0.86 ± 0.06 0.88 ± 0.04 0.90 ± 0.07 0.88 ± 0.04
E1+S 0.94 ± 0.03 0.96 ± 0.02 0.95 ± 0.03 0.94 ± 0.05 0.94 ± 0.02
E2+S 0.94 ± 0.02 0.94 ± 0.03 0.94 ± 0.03 0.92 ± 0.06 0.94 ± 0.03

Bimodal

A+S 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.93 ± 0.04 0.94 ± 0.04

Trimodal
E1+A+S 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.91 ± 0.04 0.95 ± 0.03
E2+A+S 0.94 ± 0.02 0.93 ± 0.04 0.94 ± 0.03 0.93 ± 0.04 0.94 ± 0.04

E1: sEMGP1; E2: sEMGP2; A: accelerometry; S: speech.

sigmoid SVM, XGBoost and kNN); in 15%, sEMGP1 + Acc + Speech (RBF SVM), and
sEMGP1 + Speech (kNN); and in 30%, sEMGP2 + Acc + Speech (linear SVM), sEMGP2 +
Speech (linear, sigmoid and RB SVM), and Acc + Speech (sigmoid and RBF SVM, and
kNN).

Figure 6.7: Boxplot of the mode of hyperparameters of SVM with sigmoid and RBF ker-
nels. Scenarios with only horizontal lines indicate a lack of variation in hyperparameter
values. The y-axis of γ is shown in logarithmic scale, for visualization purposes.
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One final remark about classical classifiers: the mode of hyperparameters of the linear
SVM, sigmoid SVM, and XGBoost, was very stable for all test set partitions and classific-
ation scenarios. The most frequent values, i.e. the mode of the modes, were C = 1 for the
three SVM kernels and γ = 10−3 for the RBF and sigmoid kernels. There is not a rule of
thumb about what are the ideal C and γ, but low values of C can lead to wider margins but
more margin violations, whilst small γ values make the bell-shape of the kernel wider with
a smoother decision boundary, i.e., if a model is overfitting, reducing of C or γ can regu-
larize the model [Gero 22]. Linear SVM retrieved C = 1 for all scenarios regardless of the
partition. These values of C and γ indicate that, despite the good obtained performance,
the models seem to generalize well and they don’t seem to be overfitted. The RBF and
sigmoid SVM had comparable behavior of the hyperparameter C (see Figure 6.7), and the
most visible variation was retrieved by scenarios sEMGP2 + Acc, and sEMGP2 + Speech in
both cases. Even though the behavior of γ was different in both kernels, as mentioned, the
most frequent value was γ = 10−3 for both types of model.

Like the hyperparameter C for SVM, the XGBoost-related hyperparameters were very
stable. The most frequent maximum depth was D = 2, and the ratio of negative/positive
classes was R = 1. It has sense because the classes were perfectly balanced. In contrast,
the number of neighbors of the kNN was very variable in different scenarios and partitions
(see Figure 6.8). It is problematic but can be explained by the fact that the kNN has poor
tolerance to noise, to highly interdependent and redundant attributes, contrarily to SVM
and decision trees-based algorithms [Osis 17].

Figure 6.8: Boxplot of the mode of hyperparameters of kNN.

6.4.4. Deep multi-modal classification with GMU
Bearing in mind the results obtained in the previous section, three bimodal and one

trimodal scenarios were evaluated with the biomarkers selected in Section 4.4:

sEMGP1 + Speech

sEMGP1 + Acc

Acc + Speech
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sEMGP1 + Acc + Speech

sEMGP2 was not tested to avoid ignoring information about masseters.
These models retrieved better results than the classical ones. Table 6.8 shows the clas-

sification outcomes achieved by each scenario using different test set partitions. Like with
the classical algorithms, no dependence on the test set size was observed, even though with
10% the bimodal scenario of sEMGP1 + Speech retrieved perfect classification. For the
other partitions, the best performances were comparable, and from 15% to 40% there was
not a clear decrease. The performance was outstanding in general. There were cases with
some performance measure equal to 1.00, like the specificity of the trimodal scenario in
15%, and the precision in the bimodal scenario Acc + Speech (in 20% and 25%). The
lowest classification result was obtained always with the bimodal scenario sEMGP1 + Acc,
which is in the same line as previous results, i.e. the speech was the biosignal with the
highest performance followed by sEMGP1. But this does not mean that the result is poor;
in contrast, the AUC was equal to or higher than 0.88 regardless of the test set partition for
the aforementioned scenario.

On the other hand, the trimodal scenario or the bimodal sEMGP1 + Speech achieved
the highest classification performance within the different test set sizes, which strengthens
the conclusions about biomarkers and classical classifiers.

Table 6.8: Best classification performances of the GMU-based deep learning architectures,
for bimodal and trimodal scenarios. Best result per test set size are highlighted in bold.

Test size Scenario AUC F1 Accuracy Precision Sensitivity Specificity

10%

sEMGP1 + Speeh 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
sEMGP1 + Acc 0.91 ± 0.07 0.91 ± 0.08 0.91 ± 0.07 0.92 ± 0.07 0.90 ± 0.10 0.92 ± 0.07
Acc + Speech 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03 0.98 ± 0.05 1.00 ± 0.00 0.98 ± 0.06
sEMGP1 + Acc + Speech 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
sEMGP1 + Speeh 0.92 ± 0.05 0.92 ± 0.07 0.92 ± 0.05 0.95 ± 0.04 0.90 ± 0.14 0.95 ± 0.05
sEMGP1 + Acc 0.87 ± 0.03 0.86 ± 0.04 0.87 ± 0.03 0.90 ± 0.06 0.83 ± 0.10 0.90 ± 0.07
Acc + Speech 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.04 0.93 ± 0.04 0.97 ± 0.05

15%

sEMGP1 + Acc + Speech 0.97 ± 0.05 0.96 ± 0.05 0.97 ± 0.05 1.00 ± 0.00 0.93 ± 0.09 1.00 ± 0.00

20%

sEMGP1 + Speeh 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.99 ± 0.03 0.95 ± 0.03 0.99 ± 0.03
sEMGP1 + Acc 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.94 ± 0.07 0.85 ± 0.07 0.94 ± 0.08
Acc + Speech 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 1.00 ± 0.00 0.96 ± 0.03 1.00 ± 0.00
sEMGP1 + Acc + Speech 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.99 ± 0.03 0.92 ± 0.05 0.99 ± 0.03
sEMGP1 + Speeh 0.98 ± 0.02 0.97 ± 0.02 0.98 ± 0.02 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.03
sEMGP1 + Acc 0.91 ± 0.04 0.91 ± 0.05 0.91 ± 0.04 0.94 ± 0.02 0.88 ± 0.08 0.94 ± 0.02
Acc + Speech 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 1.00 ± 0.00 0.94 ± 0.05 1.00 ± 0.00

25%

sEMGP1 + Acc + Speech 0.97 ± 0.03 0.96 ± 0.03 0.97 ± 0.03 0.99 ± 0.02 0.94 ± 0.04 0.99 ± 0.02

30%

sEMGP1 + Speeh 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.98 ± 0.04 0.92 ± 0.05 0.98 ± 0.04
sEMGP1 + Acc 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.96 ± 0.04 0.87 ± 0.05 0.97 ± 0.03
Acc + Speech 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.96 ± 0.03 0.95 ± 0.03
sEMGP1 + Acc + Speech 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.99 ± 0.02 0.95 ± 0.03 0.99 ± 0.02
sEMGP1 + Speeh 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.98 ± 0.03 0.94 ± 0.05 0.98 ± 0.03
sEMGP1 + Acc 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.93 ± 0.05 0.89 ± 0.05 0.93 ± 0.05
Acc + Speech 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 0.96 ± 0.05 0.93 ± 0.06 0.96 ± 0.04

35%

sEMGP1 + Acc + Speech 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.02 0.91 ± 0.03 0.98 ± 0.02

40%

sEMGP1 + Speeh 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.99 ± 0.02 0.92 ± 0.03 0.99 ± 0.02
sEMGP1 + Acc 0.88 ± 0.03 0.87 ± 0.03 0.88 ± 0.03 0.96 ± 0.05 0.81 ± 0.04 0.96 ± 0.04
Acc + Speech 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.98 ± 0.03 0.95 ± 0.03 0.98 ± 0.03
sEMGP1 + Acc + Speech 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.99 ± 0.03 0.94 ± 0.03 0.99 ± 0.03

Did the GMU architecture outperform the results obtained with classical classifiers?
Yes, GMU achieved not only the highest performance measures, even though the differ-



6.4. Experiment #4: Multi-modality for dysphagia detection 109

ence was generally about 0.01 or 0.02, but also a smaller standard deviation than classical
classifiers.

On the other hand, the hyperparameters of the GMU were even more stable than in
SVM with different kernels or XGBoost. In SVM with different kernels and XGBoost, it
was evident that the best performances were obtained with a close range of hyperparamet-
ers (see Figures 6.7 and 6.8). However, the mode of the hidden layer size was always equal
to 64, and the mode of the learning rate was equal to 10−3 in the 99.99% of the assessed
scenarios.

6.4.5. A concluding analysis of multi-modality

In the last experiment performed in this thesis, the results obtained in the previous
ones were assessed with an increase in the database, and with a selection of biomarkers of
dysphagia, in order to conclude what is the best strategy to perform a dysphagia screening
procedure based on non-invasive biosignals.

Even though sEMGP1 had more acquisition channels than sEMGP2, retrieved informa-
tion about the oral phase with the masseter muscles, had bilaterality, and had information
about swallowing of solids, i.e. cracker, it exhibited a clear improvement of the classi-
fication results achieved by sEMGP2 only with linear SVM. Nonetheless, bearing in mind
that the acquisition protocol designed for Protocol #1 is more comprehensive than the one
designed in Protocol #2, it is more suitable to assess the swallowing process. Their results
were not comparable to bimodal or trimodal scenarios but, when a multi-modal scheme
was applied, the classification performance was increased, especially when combined with
speech. Actually, speech plays also a key role in the classification scenarios, regardless
of the algorithm. It was also less affected by the test set size than sEMGP1 and sEMGP2.
There were even cases with perfect performance, in particular with test set sizes of 10%
and 15%.

On the other hand, sEMGP2 achieved better classification results than Acc. Thus, even
though the mechanical dimension has been widely explored during the last decade and has
been reported as suitable to detect some kinematic events in videofluoroscopy [Dono 22a],
this work suggests that electrophysiological measures such as sEMG, could improve the
detection of events in an indirect way (out of the scope of the current thesis). Despite
the aforementioned ideas, Experiments #2 and #4 agree in the fact that bimodal scenarios
outperformed the classification results of the uni-modal ones.

Perhaps the most important contribution of Experiment #4 was to show that multi-
modality improved the classification results achieved by uni-modal scenarios. And in
such cases, the Acc helped to outperform the outcomes in both classical and deep learn-
ing schemes. This means that even though in uni-modal scenarios the Acc was not the
most suitable biosignal to perform dysphagia screening, in multi-modal scenarios it should
not be discarded. Additionally, bearing in mind that trimodal scenarios achieved, in gen-
eral, the best results, it is not recommendable to ignore the information on the mechanical
dimension of swallowing.

The fact that the classification was not severely affected by the cardinality of the test
set, indicates that despite the difficulties (risk of underfitting) produced by the reduction of
the training/validation dataset, classical classifiers with the proposed methodology had a
trade-off between bias and variance.



110 Chapter 6. Classification experiments

SVM and XGBoost demonstrated their suitability to discriminate against groups of in-
dividuals. Even though kNN also demonstrated this capability in terms of performance
measures, the high variance of hyperparameters and dependence on the classification scen-
ario, suggest the use of other alternative algorithms, such as the aforementioned ones.

GMU demonstrated to be less sensitive to changes in the test size than the classical
classifiers. Additionally, hyperparameters were very stable, more than the behavior evid-
enced in classical algorithms. Even though the amount of data collected is not small when
compared with other related works, it is evident that the size of the dataset is very small to
be considered to feed DL models. One way to avoid the training problem would be the use
of transfer learning strategies but there are no models trained on similar data. DL models
save the hand-crafted feature extraction process, but this would ignore the proposed bio-
markers of dysphagia since they were computed as engineering features. Similarly, DL
models are not intended to be used on small datasets.

Even though both schemes agree in the fact that the combination of three sources of in-
formation achieved the best classification results, the simplicity of classical models - SVM
with different kernels and XGBoost - in terms of the number of trainable parameters (tens
vs. millions) make the classical classifiers more affordable to perform dysphagia screening
when using the information of electrophysiological, mechanical and acoustic swallowing
dimensions. In this way, the best algorithm for automatic evaluation of dysphagia should
be the simplest one but with a clearer interpretability. This does not mean that the use of
other DL algorithms could not be used in the future to analyze the swallowing process, but
in such case will be a loss of the interpretability provided by the biomarkers proposed in
this thesis.



Chapter 7

Outlook

A conceptual definition of swallowing in terms of different dimensions was proposed
in this thesis: electrophysiological, mechanical, acoustic, neurological, cardiorespiratory,
symptomatic, and structural. From these, three dimensions were explored and evaluated by
the acquisition of non-invasive biosignals: the electrophysiological by sEMG, the mechan-
ical by Acc, and the acoustic by speech recordings. Each of them demanded the design of
particular protocols, which led to the proposal of three different acquisition moments: be-
fore, during, and after the swallowing process. sEMG and Acc were suitable to be acquired
during the swallowing process, so two protocols were designed for such signals: one using
only sEMG with six electrodes placed in masseters, supra- and infrahyoid muscles, per-
forming swallowing of different volumes of water and yogurt, saliva and cracker (namely
Protocol #1); and another one using three sEMG electrodes in supra- and infrahyoid, as
well as a triaxial accelerometer placed in the cricoid cartilage, performing the same swal-
lowing tasks but excluding the cracker to avoid the mastication noise in the Acc signal
(namely Protocol #2). The other protocol considered speech tasks (Protocol #3), i.e. sus-
tained vowels, rapid repetitions of the syllables pa-ta-ka, reading of a text, and a free mono-
logue in Spanish, before and after swallowing tasks. The first two protocols were designed
together with Speech & Language Pathologists, Physicians, and Engineers. Protocol #3
was adopted from [Vasq 18], oriented to the evaluation of Parkinson’s Disease patients, a
common underlying condition leading to dysphagia.

The results of this thesis showed that the multi-modality, in particular using the three
assessed biosignals, provides relevant information to discriminate between individuals with
healthy swallowing and patients with dysphagia. In this regard, the three swallowing di-
mensions must be considered to perform a non-invasive procedure oriented to dysphagia
screening. Notwithstanding, results obtained with the combination of swallowing tasks
suggest that the design of an sEMG-based screening methodology could require fewer
tasks and acquisition channels than those formulated originally. Bearing in mind that in-
formation of sEMG in Protocol #1 contains the same information in Protocol #2, it is re-
commended to unify such protocols, reducing the time demand and fatigue-like effects that
could difficult the execution of swallowing tasks and post-swallowing speech tasks. Even
though masseters retrieved good classification results in Experiment #1, masseters-related
biomarkers in such Experiment only contributed in yogurt5, and in Experiment #4 these
muscles hardly contributed anything as biomarkers. In this way, sEMG and Acc can be ac-
quired simultaneously using four sEMG channels (bilateral supra- and infrahyoid muscles),
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in combination with a tri-axial accelerometer at the level of the cricoid cartilage. Further-
more, the cracker can be eliminated from the protocol, because generate artifacts produced
by the masseteric activity not only in other sEMG signals but also in Acc. Additionally, this
activity did not provide a high amount of information in terms of biomarkers nor classific-
ation performance. Moreover, it is also recommended to eliminate 5 mL of yogurt because
the density of such consistency makes it hard to swallow the exact volume, and there is
always a loss of liquid adhered in the cup, reducing the control and the repeatability of this
swallowing task. This reinforces the elimination of the masseters measurements from the
acquisition protocol. On the other hand, the small volume of water should be kept because
it tended to produce a more accurate classification than the largest volumes. However, large
volumes should be also established in the protocol since they tend to produce piecemeal
deglutition in patients with dysphagia.

Regarding the speech, pre-swallowing recordings (evaluated in Experiment #3), and
post-swallowing recordings (evaluated in Experiment #4), are valuable for dysphagia
screening. However, it is not appropriate to perform both simultaneously, because it is an-
other important factor that contributes to time consumption and fatigue in patients. Bearing
in mind that several swallowing tasks must be performed to acquire sEMG and Acc sig-
nals, the execution of repeated speech recordings is so toilful for patients, especially when
they suffer from neurodegenerative diseases in advanced states. In this way, what would
be better to acquire in one single assessment session? Both have differential characterist-
ics. Pre-swallowing recordings allow capturing speech impairments without the effect of
swallowing tasks, i.e., effects of the underlying disease. In contrast, the post-swallowing
recordings measure the effect of such condition plus the cumulative effect of all performed
swallowing tasks. Depending on the goal of the evaluation, it could be better to perform
pre- or post-swallowing recordings but, in this case, the second one could be better to
obtain information about the effects of the swallowing tasks performed.

On the other hand, the execution of free monologues should not be performed unless
other co-variables be further analyzed deeply. Even though it worked well in the prosody
analysis in Experiment #3, i.e. retrieved energy-related biomarkers and contributed to clas-
sification, this task has high variability and is dependent on several factors such as cultural,
academic, personality-related, and the underlying disease and its state (more severe, more
reduced duration). In contrast, the text that volunteers read is well-standardized and it is
less prone to be affected by the mentioned factors. Notwithstanding, the free monologue
is very interesting to be addressed in the study of speech impairments, and this is an open
research field out of the scope of this thesis.

Another essential point is the good performance of the speech-related models in uni-
modal scenarios. If the acoustic dimension of swallowing retrieved comparable classific-
ation results for dysphagia screening than the multi-modal approach, why not to discard
both electrophysiological and mechanical dimensions, bearing in mind that it would re-
duce drastically the time consumption per session and the number of tasks, and it would
also ease the acquisition protocol? Well, even though the aforementioned ideas are valid,
they have deep flaws: 1) not all patients with dysphagia are verbal, i.e., there are patients
with limited capabilities to perform speech tasks. Some patients cannot produce a single
phoneme due to their clinical condition, e.g. individuals with late stages of progressive
neurogenic conditions. Thus, the speech-related protocol would not be suitable for such
kinds of patients, in contrast to electrophysiological and mechanical measurements; 2)
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the acoustic dimension cannot be evaluated during the swallowing process, just before or
after that. Subsequently, despite the information of this dimension demonstrated to have
paramount importance to evaluate dysphagia, it should not be the only one to characterize
patients with swallowing impairments properly. In other words, although important, the
classification performance should not be the only criterion to have in mind in the develop-
ment of a dysphagia screening procedure; other aspects such as the feasibility to perform
an acquisition in patients with different etiologies and characteristics must be also assessed
in the selection of the most suitable methodology.

One debatable aspect is the heterogeneous etiologies of the dysphagic patients in this
study. One could argue that putting all patients with dysphagia in just one set labeled as
"dysphagic" is a problematic "Total Evidence" approach, and division of the pathological
set into different etiologies is the correct way to address the hypothesis proposed in this
thesis. However, this argument faces two main problems: one methodological and another
practical. The methodological issue is related to the fact that, if an AI approach is pro-
posed to classify, for instance, patients with dysphagia produced by Parkinson’s disease
and by ALS, it would be very hard to figure out whether the model is discriminating the
presence of dysphagia (the goal of this thesis) or by the swallowing related symptoms pro-
duced by the specific etiology. Note the subtle but important difference between these two
ideas. The goal of this thesis was not to classify swallowing symptoms in specific neuro-
genic diseases, but it was to propose a screening approach for functional oropharyngeal
dysphagia produced by different neurological conditions. As Roden and Altman claim, "a
universal definition and assessment tool would be useful in formalizing dysphagia evalu-
ation"[Rode 13]. Additionally, the heterogeneity of the database helps the generalization
of results and reduces the risk of bias due to the kind of leading disease or condition.
On the other hand, the practical reason is related to the difficulty to recruit patients with
neuromuscular conditions. From the final database of 80 patients, only eight suffer from
neuromuscular conditions (inflammatory myopathy, dermatomyositis, muscular dystrophy,
and Rubinstein-Taybi syndrome). In this case, the number of volunteers with specific con-
ditions to create clusters or sets would be insufficient to have significant outcomes.

Finally, the demonstrated hypothesis was that the multi-modality with three swallowing
dimensions is suitable for dysphagia screening. Even though the findings are promising and
signify a contribution to the screening phase of the dysphagia evaluation, two main aspects
should be addressed in future works: (1) it is necessary to increase the database aiming to
improve the generalization capability of the results, to have a big sample size for different
neurogenic conditions, and to characterize biosignal-related differences according to each
of them; and (2) to compare the obtained results with the reference instrumental methods,
i.e. videofluoroscopy or fiberoptic endoscopy, aiming to correlate biosignals-related fea-
tures with physiological changes directly observed during swallowing tasks, as well as to
do epidemiological validations of the proposed method. Although each volunteer was eval-
uated by a speech and language pathologist and a neurologist, it is necessary to establish
the clinical reliability of the method in comparison with the reference test. This considera-
tion, even challenging, is being addressed, and -very- preliminary results are available in a
recent publication [Suar 22].



Chapter 8

Summary

This thesis explored the use of non-invasive multi-modal biosignals to evaluate the
automatic discrimination between healthy individuals and patients with functional oro-
pharyngeal dysphagia produced by neurological etiologies. Thus, this work was an ex-
ploratory diagnostic test accuracy study, i.e. it was in a discrimination phase intended to
characterize healthy and dysphagic individuals [Zhou 09]. This was a descriptive work
performed on tens of volunteers with known health status evaluated by specialized clinical
personnel and with a quantitative score (EAT-10). In this line, the work aimed to determine
whether the multi-modal evaluation has any diagnostic value, rather than to pretend repla-
cing the reference instrumental methods for diagnosis (VFSS or FEES). The main contri-
butions of this work can be summarized as follows: 1) this is the first work that explores
the combination of surface electromyography (sEMG), accelerometry (Acc), and speech
recordings to perform dysphagia screening, using classical machine learning and multi-
modal deep learning models; 2) several biomarkers for each biosignal were proposed, with
interpretability in different feature domains. The most comprehensive analyses of sEMG
and speech-related features were also published in the framework of this thesis; 3) different
affordable acquisition protocols were proposed, suitable to perform objective evaluations
in the consulting room; and 4) the conceptualization of swallowing dimensions was pro-
posed, and three of them were assessed experimentally in this work: electrophysiological,
mechanical, and acoustic.

The biomarkers were determined via AUCROC from features extracted in different
domains, according to the evaluated signal. In sEMG and Acc, time, frequency, time-
frequency, and non-linear dynamics domains were evaluated. In speech, the feature ana-
lysis was performed using the speech dimensions proposed in [Oroz 18] as a reference, i.e.
phonation, articulation, diadochokinesia (DDK), and prosody.

Electrophysiological biomarkers were retrieved especially from supra- and infrahyoid
muscles in the four explored domains: VAR, RMS, iEMG, LOG, WL, DASDV, and ZC
from the time domain; MNF, MDF, and PKF from the frequency domain; EA, ED1], ED2,
andWent from the time-frequency domain; and SampEn, LLE, HE, and DFA from the non-
linear dynamics domain. All biomarkers achieved 0.70 ≤ AUCROC ≤ 0.80. No significant
swallowing task dependence was found.

In comparison, the mechanical biomarkers were retrieved from the three Acc axes, i.e.
superior-inferior, anterior-posterior, and medial-lateral, but especially in the time domain:
RMS, integral, and LOG. Additionally, the MNP was also retrieved in some swallowing
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tasks (5 and 10 mL of water, saliva, and 20 mL of yogurt). Time-frequency and non-linear
dynamics domains retrieved scarce features. Contrarily to the electrophysiological case,
the number of mechanical biomarkers was small, and the AUCROC was also small (≤ 0.74).
Therefore, the mechanical biomarkers exhibited limited discrimination capability by them-
selves. Moreover, unlike the electrophysiological biomarkers, the mechanical ones were
retrieved mainly in saliva and 20 mL of yogurt. Thus, the evidence suggests that the Acc
signals provided more information when the swallow effort is high.

Equally important were the acoustic biomarkers, retrieved from all of the evaluated
speech dimensions: APQ, jitter, shimmer, F0, ∆F0, and logE extracted from the sus-
tained vowels in the phonation dimension; F1, ∆F1, ∆2F1, ∆F2, MFCC1, ∆MFCC1,
∆2MFCC1, ∆MFCC4, and MFCC5 in the articulation dimension from sustained vowels;
BBE1 and BBE2 (onset and offset), the onset of BBE3∼17, and offset of BBE6, BEE7,
and BBE[13∼18] also in the articulation dimension but from readings of a pre-established
text; syllables rate and logE from DDK tasks; and logE from a text in the prosody dimen-
sion. The AUCROC from these biomarkers achieved higher values than those extracted in
electrophysiological and mechanical dimensions (≤ 0.86). The phonation and articulation
evaluated from sustained vowels evidenced this good discrimination capability of the bio-
markers by itself, in particular the jitter, shimmer, ∆MFCC1, and ∆2MFCC1. Thus, even
though the evaluated speech tasks retrieved suitable biomarkers, sustained vowels provided
the highest amount of information not only in comparison with other speech tasks but also
with the other swallowing dimensions. Pre- and post-swallowing recordings retrieved con-
sistent biomarkers.

The results achieved in this work are relative to the classification of individual patients
rather than the classification of individual swallows, which is one of the main advantages,
bearing in mind that pathological individuals could have some normal swallows during the
protocol because of the small volumes assessed. The complex nature of the swallowing
process was evidenced by the number of muscle groups, accelerometry axes, and speech
tasks required to perform good classification. Uni-modal and multi-modal scenarios with
different combinations of biosignals were evaluated. The classification was performed
with and without feature selection in order to determine the discrimination capability of
the features selected as biomarkers when were used as input for different classifiers. Four
experiments with different databases were performed and summarized next.

Experiment #1 evaluated the electrophysiological dimension with sEMG in 60 indi-
viduals. SVM, XGBoost, and ANN were used as classifiers and the models were optim-
ized through a stratified nested cross-validation scheme without an external test set. The
best classification result was obtained in saliva recordings using time features feeding an
ANN: AUC = 0.86 ± 0.10, F1 = 0.83 ± 0.11, accuracy = 0.85 ± 0.10, precision =
0.97± 0.10, and sensitivity = 0.75± 0.16.

In Experiment #2 two uni-modal and one multi-modal scenarios were evaluated us-
ing the electrophysiological and mechanical dimensions. A reduced protocol of sEMG
was applied in combination with Acc signals, acquired in 60 individuals. SVM, XG-
Boost, kNN, and ANN were used as classifiers. Models were also optimized through a
stratified nested cross-validation scheme without an external test set. The multi-modal
scenario outperformed the uni-modal ones, and the best classification result was ob-
tained in 5 mL of yogurt using features selected by mRMR feeding an XGBoost model:
AUC = 0.87 ± 0.12, F1 = 0.89 ± 0.10, accuracy = 0.87 ± 0.12, precision = 0.84 ±
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0.16, and sensitivity = 0.97 ± 0.10. Even though the precision was lower than the ob-
tained in Experiment #1, the sensitivity was importantly increased.

Another uni-modal scenario using pre-swallowing speech recordings was evaluated in
Experiment #3 related to the acoustic dimension of swallowing. Sustained vowels, rapid
repetitions of pa-ta-ka, and a free monologue were acquired previous to swallowing tasks
in 92 individuals, oriented to the evaluation of speech dimensions, i.e. phonation, articu-
lation, diadochokinesia, and prosody. SVM, ANN, RF, LR, LDA, and DT were used as
classifiers and the models were also optimized through a stratified nested cross-validation
scheme without an external test set. Features were selected by hypothesis tests. The best
classification result using individual dimensions was obtained with articulation-related fea-
tures and RF, but it was outperformed by an ensemble of all speech dimensions and clas-
sifiers: AUC = 0.91 ± 0.10, F1 = 0.90 ± 0.11, accuracy = 0.90 ± 0.11, precision =
0.88± 0.17, and sensitivity = 0.93± 0.11.

The above mentioned experiments were performed with limited databases, which led
to the modeling without an external test set. I am aware that this could lead to biased or
limited results. Experiment (#4) addressed such limitations with the recruitment of 160
individuals matched by gender and age. Test sets were defined randomly but guaranteeing
the same number of healthy and dysphagic individuals, and different test set cardinalit-
ies were tried, from 10% to 40% of the entire database. The same uni-modal scenarios
of Experiments #1, #2, and #3 were also performed, as well as bi-modal and tri-modal
scenarios, using SVM with linear, RBF, and sigmoid kernels, XGBoost, and kNN. In con-
trast with Experiment #3, in this case, post-swallowing speech recordings were analyzed.
Uni-modal scenarios with sEMG and speech retrieved better results than in the previous
experiments, even though the performance differed according to the test set size. However,
this dependence had not a specific pattern. In general, the use of feature selection helped
to improve the classification results. Additionally, bi-modal and tri-modal configurations
outperformed the results obtained with uni-modal scenarios, with several cases in which
all performance measures were higher than 0.95 (actually, there were cases with some per-
formance measure equal to 1.00±0.00). The stability of the hyperparameters in SVM and
XGBoost was highlighted among scenarios.

The final scheme applied in Experiment #4 used a GMU algorithm, a DL-based archi-
tecture intended for multi-modal problems. Thus, bi-modal and tri-modal scenarios were
also evaluated with different test set sizes. Several configurations achieved high classific-
ation performance. The tri-modal scenario and bimodal with sEMGP1 + Speech achieved
measures ≥ 0.95 regardless of the test set size. The mentioned bimodal scenario achieved
perfect classification performance (all measures equal to 1.00 ± 0.00). More stable per-
formances were obtained with GMU than with classical classifiers, in terms of variations in
the test set size. However, the number of trainable parameters in this algorithm - millions -
could be cumbersome.

How are these results in comparison with the state of the art? Some studies have re-
ported the use of other signals such as bi- or tri-axial accelerometry in the neck with mi-
crophones, namely high-resolution cervical auscultation, in order to classify healthy (safe,
non-aspirated) and non-healthy (unsafe, aspirated) swallows. Even though this goal sounds
similar to the proposed in this thesis, there is a slight but relevant difference: it is not the
same to classify healthy and non-healthy swallows in one population (e.g. only patients
with dysphagia) or even in just one individual, as to classify one individual as healthy
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or non-healthy. Consequently, it is inconvenient to compare any performance measure of
such research with the ones obtained in this work. Just two works are methodologically
comparable: 1) Miyagi et al. (2020) used a highly unbalanced database with 27 healthy
young controls and 143 patients with dysphagia. With an SVM applied on swallowing
sounds, they achieved modest results in comparison with the ones obtained in this thesis:
F1 = 78.9%, accuracy = 77%, precision = 73.7%, and recall = 87% [Miya 20]; and 2)
Donohue, et al. (2021) reported the first study that used "HRCA (accelerometry based cer-
vical auscultation and swallowing sounds) to differentiate between healthy swallows and
swallows from people in a category of underlying disease that commonly results in dyspha-
gia”. They achieved impressive classification results with classical ML algorithms: accur-
acy and specificity of 99% and sensitivity of 100% [Dono 21b]. However, they also used an
unbalanced database with 20 patients with dysphagia and 51 healthy controls, so the results
could be biased and optimistic. Additionally, even in multi-modal (bi-modal), the contri-
bution of each swallowing dimension was scarcely discussed, and electrophysiological or
speech-related information was not acquired. Actually, to the best of my knowledge, there
are no available models of dysphagia in the field of computational para-linguistics, with the
exception of the study carried out by [Ipin 18], which focused on the detection of basal and
viscosity states in six patients with Parkinson’s disease, and such performed by [Zhao 22],
with modest results and a clear misunderstanding of the results obtained in Experiment #3,
with which they are compared. In summary, I believe this is one of the most comprehens-
ive works in terms of automatic analysis of changes in swallowing dimensions in patients
with dysphagia from an engineering point of view. The results of this work contribute to
the state of the art in the objective analysis of dysphagia and have the potential to support
the development of technology that can be effectively transferred to the consulting room.

To conclude, a proper tool for dysphagia evaluation should be reliable, non-invasive,
radiation-free, inexpensive, simple to operate, and provide qualitative and quantitative in-
formation [Vaim 09]. In this way, the computational deglutition based on the integration
and automatic analysis of Acc, sEMG, and speech signals could meet most of the estab-
lished requirements, and provide solutions both in screening (characterization of functional
causes of oropharyngeal dysphagia), as well as in follow-up activities. The multi-modal
approach proposed in this thesis could support the gold standard methods for dysphagia
diagnosis. Methodologies for the non-invasive evaluation of neurogenic or neuromuscular
oropharyngeal dysphagia are relevant and useful in the healthcare environment and the pro-
posed approach is potentially useful to determine specific therapy or to perform/document
the follow-up of patients, helping to reduce the number of fluoroscopy/endoscopy sessions,
especially in health systems of low- and middle-income countries with limited access to
VFSS, FEES, or other instrumental tests.
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Anhang



Appendix A

Statistical analysis of speech-related
features in Experiment #3

This appendix includes statistical comparisons between features from healthy individu-
als and patients with dysphagia in the Experiment #3. The p-value was adjusted with Bon-
ferroni correction. The effect size was estimated by η2. Comparisons between healthy
controls and patients are shown. Features extracted from sustained vowels that were used
for classification are highlighted in bold.
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Table A.1: Phonation related features extracted from the sustained vowels.

Feature
/a/ /e/ /i/ /o/ /u/

η2 p-value η2 p-value η2 p-value η2 p-value η2 p-value
APQ_mean 0.026 1 0.017 1 0.000 1 0.183 p<0.01 0.107 0.141
PPQ_mean 0.043 1 0.009 1 0.013 1 0.066 1 0.116 0.089
Jitter_mean 0.133 0.038 0.106 0.149 0.195 p<0.01 0.160 0.010 0.306 p<0.001
Shimmer_mean 0.088 0.354 0.040 1 0.021 1 0.261 p<0.001 0.230 p<0.001
F0_mean 0.000 1 0.001 1 0.011 1 0.006 1 0.013 1
∆F0_mean 0.000 1 0.006 1 0.009 1 0.004 1 0.094 0.265
∆2F0_mean 0.018 1 0.011 1 0.021 1 0.022 1 0.000 1
logE_mean 0.000 1 0.017 1 0.011 1 0.198 p<0.01 0.125 0.057
APQ_std 0.017 1 0.015 1 0.000 1 0.158 0.011 0.023 1
PPQ_std 0.049 1 0.006 1 0.001 1 0.029 1 0.071 0.844
Jitter_std 0.123 0.062 0.103 0.165 0.217 p<0.001 0.161 p<0.01 0.312 p<0.001
Shimmer_std 0.012 1 0.042 1 0.022 1 0.205 p<0.01 0.179 p<0.01
F0_std 0.075 0.688 0.125 0.057 0.217 p<0.001 0.175 p<0.01 0.341 p<0.001
∆F0_std 0.115 0.092 0.107 0.137 0.214 p<0.001 0.124 0.059 0.305 p<0.001
∆2F0_std 0.101 0.183 0.126 0.054 0.222 p<0.001 0.146 0.020 0.305 p<0.001
logE_std 0.051 1 0.193 p<0.01 0.170 p<0.01 0.246 p<0.001 0.270 p<0.001
APQ_skew 0.001 1 0.001 1 0.008 1 0.017 1 0.162 p<0.01
PPQ_skew 0.008 1 0.005 1 0.013 1 0.001 1 0.006 1
Jitter_skew 0.083 0.473 0.037 1 0.054 1 0.126 0.054 0.138 0.030
Shimmer_skew 0.028 1 0.000 1 0.009 1 0.026 1 0.012 1
F0_skew 0.087 0.381 0.055 1 0.174 p<0.01 0.114 0.099 0.152 0.015
∆F0_skew 0.002 1 0.008 1 0.076 0.672 0.045 1 0.188 p<0.01
∆2F0_skew 0.070 0.922 0.005 1 0.003 1 0.032 1 0.025 1
logE_skew 0.001 1 0.035 1 0.035 1 0.115 0.094 0.019 1
APQ_kurt 0.000 1 0.000 1 0.024 1 0.029 1 0.138 0.030
PPQ_kurt 0.004 1 0.003 1 0.017 1 0.003 1 0.002 1
Jitter_kurt 0.073 0.754 0.032 1 0.051 1 0.118 0.080 0.119 0.078
Shimmer_kurt 0.031 1 0.000 1 0.007 1 0.037 1 0.018 1
F0_kurt 0.035 1 0.014 1 0.036 1 0.185 p<0.01 0.179 p<0.01
∆F0_kurt 0.052 1 0.038 1 0.035 1 0.111 0.114 0.117 0.084
∆2F0_kurt 0.060 1 0.027 1 0.020 1 0.135 0.035 0.101 0.188
logE_kurt 0.000 1 0.071 0.863 0.067 1 0.150 0.017 0.061 1
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Table A.2: Mean of the articulation related features extracted from the sustained vowels.

Feature
/a/ /e/ /i/ /o/ /u/

η2 p-value η2 p-value η2 p-value η2 p-value η2 p-value
F1_mean 0.001 1 0.011 1 0.036 1 0.051 1 0.141 0.139
F2_mean 0.013 1 0.097 1 0.113 0.551 0.103 0.891 0.179 0.022
∆F1_mean 0.249 p<0.001 0.177 0.024 0.268 p<0.001 0.233 p<0.01 0.140 0.148
∆F2_mean 0.263 p<0.001 0.099 1 0.220 p<0.01 0.135 0.188 0.174 0.028
∆2F1_mean 0.012 1 0.003 1 0.047 1 0.031 1 0.003 1
∆2F2_mean 0.005 1 0.001 1 0.009 1 0.023 1 0.082 1
MFCC1_mean 0.012 1 0.001 1 0.000 1 0.032 1 0.001 1
MFCC2_mean 0.021 1 0.036 1 0.088 1 0.000 1 0.011 1
MFCC3_mean 0.049 1 0.032 1 0.005 1 0.000 1 0.000 1
MFCC4_mean 0.096 1 0.005 1 0.015 1 0.345 p<0.001 0.215 p<0.01
MFCC5_mean 0.040 1 0.277 p<0.001 0.188 0.014 0.133 0.205 0.196 p<0.01
MFCC6_mean 0.022 1 0.123 0.344 0.042 1 0.067 1 0.151 0.086
MFCC7_mean 0.201 p<0.01 0.003 1 0.123 0.344 0.014 1 0.014 1
MFCC8_mean 0.034 1 0.048 1 0.041 1 0.024 1 0.103 0.915
MFCC9_mean 0.009 1 0.016 1 0.024 1 0.048 1 0.157 0.063
MFCC10_mean 0.045 1 0.035 1 0.030 1 0.001 1 0.003 1
MFCC11_mean 0.018 1 0.104 0.868 0.057 1 0.001 1 0.005 1
MFCC12_mean 0.007 1 0.001 1 0.000 1 0.001 1 0.005 1
∆MFCC1_mean 0.017 1 0.020 1 0.003 1 0.024 1 0.003 1
∆MFCC2_mean 0.244 p<0.001 0.126 0.290 0.212 p<0.01 0.030 1 0.016 1
∆MFCC3_mean 0.022 1 0.006 1 0.017 1 0.042 1 0.084 1
∆MFCC4_mean 0.030 1 0.000 1 0.010 1 0.034 1 0.023 1
∆MFCC5_mean 0.059 1 0.003 1 0.010 1 0.007 1 0.021 1
∆MFCC6_mean 0.125 0.298 0.104 0.868 0.056 1 0.292 p<0.001 0.250 p<0.001
∆MFCC7_mean 0.041 1 0.002 1 0.001 1 0.017 1 0.002 1
∆MFCC8_mean 0.119 0.418 0.122 0.354 0.070 1 0.049 1 0.000 1
∆MFCC9_mean 0.000 1 0.056 1 0.010 1 0.205 p<0.01 0.136 0.177
∆MFCC10_mean 0.125 0.298 0.000 1 0.077 1 0.195 0.010 0.205 p<0.01
∆MFCC11_mean 0.121 0.374 0.016 1 0.016 1 0.009 1 0.119 0.418
∆MFCC12_mean 0.015 1 0.000 1 0.001 1 0.030 1 0.005 1
∆2MFCC1_mean 0.181 0.019 0.108 0.702 0.069 1 0.186 0.015 0.258 p<0.001
∆2MFCC2_mean 0.155 0.069 0.035 1 0.134 0.199 0.109 0.666 0.190 0.012
∆2MFCC3_mean 0.141 0.139 0.008 1 0.003 1 0.211 p<0.01 0.162 0.050
∆2MFCC4_mean 0.032 1 0.048 1 0.004 1 0.042 1 0.112 0.582
∆2MFCC5_mean 0.001 1 0.026 1 0.020 1 0.010 1 0.094 1
∆2MFCC6_mean 0.019 1 0.006 1 0.000 1 0.001 1 0.007 1
∆2MFCC7_mean 0.009 1 0.000 1 0.001 1 0.022 1 0.027 1
∆2MFCC8_mean 0.008 1 0.016 1 0.027 1 0.008 1 0.006 1
∆2MFCC9_mean 0.110 0.648 0.043 1 0.000 1 0.017 1 0.057 1
∆2MFCC10_mean 0.003 1 0.005 1 0.014 1 0.050 1 0.024 1
∆2MFCC11_mean 0.017 1 0.141 0.139 0.058 1 0.056 1 0.080 1
∆2MFCC12_mean 0.025 1 0.055 1 0.034 1 0.073 1 0.001 1
TKEO_mean 0.003 1 0.005 1 0.015 1 0.014 1
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Table A.3: Standard deviation of the articulation related features extracted from the sus-
tained vowels.

Feature
/a/ /e/ /i/ /o/ /u/

η2 p-value η2 p-value η2 p-value η2 p-value η2 p-value
F1_std 0.059 1 0.271 p<0.001 0.304 p<0.001 0.316 p<0.001 0.318 p<0.001
F2_std 0.140 0.144 0.026 1 0.014 1 0.236 p<0.01 0.268 p<0.001
∆F1_std 0.111 0.614 0.252 p<0.001 0.325 p<0.001 0.282 p<0.001 0.335 p<0.001
∆F2_std 0.202 p<0.01 0.031 1 0.083 1 0.242 p<0.01 0.292 p<0.001
∆2F1_std 0.094 1 0.281 p<0.001 0.290 p<0.001 0.298 p<0.001 0.289 p<0.001
∆2F2_std 0.172 0.030 0.026 1 0.091 1 0.254 p<0.001 0.227 p<0.01
MFCC1_std 0.107 0.761 0.221 p<0.01 0.221 p<0.01 0.231 p<0.01 0.280 p<0.001
MFCC2_std 0.035 1 0.053 1 0.050 1 0.248 p<0.001 0.303 p<0.001
MFCC3_std 0.127 0.282 0.044 1 0.014 1 0.219 p<0.01 0.091 1
MFCC4_std 0.035 1 0.078 1 0.055 1 0.169 0.035 0.190 0.013
MFCC5_std 0.002 1 0.201 p<0.01 0.152 0.080 0.032 1 0.085 1
MFCC6_std 0.038 1 0.027 1 0.066 1 0.104 0.846 0.045 1
MFCC7_std 0.011 1 0.021 1 0.071 1 0.017 1 0.055 1
MFCC8_std 0.049 1 0.026 1 0.052 1 0.026 1 0.043 1
MFCC9_std 0.088 1 0.015 1 0.004 1 0.020 1 0.062 1
MFCC10_std 0.021 1 0.016 1 0.009 1 0.029 1 0.013 1
MFCC11_std 0.053 1 0.030 1 0.017 1 0.089 1 0.005 1
MFCC12_std 0.058 1 0.065 1 0.008 1 0.041 1 0.040 1
∆MFCC1_std 0.241 p<0.01 0.259 p<0.001 0.235 p<0.01 0.293 p<0.001 0.372 p<0.001
∆MFCC2_std 0.009 1 0.030 1 0.061 1 0.205 p<0.01 0.262 p<0.001
∆MFCC3_std 0.049 1 0.007 1 0.001 1 0.094 1 0.044 1
∆MFCC4_std 0.003 1 0.012 1 0.021 1 0.015 1 0.080 1
∆MFCC5_std 0.028 1 0.099 1 0.027 1 0.020 1 0.116 0.480
∆MFCC6_std 0.000 1 0.012 1 0.084 1 0.082 1 0.073 1
∆MFCC7_std 0.022 1 0.003 1 0.012 1 0.034 1 0.035 1
∆MFCC8_std 0.010 1 0.035 1 0.092 1 0.086 1 0.098 1
∆MFCC9_std 0.013 1 0.015 1 0.012 1 0.020 1 0.039 1
∆MFCC10_std 0.013 1 0.030 1 0.053 1 0.186 0.015 0.116 0.480
∆MFCC11_std 0.040 1 0.049 1 0.074 1 0.141 0.139 0.070 1
∆MFCC12_std 0.040 1 0.065 1 0.114 0.522 0.106 0.781 0.073 1
∆2MFCC1_std 0.174 0.028 0.224 p<0.01 0.250 p<0.001 0.256 p<0.001 0.328 p<0.001
∆2MFCC2_std 0.001 1 0.007 1 0.016 1 0.145 0.116 0.138 0.162
∆2MFCC3_std 0.004 1 0.003 1 0.000 1 0.018 1 0.001 1
∆2MFCC4_std 0.039 1 0.009 1 0.006 1 0.011 1 0.000 1
∆2MFCC5_std 0.047 1 0.020 1 0.001 1 0.001 1 0.033 1
∆2MFCC6_std 0.003 1 0.002 1 0.059 1 0.022 1 0.042 1
∆2MFCC7_std 0.044 1 0.000 1 0.001 1 0.008 1 0.006 1
∆2MFCC8_std 0.002 1 0.029 1 0.054 1 0.066 1 0.053 1
∆2MFCC9_std 0.001 1 0.004 1 0.010 1 0.000 1 0.011 1
∆2MFCC10_std 0.003 1 0.019 1 0.044 1 0.138 0.162 0.079 1
∆2MFCC11_std 0.017 1 0.034 1 0.084 1 0.120 0.385 0.032 1
∆2MFCC12_std 0.022 1 0.069 1 0.122 0.354 0.135 0.188 0.066 1
TKEO_std 0.015 1 0.006 1 0.021 1 0.011 1
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Table A.4: Skewness of the articulation related features extracted from the sustained vow-
els.

Feature
/a/ /e/ /i/ /o/ /u/

η2 p-value η2 p-value η2 p-value η2 p-value η2 p-value
F1_skew 0.045 1 0.008 1 0.004 1 0.027 1 0.026 1
F2_skew 0.020 1 0.028 1 0.155 0.071 0.031 1 0.032 1
∆F1_skew 0.025 1 0.014 1 0.008 1 0.018 1 0.001 1
∆F2_skew 0.028 1 0.003 1 0.069 1 0.008 1 0.048 1
∆2F1_skew 0.065 1 0.042 1 0.009 1 0.002 1 0.007 1
∆2F2_skew 0.011 1 0.052 1 0.021 1 0.053 1 0.016 1
MFCC1_skew 0.014 1 0.001 1 0.004 1 0.003 1 0.038 1
MFCC2_skew 0.001 1 0.015 1 0.072 1 0.052 1 0.004 1
MFCC3_skew 0.003 1 0.033 1 0.021 1 0.077 1 0.147 0.103
MFCC4_skew 0.036 1 0.044 1 0.026 1 0.087 1 0.000 1
MFCC5_skew 0.129 0.244 0.012 1 0.005 1 0.064 1 0.095 1
MFCC6_skew 0.027 1 0.018 1 0.052 1 0.000 1 0.023 1
MFCC7_skew 0.035 1 0.088 1 0.053 1 0.095 1 0.053 1
MFCC8_skew 0.004 1 0.009 1 0.008 1 0.040 1 0.001 1
MFCC9_skew 0.015 1 0.006 1 0.000 1 0.001 1 0.000 1
MFCC10_skew 0.000 1 0.027 1 0.001 1 0.000 1 0.015 1
MFCC11_skew 0.009 1 0.001 1 0.000 1 0.046 1 0.018 1
MFCC12_skew 0.005 1 0.005 1 0.000 1 0.002 1 0.009 1
∆MFCC1_skew 0.031 1 0.001 1 0.002 1 0.019 1 0.034 1
∆MFCC2_skew 0.129 0.251 0.014 1 0.043 1 0.053 1 0.001 1
∆MFCC3_skew 0.026 1 0.137 0.172 0.068 1 0.207 p<0.01 0.000 1
∆MFCC4_skew 0.024 1 0.126 0.290 0.003 1 0.050 1 0.109 0.666
∆MFCC5_skew 0.019 1 0.027 1 0.027 1 0.101 0.989 0.132 0.211
∆MFCC6_skew 0.030 1 0.005 1 0.016 1 0.000 1 0.004 1
∆MFCC7_skew 0.001 1 0.003 1 0.001 1 0.004 1 0.006 1
∆MFCC8_skew 0.020 1 0.001 1 0.002 1 0.002 1 0.050 1
∆MFCC9_skew 0.025 1 0.032 1 0.006 1 0.057 1 0.029 1
∆MFCC10_skew 0.003 1 0.012 1 0.030 1 0.036 1 0.000 1
∆MFCC11_skew 0.013 1 0.007 1 0.000 1 0.000 1 0.017 1
∆MFCC12_skew 0.001 1 0.006 1 0.018 1 0.015 1 0.017 1
∆2MFCC1_skew 0.006 1 0.005 1 0.092 1 0.005 1 0.001 1
∆2MFCC2_skew 0.031 1 0.000 1 0.009 1 0.001 1 0.012 1
∆2MFCC3_skew 0.058 1 0.060 1 0.004 1 0.110 0.631 0.004 1
∆2MFCC4_skew 0.000 1 0.018 1 0.003 1 0.009 1 0.003 1
∆2MFCC5_skew 0.007 1 0.021 1 0.000 1 0.000 1 0.001 1
∆2MFCC6_skew 0.002 1 0.001 1 0.000 1 0.001 1 0.023 1
∆2MFCC7_skew 0.001 1 0.026 1 0.048 1 0.021 1 0.000 1
∆2MFCC8_skew 0.001 1 0.000 1 0.018 1 0.028 1 0.009 1
∆2MFCC9_skew 0.008 1 0.007 1 0.000 1 0.000 1 0.002 1
∆2MFCC10_skew 0.000 1 0.001 1 0.001 1 0.022 1 0.003 1
∆2MFCC11_skew 0.000 1 0.000 1 0.000 1 0.006 1 0.027 1
∆2MFCC12_skew 0.001 1 0.023 1 0.008 1 0.007 1 0.014 1
TKEO_skew 0.001 1 0.034 1 0.052 1 0.022 1 0.006 1
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Table A.5: Kurtosis of the articulation related features extracted from the sustained vowels.

Feature
/a/ /e/ /i/ /o/ /u/

η2 p-value η2 p-value η2 p-value η2 p-value η2 p-value
F1_kurt 0.003 1 0.017 1 0.002 1 0.010 1 0.000 1
F2_kurt 0.015 1 0.005 1 0.003 1 0.066 1 0.049 1
∆F1_kurt 0.000 1 0.066 1 0.020 1 0.021 1 0.006 1
∆F2_kurt 0.002 1 0.006 1 0.020 1 0.074 1 0.031 1
∆2F1_kurt 0.000 1 0.037 1 0.027 1 0.005 1 0.008 1
∆2F2_kurt 0.001 1 0.004 1 0.007 1 0.058 1 0.002 1
MFCC1_kurt 0.010 1 0.023 1 0.043 1 0.033 1 0.000 1
MFCC2_kurt 0.035 1 0.008 1 0.001 1 0.002 1 0.013 1
MFCC3_kurt 0.001 1 0.018 1 0.052 1 0.005 1 0.012 1
MFCC4_kurt 0.001 1 0.019 1 0.000 1 0.168 0.036 0.051 1
MFCC5_kurt 0.057 1 0.003 1 0.026 1 0.016 1 0.040 1
MFCC6_kurt 0.014 1 0.003 1 0.017 1 0.001 1 0.021 1
MFCC7_kurt 0.041 1 0.001 1 0.001 1 0.015 1 0.002 1
MFCC8_kurt 0.000 1 0.005 1 0.035 1 0.002 1 0.050 1
MFCC9_kurt 0.001 1 0.003 1 0.009 1 0.001 1 0.010 1
MFCC10_kurt 0.038 1 0.000 1 0.027 1 0.023 1 0.002 1
MFCC11_kurt 0.019 1 0.043 1 0.033 1 0.019 1 0.080 1
MFCC12_kurt 0.018 1 0.023 1 0.097 1 0.004 1 0.024 1
∆MFCC1_kurt 0.013 1 0.012 1 0.049 1 0.008 1 0.001 1
∆MFCC2_kurt 0.049 1 0.063 1 0.109 0.666 0.195 p<0.01 0.245 p<0.001
∆MFCC3_kurt 0.154 0.073 0.126 0.290 0.005 1 0.178 0.023 0.060 1
∆MFCC4_kurt 0.106 0.802 0.140 0.144 0.074 1 0.016 1 0.043 1
∆MFCC5_kurt 0.027 1 0.089 1 0.022 1 0.158 0.059 0.201 p<0.01
∆MFCC6_kurt 0.135 0.182 0.206 p<0.01 0.104 0.868 0.120 0.396 0.108 0.702
∆MFCC7_kurt 0.043 1 0.041 1 0.001 1 0.055 1 0.098 1
∆MFCC8_kurt 0.103 0.891 0.062 1 0.107 0.761 0.029 1 0.002 1
∆MFCC9_kurt 0.064 1 0.067 1 0.001 1 0.000 1 0.037 1
∆MFCC10_kurt 0.000 1 0.016 1 0.000 1 0.110 0.648 0.005 1
∆MFCC11_kurt 0.017 1 0.002 1 0.001 1 0.055 1 0.014 1
∆MFCC12_kurt 0.021 1 0.000 1 0.029 1 0.008 1 0.011 1
∆2MFCC1_kurt 0.001 1 0.001 1 0.018 1 0.011 1 0.031 1
∆2MFCC2_kurt 0.031 1 0.058 1 0.165 0.043 0.283 p<0.001 0.268 p<0.001
∆2MFCC3_kurt 0.098 1 0.118 0.430 0.005 1 0.158 0.059 0.010 1
∆2MFCC4_kurt 0.036 1 0.174 0.028 0.151 0.086 0.047 1 0.089 1
∆2MFCC5_kurt 0.051 1 0.097 1 0.013 1 0.056 1 0.115 0.494
∆2MFCC6_kurt 0.124 0.316 0.136 0.177 0.133 0.205 0.076 1 0.122 0.354
∆2MFCC7_kurt 0.020 1 0.045 1 0.001 1 0.059 1 0.064 1
∆2MFCC8_kurt 0.060 1 0.097 1 0.135 0.182 0.021 1 0.002 1
∆2MFCC9_kurt 0.038 1 0.055 1 0.012 1 0.000 1 0.031 1
∆2MFCC10_kurt 0.001 1 0.016 1 0.003 1 0.057 1 0.002 1
∆2MFCC11_kurt 0.053 1 0.052 1 0.001 1 0.070 1 0.006 1
∆2MFCC12_kurt 0.011 1 0.002 1 0.000 1 0.001 1 0.028 1
TKEO_kurt 0.015 1 0.052 1 0.051 1 0.001 1 0.101 1
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Table A.6: Bark-band energies in monologues.

Features
Onset Offset

η2 p-value η2 p-value
BBE_1_mean 0.364 p<0.001 0.243 p<0.001
BBE_2_mean 0.137 0.014 0.001 1
BBE_3_mean 0.030 1 0.059 0.726
BBE_4_mean 0.055 0.910 0.066 0.495
BBE_5_mean 0.043 1 0.060 0.696
BBE_6_mean 0.041 1 0.057 0.805
BBE_7_mean 0.042 1 0.043 1
BBE_8_mean 0.022 1 0.034 1
BBE_9_mean 0.016 1 0.020 1
BBE_10_mean 0.013 1 0.023 1
BBE_11_mean 0.011 1 0.024 1
BBE_12_mean 0.007 1 0.024 1
BBE_13_mean 0.018 1 0.060 0.682
BBE_14_mean 0.049 1 0.092 0.131
BBE_15_mean 0.001 1 0.036 1
BBE_16_mean 0.012 1 0.039 1
BBE_17_mean 0.032 1 0.043 1
BBE_18_mean 0.021 1 0.044 1
BBE_1_std 0.503 p<0.001 0.401 p<0.001
BBE_2_std 0.402 p<0.001 0.260 p<0.001
BBE_3_std 0.093 0.124 0.044 1
BBE_4_std 0.018 1 0.036 1
BBE_5_std 0.044 1 0.113 0.047
BBE_6_std 0.073 0.339 0.203 p<0.001
BBE_7_std 0.034 1 0.180 p<0.01
BBE_8_std 0.042 1 0.167 p<0.01
BBE_9_std 0.047 1 0.196 p<0.001
BBE_10_std 0.045 1 0.187 p<0.01
BBE_11_std 0.044 1 0.196 p<0.001
BBE_12_std 0.059 0.726 0.210 p<0.001
BBE_13_std 0.090 0.148 0.186 p<0.01
BBE_14_std 0.066 0.495 0.124 0.026
BBE_15_std 0.078 0.263 0.060 0.696
BBE_16_std 0.056 0.856 0.078 0.276
BBE_17_std 0.066 0.506 0.054 0.928
BBE_18_std 0.088 0.159 0.079 0.251
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Table A.7: DDK related features.

Feature η2 p-value
F0_var 0.001 1
logE_mean 0.150 p<0.01
logE_var 0.200 p<0.001
logE_max 0.000 1
DDK_rate 0.129 p<0.01
DDK_mean 0.189 p<0.001
DDK_reg 0.151 p<0.001
Pause_rate 0.034 0.391
Pauses_mean 0.027 0.565
Pause_reg 0.004 1

Table A.8: Prosody related features.

Feature η2 p-value
F0_max 0.010 1
F0_mean 0.020 1
F0_std 0.011 1
F0_skew 0.024 1
F0_kurt 0.020 1
E_max 0.003 1
logE_mean 0.095 0.031
logE_std 0.355 p<0.001
logE_skew 0.114 0.012
logE_kurt 0.018 1
V_rate 0.020 1
V_mean 0.020 1
V_std 0.002 1
V_skew 0.076 0.084
V_kurt 0.078 0.077
Sil_rate 0.028 1
Sil_mean 0.007 1
Sil_std 0.036 0.694
Sil_skew 0.041 0.523
Sil_kurt 0.042 0.495
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Wavelet denoising

Since detail coefficients of the DWT, i.e. cDj , have high frequency components, the
decreasing of noise content in such coefficients has been implemented as a strategy of
signal denoising. This procedure is based on an amplitude thresholding of cDj [Phin 09].
Different ways to find such threshold are described next:

Universal thresholding: It uses the fixed threshold THR =
√
2 log(N), where N is

the length of the signal x[n] [Phin 09].

Stein’s Unbiased Estimate of Risk (SURE): This method was proposed by Stein
(1981) [Stei 81]; it estimates and minimizes the risk for a particular threshold
value [Phin 09]. Let Y be a random variableN(0, 1), andX another random variable
N(µ, σ2), that [Stei 81]:

X = σnY + µ

where µ is the mean of a multivariate normal distribution with the identity as covari-
ance matrix, and usually σn = σ/

√
n (n is the dimension of the random variables).

Let also µ̂(X) = µ̂ be an estimator of µ, so the -squared error- loss is defined as
follows [Wass 06]:

L(µ̂, µ) =
n∑

i=1

(µ̂i − µi)
2 = ||µ̂− µ||2

Let the function g(X) = µ̂−X that g : Rn → Rn [Wass 06]. Thus, Stein defines an
unbiased estimator of the risk (or expected loss) of µ̂, as follows [Stei 81, Wass 06]:

SURE(µ̂) = nσ2
n + 2||g(X)||2 + 2σ2

n ▽ g(X)

where ▽g(X) = ∂g(x1, · · · , xn)/∂xi.

Heuristic SURE: It combines the universal and SURE thresholding methods
[Phin 09].
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Minimax thresholding: It makes a minimax estimate of the threshold, and it was also
proposed by Stein [Stei 81]. The minimax estimate of µ is given as follows:

µ̂ = X +▽ log f(X)

where f(X) is related to g(X) by the expression g(X) = ▽ log f(X).

Once the threshold is retrieved, there are two ways to apply it on the detail coefficients,
by hard and soft transformations:

cDj =

{
ϕ(cDj) if |cDj| > THRj

0 otherwise (B.1)

where THRj is the chosen threshold for the j-th detail coefficient, ϕ(cDj) = cDj

for the hard thresholding, and ϕ(cDj) = sgn(cDj)(cDj − THRj) for the soft threshold-
ing [Phin 09].

For sEMG and Acc signals, the following ranges of parameters were evaluated to max-
imize the SNR, according to [Phin 09],: mother wavelet (db2∼db9, sym3∼sym6, and
coif2∼coif5); number of decomposition levels (2∼9); threshold selection rule (universal,
minimax, the Stein’s unbiased risk estimate - SURE, and a heuristic variant of SURE);
type of threshold (hard/soft); and re-scaling with noise level determined from the first
coefficient, level-dependent and without re-scaling.



Appendix C

AUCROC of features in Experiment #4

This appendix includes the AUCROC retrieved by each feature selected for Experiment
#4, in Protocols #1 (only sEMG), #2 (sEMG+Acc), and #3 (post-swallowing speech). Only
values ≥ 0.7 were included.

Table C.1: AUCROC of the time domain features retrieved in Protocol #1 (only sEMG),
Experiment #4.

Task Muscle
VAR RMS iEMG log WL DASDV ZC MYOP TKEO

mean std mean std mean std max std max mean std max std min mean skew kurt mean std

Water5

LM
RSH
LSH
RIH 0.74 0.71
LIH 0.72

Water10

RSH
LSH
RIH 0.71 0.70
LIH

Water20

RM 0.72 0.71 0.71
LM
RSH 0.70 0.71
LSH 0.73 0.70 0.75 0.71
RIH 0.72 0.72 0.72 0.78 0.74
LIH 0.70 0.70

Saliva

RM
RSH 0.70 0.71
LSH 0.71 0.73 0.75 0.70 0.74 0.71 0.73 0.74 0.71 0.73 0.74 0.72
RIH 0.80
LIH 0.71

Yogurt5

RSH
LSH
RIH 0.73
LIH

Yogurt10

RSH
LSH 0.70
RIH 0.76 0.71 0.71 0.71 0.71 0.73 0.76
LIH

Yogurt20

RSH
LSH
RIH 0.76 0.73 0.76 0.77 0.73
LIH 0.70 0.72 0.73 0.70

Cracker

LM
RSH
LSH
RIH 0.77

RM: right masseter; LM: left masseter; RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; LIH: left infrahyoid
muscles.
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Table C.2: AUCROC of the frequency domain features retrieved in Protocol #1 (only
sEMG), Experiment #4.

Task Muscle
FreqRatio MeanPow MeanFreq MedianFreq PeakFreq

min mean std max min mean max min mean std max mean

Water5

LM 0.71
RSH
LSH
RIH 0.75 0.71 0.72 0.74 0.71 0.73 0.75
LIH 0.70

Water10

RSH
LSH
RIH 0.70 0.75 0.78 0.73 0.74 0.71 0.73 0.72
LIH 0.71 0.71

Water20

RM
LM 0.70
RSH
LSH
RIH 0.76 0.77 0.77 0.78 0.75 0.76 0.71 0.72 0.75
LIH 0.70 0.73 0.71 0.72 0.72 0.71 0.70

Saliva

RM 0.71
RSH 0.70
LSH 0.70
RIH 0.75 0.71 0.72
LIH 0.72

Yogurt5

RSH
LSH
RIH 0.76 0.75 0.72 0.72 0.71 0.73
LIH 0.73 0.73 0.72

Yogurt10

RSH
LSH
RIH 0.76 0.77 0.71 0.74 0.77 0.74 0.75 0.71 0.72 0.73
LIH 0.71

Yogurt20

RSH
LSH
RIH 0.72 0.76 0.73 0.70 0.71 0.71 0.72 0.71
LIH 0.70

Cracker

LM
RSH
LSH
RIH 0.72 0.72 0.71

RM: right masseter; LM: left masseter; RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH:
right infrahyoid muscles; LIH: left infrahyoid muscles.
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Table C.3: AUCROC of the time-frequency domain features retrieved in Protocol #1 (only
sEMG), Experiment #4.

Task Muscle
E_D1 E_D2 E_D3 E_D4 E_D5 E_A Wav_entropy

max mean std max mean std max mean mean skew kurt max std max mean std skew kurt max min mean std skew kurt

Water5

LM
RSH 0.70
LSH 0.73 0.75
RIH 0.74 0.71 0.72 0.75 0.71 0.72 0.74 0.72 0.73 0.74
LIH 0.73 0.71 0.70

Water10

RSH 0.73 0.76
LSH 0.72 0.79 0.79 0.75 0.72
RIH 0.73 0.73 0.71 0.74 0.73 0.72 0.70 0.73 0.71 0.71 0.72
LIH 0.75 0.71 0.72

Water20

RM
LM
RSH 0.71 0.70 0.73 0.75
LSH 0.71 0.73 0.73 0.74
RIH 0.70 0.77 0.76 0.75 0.74 0.74 0.74 0.76 0.75 0.74 0.77 0.75
LIH 0.72 0.76 0.74 0.75

Saliva

RM
RSH 0.72 0.73
LSH 0.70 0.74 0.72
RIH 0.72 0.72 0.72 0.74
LIH

Yogurt5

RSH 0.73 0.72 0.72
LSH 0.76
RIH 0.71 0.72 0.71 0.70 0.74 0.75 0.73 0.73 0.73
LIH 0.70 0.77 0.73 0.71 0.70

Yogurt10

RSH 0.71 0.71 0.70 0.70
LSH
RIH 0.71 0.72 0.71 0.71 0.72 0.71 0.70 0.74 0.72 0.74 0.70
LIH

Yogurt20

RSH 0.74 0.71
LSH 0.71 0.70
RIH 0.71 0.73 0.71 0.71
LIH 0.72 0.71 0.73

Cracker

LM
RSH 0.73
LSH 0.73 0.72 0.70 0.71 0.74
RIH

RM: right masseter; LM: left masseter; RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; LIH: left infrahyoid muscles.

Table C.4: AUCROC of the nonlinear dynamics domain features retrieved in Protocol #1
(only sEMG), Experiment #4.

Task Muscle
Shannon Sample_ent LZC Lyapunov_largest_exp Hurst_exp Corr_dim DFA

kurt max min mean std kurt min mean max min mean std max skew kurt kurt max mean skew kurt

Water5

LM
RSH
LSH
RIH 0.71 0.74 0.74 0.71 0.72
LIH 0.73 0.71

Water10

RSH
LSH 0.71 0.70 0.71 0.71
RIH 0.73 0.73 0.73 0.71
LIH

Water20

RM
LM
RSH
LSH 0.70 0.72 0.71
RIH 0.71 0.75 0.76 0.71 0.80 0.75
LIH 0.71 0.70 0.73

Saliva

RM
RSH
LSH 0.70 0.71 0.72
RIH 0.71 0.71 0.70 0.75
LIH

Yogurt5

RSH
LSH 0.72
RIH 0.73 0.72 0.70
LIH 0.75

Yogurt10

RSH
LSH
RIH 0.71 0.75 0.73 0.75 0.70
LIH

Yogurt20

RSH
LSH 0.73
RIH 0.72 0.70 0.72
LIH

Cracker

LM 0.72
RSH 0.73
LSH 0.71 0.73 0.72 0.73 0.73
RIH 0.76

RM: right masseter; LM: left masseter; RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; LIH: left infrahyoid muscles.
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Table C.5: AUCROC of the time domain features retrieved in Protocol #2 (sEMG+Acc),
Experiment #4.

Task Channel
VAR RMS iEMG log WL DASDV ZC W_amp MYOP TKEO

max mean std skew kurt max min mean std skew kurt max mean std kurt max min mean std max mean std skew kurt max mean std min max mean std max mean std skew kurt max mean std

Water5

RSH
LSH 0.70 0.71 0.75 0.71 0.76 0.75 0.70 0.71 0.72 0.75 0.77 0.75 0.72 0.75 0.76 0.70 0.70
RIH 0.71
AP 0.71 0.71 0.71 0.71

Water10

RSH 0.71
LSH 0.71 0.73 0.72 0.74 0.70 0.73 0.70 0.70 0.73 0.70 0.72 0.72 0.71 0.73 0.70
RIH 0.70 0.71 0.74
ML 0.71 0.71 0.71 0.73

Water20

RSH 0.70 0.71
LSH 0.71 0.71 0.71 0.72 0.78 0.79 0.80 0.78 0.78 0.78 0.78 0.78
RIH 0.71 0.71
AP
ML

Saliva

LSH 0.71 0.73 0.73 0.71 0.75 0.73 0.75 0.73 0.74 0.72 0.72 0.73 0.72 0.73 0.74 0.71 0.74 0.76 0.74 0.76 0.71 0.73 0.73
RIH 0.72
AP 0.71 0.71 0.71 0.73 0.73
SI 0.72 0.71 0.73 0.72 0.70 0.72 0.71
ML 0.70 0.72 0.72 0.71 0.72

Yogurt5

RSH 0.71 0.70
LSH 0.72 0.71 0.70 0.72 0.71 0.72 0.70 0.72 0.70 0.73 0.75 0.73 0.71 0.75 0.72 0.72 0.71
RIH 0.72 0.70 0.72
SI 0.70
ML

Yogurt10

RSH
LSH 0.73 0.71 0.73 0.70 0.74 0.74 0.74 0.73 0.75 0.74 0.70
RIH 0.76
ML 0.71

Yogurt20

RSH
LSH 0.70 0.70 0.72 0.70
RIH 0.73
AP 0.70 0.71 0.72
SI 0.71 0.72 0.71 0.74 0.73
ML 0.71 0.71 0.72 0.72 0.73 0.71 0.73

RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; AP: anterior-posterior axis; SI: superior-inferior axis; ML: medial-lateral axis.

Table C.6: AUCROC of the frequency domain features retrieved in Protocol #2
(sEMG+Acc), Experiment #4.

Task Channel
FreqRatio MeanPow MeanFreq MedianFreq PeakFreq

std max mean std skew kurt min kurt min mean kurt mean

Water5

RSH
LSH 0.70 0.71 0.75
RIH 0.71 0.72 0.71
AP 0.71

Water10

RSH
LSH 0.71 0.73
RIH 0.70
ML 0.70 0.71

Water20

RSH
LSH 0.70 0.70
RIH 0.70 0.71 0.72
AP
ML

Saliva

LSH 0.71 0.73 0.73 0.71
RIH
AP 0.70
SI 0.71
ML

Yogurt5

RSH
LSH 0.72 0.71
RIH 0.72 0.70 0.73
SI
ML 0.71

Yogurt10

RSH
LSH 0.73
RIH 0.75 0.73
ML

Yogurt20

RSH
LSH
RIH 0.70
AP 0.72
SI 0.71 0.72
ML 0.73 0.73

RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; AP: anterior-
posterior axis; SI: superior-inferior axis; ML: medial-lateral axis.
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Table C.7: AUCROC of the time-frequency domain features retrieved in Protocol #2
(sEMG+Acc), Experiment #4.

Task Channel
E_D1 E_D4 E_D5 E_D8 E_D9 E_A Wav_entropy

max mean std mean skew kurt max mean std skew max mean std min mean std skew mean skew mean std skew kurt

Water5

RSH 0.71 0.74 0.75 0.70
LSH 0.73 0.74 0.70
RIH 0.74 0.75 0.72 0.74
AP

Water10

RSH 0.71 0.70
LSH 0.71 0.74 0.71 0.73
RIH 0.72 0.73 0.71
ML 0.72

Water20

RSH 0.71 0.71 0.70 0.74 0.71
LSH 0.74 0.75 0.78 0.73 0.76 0.72
RIH 0.70 0.76 0.71 0.72 0.71
AP 0.72
ML 0.71 0.74 0.73

Saliva

LSH
RIH 0.73 0.71 0.72 0.71 0.72 0.70
AP
SI
ML

Yogurt5

RSH 0.70
LSH 0.74 0.76 0.80 0.71
RIH 0.73 0.76 0.73 0.70
SI
ML 0.73 0.71 0.71

Yogurt10

RSH 0.76
LSH 0.72 0.71 0.78 0.72 0.78 0.76 0.72
RIH 0.75 0.71
ML

Yogurt20

RSH 0.70 0.71 0.71 0.71
LSH 0.77 0.78 0.72
RIH 0.72 0.72 0.72 0.70
AP 0.74 0.71 0.77 0.75 0.71 0.71 0.70
SI
ML 0.71 0.71 0.72 0.72 0.72

RSH: right suprahyoid muscles; LSH: left suprahyoid muscles; RIH: right infrahyoid muscles; AP: anterior-posterior axis; SI: superior-inferior axis; ML: medial-lateral axis.
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Table C.8: AUCROC of the nonlinear dynamics domain features retrieved in Protocol #2
(sEMG+Acc), Experiment #4.

Task Channel
Sample_ent LZC Hurst_exp

kurt min skew

Water5

RSH
LSH
RIH
AP

Water10

RSH
LSH
RIH
ML

Water20

RSH
LSH
RIH
AP 0.72
ML

Saliva

LSH
RIH
AP
SI
ML 0.71

Yogurt5

RSH
LSH
RIH
SI
ML

Yogurt10

RSH
LSH
RIH
ML

Yogurt20

RSH
LSH
RIH
AP 0.72
SI
ML

RSH: right suprahyoid muscles; LSH: left supra-
hyoid muscles; RIH: right infrahyoid muscles; AP:
anterior-posterior axis; SI: superior-inferior axis;
ML: medial-lateral axis.



137

Table C.9: AUCROC of the phonation-related features retrieved in Protocol #3 (speech),
Experiment #4.

Feature Functional /a/ /e/ /i/ /o/ /u/

APQ

mean 0.72 0.78
std 0.70

skew 0.74
kurt 0.72 0.75

mean 0.80 0.81 0.81 0.83 0.84
std 0.76 0.80 0.82 0.80 0.81

skew 0.75 0.72 0.72 0.86 0.81
Jitter

kurt 0.75 0.72 0.73 0.85 0.80

Shimmer
mean 0.81 0.70 0.85 0.83
std 0.79 0.75 0.83 0.82
std 0.71 0.76 0.75 0.76 0.77

skew 0.74 0.70 0.74 0.70 0.73F0

kurt 0.80 0.72

∆F0

std 0.73 0.75 0.77 0.72 0.77
skew 0.73 0.72
kurt 0.76 0.72 0.72 0.85 0.79
std 0.73 0.75 0.76 0.72 0.76

∆2F0 kurt 0.73 0.70 0.71 0.84 0.77

logE
std 0.70 0.72 0.75 0.74 0.74
kurt 0.70
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Table C.10: AUCROC of the articulation-related features retrieved in sustained vowels of
Protocol #3 (speech), Experiment #4.

Feature Functional /a/ /e/ /i/ /o/ /u/
F1 std 0.73 0.71 0.76 0.73
F2 std 0.77 0.74

∆F1
std 0.73 0.77 0.74 0.82 0.80
kurt 0.73

mean 0.75 0.72 0.72
∆F2 std 0.81 0.83
∆2F1 std 0.75 0.79 0.75 0.79 0.78
∆2F2 std 0.80 0.80
MFCC1 std 0.76 0.75 0.78 0.78 0.81
MFCC2 mean 0.76

MFCC3
mean 0.80
std 0.77 0.81

mean 0.81 0.78
std 0.70 0.74

skew 0.70
MFCC4

kurt 0.78 0.70

MFCC5
mean 0.83 0.71
std 0.75 0.77 0.72 0.76

mean 0.72
MFCC6

skew 0.72 0.71

MFCC7
mean 0.71 0.75
std 0.76

skew 0.70
MFCC8 std 0.72 0.71
∆MFCC1 std 0.85 0.83 0.82 0.83 0.85

mean 0.72
∆MFCC2

skew 0.76

∆MFCC3
std 0.70 0.71

skew 0.80 0.71 0.79
kurt 0.71
std 0.72

∆MFCC4
skew 0.78 0.71 0.71

∆MFCC5
std 0.71 0.75

skew 0.70
std 0.72

∆MFCC6
kurt 0.73

∆MFCC8 std 0.71
∆MFCC11 mean 0.71

∆2MFCC1
mean 0.75 0.71 0.70 0.76 0.74
std 0.85 0.86 0.83 0.82 0.86

mean 0.73
∆2MFCC2

kurt 0.73
∆2MFCC3 mean 0.78 0.76
∆2MFCC9 kurt 0.73
∆2MFCC10 mean 0.70
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Table C.11: AUCROC of the articulation-related features retrieved during reading of a text
in Protocol #3 (reading of a text), Experiment #4.

Feature
Onset Offset

mean std mean std
BBE_1 0.80 0.81 0.79 0.83
BBE_2 0.73 0.83 0.75 0.85
BBE_3 0.78 0.81
BBE_6 0.71 0.77
BBE_7 0.70 0.74
BBE_8 0.71
BBE_10 0.71
BBE_11 0.72
BBE_12 0.72
BBE_13 0.76 0.72
BBE_14 0.77 0.76
BBE_15 0.72 0.71
BBE_16 0.74 0.72
BBE_17 0.71 0.72
BBE_18 0.71

Table C.12: AUCROC of the DDK and prosody-related features retrieved in Protocol #3,
Experiment #4.

Speech dimension Feature Functional AUCROC

DDK
DDK

mean 0.73
rate 0.78

logE var 0.74

Prosody logE
kurt 0.74
skew 0.72
std 0.83



Appendix D

Unimodal classification performance in
Experiment #4

This appendix includes the classification performance retrieved by unimodal scenarios
in Experiment #4, with different test set size.
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Table D.1: Classification results for unimodal scenarios using classical machine learning
algorithms and 10% of the database for test.

Scenario
Feature

selection Classifier
Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.78 ± 0.12 0.78 ± 0.11 0.78 ± 0.11 0.81 ± 0.13 0.78 ± 0.16 0.79 ± 0.16
SVM_RBF {1, 0.0001} 0.88 ± 0.08 0.85 ± 0.09 0.87 ± 0.08 1.00 ± 0.00 0.75 ± 0.15 1.00 ± 0.00
SVM_sigmoid {1, 0.001} 0.89 ± 0.08 0.870 ± 0.1 0.88 ± 0.08 1.00 ± 0.00 0.78 ± 0.16 1.00 ± 0.00
XGBoost {2, 1} 0.89 ± 0.12 0.87 ± 0.15 0.89 ± 0.12 0.94 ± 0.09 0.82 ± 0.21 0.95 ± 0.07

✓

kNN 23 0.85 ± 0.10 0.83 ± 0.12 0.85 ± 0.11 0.92 ± 0.12 0.78 ± 0.16 0.92 ± 0.11

SVM_lin 1 0.86 ± 0.12 0.85 ± 0.13 0.86 ± 0.12 0.89 ± 0.12 0.82 ± 0.17 0.90 ± 0.10
SVM_RBF {10, 0.0001} 0.83 ± 0.11 0.84 ± 0.11 0.83 ± 0.11 0.830 ± 0.1 0.85 ± 0.14 0.82 ± 0.12
SVM_sigmoid {1, 0.0001} 0.86 ± 0.12 0.85 ± 0.13 0.86 ± 0.12 0.92 ± 0.12 0.80 ± 0.19 0.92 ± 0.11
XGBoost {2, 1} 0.79 ± 0.13 0.74 ± 0.18 0.78 ± 0.13 0.87 ± 0.12 0.68 ± 0.26 0.90 ± 0.11

sEMGP1

✗

kNN 10 0.78 ± 0.12 0.82 ± 0.09 0.78 ± 0.12 0.77 ± 0.17 0.900 ± 0.1 0.670 ± 0.3

sEMGP2

✓

SVM_lin 1 0.77 ± 0.13 0.76 ± 0.15 0.77 ± 0.13 0.79 ± 0.14 0.750 ± 0.2 0.79 ± 0.16
SVM_RBF {10, 0.0001} 0.82 ± 0.14 0.80 ± 0.16 0.82 ± 0.14 0.87 ± 0.13 0.78 ± 0.22 0.87 ± 0.13
SVM_sigmoid {1, 0.01} 0.86 ± 0.14 0.83 ± 0.17 0.86 ± 0.14 0.96 ± 0.09 0.75 ± 0.23 0.98 ± 0.06
XGBoost {2, 1} 0.81 ± 0.15 0.78 ± 0.18 0.81 ± 0.15 0.86 ± 0.08 0.72 ± 0.26 0.90 ± 0.06
kNN 16 0.87 ± 0.09 0.870 ± 0.1 0.87 ± 0.09 0.89 ± 0.06 0.85 ± 0.14 0.90 ± 0.06

✗

SVM_lin 1 0.82 ± 0.13 0.80 ± 0.14 0.82 ± 0.13 0.87 ± 0.13 0.78 ± 0.22 0.87 ± 0.13
SVM_RBF {10, 0.0001} 0.78 ± 0.09 0.76 ± 0.12 0.78 ± 0.09 0.86 ± 0.13 0.72 ± 0.26 0.84 ± 0.14
SVM_sigmoid {1, 0.0001} 0.82 ± 0.14 0.80 ± 0.17 0.82 ± 0.14 0.89 ± 0.15 0.75 ± 0.25 0.90 ± 0.14
XGBoost {5, 1} 0.84 ± 0.12 0.80 ± 0.16 0.84 ± 0.12 0.94 ± 0.09 0.72 ± 0.22 0.95 ± 0.07
kNN 7 0.70 ± 0.14 0.760 ± 0.1 0.71 ± 0.14 0.66 ± 0.10 0.90 ± 0.10 0.51 ± 0.19
SVM_lin 1 0.84 ± 0.07 0.80 ± 0.10 0.84 ± 0.07 0.98 ± 0.06 0.70 ± 0.17 0.98 ± 0.06
SVM_RBF {1, 0.001} 0.84 ± 0.08 0.82 ± 0.11 0.84 ± 0.08 0.88 ± 0.07 0.78 ± 0.16 0.90 ± 0.06
SVM_sigmoid {1, 0.0001} 0.78 ± 0.17 0.67 ± 0.38 0.77 ± 0.18 0.71 ± 0.42 0.65 ± 0.37 0.90 ± 0.16
XGBoost {2, 1} 0.84 ± 0.09 0.82 ± 0.12 0.84 ± 0.09 0.88 ± 0.12 0.80 ± 0.19 0.87 ± 0.15

✓

kNN 30 0.82 ± 0.05 0.81 ± 0.07 0.82 ± 0.05 0.86 ± 0.02 0.78 ± 0.10 0.87 ± 0.01

SVM_lin 1 0.77 ± 0.06 0.75 ± 0.06 0.77 ± 0.06 0.85 ± 0.09 0.68 ± 0.07 0.87 ± 0.10
SVM_RBF {10, 0.0001} 0.81 ± 0.07 0.80 ± 0.06 0.81 ± 0.07 0.89 ± 0.11 0.72 ± 0.06 0.89 ± 0.12
SVM_sigmoid {1, 0.0001} 0.78 ± 0.11 0.800 ± 0.1 0.78 ± 0.11 0.76 ± 0.12 0.850 ± 0.1 0.72 ± 0.16
XGBoost {2, 1} 0.81 ± 0.06 0.81 ± 0.06 0.81 ± 0.06 0.81 ± 0.06 0.82 ± 0.07 0.79 ± 0.08

Acc

✗

kNN 29 0.71 ± 0.10 0.65 ± 0.17 0.710 ± 0.1 0.79 ± 0.13 0.57 ± 0.21 0.85 ± 0.10

Speech

✓

SVM_lin 1 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.06 0.98 ± 0.06 0.95 ± 0.07
XGBoost {2, 1} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
kNN 9 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.06 0.98 ± 0.06 0.95 ± 0.07

✗

SVM_lin 1 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.06 0.98 ± 0.06 0.95 ± 0.07
XGBoost {2, 1} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
kNN 9 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.06 0.98 ± 0.06 0.95 ± 0.07

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.2: Classification results for unimodal scenarios using classical machine learning
algorithms and 15% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.84 ± 0.05 0.84 ± 0.04 0.84 ± 0.05 0.87 ± 0.06 0.81 ± 0.07 0.88 ± 0.08
SVM_RBF {1, 0.0001} 0.81 ± 0.07 0.81 ± 0.05 0.82 ± 0.07 0.86 ± 0.15 0.79 ± 0.09 0.84 ± 0.20
SVM_sigmoid {1, 0.001} 0.84 ± 0.06 0.82 ± 0.09 0.84 ± 0.06 0.93 ± 0.07 0.76 ± 0.16 0.93 ± 0.08
XGBoost {2, 1} 0.84 ± 0.03 0.83 ± 0.04 0.84 ± 0.03 0.87 ± 0.05 0.81 ± 0.07 0.88 ± 0.05

✓

kNN 4 0.85 ± 0.07 0.84 ± 0.06 0.85 ± 0.07 0.91 ± 0.10 0.79 ± 0.04 0.91 ± 0.11

SVM_lin 1 0.79 ± 0.07 0.79 ± 0.06 0.79 ± 0.08 0.80 ± 0.13 0.79 ± 0.04 0.79 ± 0.15
SVM_RBF {10, 0.0001} 0.78 ± 0.03 0.79 ± 0.02 0.78 ± 0.03 0.76 ± 0.04 0.82 ± 0.06 0.74 ± 0.09
SVM_sigmoid {1, 0.0001} 0.78 ± 0.06 0.78 ± 0.05 0.78 ± 0.06 0.81 ± 0.10 0.75 ± 0.07 0.81 ± 0.14
XGBoost {2, 1} 0.74 ± 0.09 0.75 ± 0.07 0.75 ± 0.08 0.76 ± 0.11 0.75 ± 0.09 0.74 ± 0.18

sEMGP1

✗

kNN 11 0.71 ± 0.10 0.66 ± 0.19 0.71 ± 0.10 0.84 ± 0.19 0.63 ± 0.28 0.78 ± 0.32

sEMGP2

✓

SVM_lin 1 0.73 ± 0.11 0.72 ± 0.10 0.73 ± 0.11 0.77 ± 0.13 0.67 ± 0.09 0.79 ± 0.16
SVM_RBF {1, 0.001} 0.80 ± 0.11 0.81 ± 0.10 0.80 ± 0.11 0.77 ± 0.10 0.87 ± 0.11 0.74 ± 0.15
SVM_sigmoid {1, 0.01} 0.83 ± 0.09 0.84 ± 0.09 0.83 ± 0.09 0.83 ± 0.12 0.86 ± 0.07 0.81 ± 0.14
XGBoost {2, 1} 0.82 ± 0.10 0.83 ± 0.10 0.83 ± 0.10 0.80 ± 0.08 0.86 ± 0.14 0.79 ± 0.08
kNN 13 0.86 ± 0.10 0.87 ± 0.09 0.86 ± 0.10 0.84 ± 0.13 0.92 ± 0.06 0.81 ± 0.17

✗

SVM_lin 1 0.73 ± 0.15 0.74 ± 0.14 0.73 ± 0.15 0.72 ± 0.15 0.75 ± 0.13 0.70 ± 0.19
SVM_RBF {10, 0.0001} 0.69 ± 0.12 0.71 ± 0.11 0.70 ± 0.12 0.69 ± 0.13 0.74 ± 0.14 0.65 ± 0.18
SVM_sigmoid {1, 0.0001} 0.74 ± 0.15 0.74 ± 0.14 0.74 ± 0.15 0.75 ± 0.15 0.74 ± 0.14 0.73 ± 0.20
XGBoost {2, 1} 0.82 ± 0.11 0.82 ± 0.11 0.82 ± 0.11 0.80 ± 0.11 0.84 ± 0.11 0.79 ± 0.12
kNN 6 0.75 ± 0.07 0.78 ± 0.04 0.75 ± 0.07 0.71 ± 0.09 0.90 ± 0.11 0.60 ± 0.20
SVM_lin 1 0.72 ± 0.07 0.74 ± 0.06 0.72 ± 0.06 0.69 ± 0.05 0.80 ± 0.11 0.65 ± 0.06
SVM_RBF {1, 0.0001} 0.80 ± 0.06 0.81 ± 0.05 0.80 ± 0.06 0.77 ± 0.10 0.88 ± 0.12 0.72 ± 0.16
SVM_sigmoid {1, 0.0001} 0.73 ± 0.16 0.63 ± 0.36 0.72 ± 0.17 0.61 ± 0.35 0.66 ± 0.38 0.80 ± 0.15
XGBoost {2, 10} 0.78 ± 0.06 0.79 ± 0.06 0.78 ± 0.06 0.73 ± 0.06 0.88 ± 0.09 0.67 ± 0.10

✓

kNN 9 0.76 ± 0.07 0.77 ± 0.06 0.76 ± 0.07 0.75 ± 0.11 0.81 ± 0.11 0.71 ± 0.16

SVM_lin 1 0.76 ± 0.08 0.76 ± 0.07 0.76 ± 0.08 0.75 ± 0.07 0.78 ± 0.11 0.74 ± 0.10
SVM_RBF {10, 0.0001} 0.74 ± 0.03 0.74 ± 0.04 0.74 ± 0.04 0.73 ± 0.06 0.78 ± 0.11 0.71 ± 0.10
SVM_sigmoid {1, 0.0001} 0.67 ± 0.02 0.71 ± 0.03 0.67 ± 0.01 0.63 ± 0.02 0.81 ± 0.10 0.53 ± 0.07
XGBoost {2, 1} 0.71 ± 0.11 0.70 ± 0.14 0.71 ± 0.11 0.68 ± 0.07 0.74 ± 0.22 0.67 ± 0.05

Acc

✗

kNN 8 0.66 ± 0.09 0.69 ± 0.14 0.67 ± 0.08 0.62 ± 0.09 0.78 ± 0.22 0.55 ± 0.14

Speech

✓

SVM_lin 1 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.98 ± 0.04 0.88 ± 0.04 0.98 ± 0.04
SVM_RBF {10, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.05 0.91 ± 0.06 0.97 ± 0.05
SVM_sigmoid {1, 0.001} 0.94 ± 0.04 0.94 ± 0.03 0.94 ± 0.04 0.95 ± 0.07 0.93 ± 0.04 0.95 ± 0.08
XGBoost {2, 1} 0.89 ± 0.04 0.90 ± 0.04 0.90 ± 0.05 0.89 ± 0.08 0.91 ± 0.09 0.88 ± 0.10
kNN 4 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.92 ± 0.06 0.95 ± 0.05 0.92 ± 0.06

✗

SVM_lin 1 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.98 ± 0.04 0.88 ± 0.04 0.98 ± 0.04
SVM_RBF {10, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.05 0.91 ± 0.06 0.97 ± 0.05
SVM_sigmoid {1, 0.001} 0.94 ± 0.04 0.94 ± 0.03 0.94 ± 0.04 0.95 ± 0.07 0.93 ± 0.04 0.95 ± 0.08
XGBoost {2, 1} 0.89 ± 0.04 0.90 ± 0.04 0.90 ± 0.05 0.89 ± 0.08 0.91 ± 0.09 0.88 ± 0.10
kNN 4 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.92 ± 0.06 0.95 ± 0.05 0.92 ± 0.06

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.3: Classification results for unimodal scenarios using classical machine learning
algorithms and 20% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.85 ± 0.06 0.83 ± 0.07 0.85 ± 0.06 0.89 ± 0.09 0.79 ± 0.05 0.91 ± 0.07
SVM_RBF {1, 0.0001} 0.82 ± 0.05 0.78 ± 0.07 0.82 ± 0.05 0.94 ± 0.09 0.67 ± 0.08 0.96 ± 0.06
SVM_sigmoid {1, 0.0001} 0.75 ± 0.10 0.65 ± 0.18 0.75 ± 0.10 0.94 ± 0.09 0.53 ± 0.22 0.96 ± 0.06
XGBoost {2, 1} 0.84 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.86 ± 0.11 0.82 ± 0.11 0.85 ± 0.13

✓

kNN 4 0.85 ± 0.04 0.82 ± 0.05 0.85 ± 0.04 0.95 ± 0.08 0.73 ± 0.06 0.96 ± 0.06

SVM_lin 1 0.83 ± 0.07 0.82 ± 0.06 0.83 ± 0.07 0.87 ± 0.14 0.78 ± 0.02 0.88 ± 0.14
SVM_RBF {10, 0.0001} 0.83 ± 0.06 0.82 ± 0.05 0.83 ± 0.06 0.86 ± 0.12 0.79 ± 0.05 0.87 ± 0.12
SVM_sigmoid {1, 0.0001} 0.80 ± 0.06 0.78 ± 0.06 0.80 ± 0.06 0.87 ± 0.14 0.72 ± 0.05 0.88 ± 0.13
XGBoost {2, 1} 0.80 ± 0.07 0.78 ± 0.06 0.80 ± 0.07 0.84 ± 0.13 0.74 ± 0.07 0.85 ± 0.13

sEMGP1

✗

kNN 10 0.68 ± 0.12 0.65 ± 0.24 0.67 ± 0.12 0.66 ± 0.13 0.74 ± 0.34 0.61 ± 0.29

sEMGP2

✓

SVM_lin 1 0.77 ± 0.08 0.75 ± 0.07 0.76 ± 0.08 0.82 ± 0.15 0.71 ± 0.12 0.83 ± 0.15
SVM_RBF {1, 0.001} 0.85 ± 0.07 0.85 ± 0.07 0.85 ± 0.08 0.87 ± 0.16 0.85 ± 0.05 0.85 ± 0.17
SVM_sigmoid {1, 0.01} 0.86 ± 0.05 0.85 ± 0.05 0.86 ± 0.06 0.89 ± 0.13 0.82 ± 0.05 0.90 ± 0.13
XGBoost {2, 1} 0.84 ± 0.03 0.84 ± 0.02 0.84 ± 0.03 0.87 ± 0.12 0.82 ± 0.07 0.87 ± 0.13
kNN 13 0.84 ± 0.05 0.84 ± 0.06 0.84 ± 0.05 0.85 ± 0.10 0.83 ± 0.08 0.85 ± 0.10

✗

SVM_lin 1 0.81 ± 0.03 0.80 ± 0.03 0.81 ± 0.03 0.86 ± 0.10 0.75 ± 0.04 0.88 ± 0.09
SVM_RBF {10, 0.0001} 0.80 ± 0.04 0.80 ± 0.03 0.79 ± 0.04 0.79 ± 0.11 0.82 ± 0.07 0.78 ± 0.14
SVM_sigmoid {1, 0.0001} 0.84 ± 0.02 0.82 ± 0.03 0.83 ± 0.03 0.88 ± 0.08 0.78 ± 0.08 0.89 ± 0.07
XGBoost {2, 1} 0.83 ± 0.05 0.82 ± 0.05 0.83 ± 0.05 0.87 ± 0.11 0.79 ± 0.05 0.88 ± 0.11
kNN 5 0.77 ± 0.06 0.79 ± 0.06 0.76 ± 0.07 0.70 ± 0.09 0.93 ± 0.10 0.60 ± 0.16
SVM_lin 1 0.75 ± 0.07 0.74 ± 0.06 0.75 ± 0.07 0.77 ± 0.09 0.72 ± 0.05 0.78 ± 0.13
SVM_RBF {1, 0.001} 0.77 ± 0.09 0.78 ± 0.08 0.77 ± 0.09 0.75 ± 0.13 0.82 ± 0.13 0.72 ± 0.20
SVM_sigmoid {1, 0.0001} 0.64 ± 0.19 0.59 ± 0.34 0.62 ± 0.20 0.53 ± 0.35 0.73 ± 0.42 0.55 ± 0.50
XGBoost {2, 1} 0.87 ± 0.05 0.87 ± 0.05 0.87 ± 0.05 0.86 ± 0.04 0.88 ± 0.08 0.86 ± 0.05

✓

kNN 29 0.79 ± 0.08 0.79 ± 0.08 0.79 ± 0.08 0.79 ± 0.08 0.79 ± 0.09 0.80 ± 0.08

SVM_lin 1 0.80 ± 0.08 0.79 ± 0.08 0.80 ± 0.08 0.83 ± 0.11 0.76 ± 0.08 0.83 ± 0.11
SVM_RBF {10, 0.0001} 0.81 ± 0.05 0.79 ± 0.06 0.81 ± 0.05 0.82 ± 0.05 0.77 ± 0.08 0.84 ± 0.04
SVM_sigmoid {1, 0.0001} 0.78 ± 0.05 0.77 ± 0.05 0.78 ± 0.05 0.78 ± 0.05 0.77 ± 0.08 0.78 ± 0.08
XGBoost {2, 1} 0.77 ± 0.06 0.75 ± 0.07 0.77 ± 0.06 0.82 ± 0.08 0.69 ± 0.09 0.85 ± 0.08

Acc

✗

kNN 6 0.73 ± 0.05 0.72 ± 0.08 0.73 ± 0.05 0.73 ± 0.07 0.73 ± 0.18 0.72 ± 0.16

Speech

✓

SVM_lin 1 0.94 ± 0.03 0.94 ± 0.04 0.94 ± 0.03 1.00 ± 0.00 0.89 ± 0.06 1.00 ± 0.00
SVM_RBF {10, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.98 ± 0.03 0.90 ± 0.04 0.99 ± 0.03
SVM_sigmoid {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.98 ± 0.03 0.90 ± 0.04 0.99 ± 0.03
XGBoost {2, 1} 0.91 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.07 0.90 ± 0.08 0.91 ± 0.07
kNN 10 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 1.00 ± 0.00 0.90 ± 0.04 1.00 ± 0.00

✗

SVM_lin 1 0.94 ± 0.03 0.94 ± 0.04 0.94 ± 0.03 1.00 ± 0.00 0.89 ± 0.06 1.00 ± 0.00
SVM_RBF {10, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.98 ± 0.03 0.90 ± 0.04 0.99 ± 0.03
SVM_sigmoid {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.98 ± 0.03 0.90 ± 0.04 0.99 ± 0.03
XGBoost {2, 1} 0.91 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.07 0.90 ± 0.08 0.91 ± 0.07
kNN 10 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 1.00 ± 0.00 0.90 ± 0.04 1.00 ± 0.00

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.4: Classification results for unimodal scenarios using classical machine learning
algorithms and 25% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.85 ± 0.09 0.84 ± 0.08 0.85 ± 0.09
SVM_RBF {1, 0.0001} 0.81 ± 0.05 0.79 ± 0.05 0.80 ± 0.05 0.87 ± 0.08 0.73 ± 0.12 0.88 ± 0.08
SVM_sigmoid {1, 0.001} 0.79 ± 0.07 0.75 ± 0.11 0.79 ± 0.07 0.90 ± 0.09 0.67 ± 0.16 0.91 ± 0.08
XGBoost {2, 1} 0.81 ± 0.07 0.80 ± 0.09 0.81 ± 0.07 0.86 ± 0.06 0.75 ± 0.12 0.88 ± 0.04

✓

kNN 4 0.83 ± 0.04 0.82 ± 0.05 0.83 ± 0.04 0.88 ± 0.05 0.77 ± 0.08 0.89 ± 0.05

SVM_lin 1 0.83 ± 0.06 0.81 ± 0.07 0.83 ± 0.06 0.88 ± 0.03 0.75 ± 0.12 0.90 ± 0.03
SVM_RBF {10, 0.0001} 0.82 ± 0.03 0.81 ± 0.04 0.81 ± 0.03 0.84 ± 0.05 0.78 ± 0.10 0.85 ± 0.06
SVM_sigmoid {1, 0.0001} 0.81 ± 0.05 0.79 ± 0.06 0.81 ± 0.05 0.89 ± 0.03 0.72 ± 0.11 0.91 ± 0.03
XGBoost {2, 1} 0.78 ± 0.05 0.76 ± 0.06 0.78 ± 0.05 0.81 ± 0.07 0.73 ± 0.11 0.83 ± 0.08

sEMGP1

✗

kNN 6 0.69 ± 0.08 0.67 ± 0.16 0.68 ± 0.08 0.73 ± 0.18 0.73 ± 0.32 0.64 ± 0.32

sEMGP2

✓

SVM_lin 1 0.79 ± 0.02 0.79 ± 0.03 0.79 ± 0.02 0.81 ± 0.06 0.77 ± 0.08 0.82 ± 0.08
SVM_RBF {1, 0.01} 0.83 ± 0.07 0.83 ± 0.07 0.83 ± 0.07 0.86 ± 0.12 0.80 ± 0.08 0.86 ± 0.12
SVM_sigmoid {1, 0.001} 0.85 ± 0.05 0.84 ± 0.06 0.85 ± 0.05 0.89 ± 0.08 0.80 ± 0.08 0.90 ± 0.07
XGBoost {2, 1} 0.83 ± 0.05 0.83 ± 0.05 0.83 ± 0.05 0.85 ± 0.06 0.82 ± 0.08 0.85 ± 0.07
kNN 12 0.85 ± 0.06 0.84 ± 0.07 0.85 ± 0.06 0.88 ± 0.08 0.80 ± 0.08 0.89 ± 0.07

✗

SVM_lin 1 0.83 ± 0.05 0.82 ± 0.06 0.82 ± 0.05 0.84 ± 0.07 0.81 ± 0.12 0.85 ± 0.09
SVM_RBF {10, 0.0001} 0.80 ± 0.06 0.80 ± 0.06 0.80 ± 0.06 0.80 ± 0.08 0.81 ± 0.10 0.79 ± 0.10
SVM_sigmoid {1, 0.0001} 0.82 ± 0.04 0.81 ± 0.05 0.81 ± 0.05 0.84 ± 0.10 0.79 ± 0.10 0.84 ± 0.12
XGBoost {2, 1} 0.84 ± 0.07 0.83 ± 0.07 0.84 ± 0.07 0.87 ± 0.09 0.79 ± 0.10 0.88 ± 0.09
kNN 4 0.78 ± 0.05 0.79 ± 0.06 0.78 ± 0.06 0.75 ± 0.09 0.86 ± 0.11 0.71 ± 0.13
SVM_lin 1 0.80 ± 0.05 0.79 ± 0.07 0.79 ± 0.05 0.79 ± 0.05 0.81 ± 0.14 0.78 ± 0.08
SVM_RBF {1, 0.0001} 0.73 ± 0.11 0.77 ± 0.08 0.72 ± 0.13 0.68 ± 0.13 0.92 ± 0.08 0.54 ± 0.28
SVM_sigmoid {1, 0.0001} 0.75 ± 0.14 0.65 ± 0.37 0.74 ± 0.15 0.61 ± 0.34 0.71 ± 0.40 0.78 ± 0.13
XGBoost {2, 1} 0.88 ± 0.05 0.88 ± 0.05 0.88 ± 0.05 0.87 ± 0.06 0.90 ± 0.06 0.86 ± 0.07

✓

kNN 11 0.85 ± 0.05 0.86 ± 0.04 0.85 ± 0.05 0.82 ± 0.05 0.89 ± 0.03 0.80 ± 0.08

SVM_lin 1 0.79 ± 0.05 0.78 ± 0.07 0.79 ± 0.05 0.83 ± 0.07 0.75 ± 0.14 0.84 ± 0.08
SVM_RBF {10, 0.0001} 0.81 ± 0.04 0.79 ± 0.06 0.80 ± 0.05 0.83 ± 0.09 0.78 ± 0.15 0.83 ± 0.11
SVM_sigmoid {1, 0.0001} 0.75 ± 0.07 0.78 ± 0.05 0.75 ± 0.08 0.74 ± 0.15 0.87 ± 0.16 0.64 ± 0.27
XGBoost {2, 1} 0.79 ± 0.07 0.79 ± 0.08 0.79 ± 0.07 0.78 ± 0.05 0.81 ± 0.14 0.77 ± 0.06

Acc

✗

kNN 6 0.79 ± 0.06 0.77 ± 0.09 0.79 ± 0.07 0.84 ± 0.09 0.74 ± 0.18 0.84 ± 0.14

Speech

✓

SVM_lin 1 0.95 ± 0.05 0.94 ± 0.06 0.95 ± 0.05 0.99 ± 0.03 0.90 ± 0.11 0.99 ± 0.02
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.00 0.92 ± 0.06 1.00 ± 0.00
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.00 0.92 ± 0.06 1.00 ± 0.00
XGBoost {2, 1} 0.90 ± 0.04 0.89 ± 0.05 0.90 ± 0.04 0.89 ± 0.05 0.90 ± 0.11 0.89 ± 0.07
kNN 5 0.93 ± 0.05 0.93 ± 0.06 0.93 ± 0.05 0.96 ± 0.05 0.90 ± 0.07 0.97 ± 0.05

✗

SVM_lin 1 0.95 ± 0.05 0.94 ± 0.06 0.95 ± 0.05 0.99 ± 0.03 0.90 ± 0.11 0.99 ± 0.02
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.00 0.92 ± 0.06 1.00 ± 0.00
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.00 0.92 ± 0.06 1.00 ± 0.00
XGBoost {2, 1} 0.90 ± 0.04 0.89 ± 0.05 0.90 ± 0.04 0.89 ± 0.05 0.90 ± 0.11 0.89 ± 0.07
kNN 5 0.93 ± 0.05 0.93 ± 0.06 0.93 ± 0.05 0.96 ± 0.05 0.90 ± 0.07 0.97 ± 0.05

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.5: Classification results for unimodal scenarios using classical machine learning
algorithms and 30% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.83 ± 0.06 0.83 ± 0.06 0.82 ± 0.07 0.79 ± 0.10 0.88 ± 0.02 0.77 ± 0.12
SVM_RBF {1, 0.0001} 0.80 ± 0.04 0.79 ± 0.04 0.80 ± 0.04 0.84 ± 0.11 0.76 ± 0.11 0.85 ± 0.13
SVM_sigmoid {1, 0.001} 0.84 ± 0.08 0.80 ± 0.11 0.84 ± 0.07 0.97 ± 0.04 0.69 ± 0.16 0.98 ± 0.03
XGBoost {2, 1} 0.86 ± 0.05 0.85 ± 0.05 0.86 ± 0.05 0.88 ± 0.08 0.82 ± 0.04 0.89 ± 0.08

✓

kNN 9 0.83 ± 0.06 0.81 ± 0.07 0.83 ± 0.06 0.90 ± 0.08 0.73 ± 0.07 0.93 ± 0.06

SVM_lin 1 0.84 ± 0.06 0.83 ± 0.06 0.84 ± 0.06 0.87 ± 0.08 0.80 ± 0.06 0.89 ± 0.07
SVM_RBF {10, 0.0001} 0.81 ± 0.05 0.81 ± 0.05 0.81 ± 0.05 0.81 ± 0.07 0.81 ± 0.04 0.81 ± 0.07
SVM_sigmoid {1, 0.0001} 0.84 ± 0.05 0.82 ± 0.06 0.84 ± 0.05 0.90 ± 0.10 0.75 ± 0.06 0.92 ± 0.08
XGBoost {2, 1} 0.80 ± 0.03 0.79 ± 0.03 0.80 ± 0.03 0.82 ± 0.06 0.77 ± 0.04 0.84 ± 0.06

sEMGP1

✗

kNN 8 0.67 ± 0.12 0.59 ± 0.28 0.68 ± 0.12 0.80 ± 0.18 0.62 ± 0.36 0.72 ± 0.36

sEMGP2

✓

SVM_lin 1 0.79 ± 0.05 0.79 ± 0.04 0.79 ± 0.05 0.78 ± 0.07 0.80 ± 0.05 0.78 ± 0.09
SVM_RBF {10, 0.001} 0.81 ± 0.07 0.81 ± 0.08 0.81 ± 0.07 0.79 ± 0.04 0.82 ± 0.11 0.80 ± 0.02
SVM_sigmoid {1, 0.001} 0.85 ± 0.05 0.85 ± 0.06 0.85 ± 0.05 0.84 ± 0.03 0.85 ± 0.09 0.85 ± 0.03
XGBoost {2, 1} 0.83 ± 0.03 0.83 ± 0.04 0.83 ± 0.03 0.82 ± 0.04 0.84 ± 0.06 0.82 ± 0.03
kNN 5 0.85 ± 0.06 0.84 ± 0.07 0.85 ± 0.06 0.84 ± 0.04 0.85 ± 0.10 0.85 ± 0.04

✗

SVM_lin 1 0.82 ± 0.06 0.81 ± 0.05 0.82 ± 0.06 0.84 ± 0.08 0.79 ± 0.04 0.84 ± 0.08
SVM_RBF {10, 0.001} 0.78 ± 0.07 0.79 ± 0.06 0.78 ± 0.07 0.75 ± 0.09 0.84 ± 0.05 0.72 ± 0.12
SVM_sigmoid {1, 0.0001} 0.85 ± 0.02 0.85 ± 0.03 0.85 ± 0.02 0.85 ± 0.02 0.84 ± 0.05 0.86 ± 0.03
XGBoost {2, 1} 0.85 ± 0.01 0.84 ± 0.02 0.85 ± 0.01 0.85 ± 0.02 0.84 ± 0.04 0.86 ± 0.02
kNN 4 0.77 ± 0.04 0.79 ± 0.03 0.76 ± 0.04 0.70 ± 0.03 0.93 ± 0.06 0.61 ± 0.09
SVM_lin 1 0.76 ± 0.07 0.74 ± 0.07 0.76 ± 0.07 0.80 ± 0.11 0.70 ± 0.08 0.82 ± 0.13
SVM_RBF {1, 0.0001} 0.74 ± 0.10 0.77 ± 0.07 0.74 ± 0.11 0.71 ± 0.11 0.87 ± 0.11 0.61 ± 0.28
SVM_sigmoid {1, 0.001} 0.72 ± 0.14 0.63 ± 0.36 0.72 ± 0.15 0.60 ± 0.34 0.69 ± 0.39 0.76 ± 0.21
XGBoost {2, 1} 0.79 ± 0.07 0.81 ± 0.04 0.79 ± 0.07 0.77 ± 0.11 0.86 ± 0.09 0.72 ± 0.19

✓

kNN 30 0.80 ± 0.04 0.80 ± 0.04 0.80 ± 0.04 0.77 ± 0.06 0.85 ± 0.07 0.75 ± 0.08

SVM_lin 1 0.76 ± 0.06 0.76 ± 0.05 0.76 ± 0.06 0.77 ± 0.10 0.75 ± 0.08 0.76 ± 0.11
SVM_RBF {1, 0.0001} 0.76 ± 0.05 0.77 ± 0.04 0.76 ± 0.05 0.75 ± 0.10 0.80 ± 0.09 0.72 ± 0.15
SVM_sigmoid {1, 0.0001} 0.70 ± 0.05 0.73 ± 0.03 0.69 ± 0.05 0.65 ± 0.06 0.86 ± 0.06 0.53 ± 0.12
XGBoost {2, 1} 0.74 ± 0.04 0.74 ± 0.05 0.74 ± 0.04 0.75 ± 0.10 0.76 ± 0.12 0.73 ± 0.15

Acc

✗

kNN 24 0.68 ± 0.09 0.66 ± 0.10 0.69 ± 0.09 0.72 ± 0.14 0.62 ± 0.13 0.75 ± 0.16

Speech

✓

SVM_lin 1 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.06 0.97 ± 0.03
SVM_RBF {10, 0.001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.05 0.97 ± 0.03
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.97 ± 0.03 0.95 ± 0.06 0.97 ± 0.03
XGBoost {2, 1} 0.93 ± 0.06 0.92 ± 0.07 0.92 ± 0.06 0.93 ± 0.03 0.92 ± 0.12 0.93 ± 0.04
kNN 10 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.98 ± 0.03 0.94 ± 0.04 0.98 ± 0.03

✗

SVM_lin 1 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.06 0.97 ± 0.03
SVM_RBF {10, 0.001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.05 0.97 ± 0.03
SVM_sigmoid {1, 0.001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.97 ± 0.03 0.95 ± 0.06 0.97 ± 0.03
XGBoost {2, 1} 0.93 ± 0.06 0.92 ± 0.07 0.92 ± 0.06 0.93 ± 0.03 0.92 ± 0.12 0.93 ± 0.04
kNN 10 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.98 ± 0.03 0.94 ± 0.04 0.98 ± 0.03

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.6: Classification results for unimodal scenarios using classical machine learning
algorithms and 35% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.82 ± 0.05 0.83 ± 0.04 0.83 ± 0.05 0.84 ± 0.07 0.82 ± 0.07 0.82 ± 0.13
SVM_RBF {1, 0.0001} 0.83 ± 0.03 0.82 ± 0.04 0.83 ± 0.03 0.87 ± 0.08 0.79 ± 0.11 0.86 ± 0.12
SVM_sigmoid {1, 0.001} 0.80 ± 0.14 0.72 ± 0.30 0.79 ± 0.17 0.97 ± 0.04 0.63 ± 0.30 0.97 ± 0.04
XGBoost {2, 1} 0.83 ± 0.06 0.83 ± 0.08 0.83 ± 0.07 0.84 ± 0.05 0.82 ± 0.12 0.83 ± 0.06

✓

kNN 18 0.83 ± 0.04 0.83 ± 0.04 0.84 ± 0.04 0.88 ± 0.04 0.79 ± 0.06 0.88 ± 0.05

SVM_lin 1 0.86 ± 0.07 0.86 ± 0.06 0.86 ± 0.07 0.89 ± 0.10 0.83 ± 0.07 0.88 ± 0.11
SVM_RBF {10, 0.0001} 0.83 ± 0.04 0.83 ± 0.05 0.83 ± 0.04 0.84 ± 0.05 0.82 ± 0.07 0.84 ± 0.06
SVM_sigmoid {1, 0.0001} 0.82 ± 0.04 0.81 ± 0.04 0.82 ± 0.05 0.86 ± 0.07 0.77 ± 0.04 0.86 ± 0.08
XGBoost {2, 1} 0.77 ± 0.06 0.77 ± 0.06 0.77 ± 0.06 0.80 ± 0.09 0.75 ± 0.07 0.79 ± 0.11

sEMGP1

✗

kNN 6 0.70 ± 0.12 0.65 ± 0.25 0.69 ± 0.13 0.79 ± 0.18 0.68 ± 0.33 0.72 ± 0.32

sEMGP2

✓

SVM_lin 1 0.77 ± 0.05 0.77 ± 0.05 0.77 ± 0.05 0.80 ± 0.10 0.74 ± 0.08 0.79 ± 0.12
SVM_RBF {10, 0.001} 0.83 ± 0.07 0.84 ± 0.06 0.84 ± 0.07 0.84 ± 0.08 0.84 ± 0.07 0.83 ± 0.11
SVM_sigmoid {1, 0.01} 0.87 ± 0.05 0.86 ± 0.05 0.87 ± 0.05 0.89 ± 0.05 0.84 ± 0.07 0.89 ± 0.05
XGBoost {2, 1} 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.05 0.85 ± 0.07 0.84 ± 0.07 0.84 ± 0.08
kNN 12 0.86 ± 0.07 0.86 ± 0.08 0.86 ± 0.07 0.88 ± 0.06 0.85 ± 0.11 0.87 ± 0.08

✗

SVM_lin 1 0.82 ± 0.09 0.82 ± 0.09 0.82 ± 0.09 0.85 ± 0.13 0.79 ± 0.10 0.85 ± 0.14
SVM_RBF {10, 0.001} 0.80 ± 0.06 0.81 ± 0.06 0.81 ± 0.06 0.81 ± 0.12 0.84 ± 0.13 0.77 ± 0.17
SVM_sigmoid {1, 0.0001} 0.84 ± 0.06 0.84 ± 0.05 0.84 ± 0.06 0.87 ± 0.10 0.81 ± 0.07 0.87 ± 0.12
XGBoost {5, 1} 0.85 ± 0.07 0.85 ± 0.08 0.85 ± 0.07 0.87 ± 0.08 0.84 ± 0.12 0.86 ± 0.09
kNN 5 0.75 ± 0.05 0.76 ± 0.09 0.75 ± 0.05 0.76 ± 0.11 0.80 ± 0.21 0.71 ± 0.19
SVM_lin 1 0.69 ± 0.08 0.71 ± 0.07 0.69 ± 0.08 0.70 ± 0.06 0.73 ± 0.12 0.66 ± 0.13
SVM_RBF {1, 0.0001} 0.65 ± 0.10 0.62 ± 0.22 0.64 ± 0.11 0.73 ± 0.18 0.69 ± 0.35 0.61 ± 0.35
SVM_sigmoid {1, 0.001} 0.72 ± 0.13 0.62 ± 0.35 0.71 ± 0.14 0.61 ± 0.35 0.65 ± 0.39 0.79 ± 0.14
XGBoost {2, 1} 0.79 ± 0.03 0.80 ± 0.03 0.79 ± 0.03 0.77 ± 0.06 0.85 ± 0.11 0.72 ± 0.10

✓

kNN 30 0.75 ± 0.06 0.76 ± 0.07 0.75 ± 0.06 0.74 ± 0.06 0.81 ± 0.16 0.69 ± 0.13

SVM_lin 1 0.76 ± 0.05 0.77 ± 0.04 0.76 ± 0.05 0.76 ± 0.05 0.78 ± 0.08 0.74 ± 0.08
SVM_RBF {1, 0.0001} 0.76 ± 0.05 0.76 ± 0.05 0.75 ± 0.05 0.75 ± 0.05 0.79 ± 0.12 0.72 ± 0.08
SVM_sigmoid {1, 0.0001} 0.72 ± 0.04 0.75 ± 0.03 0.72 ± 0.04 0.69 ± 0.06 0.85 ± 0.11 0.59 ± 0.11
XGBoost {2, 1} 0.75 ± 0.08 0.76 ± 0.07 0.75 ± 0.08 0.76 ± 0.07 0.76 ± 0.11 0.74 ± 0.10

Acc

✗

kNN 8 0.66 ± 0.07 0.65 ± 0.14 0.65 ± 0.08 0.66 ± 0.07 0.69 ± 0.23 0.63 ± 0.16

Speech

✓

SVM_lin 1 0.91 ± 0.05 0.92 ± 0.03 0.92 ± 0.04 0.91 ± 0.06 0.93 ± 0.04 0.89 ± 0.11
SVM_RBF {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.93 ± 0.04 0.95 ± 0.02
SVM_sigmoid {1, 0.001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.96 ± 0.05 0.93 ± 0.04 0.96 ± 0.05
XGBoost {2, 1} 0.92 ± 0.02 0.92 ± 0.01 0.92 ± 0.02 0.91 ± 0.04 0.93 ± 0.04 0.90 ± 0.05
kNN 5 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.03 0.93 ± 0.03 0.95 ± 0.04

✗

SVM_lin 1 0.91 ± 0.05 0.92 ± 0.03 0.92 ± 0.04 0.91 ± 0.06 0.93 ± 0.04 0.89 ± 0.11
SVM_RBF {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.93 ± 0.04 0.95 ± 0.02
SVM_sigmoid {1, 0.001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.96 ± 0.05 0.93 ± 0.04 0.96 ± 0.05
XGBoost {2, 1} 0.92 ± 0.02 0.92 ± 0.01 0.92 ± 0.02 0.91 ± 0.04 0.93 ± 0.04 0.90 ± 0.05
kNN 5 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.03 0.93 ± 0.03 0.95 ± 0.04

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table D.7: Classification results for unimodal scenarios using classical machine learning
algorithms and 40% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

SVM_lin 1 0.83 ± 0.04 0.84 ± 0.05 0.84 ± 0.04 0.83 ± 0.05 0.85 ± 0.07 0.82 ± 0.06
SVM_RBF {1, 0.0001} 0.85 ± 0.07 0.83 ± 0.10 0.84 ± 0.08 0.93 ± 0.06 0.76 ± 0.16 0.93 ± 0.06
SVM_sigmoid {1, 0.001} 0.80 ± 0.15 0.72 ± 0.25 0.79 ± 0.15 0.95 ± 0.05 0.63 ± 0.31 0.96 ± 0.04
XGBoost {2, 1} 0.84 ± 0.03 0.84 ± 0.04 0.84 ± 0.03 0.86 ± 0.05 0.83 ± 0.09 0.85 ± 0.06

✓

kNN 14 0.87 ± 0.05 0.87 ± 0.06 0.87 ± 0.05 0.91 ± 0.06 0.83 ± 0.09 0.92 ± 0.06

SVM_lin 1 0.85 ± 0.05 0.85 ± 0.05 0.85 ± 0.05 0.89 ± 0.07 0.82 ± 0.08 0.89 ± 0.08
SVM_RBF {10, 0.0001} 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.86 ± 0.05 0.85 ± 0.07 0.85 ± 0.05
SVM_sigmoid {1, 0.0001} 0.87 ± 0.03 0.87 ± 0.04 0.87 ± 0.03 0.93 ± 0.04 0.81 ± 0.07 0.94 ± 0.03
XGBoost {2, 1} 0.80 ± 0.03 0.80 ± 0.02 0.80 ± 0.02 0.81 ± 0.08 0.81 ± 0.07 0.79 ± 0.10

sEMGP1

✗

kNN 5 0.68 ± 0.12 0.65 ± 0.17 0.67 ± 0.12 0.79 ± 0.20 0.68 ± 0.33 0.67 ± 0.42

sEMGP2

✓

SVM_lin 1 0.77 ± 0.07 0.80 ± 0.05 0.77 ± 0.07 0.76 ± 0.10 0.85 ± 0.04 0.70 ± 0.14
SVM_RBF {1, 0.01} 0.83 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 0.82 ± 0.04 0.87 ± 0.02 0.80 ± 0.04
SVM_sigmoid {1, 0.001} 0.84 ± 0.04 0.85 ± 0.04 0.84 ± 0.04 0.83 ± 0.06 0.87 ± 0.02 0.81 ± 0.07
XGBoost {2, 1} 0.82 ± 0.04 0.83 ± 0.04 0.82 ± 0.04 0.82 ± 0.06 0.85 ± 0.05 0.79 ± 0.09
kNN 9 0.83 ± 0.06 0.83 ± 0.06 0.83 ± 0.06 0.84 ± 0.08 0.83 ± 0.06 0.82 ± 0.09

✗

SVM_lin 1 0.83 ± 0.06 0.84 ± 0.05 0.83 ± 0.06 0.85 ± 0.10 0.83 ± 0.04 0.83 ± 0.12
SVM_RBF {1, 0.001} 0.80 ± 0.05 0.83 ± 0.04 0.81 ± 0.05 0.77 ± 0.07 0.90 ± 0.05 0.71 ± 0.11
SVM_sigmoid {1, 0.0001} 0.80 ± 0.05 0.80 ± 0.05 0.80 ± 0.05 0.81 ± 0.07 0.80 ± 0.07 0.80 ± 0.07
XGBoost {2, 1} 0.81 ± 0.08 0.82 ± 0.06 0.81 ± 0.08 0.81 ± 0.12 0.85 ± 0.03 0.77 ± 0.16
kNN 9 0.74 ± 0.09 0.73 ± 0.15 0.74 ± 0.09 0.75 ± 0.10 0.77 ± 0.25 0.71 ± 0.18
SVM_lin 1 0.74 ± 0.05 0.76 ± 0.02 0.74 ± 0.05 0.73 ± 0.09 0.80 ± 0.07 0.67 ± 0.17
SVM_RBF {1, 0.0001} 0.62 ± 0.12 0.39 ± 0.36 0.61 ± 0.14 0.68 ± 0.41 0.39 ± 0.43 0.86 ± 0.20
SVM_sigmoid {1, 0.001} 0.79 ± 0.04 0.81 ± 0.04 0.79 ± 0.04 0.78 ± 0.05 0.84 ± 0.07 0.75 ± 0.06
XGBoost {2, 1} 0.79 ± 0.04 0.79 ± 0.03 0.79 ± 0.04 0.79 ± 0.05 0.80 ± 0.05 0.77 ± 0.08

✓

kNN 30 0.79 ± 0.04 0.80 ± 0.05 0.79 ± 0.04 0.80 ± 0.02 0.80 ± 0.08 0.79 ± 0.03

SVM_lin 1 0.74 ± 0.06 0.75 ± 0.05 0.74 ± 0.06 0.75 ± 0.07 0.76 ± 0.05 0.72 ± 0.10
SVM_RBF {10, 0.0001} 0.78 ± 0.03 0.79 ± 0.04 0.78 ± 0.03 0.77 ± 0.03 0.81 ± 0.09 0.75 ± 0.05
SVM_sigmoid {1, 0.0001} 0.73 ± 0.05 0.76 ± 0.04 0.73 ± 0.05 0.72 ± 0.07 0.82 ± 0.09 0.65 ± 0.14
XGBoost {2, 1} 0.73 ± 0.03 0.74 ± 0.02 0.73 ± 0.03 0.73 ± 0.05 0.75 ± 0.02 0.71 ± 0.08

Acc

✗

kNN 4 0.64 ± 0.05 0.60 ± 0.16 0.64 ± 0.06 0.69 ± 0.08 0.61 ± 0.31 0.67 ± 0.26

Speech

✓

SVM_lin 1 0.93 ± 0.03 0.92 ± 0.03 0.93 ± 0.03 0.95 ± 0.04 0.91 ± 0.08 0.95 ± 0.04
SVM_RBF {1, 0.001} 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.08
SVM_sigmoid {1, 0.001} 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 0.97 ± 0.04 0.93 ± 0.07 0.97 ± 0.04
XGBoost {2, 1} 0.90 ± 0.04 0.91 ± 0.04 0.90 ± 0.04 0.90 ± 0.05 0.91 ± 0.07 0.89 ± 0.05
kNN 4 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.95 ± 0.03 0.90 ± 0.06 0.95 ± 0.03

✗

SVM_lin 1 0.93 ± 0.03 0.92 ± 0.03 0.93 ± 0.03 0.95 ± 0.04 0.91 ± 0.08 0.95 ± 0.04
SVM_RBF {1, 0.001} 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.07 0.93 ± 0.08
SVM_sigmoid {1, 0.001} 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 0.97 ± 0.04 0.93 ± 0.07 0.97 ± 0.04
XGBoost {2, 1} 0.90 ± 0.04 0.91 ± 0.04 0.90 ± 0.04 0.90 ± 0.05 0.91 ± 0.07 0.89 ± 0.05
kNN 4 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.95 ± 0.03 0.90 ± 0.06 0.95 ± 0.03

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Multimodal classification performance
in Experiment #4

This appendix includes the classification performance retrieved by multimodal scen-
arios in Experiment #4, with different test set size.
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Table E.1: Classification results for multimodal scenarios using classical machine learning
algorithms and 10% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 1.00 ± 0.00 0.92 ± 0.11 1.00 ± 0.00
SVM_RBF {1, 0.001} 0.98 ± 0.03 0.97 ± 0.04 0.97 ± 0.04 1.00 ± 0.00 0.95 ± 0.07 1.00 ± 0.00
SVM_sigmoid {1, 0.0001} 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 1.00 ± 0.00 0.92 ± 0.11 1.00 ± 0.00
XGBoost {2, 1} 0.94 ± 0.06 0.94 ± 0.06 0.94 ± 0.06 0.94 ± 0.09 0.95 ± 0.07 0.92 ± 0.11
kNN 30 0.98 ± 0.06 0.97 ± 0.06 0.98 ± 0.06 1.00 ± 0.00 0.95 ± 0.11 1.00 ± 0.00

✗

SVM_lin 1 0.91 ± 0.07 0.90 ± 0.09 0.91 ± 0.07 0.98 ± 0.05 0.85 ± 0.16 0.98 ± 0.06
SVM_RBF {1, 0.0001} 0.89 ± 0.05 0.88 ± 0.06 0.89 ± 0.05 0.91 ± 0.09 0.88 ± 0.12 0.90 ± 0.10
SVM_sigmoid {1, 0.0001} 0.91 ± 0.07 0.90 ± 0.09 0.91 ± 0.07 0.98 ± 0.05 0.85 ± 0.16 0.98 ± 0.06
XGBoost {2, 1} 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.95 ± 0.06 0.98 ± 0.06 0.95 ± 0.07
kNN 30 0.86 ± 0.08 0.84 ± 0.10 0.86 ± 0.08 0.97 ± 0.07 0.75 ± 0.12 0.98 ± 0.06
SVM_lin 1 0.98 ± 0.06 0.97 ± 0.06 0.98 ± 0.06 1.00 ± 0.00 0.95 ± 0.11 1.00 ± 0.00
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
SVM_sigmoid {1, 0.001} 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.03 0.98 ± 0.05 0.98 ± 0.06 0.98 ± 0.06
XGBoost {2, 1} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06

✓

kNN 11 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06

SVM_lin 1 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 1.00 ± 0.00 0.92 ± 0.07 1.00 ± 0.00
SVM_RBF {10, 0.0001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 1.00 ± 0.00 0.92 ± 0.07 1.00 ± 0.00
SVM_sigmoid {1, 0.0001} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 1.00 ± 0.00 0.92 ± 0.07 1.00 ± 0.00
XGBoost {2, 1} 0.92 ± 0.07 0.92 ± 0.07 0.92 ± 0.07 0.95 ± 0.07 0.90 ± 0.10 0.95 ± 0.07

sEMGP2 +
Acc +
Speech

✗

kNN 21 0.86 ± 0.06 0.86 ± 0.06 0.86 ± 0.06 0.91 ± 0.09 0.82 ± 0.11 0.89 ± 0.12

sEMGP1 +
Acc

✓

SVM_lin 1 0.90 ± 0.10 0.90 ± 0.10 0.90 ± 0.10 0.93 ± 0.11 0.88 ± 0.12 0.92 ± 0.13
SVM_RBF {1, 0.0001} 0.90 ± 0.09 0.88 ± 0.12 0.90 ± 0.10 1.00 ± 0.00 0.80 ± 0.19 1.00 ± 0.00
SVM_sigmoid {1, 0.0001} 0.88 ± 0.06 0.85 ± 0.08 0.87 ± 0.07 1.00 ± 0.00 0.75 ± 0.12 1.00 ± 0.00
XGBoost {2, 1} 0.86 ± 0.12 0.84 ± 0.15 0.86 ± 0.12 0.94 ± 0.09 0.78 ± 0.22 0.95 ± 0.07
kNN 18 0.90 ± 0.09 0.88 ± 0.12 0.90 ± 0.10 1.00 ± 0.00 0.80 ± 0.19 1.00 ± 0.00

✗

SVM_lin 1 0.88 ± 0.10 0.86 ± 0.11 0.87 ± 0.10 0.92 ± 0.08 0.82 ± 0.17 0.92 ± 0.07
SVM_RBF {1, 0.0001} 0.86 ± 0.11 0.85 ± 0.12 0.86 ± 0.11 0.89 ± 0.07 0.82 ± 0.17 0.90 ± 0.06
SVM_sigmoid {1, 0.0001} 0.88 ± 0.10 0.86 ± 0.11 0.87 ± 0.10 0.92 ± 0.08 0.82 ± 0.17 0.92 ± 0.07
XGBoost {2, 1} 0.75 ± 0.15 0.70 ± 0.20 0.74 ± 0.15 0.80 ± 0.12 0.65 ± 0.27 0.85 ± 0.10
kNN 22 0.82 ± 0.07 0.81 ± 0.09 0.82 ± 0.07 0.86 ± 0.02 0.78 ± 0.14 0.87 ± 0.01
SVM_lin 1 0.90 ± 0.06 0.89 ± 0.07 0.90 ± 0.06 0.93 ± 0.06 0.88 ± 0.15 0.92 ± 0.07
SVM_RBF {1, 0.001} 0.90 ± 0.08 0.89 ± 0.10 0.90 ± 0.08 0.95 ± 0.07 0.85 ± 0.16 0.95 ± 0.07
SVM_sigmoid {1, 0.001} 0.90 ± 0.06 0.89 ± 0.06 0.90 ± 0.06 0.95 ± 0.07 0.85 ± 0.10 0.95 ± 0.07
XGBoost {2, 1} 0.90 ± 0.11 0.88 ± 0.14 0.90 ± 0.11 0.97 ± 0.06 0.82 ± 0.21 0.98 ± 0.06

✓

kNN 12 0.89 ± 0.08 0.88 ± 0.08 0.89 ± 0.08 0.90 ± 0.10 0.88 ± 0.12 0.90 ± 0.10

SVM_lin 1 0.86 ± 0.07 0.85 ± 0.08 0.86 ± 0.07 0.92 ± 0.07 0.80 ± 0.14 0.92 ± 0.07
SVM_RBF {10, 0.0001} 0.85 ± 0.12 0.83 ± 0.13 0.85 ± 0.12 0.89 ± 0.11 0.80 ± 0.19 0.89 ± 0.12
SVM_sigmoid {1, 0.0001} 0.87 ± 0.09 0.86 ± 0.10 0.87 ± 0.09 0.92 ± 0.07 0.82 ± 0.17 0.92 ± 0.07
XGBoost {2, 1} 0.86 ± 0.17 0.85 ± 0.17 0.86 ± 0.17 0.89 ± 0.17 0.82 ± 0.19 0.90 ± 0.16

sEMGP2 +
Acc

✗

kNN 20 0.84 ± 0.08 0.81 ± 0.12 0.83 ± 0.09 0.92 ± 0.08 0.75 ± 0.20 0.92 ± 0.07

sEMGP1 +
Speech

✓

SVM_lin 1 0.95 ± 0.05 0.95 ± 0.06 0.95 ± 0.05 0.98 ± 0.05 0.92 ± 0.11 0.98 ± 0.06
SVM_RBF {1, 0.001} 0.92 ± 0.08 0.93 ± 0.06 0.92 ± 0.07 0.90 ± 0.11 0.98 ± 0.06 0.86 ± 0.18
SVM_sigmoid {1, 0.001} 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.03 0.98 ± 0.05 0.98 ± 0.06 0.98 ± 0.06
XGBoost {2, 1} 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.98 ± 0.05 0.95 ± 0.11 0.98 ± 0.06
kNN 15 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03 1.00 ± 0.00 0.98 ± 0.06 1.00 ± 0.00

✗

SVM_lin 1 0.92 ± 0.07 0.92 ± 0.07 0.92 ± 0.07 0.95 ± 0.07 0.90 ± 0.10 0.95 ± 0.07
SVM_RBF {10, 0.0001} 0.86 ± 0.08 0.87 ± 0.08 0.86 ± 0.08 0.84 ± 0.10 0.90 ± 0.10 0.82 ± 0.12
SVM_sigmoid {1, 0.0001} 0.91 ± 0.10 0.90 ± 0.12 0.91 ± 0.10 0.97 ± 0.07 0.85 ± 0.16 0.98 ± 0.06
XGBoost {2, 1} 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.06 0.95 ± 0.07 0.95 ± 0.07
kNN 17 0.85 ± 0.06 0.85 ± 0.05 0.85 ± 0.06 0.87 ± 0.13 0.85 ± 0.10 0.85 ± 0.16
SVM_lin 1 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.98 ± 0.05 0.95 ± 0.11 0.98 ± 0.06
SVM_RBF {1, 0.001} 0.95 ± 0.05 0.95 ± 0.06 0.95 ± 0.05 0.98 ± 0.05 0.92 ± 0.11 0.98 ± 0.06
SVM_sigmoid {1, 0.001} 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.98 ± 0.05 0.95 ± 0.11 0.98 ± 0.06
XGBoost {2, 1} 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.96 ± 0.09 0.95 ± 0.07 0.95 ± 0.11

✓

kNN 14 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06

SVM_lin 1 0.95 ± 0.05 0.94 ± 0.06 0.95 ± 0.05 1.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00
SVM_RBF {10, 0.0001} 0.94 ± 0.04 0.93 ± 0.05 0.94 ± 0.04 0.98 ± 0.05 0.90 ± 0.10 0.98 ± 0.06
SVM_sigmoid {10, 0.0001} 0.95 ± 0.05 0.94 ± 0.06 0.95 ± 0.05 1.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00
XGBoost {2, 1} 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.96 ± 0.09 0.95 ± 0.07 0.95 ± 0.11

sEMGP2 +
Speech

✗

kNN 5 0.90 ± 0.12 0.90 ± 0.11 0.90 ± 0.12 0.88 ± 0.12 0.92 ± 0.11 0.87 ± 0.13

Acc +
Speech

✓

SVM_lin 1 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 1.00 ± 0.00 0.92 ± 0.11 1.00 ± 0.00
SVM_RBF {1, 0.001} 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.06 0.95 ± 0.07 0.95 ± 0.07
SVM_sigmoid {1, 0.001} 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.03 0.98 ± 0.05 0.98 ± 0.06 0.98 ± 0.06
XGBoost {2, 1} 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.98 ± 0.05 0.95 ± 0.07 0.98 ± 0.06
kNN 15 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.03 0.98 ± 0.05 0.98 ± 0.06 0.98 ± 0.06

✗

SVM_lin 1 0.94 ± 0.04 0.93 ± 0.05 0.94 ± 0.04 0.98 ± 0.05 0.90 ± 0.10 0.98 ± 0.06
SVM_RBF {10, 0.0001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.98 ± 0.05 0.92 ± 0.07 0.98 ± 0.06
SVM_sigmoid {10, 0.0001} 0.94 ± 0.04 0.93 ± 0.05 0.94 ± 0.04 0.98 ± 0.05 0.90 ± 0.10 0.98 ± 0.06
XGBoost {2, 1} 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.06 0.95 ± 0.07 0.95 ± 0.07
kNN 9 0.85 ± 0.07 0.82 ± 0.10 0.85 ± 0.07 0.95 ± 0.07 0.75 ± 0.18 0.95 ± 0.07

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.2: Classification results for multimodal scenarios using classical machine learning
algorithms and 15% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.93 ± 0.04 0.95 ± 0.05 0.93 ± 0.04
SVM_RBF {1, 0.001} 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.97 ± 0.04 0.95 ± 0.05 0.96 ± 0.05
SVM_sigmoid {1, 0.0001} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.97 ± 0.05 0.89 ± 0.08 0.96 ± 0.05
XGBoost {2, 1} 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.91 ± 0.06 0.94 ± 0.09 0.90 ± 0.07
kNN 25 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.97 ± 0.05 0.91 ± 0.07 0.96 ± 0.05

✗

SVM_lin 1 0.87 ± 0.04 0.86 ± 0.05 0.87 ± 0.05 0.89 ± 0.04 0.84 ± 0.07 0.90 ± 0.04
SVM_RBF {10, 0.0001} 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.81 ± 0.03 0.84 ± 0.04 0.81 ± 0.05
SVM_sigmoid {1, 0.0001} 0.87 ± 0.04 0.86 ± 0.04 0.87 ± 0.04 0.92 ± 0.08 0.81 ± 0.03 0.93 ± 0.07
XGBoost {2, 1} 0.90 ± 0.04 0.91 ± 0.04 0.90 ± 0.05 0.89 ± 0.08 0.93 ± 0.07 0.88 ± 0.10
kNN 30 0.76 ± 0.10 0.77 ± 0.04 0.77 ± 0.09 0.81 ± 0.16 0.79 ± 0.16 0.73 ± 0.32
SVM_lin 1 0.90 ± 0.04 0.90 ± 0.04 0.90 ± 0.04 0.90 ± 0.03 0.91 ± 0.07 0.90 ± 0.04
SVM_RBF {1, 0.001} 0.89 ± 0.05 0.90 ± 0.04 0.90 ± 0.05 0.87 ± 0.09 0.95 ± 0.05 0.84 ± 0.11
SVM_sigmoid {1, 0.001} 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.89 ± 0.07 0.95 ± 0.05 0.88 ± 0.08
XGBoost {2, 1} 0.90 ± 0.05 0.91 ± 0.05 0.91 ± 0.05 0.89 ± 0.08 0.93 ± 0.07 0.88 ± 0.10

✓

kNN 10 0.94 ± 0.04 0.94 ± 0.03 0.94 ± 0.04 0.94 ± 0.09 0.95 ± 0.05 0.93 ± 0.12

SVM_lin 1 0.92 ± 0.04 0.92 ± 0.03 0.92 ± 0.04 0.92 ± 0.08 0.93 ± 0.04 0.91 ± 0.09
SVM_RBF {10, 0.0001} 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.90 ± 0.06 0.93 ± 0.04 0.89 ± 0.08
SVM_sigmoid {1, 0.0001} 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.90 ± 0.06 0.93 ± 0.04 0.89 ± 0.08
XGBoost {2, 1} 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.91 ± 0.06 0.97 ± 0.05 0.90 ± 0.07

sEMGP2 +
Acc +
Speech

✗

kNN 20 0.84 ± 0.09 0.82 ± 0.11 0.84 ± 0.09 0.93 ± 0.11 0.76 ± 0.16 0.93 ± 0.12

sEMGP1 +
Acc

✓

SVM_lin 1 0.87 ± 0.04 0.87 ± 0.04 0.87 ± 0.04 0.88 ± 0.04 0.86 ± 0.07 0.88 ± 0.05
SVM_RBF {1, 0.0001} 0.84 ± 0.07 0.84 ± 0.05 0.84 ± 0.07 0.90 ± 0.14 0.81 ± 0.07 0.87 ± 0.19
SVM_sigmoid {1, 0.0001} 0.87 ± 0.05 0.86 ± 0.06 0.87 ± 0.05 0.94 ± 0.06 0.79 ± 0.09 0.95 ± 0.05
XGBoost {2, 1} 0.81 ± 0.05 0.82 ± 0.03 0.81 ± 0.05 0.80 ± 0.08 0.84 ± 0.07 0.78 ± 0.13
kNN 27 0.86 ± 0.02 0.85 ± 0.03 0.86 ± 0.02 0.91 ± 0.06 0.81 ± 0.08 0.91 ± 0.06

✗

SVM_lin 1 0.78 ± 0.06 0.78 ± 0.06 0.78 ± 0.06 0.78 ± 0.09 0.79 ± 0.04 0.78 ± 0.10
SVM_RBF {1, 0.0001} 0.79 ± 0.05 0.80 ± 0.05 0.79 ± 0.05 0.77 ± 0.05 0.83 ± 0.06 0.76 ± 0.07
SVM_sigmoid {1, 0.0001} 0.82 ± 0.04 0.81 ± 0.04 0.82 ± 0.04 0.82 ± 0.06 0.81 ± 0.07 0.83 ± 0.06
XGBoost {2, 1} 0.75 ± 0.05 0.76 ± 0.05 0.75 ± 0.05 0.73 ± 0.06 0.79 ± 0.06 0.71 ± 0.09
kNN 9 0.74 ± 0.11 0.77 ± 0.06 0.75 ± 0.11 0.77 ± 0.17 0.80 ± 0.12 0.68 ± 0.32
SVM_lin 1 0.83 ± 0.09 0.84 ± 0.08 0.84 ± 0.09 0.84 ± 0.10 0.84 ± 0.11 0.83 ± 0.13
SVM_RBF {1, 0.001} 0.88 ± 0.06 0.88 ± 0.05 0.88 ± 0.06 0.88 ± 0.10 0.90 ± 0.09 0.86 ± 0.14
SVM_sigmoid {1, 0.001} 0.85 ± 0.08 0.86 ± 0.07 0.85 ± 0.08 0.84 ± 0.11 0.88 ± 0.09 0.82 ± 0.14
XGBoost {2, 1} 0.90 ± 0.08 0.90 ± 0.07 0.90 ± 0.08 0.90 ± 0.12 0.92 ± 0.06 0.88 ± 0.15

✓

kNN 14 0.89 ± 0.09 0.90 ± 0.08 0.89 ± 0.09 0.85 ± 0.11 0.95 ± 0.07 0.82 ± 0.14

SVM_lin 1 0.82 ± 0.08 0.82 ± 0.07 0.82 ± 0.08 0.83 ± 0.12 0.81 ± 0.07 0.82 ± 0.15
SVM_RBF {10, 0.0001} 0.83 ± 0.09 0.84 ± 0.08 0.83 ± 0.09 0.84 ± 0.12 0.85 ± 0.06 0.82 ± 0.15
SVM_sigmoid {1, 0.0001} 0.80 ± 0.06 0.81 ± 0.05 0.80 ± 0.06 0.79 ± 0.07 0.83 ± 0.06 0.77 ± 0.11
XGBoost {2, 1} 0.86 ± 0.10 0.87 ± 0.09 0.86 ± 0.10 0.86 ± 0.11 0.88 ± 0.09 0.84 ± 0.14

sEMGP2 +
Acc

✗

kNN 20 0.79 ± 0.08 0.78 ± 0.07 0.79 ± 0.08 0.83 ± 0.13 0.75 ± 0.12 0.82 ± 0.15

sEMGP1 +
Speech

✓

SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.06 0.95 ± 0.05 0.93 ± 0.08
SVM_RBF {1, 0.001} 0.91 ± 0.07 0.92 ± 0.06 0.91 ± 0.07 0.90 ± 0.12 0.96 ± 0.05 0.86 ± 0.17
SVM_sigmoid {1, 0.01} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.07 0.93 ± 0.04 0.93 ± 0.08
XGBoost {2, 1} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.06 0.95 ± 0.05 0.90 ± 0.07
kNN 5 0.96 ± 0.02 0.96 ± 0.02 0.97 ± 0.02 0.98 ± 0.03 0.95 ± 0.05 0.98 ± 0.04

✗

SVM_lin 1 0.85 ± 0.05 0.85 ± 0.06 0.85 ± 0.05 0.83 ± 0.07 0.88 ± 0.05 0.83 ± 0.06
SVM_RBF {10, 0.0001} 0.82 ± 0.05 0.82 ± 0.04 0.82 ± 0.05 0.79 ± 0.05 0.86 ± 0.05 0.77 ± 0.09
SVM_sigmoid {1, 0.0001} 0.88 ± 0.02 0.87 ± 0.02 0.88 ± 0.02 0.93 ± 0.07 0.82 ± 0.06 0.93 ± 0.07
XGBoost {2, 1} 0.89 ± 0.05 0.89 ± 0.06 0.89 ± 0.05 0.89 ± 0.08 0.89 ± 0.11 0.88 ± 0.10
kNN 9 0.77 ± 0.12 0.73 ± 0.23 0.78 ± 0.10 0.86 ± 0.15 0.74 ± 0.31 0.81 ± 0.21
SVM_lin 1 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.03 0.93 ± 0.04 0.89 ± 0.05 0.93 ± 0.04
SVM_RBF {1, 0.001} 0.93 ± 0.02 0.93 ± 0.03 0.93 ± 0.03 0.92 ± 0.06 0.95 ± 0.05 0.91 ± 0.06
SVM_sigmoid {1, 0.001} 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.90 ± 0.06 0.95 ± 0.05 0.89 ± 0.08
XGBoost {2, 1} 0.90 ± 0.05 0.90 ± 0.05 0.90 ± 0.06 0.89 ± 0.08 0.91 ± 0.06 0.88 ± 0.10

✓

kNN 4 0.92 ± 0.08 0.92 ± 0.07 0.92 ± 0.08 0.93 ± 0.12 0.93 ± 0.04 0.91 ± 0.16

SVM_lin 1 0.90 ± 0.06 0.91 ± 0.05 0.90 ± 0.06 0.90 ± 0.10 0.91 ± 0.01 0.89 ± 0.12
SVM_RBF {10, 0.0001} 0.88 ± 0.07 0.89 ± 0.05 0.89 ± 0.07 0.88 ± 0.10 0.91 ± 0.01 0.86 ± 0.14
SVM_sigmoid {10, 0.0001} 0.90 ± 0.06 0.91 ± 0.05 0.90 ± 0.06 0.90 ± 0.10 0.91 ± 0.01 0.89 ± 0.12
XGBoost {2, 1} 0.90 ± 0.05 0.90 ± 0.04 0.90 ± 0.05 0.87 ± 0.06 0.93 ± 0.04 0.86 ± 0.08

sEMGP2 +
Speech

✗

kNN 10 0.81 ± 0.06 0.80 ± 0.08 0.81 ± 0.06 0.85 ± 0.15 0.81 ± 0.20 0.81 ± 0.20

Acc +
Speech

✓

SVM_lin 1 0.90 ± 0.04 0.90 ± 0.03 0.90 ± 0.03 0.92 ± 0.05 0.89 ± 0.08 0.91 ± 0.06
SVM_RBF {1, 0.001} 0.93 ± 0.04 0.93 ± 0.03 0.93 ± 0.04 0.95 ± 0.07 0.91 ± 0.06 0.95 ± 0.08
SVM_sigmoid {1, 0.0001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.07 0.91 ± 0.06 0.96 ± 0.08
XGBoost {2, 1} 0.90 ± 0.05 0.91 ± 0.05 0.91 ± 0.05 0.89 ± 0.08 0.93 ± 0.07 0.88 ± 0.10
kNN 13 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.05 0.91 ± 0.06 0.97 ± 0.05

✗

SVM_lin 1 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.06 0.91 ± 0.06 0.92 ± 0.06
SVM_RBF {10, 0.0001} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.06 0.93 ± 0.04 0.92 ± 0.06
SVM_sigmoid {10, 0.0001} 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.06 0.91 ± 0.06 0.92 ± 0.06
XGBoost {2, 1} 0.92 ± 0.05 0.93 ± 0.05 0.92 ± 0.05 0.90 ± 0.06 0.95 ± 0.07 0.90 ± 0.07
kNN 23 0.81 ± 0.09 0.79 ± 0.11 0.81 ± 0.09 0.87 ± 0.13 0.76 ± 0.18 0.86 ± 0.14

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.3: Classification results for multimodal scenarios using classical machine learning
algorithms and 20% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.03 0.94 ± 0.04 0.94 ± 0.03 1.00 ± 0.00 0.89 ± 0.06 1.00 ± 0.00
SVM_RBF {1, 0.001} 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.98 ± 0.03 0.89 ± 0.06 0.99 ± 0.03
SVM_sigmoid {1, 0.001} 0.94 ± 0.03 0.94 ± 0.04 0.95 ± 0.03 1.00 ± 0.00 0.89 ± 0.06 1.00 ± 0.00
XGBoost {2, 1} 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.93 ± 0.07 0.89 ± 0.04 0.93 ± 0.06
kNN 14 0.95 ± 0.03 0.95 ± 0.04 0.95 ± 0.03 1.00 ± 0.00 0.90 ± 0.06 1.00 ± 0.00

✗

SVM_lin 1 0.89 ± 0.04 0.89 ± 0.04 0.90 ± 0.04 0.95 ± 0.04 0.83 ± 0.04 0.96 ± 0.04
SVM_RBF {1, 0.0001} 0.86 ± 0.07 0.85 ± 0.06 0.86 ± 0.06 0.88 ± 0.10 0.83 ± 0.04 0.89 ± 0.10
SVM_sigmoid {1, 0.0001} 0.89 ± 0.03 0.89 ± 0.04 0.90 ± 0.04 0.97 ± 0.05 0.82 ± 0.03 0.97 ± 0.04
XGBoost {2, 1} 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.06 0.95 ± 0.07 0.89 ± 0.06 0.96 ± 0.06
kNN 14 0.84 ± 0.08 0.83 ± 0.08 0.84 ± 0.08 0.90 ± 0.12 0.77 ± 0.06 0.90 ± 0.11
SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.04 0.91 ± 0.03 0.97 ± 0.04
SVM_RBF {1, 0.001} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.03 0.96 ± 0.06 0.90 ± 0.06 0.96 ± 0.06
SVM_sigmoid {1, 0.001} 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.96 ± 0.06 0.91 ± 0.03 0.96 ± 0.06
XGBoost {2, 1} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.08 0.93 ± 0.01 0.93 ± 0.08

✓

kNN 8 0.94 ± 0.04 0.93 ± 0.04 0.94 ± 0.04 0.97 ± 0.06 0.90 ± 0.06 0.98 ± 0.06

SVM_lin 1 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.04 0.87 ± 0.06 0.96 ± 0.04
SVM_RBF {10, 0.0001} 0.90 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 0.91 ± 0.07 0.87 ± 0.06 0.92 ± 0.07
SVM_sigmoid {1, 0.0001} 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.04 0.87 ± 0.06 0.96 ± 0.04
XGBoost {2, 1} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.03 0.94 ± 0.06 0.91 ± 0.06 0.95 ± 0.05

sEMGP2 +
Acc +
Speech

✗

kNN 6 0.87 ± 0.06 0.86 ± 0.06 0.88 ± 0.06 0.93 ± 0.07 0.80 ± 0.08 0.95 ± 0.06

sEMGP1 +
Acc

✓

SVM_lin 1 0.90 ± 0.05 0.89 ± 0.06 0.90 ± 0.05 0.95 ± 0.07 0.84 ± 0.07 0.96 ± 0.06
SVM_RBF {1, 0.0001} 0.87 ± 0.02 0.86 ± 0.03 0.88 ± 0.03 1.00 ± 0.00 0.75 ± 0.04 1.00 ± 0.00
SVM_sigmoid {1, 0.0001} 0.85 ± 0.04 0.82 ± 0.06 0.85 ± 0.05 1.00 ± 0.00 0.69 ± 0.08 1.00 ± 0.00
XGBoost {2, 1} 0.85 ± 0.06 0.84 ± 0.06 0.86 ± 0.06 0.90 ± 0.11 0.80 ± 0.07 0.91 ± 0.11
kNN 10 0.87 ± 0.02 0.86 ± 0.03 0.88 ± 0.02 0.98 ± 0.04 0.76 ± 0.04 0.99 ± 0.03

✗

SVM_lin 1 0.83 ± 0.07 0.81 ± 0.07 0.83 ± 0.07 0.88 ± 0.09 0.75 ± 0.08 0.91 ± 0.08
SVM_RBF {10, 0.0001} 0.83 ± 0.06 0.81 ± 0.06 0.83 ± 0.06 0.88 ± 0.10 0.76 ± 0.07 0.89 ± 0.10
SVM_sigmoid {1, 0.0001} 0.83 ± 0.07 0.82 ± 0.07 0.83 ± 0.07 0.89 ± 0.09 0.76 ± 0.06 0.90 ± 0.08
XGBoost {2, 1} 0.85 ± 0.06 0.84 ± 0.05 0.85 ± 0.06 0.90 ± 0.14 0.80 ± 0.08 0.89 ± 0.17
kNN 6 0.73 ± 0.08 0.78 ± 0.03 0.74 ± 0.08 0.70 ± 0.13 0.91 ± 0.14 0.56 ± 0.28
SVM_lin 1 0.85 ± 0.06 0.84 ± 0.08 0.86 ± 0.06 0.87 ± 0.06 0.83 ± 0.11 0.88 ± 0.05
SVM_RBF {10, 0.001} 0.86 ± 0.06 0.85 ± 0.06 0.86 ± 0.06 0.90 ± 0.10 0.82 ± 0.06 0.91 ± 0.09
SVM_sigmoid {1, 0.001} 0.88 ± 0.04 0.86 ± 0.05 0.88 ± 0.04 0.92 ± 0.07 0.82 ± 0.06 0.93 ± 0.07
XGBoost {2, 1} 0.90 ± 0.07 0.89 ± 0.07 0.90 ± 0.06 0.93 ± 0.11 0.86 ± 0.08 0.93 ± 0.09

✓

kNN 4 0.88 ± 0.04 0.87 ± 0.05 0.88 ± 0.04 0.91 ± 0.07 0.83 ± 0.06 0.92 ± 0.05

SVM_lin 1 0.84 ± 0.04 0.82 ± 0.06 0.84 ± 0.04 0.89 ± 0.04 0.77 ± 0.08 0.91 ± 0.04
SVM_RBF {10, 0.0001} 0.83 ± 0.06 0.82 ± 0.06 0.83 ± 0.06 0.84 ± 0.09 0.80 ± 0.06 0.85 ± 0.08
SVM_sigmoid {1, 0.0001} 0.83 ± 0.06 0.81 ± 0.07 0.83 ± 0.06 0.85 ± 0.06 0.79 ± 0.09 0.86 ± 0.05
XGBoost {2, 1} 0.87 ± 0.07 0.86 ± 0.08 0.87 ± 0.07 0.89 ± 0.09 0.83 ± 0.09 0.91 ± 0.07

sEMGP2 +
Acc

✗

kNN 18 0.79 ± 0.05 0.79 ± 0.05 0.79 ± 0.05 0.79 ± 0.05 0.79 ± 0.07 0.79 ± 0.09

sEMGP1 +
Speech

✓

SVM_lin 1 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.97 ± 0.06 0.90 ± 0.04 0.98 ± 0.06
SVM_RBF {1, 0.0001} 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.97 ± 0.04 0.94 ± 0.03 0.97 ± 0.04
SVM_sigmoid {1, 0.0001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 1.00 ± 0.00 0.90 ± 0.06 1.00 ± 0.00
XGBoost {2, 1} 0.94 ± 0.05 0.93 ± 0.05 0.94 ± 0.04 0.96 ± 0.06 0.91 ± 0.03 0.96 ± 0.06
kNN 3 0.94 ± 0.02 0.93 ± 0.02 0.94 ± 0.01 0.98 ± 0.03 0.89 ± 0.04 0.99 ± 0.03

✗

SVM_lin 1 0.87 ± 0.05 0.86 ± 0.05 0.87 ± 0.04 0.91 ± 0.09 0.82 ± 0.06 0.92 ± 0.09
SVM_RBF {10, 0.0001} 0.85 ± 0.06 0.85 ± 0.06 0.85 ± 0.06 0.86 ± 0.12 0.85 ± 0.06 0.86 ± 0.14
SVM_sigmoid {1, 0.0001} 0.90 ± 0.04 0.89 ± 0.04 0.90 ± 0.04 0.95 ± 0.07 0.83 ± 0.06 0.96 ± 0.06
XGBoost {2, 1} 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.04 0.95 ± 0.08 0.93 ± 0.01 0.95 ± 0.09
kNN 7 0.85 ± 0.14 0.80 ± 0.22 0.85 ± 0.13 0.90 ± 0.07 0.76 ± 0.28 0.93 ± 0.04
SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.97 ± 0.04 0.91 ± 0.03 0.97 ± 0.04
SVM_RBF {1, 0.001} 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.96 ± 0.06 0.91 ± 0.03 0.96 ± 0.06
SVM_sigmoid {1, 0.001} 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.96 ± 0.06 0.91 ± 0.03 0.96 ± 0.06
XGBoost {2, 1} 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.06 0.91 ± 0.09 0.94 ± 0.03 0.91 ± 0.09

✓

kNN 6 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.97 ± 0.06 0.90 ± 0.03 0.98 ± 0.06

SVM_lin 1 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.04 0.87 ± 0.06 0.96 ± 0.04
SVM_RBF {10, 0.0001} 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.04 0.87 ± 0.06 0.96 ± 0.04
SVM_sigmoid {10, 0.0001} 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.04 0.87 ± 0.06 0.96 ± 0.04
XGBoost {2, 1} 0.94 ± 0.04 0.94 ± 0.05 0.94 ± 0.04 0.98 ± 0.03 0.90 ± 0.08 0.99 ± 0.03

sEMGP2 +
Speech

✗

kNN 5 0.86 ± 0.06 0.86 ± 0.05 0.86 ± 0.06 0.89 ± 0.12 0.84 ± 0.11 0.87 ± 0.16

Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.99 ± 0.03 0.90 ± 0.04 0.99 ± 0.03
SVM_RBF {1, 0.001} 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.98 ± 0.03 0.91 ± 0.03 0.99 ± 0.03
SVM_sigmoid {1, 0.001} 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.98 ± 0.03 0.91 ± 0.03 0.99 ± 0.03
XGBoost {2, 1} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05
kNN 11 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.03 1.00 ± 0.00 0.88 ± 0.07 1.00 ± 0.00

✗

SVM_lin 1 0.94 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 1.00 ± 0.00 0.87 ± 0.06 1.00 ± 0.00
SVM_RBF {10, 0.0001} 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.97 ± 0.04 0.87 ± 0.06 0.97 ± 0.04
SVM_sigmoid {10, 0.0001} 0.92 ± 0.04 0.91 ± 0.05 0.92 ± 0.04 0.98 ± 0.04 0.85 ± 0.06 0.99 ± 0.03
XGBoost {5, 1} 0.90 ± 0.03 0.89 ± 0.04 0.90 ± 0.04 0.90 ± 0.08 0.89 ± 0.04 0.91 ± 0.07
kNN 5 0.87 ± 0.05 0.86 ± 0.06 0.88 ± 0.05 0.97 ± 0.05 0.78 ± 0.07 0.97 ± 0.04

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.4: Classification results for multimodal scenarios using classical machine learning
algorithms and 25% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.03 0.88 ± 0.04 0.96 ± 0.02
SVM_RBF {1, 0.001} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.04 0.92 ± 0.03 0.95 ± 0.04
SVM_sigmoid {1, 0.0001} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.00 0.92 ± 0.06 0.95 ± 0.00
XGBoost {2, 1} 0.88 ± 0.04 0.87 ± 0.06 0.88 ± 0.04 0.91 ± 0.05 0.85 ± 0.11 0.91 ± 0.05
kNN 7 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.04 0.95 ± 0.03 0.92 ± 0.06 0.96 ± 0.02

✗

SVM_lin 1 0.88 ± 0.01 0.87 ± 0.02 0.87 ± 0.01 0.91 ± 0.05 0.84 ± 0.06 0.91 ± 0.05
SVM_RBF {10, 0.0001} 0.83 ± 0.02 0.82 ± 0.03 0.83 ± 0.02 0.85 ± 0.05 0.80 ± 0.09 0.86 ± 0.06
SVM_sigmoid {1, 0.0001} 0.89 ± 0.05 0.88 ± 0.05 0.89 ± 0.05 0.94 ± 0.04 0.83 ± 0.07 0.95 ± 0.04
XGBoost {2, 1} 0.90 ± 0.04 0.89 ± 0.05 0.90 ± 0.04 0.92 ± 0.02 0.87 ± 0.11 0.92 ± 0.03
kNN 8 0.82 ± 0.03 0.80 ± 0.04 0.81 ± 0.04 0.86 ± 0.11 0.77 ± 0.09 0.86 ± 0.12
SVM_lin 1 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.05 0.94 ± 0.04 0.97 ± 0.05
SVM_RBF {1, 0.001} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.95 ± 0.07 0.92 ± 0.03 0.95 ± 0.06
SVM_sigmoid {1, 0.001} 0.94 ± 0.01 0.93 ± 0.02 0.93 ± 0.02 0.94 ± 0.06 0.94 ± 0.05 0.94 ± 0.06
XGBoost {2, 1} 0.89 ± 0.08 0.88 ± 0.08 0.89 ± 0.08 0.91 ± 0.05 0.86 ± 0.12 0.91 ± 0.05

✓

kNN 10 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.94 ± 0.04 0.89 ± 0.04 0.95 ± 0.04

SVM_lin 1 0.91 ± 0.02 0.91 ± 0.03 0.91 ± 0.02 0.93 ± 0.06 0.89 ± 0.04 0.94 ± 0.06
SVM_RBF {10, 0.0001} 0.91 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.92 ± 0.05 0.89 ± 0.04 0.92 ± 0.05
SVM_sigmoid {1, 0.0001} 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.07 0.89 ± 0.04 0.95 ± 0.06
XGBoost {2, 1} 0.91 ± 0.06 0.90 ± 0.08 0.91 ± 0.06 0.95 ± 0.03 0.86 ± 0.11 0.96 ± 0.02

sEMGP2 +
Acc +
Speech

✗

kNN 14 0.84 ± 0.03 0.83 ± 0.04 0.84 ± 0.03 0.90 ± 0.08 0.78 ± 0.10 0.90 ± 0.09

sEMGP1 +
Acc

✓

SVM_lin 1 0.87 ± 0.05 0.87 ± 0.05 0.87 ± 0.05 0.90 ± 0.06 0.84 ± 0.07 0.90 ± 0.06
SVM_RBF {1, 0.0001} 0.84 ± 0.04 0.83 ± 0.05 0.84 ± 0.05 0.89 ± 0.09 0.80 ± 0.10 0.89 ± 0.10
SVM_sigmoid {1, 0.0001} 0.86 ± 0.05 0.85 ± 0.05 0.86 ± 0.05 0.92 ± 0.05 0.78 ± 0.07 0.94 ± 0.05
XGBoost {2, 1} 0.84 ± 0.04 0.83 ± 0.04 0.84 ± 0.04 0.89 ± 0.04 0.78 ± 0.06 0.90 ± 0.04
kNN 7 0.84 ± 0.04 0.83 ± 0.05 0.84 ± 0.04 0.89 ± 0.04 0.78 ± 0.07 0.90 ± 0.04

✗

SVM_lin 1 0.81 ± 0.02 0.79 ± 0.04 0.80 ± 0.02 0.84 ± 0.08 0.76 ± 0.12 0.85 ± 0.10
SVM_RBF {1, 0.0001} 0.81 ± 0.04 0.80 ± 0.04 0.80 ± 0.04 0.83 ± 0.07 0.77 ± 0.10 0.84 ± 0.08
SVM_sigmoid {1, 0.0001} 0.81 ± 0.01 0.80 ± 0.02 0.81 ± 0.01 0.85 ± 0.08 0.76 ± 0.10 0.86 ± 0.10
XGBoost {2, 1} 0.78 ± 0.05 0.77 ± 0.05 0.78 ± 0.05 0.78 ± 0.07 0.77 ± 0.10 0.78 ± 0.10
kNN 16 0.76 ± 0.08 0.75 ± 0.08 0.76 ± 0.08 0.79 ± 0.08 0.71 ± 0.13 0.82 ± 0.07
SVM_lin 1 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.03 0.92 ± 0.09 0.86 ± 0.04 0.92 ± 0.09
SVM_RBF {10, 0.001} 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.90 ± 0.06 0.86 ± 0.06 0.90 ± 0.07
SVM_sigmoid {1, 0.001} 0.90 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 0.92 ± 0.03 0.87 ± 0.08 0.92 ± 0.03
XGBoost {2, 1} 0.91 ± 0.02 0.91 ± 0.03 0.91 ± 0.02 0.94 ± 0.06 0.88 ± 0.05 0.95 ± 0.05

✓

kNN 7 0.89 ± 0.05 0.88 ± 0.05 0.89 ± 0.05 0.92 ± 0.03 0.85 ± 0.09 0.92 ± 0.03

SVM_lin 1 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.88 ± 0.08 0.83 ± 0.09 0.88 ± 0.09
SVM_RBF {10, 0.0001} 0.86 ± 0.02 0.85 ± 0.03 0.86 ± 0.03 0.88 ± 0.08 0.84 ± 0.09 0.88 ± 0.09
SVM_sigmoid {1, 0.0001} 0.86 ± 0.02 0.85 ± 0.03 0.86 ± 0.02 0.87 ± 0.08 0.85 ± 0.07 0.87 ± 0.09
XGBoost {2, 1} 0.85 ± 0.07 0.84 ± 0.08 0.85 ± 0.07 0.88 ± 0.05 0.81 ± 0.11 0.89 ± 0.04

sEMGP2 +
Acc

✗

kNN 16 0.80 ± 0.02 0.78 ± 0.03 0.80 ± 0.02 0.84 ± 0.09 0.75 ± 0.11 0.85 ± 0.11

sEMGP1 +
Speech

✓

SVM_lin 1 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.98 ± 0.03 0.93 ± 0.05 0.98 ± 0.03
SVM_RBF {1, 0.001} 0.93 ± 0.05 0.93 ± 0.04 0.92 ± 0.05 0.91 ± 0.09 0.96 ± 0.05 0.89 ± 0.12
SVM_sigmoid {1, 0.0001} 0.91 ± 0.07 0.90 ± 0.08 0.91 ± 0.07 0.97 ± 0.06 0.84 ± 0.10 0.98 ± 0.05
XGBoost {2, 1} 0.90 ± 0.04 0.89 ± 0.04 0.90 ± 0.04 0.91 ± 0.05 0.88 ± 0.07 0.91 ± 0.05
kNN 5 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.97 ± 0.03 0.91 ± 0.06 0.97 ± 0.03

✗

SVM_lin 1 0.88 ± 0.07 0.86 ± 0.08 0.87 ± 0.07 0.92 ± 0.06 0.82 ± 0.11 0.94 ± 0.05
SVM_RBF {10, 0.0001} 0.85 ± 0.05 0.84 ± 0.06 0.85 ± 0.05 0.87 ± 0.03 0.82 ± 0.11 0.88 ± 0.02
SVM_sigmoid {1, 0.0001} 0.87 ± 0.07 0.86 ± 0.09 0.87 ± 0.07 0.96 ± 0.04 0.78 ± 0.12 0.97 ± 0.03
XGBoost {2, 1} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.06 0.92 ± 0.03
kNN 6 0.77 ± 0.09 0.70 ± 0.15 0.77 ± 0.09 0.97 ± 0.04 0.57 ± 0.20 0.98 ± 0.03
SVM_lin 1 0.94 ± 0.02 0.94 ± 0.03 0.94 ± 0.02 0.96 ± 0.07 0.92 ± 0.06 0.96 ± 0.07
SVM_RBF {1, 0.001} 0.95 ± 0.03 0.94 ± 0.04 0.94 ± 0.04 0.97 ± 0.07 0.92 ± 0.03 0.97 ± 0.07
SVM_sigmoid {1, 0.001} 0.95 ± 0.03 0.94 ± 0.03 0.95 ± 0.03 0.96 ± 0.07 0.94 ± 0.05 0.96 ± 0.07
XGBoost {2, 1} 0.92 ± 0.06 0.91 ± 0.07 0.92 ± 0.06 0.94 ± 0.04 0.89 ± 0.11 0.95 ± 0.04

✓

kNN 12 0.92 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.94 ± 0.04 0.90 ± 0.05 0.95 ± 0.04

SVM_lin 1 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.97 ± 0.07 0.89 ± 0.03 0.97 ± 0.07
SVM_RBF {10, 0.0001} 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.93 ± 0.06 0.89 ± 0.03 0.94 ± 0.06
SVM_sigmoid {10, 0.0001} 0.92 ± 0.05 0.91 ± 0.05 0.92 ± 0.04 0.95 ± 0.06 0.88 ± 0.05 0.96 ± 0.06
XGBoost {2, 1} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.05 0.91 ± 0.03 0.92 ± 0.05

sEMGP2 +
Speech

✗

kNN 8 0.89 ± 0.04 0.87 ± 0.04 0.88 ± 0.04 0.96 ± 0.09 0.81 ± 0.10 0.96 ± 0.09

Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.04 0.93 ± 0.05 0.93 ± 0.04 0.97 ± 0.05 0.90 ± 0.11 0.97 ± 0.05
SVM_RBF {1, 0.001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.98 ± 0.03 0.94 ± 0.06 0.98 ± 0.03
SVM_sigmoid {1, 0.001} 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.94 ± 0.06 0.96 ± 0.02
XGBoost {2, 1} 0.91 ± 0.06 0.91 ± 0.07 0.91 ± 0.06 0.93 ± 0.03 0.89 ± 0.13 0.94 ± 0.02
kNN 25 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.01 0.91 ± 0.05 0.95 ± 0.00

✗

SVM_lin 1 0.91 ± 0.03 0.90 ± 0.03 0.91 ± 0.03 0.94 ± 0.04 0.87 ± 0.08 0.95 ± 0.04
SVM_RBF {10, 0.0001} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.96 ± 0.04 0.89 ± 0.05 0.96 ± 0.05
SVM_sigmoid {10, 0.0001} 0.91 ± 0.03 0.90 ± 0.03 0.91 ± 0.03 0.94 ± 0.04 0.87 ± 0.07 0.95 ± 0.04
XGBoost {2, 1} 0.90 ± 0.06 0.89 ± 0.07 0.90 ± 0.06 0.93 ± 0.03 0.87 ± 0.12 0.94 ± 0.02
kNN 4 0.85 ± 0.08 0.84 ± 0.09 0.85 ± 0.08 0.94 ± 0.10 0.76 ± 0.11 0.94 ± 0.10

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.5: Classification results for multimodal scenarios using classical machine learning
algorithms and 30% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.03 0.94 ± 0.04 0.94 ± 0.03 0.97 ± 0.03 0.92 ± 0.05 0.97 ± 0.03
SVM_RBF {1, 0.001} 0.91 ± 0.08 0.92 ± 0.07 0.91 ± 0.09 0.88 ± 0.15 0.97 ± 0.03 0.84 ± 0.20
SVM_sigmoid {1, 0.0001} 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.04 0.93 ± 0.03 0.97 ± 0.04
XGBoost {2, 1} 0.93 ± 0.06 0.92 ± 0.07 0.92 ± 0.06 0.94 ± 0.02 0.91 ± 0.12 0.94 ± 0.02
kNN 20 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.98 ± 0.03 0.90 ± 0.04 0.98 ± 0.03

✗

SVM_lin 1 0.88 ± 0.05 0.87 ± 0.05 0.88 ± 0.05 0.93 ± 0.08 0.82 ± 0.08 0.93 ± 0.07
SVM_RBF {10, 0.0001} 0.82 ± 0.04 0.82 ± 0.05 0.82 ± 0.04 0.81 ± 0.06 0.85 ± 0.08 0.80 ± 0.08
SVM_sigmoid {1, 0.0001} 0.88 ± 0.04 0.88 ± 0.05 0.89 ± 0.04 0.94 ± 0.05 0.83 ± 0.08 0.94 ± 0.05
XGBoost {2, 10} 0.92 ± 0.04 0.93 ± 0.03 0.92 ± 0.04 0.89 ± 0.05 0.97 ± 0.03 0.88 ± 0.07
kNN 18 0.80 ± 0.08 0.75 ± 0.12 0.81 ± 0.08 0.98 ± 0.04 0.61 ± 0.16 0.99 ± 0.02
SVM_lin 1 0.97 ± 0.01 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.02 0.96 ± 0.05 0.97 ± 0.02
SVM_RBF {1, 0.001} 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.05 0.96 ± 0.02 0.94 ± 0.05
SVM_sigmoid {1, 0.001} 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.05 0.95 ± 0.04 0.93 ± 0.05
XGBoost {2, 1} 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.91 ± 0.04 0.93 ± 0.08 0.91 ± 0.04

✓

kNN 9 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.92 ± 0.03 0.95 ± 0.01 0.91 ± 0.04

SVM_lin 1 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.04 0.95 ± 0.06 0.93 ± 0.03 0.95 ± 0.06
SVM_RBF {10, 0.0001} 0.92 ± 0.05 0.92 ± 0.05 0.92 ± 0.05 0.91 ± 0.07 0.92 ± 0.04 0.91 ± 0.08
SVM_sigmoid {1, 0.0001} 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.95 ± 0.06 0.91 ± 0.06 0.95 ± 0.06
XGBoost {2, 1} 0.92 ± 0.03 0.91 ± 0.04 0.92 ± 0.03 0.92 ± 0.02 0.91 ± 0.09 0.92 ± 0.02

sEMGP2 +
Acc +
Speech

✗

kNN 11 0.85 ± 0.07 0.83 ± 0.09 0.85 ± 0.07 0.93 ± 0.04 0.76 ± 0.13 0.94 ± 0.04

sEMGP1 +
Acc

✓

SVM_lin 1 0.88 ± 0.04 0.87 ± 0.04 0.88 ± 0.04 0.90 ± 0.08 0.85 ± 0.05 0.90 ± 0.09
SVM_RBF {1, 0.0001} 0.87 ± 0.03 0.86 ± 0.03 0.87 ± 0.03 0.92 ± 0.07 0.82 ± 0.07 0.92 ± 0.09
SVM_sigmoid {1, 0.0001} 0.83 ± 0.05 0.80 ± 0.06 0.83 ± 0.05 0.96 ± 0.04 0.68 ± 0.08 0.97 ± 0.03
XGBoost {2, 1} 0.83 ± 0.04 0.83 ± 0.05 0.83 ± 0.05 0.80 ± 0.06 0.87 ± 0.08 0.78 ± 0.08
kNN 11 0.86 ± 0.06 0.84 ± 0.07 0.86 ± 0.06 0.95 ± 0.03 0.76 ± 0.09 0.96 ± 0.02

✗

SVM_lin 1 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.84 ± 0.05 0.80 ± 0.05 0.85 ± 0.05
SVM_RBF {1, 0.0001} 0.79 ± 0.04 0.78 ± 0.04 0.79 ± 0.04 0.78 ± 0.07 0.79 ± 0.05 0.78 ± 0.07
SVM_sigmoid {1, 0.0001} 0.82 ± 0.03 0.81 ± 0.04 0.82 ± 0.03 0.85 ± 0.06 0.79 ± 0.06 0.86 ± 0.05
XGBoost {2, 1} 0.80 ± 0.04 0.80 ± 0.03 0.80 ± 0.04 0.81 ± 0.08 0.78 ± 0.05 0.82 ± 0.09
kNN 6 0.75 ± 0.08 0.70 ± 0.14 0.76 ± 0.08 0.86 ± 0.11 0.63 ± 0.21 0.87 ± 0.16
SVM_lin 1 0.82 ± 0.02 0.81 ± 0.04 0.82 ± 0.02 0.84 ± 0.03 0.79 ± 0.07 0.86 ± 0.04
SVM_RBF {10, 0.001} 0.89 ± 0.02 0.89 ± 0.03 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.05 0.89 ± 0.02
SVM_sigmoid {1, 0.001} 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.05 0.89 ± 0.04
XGBoost {2, 1} 0.90 ± 0.04 0.90 ± 0.05 0.90 ± 0.04 0.88 ± 0.03 0.92 ± 0.08 0.88 ± 0.02

✓

kNN 14 0.87 ± 0.05 0.87 ± 0.06 0.87 ± 0.05 0.87 ± 0.02 0.87 ± 0.10 0.88 ± 0.02

SVM_lin 1 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.07 0.83 ± 0.05
SVM_RBF {10, 0.0001} 0.81 ± 0.04 0.81 ± 0.04 0.81 ± 0.04 0.80 ± 0.06 0.82 ± 0.07 0.80 ± 0.07
SVM_sigmoid {1, 0.0001} 0.83 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.05 0.83 ± 0.05 0.84 ± 0.06
XGBoost {2, 1} 0.86 ± 0.06 0.85 ± 0.07 0.86 ± 0.06 0.84 ± 0.04 0.87 ± 0.11 0.84 ± 0.05

sEMGP2 +
Acc

✗

kNN 18 0.80 ± 0.07 0.77 ± 0.08 0.80 ± 0.08 0.87 ± 0.12 0.71 ± 0.11 0.88 ± 0.13

sEMGP1 +
Speech

✓

SVM_lin 1 0.96 ± 0.02 0.95 ± 0.03 0.96 ± 0.02 0.98 ± 0.02 0.93 ± 0.05 0.98 ± 0.02
SVM_RBF {1, 0.01} 0.87 ± 0.06 0.88 ± 0.05 0.87 ± 0.06 0.81 ± 0.11 0.98 ± 0.04 0.76 ± 0.15
SVM_sigmoid {1, 0.0001} 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 1.00 ± 0.00 0.90 ± 0.05 1.00 ± 0.00
XGBoost {2, 10} 0.92 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.91 ± 0.05 0.94 ± 0.06 0.91 ± 0.06
kNN 10 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.98 ± 0.03 0.87 ± 0.06 0.98 ± 0.03

✗

SVM_lin 1 0.90 ± 0.04 0.89 ± 0.04 0.90 ± 0.03 0.96 ± 0.04 0.84 ± 0.07 0.96 ± 0.04
SVM_RBF {10, 0.0001} 0.85 ± 0.04 0.85 ± 0.04 0.85 ± 0.04 0.84 ± 0.08 0.86 ± 0.06 0.84 ± 0.09
SVM_sigmoid {1, 0.0001} 0.89 ± 0.03 0.88 ± 0.04 0.89 ± 0.03 0.96 ± 0.04 0.82 ± 0.06 0.96 ± 0.04
XGBoost {2, 10} 0.91 ± 0.05 0.90 ± 0.06 0.91 ± 0.05 0.91 ± 0.05 0.91 ± 0.12 0.91 ± 0.06
kNN 8 0.73 ± 0.13 0.60 ± 0.27 0.73 ± 0.12 0.96 ± 0.06 0.48 ± 0.28 0.97 ± 0.04
SVM_lin 1 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
SVM_RBF {10, 0.0001} 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
SVM_sigmoid {1, 0.001} 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.03 0.96 ± 0.02 0.95 ± 0.03
XGBoost {2, 1} 0.92 ± 0.05 0.92 ± 0.05 0.92 ± 0.05 0.93 ± 0.02 0.91 ± 0.09 0.93 ± 0.02

✓

kNN 10 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.03 0.95 ± 0.01 0.93 ± 0.03

SVM_lin 1 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.03 0.93 ± 0.03 0.97 ± 0.02
SVM_RBF {10, 0.0001} 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.03 0.93 ± 0.02
SVM_sigmoid {10, 0.0001} 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.98 ± 0.03 0.93 ± 0.03 0.98 ± 0.03
XGBoost {2, 1} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.90 ± 0.03 0.96 ± 0.04 0.89 ± 0.05

sEMGP2 +
Speech

✗

kNN 3 0.80 ± 0.12 0.73 ± 0.22 0.80 ± 0.12 0.95 ± 0.05 0.65 ± 0.29 0.95 ± 0.05

Acc +
Speech

✓

SVM_lin 1 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.98 ± 0.03 0.94 ± 0.06 0.98 ± 0.02
SVM_RBF {1, 0.001} 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.03 0.98 ± 0.03
SVM_sigmoid {1, 0.001} 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.02
XGBoost {2, 1} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.05 0.93 ± 0.04
kNN 11 0.97 ± 0.02 0.96 ± 0.02 0.97 ± 0.02 0.97 ± 0.03 0.96 ± 0.02 0.97 ± 0.03

✗

SVM_lin 1 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.04 0.95 ± 0.05 0.93 ± 0.04 0.95 ± 0.05
SVM_RBF {10, 0.0001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.05 0.92 ± 0.03 0.95 ± 0.05
SVM_sigmoid {10, 0.0001} 0.93 ± 0.04 0.92 ± 0.04 0.93 ± 0.04 0.95 ± 0.05 0.90 ± 0.08 0.95 ± 0.05
XGBoost {2, 1} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.93 ± 0.03 0.91 ± 0.07 0.93 ± 0.03
kNN 6 0.80 ± 0.07 0.75 ± 0.11 0.80 ± 0.07 0.95 ± 0.09 0.64 ± 0.14 0.96 ± 0.07

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.6: Classification results for multimodal scenarios using classical machine learning
algorithms and 35% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Precision Sensitivity Specificity

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.94 ± 0.02 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.04 0.95 ± 0.02 0.94 ± 0.05
SVM_RBF {1, 0.001} 0.92 ± 0.07 0.93 ± 0.05 0.92 ± 0.07 0.91 ± 0.12 0.97 ± 0.04 0.87 ± 0.17
SVM_sigmoid {1, 0.001} 0.93 ± 0.07 0.94 ± 0.04 0.94 ± 0.06 0.95 ± 0.09 0.94 ± 0.02 0.92 ± 0.15
XGBoost {5, 1} 0.93 ± 0.05 0.94 ± 0.04 0.93 ± 0.05 0.92 ± 0.06 0.95 ± 0.05 0.91 ± 0.07
kNN 21 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.02 0.94 ± 0.02 0.98 ± 0.02

✗

SVM_lin 1 0.89 ± 0.04 0.90 ± 0.03 0.89 ± 0.04 0.89 ± 0.05 0.90 ± 0.05 0.88 ± 0.07
SVM_RBF {10, 0.0001} 0.86 ± 0.03 0.86 ± 0.02 0.86 ± 0.03 0.85 ± 0.06 0.88 ± 0.03 0.84 ± 0.08
SVM_sigmoid {1, 0.0001} 0.90 ± 0.04 0.90 ± 0.03 0.89 ± 0.03 0.91 ± 0.07 0.89 ± 0.03 0.91 ± 0.07
XGBoost {2, 1} 0.91 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.04 0.93 ± 0.03 0.90 ± 0.05
kNN 28 0.80 ± 0.05 0.79 ± 0.06 0.80 ± 0.04 0.86 ± 0.07 0.73 ± 0.06 0.88 ± 0.05
SVM_lin 1 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.92 ± 0.06 0.94 ± 0.02 0.91 ± 0.07
SVM_RBF {1, 0.001} 0.93 ± 0.03 0.94 ± 0.02 0.93 ± 0.03 0.92 ± 0.05 0.95 ± 0.02 0.91 ± 0.06
SVM_sigmoid {1, 0.001} 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.93 ± 0.06 0.95 ± 0.02 0.92 ± 0.07
XGBoost {2, 1} 0.89 ± 0.06 0.90 ± 0.04 0.90 ± 0.05 0.88 ± 0.07 0.93 ± 0.06 0.85 ± 0.14

✓

kNN 9 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.03 0.95 ± 0.02 0.93 ± 0.04

SVM_lin 1 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.07 0.92 ± 0.05 0.91 ± 0.08
SVM_RBF {10, 0.0001} 0.88 ± 0.07 0.89 ± 0.05 0.88 ± 0.07 0.89 ± 0.10 0.90 ± 0.07 0.87 ± 0.13
SVM_sigmoid {1, 0.0001} 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.93 ± 0.07 0.90 ± 0.06 0.92 ± 0.08
XGBoost {2, 1} 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.05 0.92 ± 0.05 0.91 ± 0.07

sEMGP2 +
Acc +
Speech

✗

kNN 4 0.84 ± 0.13 0.78 ± 0.24 0.83 ± 0.16 0.92 ± 0.06 0.75 ± 0.31 0.92 ± 0.05

sEMGP1 +
Acc

✓

SVM_lin 1 0.88 ± 0.06 0.88 ± 0.06 0.88 ± 0.06 0.91 ± 0.07 0.85 ± 0.07 0.91 ± 0.07
SVM_RBF {1, 0.0001} 0.86 ± 0.05 0.85 ± 0.05 0.86 ± 0.05 0.91 ± 0.09 0.81 ± 0.07 0.90 ± 0.12
SVM_sigmoid {1, 0.001} 0.88 ± 0.04 0.88 ± 0.05 0.88 ± 0.04 0.95 ± 0.06 0.82 ± 0.07 0.95 ± 0.05
XGBoost {2, 1} 0.81 ± 0.05 0.82 ± 0.05 0.81 ± 0.05 0.83 ± 0.05 0.80 ± 0.06 0.82 ± 0.08
kNN 21 0.87 ± 0.04 0.86 ± 0.05 0.87 ± 0.04 0.93 ± 0.06 0.79 ± 0.05 0.94 ± 0.05

✗

SVM_lin 1 0.85 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 0.87 ± 0.05 0.83 ± 0.04 0.87 ± 0.06
SVM_RBF {1, 0.0001} 0.82 ± 0.05 0.82 ± 0.04 0.81 ± 0.05 0.83 ± 0.06 0.81 ± 0.04 0.82 ± 0.08
SVM_sigmoid {1, 0.0001} 0.83 ± 0.04 0.83 ± 0.03 0.83 ± 0.04 0.86 ± 0.07 0.81 ± 0.02 0.85 ± 0.08
XGBoost {2, 1} 0.76 ± 0.04 0.77 ± 0.05 0.76 ± 0.04 0.75 ± 0.04 0.80 ± 0.07 0.72 ± 0.03
kNN 19 0.75 ± 0.04 0.74 ± 0.03 0.74 ± 0.04 0.79 ± 0.09 0.70 ± 0.05 0.79 ± 0.11
SVM_lin 1 0.85 ± 0.05 0.85 ± 0.04 0.85 ± 0.05 0.86 ± 0.07 0.85 ± 0.03 0.84 ± 0.09
SVM_RBF {1, 0.001} 0.87 ± 0.06 0.88 ± 0.06 0.87 ± 0.06 0.89 ± 0.08 0.87 ± 0.08 0.88 ± 0.10
SVM_sigmoid {1, 0.001} 0.88 ± 0.06 0.89 ± 0.06 0.88 ± 0.06 0.89 ± 0.08 0.89 ± 0.05 0.88 ± 0.10
XGBoost {2, 1} 0.90 ± 0.06 0.91 ± 0.06 0.90 ± 0.06 0.90 ± 0.05 0.92 ± 0.08 0.89 ± 0.05

✓

kNN 6 0.90 ± 0.05 0.90 ± 0.06 0.90 ± 0.05 0.92 ± 0.05 0.88 ± 0.08 0.91 ± 0.07

SVM_lin 1 0.83 ± 0.04 0.83 ± 0.03 0.83 ± 0.04 0.86 ± 0.06 0.81 ± 0.02 0.85 ± 0.07
SVM_RBF {10, 0.0001} 0.82 ± 0.04 0.82 ± 0.03 0.82 ± 0.04 0.84 ± 0.07 0.80 ± 0.02 0.83 ± 0.10
SVM_sigmoid {1, 0.0001} 0.81 ± 0.05 0.82 ± 0.04 0.81 ± 0.05 0.82 ± 0.05 0.81 ± 0.07 0.81 ± 0.07
XGBoost {2, 1} 0.84 ± 0.06 0.84 ± 0.06 0.84 ± 0.06 0.84 ± 0.05 0.85 ± 0.10 0.83 ± 0.05

sEMGP2 +
Acc

✗

kNN 7 0.74 ± 0.07 0.69 ± 0.15 0.73 ± 0.09 0.84 ± 0.13 0.65 ± 0.26 0.82 ± 0.20

sEMGP1 +
Speech

✓

SVM_lin 1 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.96 ± 0.06 0.95 ± 0.03 0.95 ± 0.08
SVM_RBF {1, 0.0001} 0.95 ± 0.02 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.05 0.97 ± 0.03 0.94 ± 0.07
SVM_sigmoid {1, 0.01} 0.95 ± 0.04 0.95 ± 0.03 0.95 ± 0.03 0.96 ± 0.07 0.95 ± 0.05 0.94 ± 0.10
XGBoost {2, 1} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.04 0.93 ± 0.04 0.90 ± 0.05
kNN 3 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.03 0.93 ± 0.04 0.96 ± 0.04

✗

SVM_lin 1 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.91 ± 0.08 0.88 ± 0.06 0.90 ± 0.10
SVM_RBF {10, 0.0001} 0.86 ± 0.05 0.87 ± 0.05 0.86 ± 0.05 0.85 ± 0.06 0.88 ± 0.06 0.84 ± 0.06
SVM_sigmoid {1, 0.0001} 0.90 ± 0.03 0.89 ± 0.04 0.89 ± 0.03 0.92 ± 0.06 0.87 ± 0.06 0.92 ± 0.06
XGBoost {2, 1} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.91 ± 0.04 0.96 ± 0.05 0.90 ± 0.04
kNN 5 0.79 ± 0.03 0.79 ± 0.04 0.79 ± 0.04 0.83 ± 0.10 0.78 ± 0.12 0.81 ± 0.14
SVM_lin 1 0.92 ± 0.03 0.93 ± 0.02 0.92 ± 0.02 0.92 ± 0.03 0.93 ± 0.04 0.91 ± 0.05
SVM_RBF {10, 0.001} 0.94 ± 0.03 0.94 ± 0.02 0.94 ± 0.03 0.92 ± 0.05 0.96 ± 0.03 0.91 ± 0.05
SVM_sigmoid {1, 0.001} 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.05 0.95 ± 0.02 0.93 ± 0.06
XGBoost {2, 1} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.07 0.92 ± 0.03

✓

kNN 7 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 0.93 ± 0.02

SVM_lin 1 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.06 0.94 ± 0.04 0.93 ± 0.07
SVM_RBF {10, 0.0001} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.06 0.93 ± 0.04 0.92 ± 0.06
SVM_sigmoid {10, 0.0001} 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.06 0.94 ± 0.04 0.94 ± 0.07
XGBoost {2, 1} 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.91 ± 0.02 0.94 ± 0.07 0.91 ± 0.02

sEMGP2 +
Speech

✗

kNN 14 0.82 ± 0.09 0.79 ± 0.12 0.82 ± 0.09 0.92 ± 0.05 0.71 ± 0.19 0.93 ± 0.05

Acc +
Speech

✓

SVM_lin 1 0.92 ± 0.04 0.92 ± 0.03 0.92 ± 0.04 0.92 ± 0.05 0.93 ± 0.04 0.90 ± 0.09
SVM_RBF {1, 0.001} 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.96 ± 0.04 0.94 ± 0.02 0.96 ± 0.04
SVM_sigmoid {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.93 ± 0.02 0.94 ± 0.03
XGBoost {2, 1} 0.91 ± 0.04 0.92 ± 0.03 0.91 ± 0.04 0.90 ± 0.05 0.93 ± 0.05 0.88 ± 0.07
kNN 11 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.03 0.94 ± 0.02 0.97 ± 0.04

✗

SVM_lin 1 0.93 ± 0.03 0.94 ± 0.02 0.93 ± 0.03 0.94 ± 0.03 0.93 ± 0.02 0.93 ± 0.04
SVM_RBF {10, 0.0001} 0.91 ± 0.05 0.91 ± 0.04 0.91 ± 0.05 0.91 ± 0.05 0.92 ± 0.04 0.89 ± 0.08
SVM_sigmoid {10, 0.0001} 0.91 ± 0.05 0.91 ± 0.05 0.90 ± 0.05 0.92 ± 0.03 0.89 ± 0.06 0.92 ± 0.04
XGBoost {2, 1} 0.93 ± 0.04 0.93 ± 0.03 0.93 ± 0.04 0.93 ± 0.06 0.94 ± 0.06 0.91 ± 0.07
kNN 6 0.82 ± 0.08 0.78 ± 0.15 0.81 ± 0.10 0.93 ± 0.07 0.71 ± 0.20 0.93 ± 0.06

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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Table E.7: Classification results for multimodal scenarios using classical machine learning
algorithms and 40% of the database for test.

Scenario
Feature
selection Classifier

Hyperparameters
mode AUC F1 Accuracy Sensitivity Specificity Precision

sEMGP1 +
Acc +
Speech

✓

SVM_lin 1 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.93 ± 0.05 0.98 ± 0.03 0.98 ± 0.03
SVM_RBF {1, 0.001} 0.95 ± 0.04 0.95 ± 0.03 0.95 ± 0.04 0.96 ± 0.05 0.94 ± 0.10 0.95 ± 0.08
SVM_sigmoid {1, 0.0001} 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.93 ± 0.06 1.00 ± 0.00 1.00 ± 0.00
XGBoost {2, 1} 0.91 ± 0.06 0.91 ± 0.06 0.91 ± 0.06 0.93 ± 0.07 0.88 ± 0.06 0.89 ± 0.05
kNN 10 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.93 ± 0.06 0.98 ± 0.02 0.98 ± 0.02

✗

SVM_lin 1 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.86 ± 0.06 0.94 ± 0.05 0.94 ± 0.05
SVM_RBF {1, 0.0001} 0.88 ± 0.03 0.88 ± 0.04 0.88 ± 0.03 0.88 ± 0.08 0.88 ± 0.05 0.89 ± 0.04
SVM_sigmoid {1, 0.0001} 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.87 ± 0.05 0.94 ± 0.04 0.94 ± 0.04
XGBoost {2, 1} 0.90 ± 0.03 0.91 ± 0.03 0.90 ± 0.03 0.94 ± 0.03 0.86 ± 0.08 0.87 ± 0.06
kNN 18 0.82 ± 0.06 0.79 ± 0.09 0.82 ± 0.07 0.70 ± 0.15 0.95 ± 0.04 0.94 ± 0.04
SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.05 0.93 ± 0.03 0.94 ± 0.03
SVM_RBF {1, 0.001} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.04 0.91 ± 0.04 0.91 ± 0.04
SVM_sigmoid {1, 0.001} 0.92 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.94 ± 0.04 0.91 ± 0.02 0.91 ± 0.02
XGBoost {2, 1} 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.03 0.91 ± 0.07 0.86 ± 0.04 0.87 ± 0.03

✓

kNN 9 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.93 ± 0.05 0.94 ± 0.03 0.94 ± 0.03

SVM_lin 1 0.91 ± 0.03 0.92 ± 0.02 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.05 0.92 ± 0.04
SVM_RBF {10, 0.0001} 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.92 ± 0.04 0.89 ± 0.04 0.90 ± 0.03
SVM_sigmoid {1, 0.0001} 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.93 ± 0.04 0.91 ± 0.05 0.92 ± 0.04
XGBoost {2, 1} 0.89 ± 0.03 0.90 ± 0.03 0.89 ± 0.03 0.91 ± 0.07 0.87 ± 0.04 0.88 ± 0.03

sEMGP2 +
Acc +
Speech

✗

kNN 4 0.81 ± 0.04 0.80 ± 0.08 0.81 ± 0.04 0.77 ± 0.18 0.85 ± 0.13 0.87 ± 0.09

sEMGP1 +
Acc

✓

SVM_lin 1 0.89 ± 0.04 0.89 ± 0.03 0.89 ± 0.04 0.90 ± 0.05 0.88 ± 0.08 0.90 ± 0.07
SVM_RBF {1, 0.0001} 0.90 ± 0.04 0.90 ± 0.03 0.90 ± 0.04 0.86 ± 0.06 0.94 ± 0.08 0.94 ± 0.06
SVM_sigmoid {1, 0.001} 0.84 ± 0.11 0.80 ± 0.16 0.83 ± 0.11 0.72 ± 0.24 0.95 ± 0.06 0.96 ± 0.06
XGBoost {2, 1} 0.79 ± 0.05 0.81 ± 0.04 0.79 ± 0.05 0.84 ± 0.09 0.74 ± 0.16 0.79 ± 0.11
kNN 8 0.90 ± 0.04 0.90 ± 0.04 0.90 ± 0.04 0.86 ± 0.07 0.94 ± 0.03 0.94 ± 0.03

✗

SVM_lin 1 0.84 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.82 ± 0.07 0.85 ± 0.08 0.86 ± 0.06
SVM_RBF {1, 0.0001} 0.86 ± 0.03 0.86 ± 0.04 0.86 ± 0.03 0.87 ± 0.08 0.85 ± 0.05 0.86 ± 0.03
SVM_sigmoid {1, 0.0001} 0.85 ± 0.04 0.85 ± 0.04 0.85 ± 0.04 0.84 ± 0.07 0.86 ± 0.07 0.87 ± 0.06
XGBoost {2, 1} 0.78 ± 0.04 0.79 ± 0.03 0.78 ± 0.03 0.80 ± 0.08 0.76 ± 0.13 0.79 ± 0.10
kNN 29 0.78 ± 0.06 0.730 ± 0.1 0.77 ± 0.07 0.62 ± 0.13 0.93 ± 0.09 0.92 ± 0.09
SVM_lin 1 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.88 ± 0.04 0.84 ± 0.06 0.85 ± 0.04
SVM_RBF {10, 0.0001} 0.88 ± 0.01 0.89 ± 0.02 0.88 ± 0.01 0.88 ± 0.04 0.89 ± 0.04 0.89 ± 0.04
SVM_sigmoid {1, 0.001} 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.03 0.87 ± 0.08 0.91 ± 0.03 0.91 ± 0.03
XGBoost {2, 1} 0.87 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 0.91 ± 0.07 0.82 ± 0.09 0.85 ± 0.06

✓

kNN 3 0.87 ± 0.04 0.87 ± 0.04 0.87 ± 0.04 0.87 ± 0.07 0.86 ± 0.06 0.87 ± 0.06

SVM_lin 1 0.82 ± 0.04 0.83 ± 0.04 0.82 ± 0.04 0.83 ± 0.06 0.82 ± 0.05 0.83 ± 0.04
SVM_RBF {10, 0.0001} 0.83 ± 0.05 0.84 ± 0.05 0.83 ± 0.05 0.83 ± 0.06 0.83 ± 0.05 0.84 ± 0.04
SVM_sigmoid {1, 0.0001} 0.82 ± 0.04 0.82 ± 0.04 0.82 ± 0.04 0.84 ± 0.06 0.79 ± 0.04 0.81 ± 0.03
XGBoost {2, 1} 0.83 ± 0.04 0.84 ± 0.04 0.83 ± 0.04 0.82 ± 0.03 0.85 ± 0.08 0.85 ± 0.06

sEMGP2 +
Acc

✗

kNN 5 0.70 ± 0.10 0.71 ± 0.04 0.70 ± 0.09 0.73 ± 0.18 0.66 ± 0.36 0.76 ± 0.18

sEMGP1 +
Speech

✓

SVM_lin 1 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.01 0.93 ± 0.05 0.95 ± 0.06 0.95 ± 0.05
SVM_RBF {1, 0.0001} 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.06 0.92 ± 0.10 0.94 ± 0.09
SVM_sigmoid {1, 0.0001} 0.96 ± 0.03 0.95 ± 0.04 0.95 ± 0.03 0.93 ± 0.07 0.98 ± 0.02 0.99 ± 0.02
XGBoost {5, 1} 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.93 ± 0.05 0.89 ± 0.06 0.90 ± 0.05
kNN 8 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.93 ± 0.05 0.98 ± 0.02 0.99 ± 0.02

✗

SVM_lin 1 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.87 ± 0.07 0.96 ± 0.03 0.96 ± 0.03
SVM_RBF {10, 0.0001} 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.05 0.91 ± 0.04 0.91 ± 0.04
SVM_sigmoid {1, 0.0001} 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 0.85 ± 0.06 0.95 ± 0.03 0.95 ± 0.03
XGBoost {2, 1} 0.90 ± 0.04 0.90 ± 0.04 0.90 ± 0.04 0.92 ± 0.07 0.88 ± 0.05 0.89 ± 0.05
kNN 4 0.72 ± 0.15 0.60 ± 0.34 0.71 ± 0.16 0.58 ± 0.41 0.85 ± 0.25 0.89 ± 0.15
SVM_lin 1 0.93 ± 0.02 0.93 ± 0.03 0.93 ± 0.02 0.93 ± 0.05 0.92 ± 0.03 0.93 ± 0.02
SVM_RBF {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.04 0.93 ± 0.02 0.93 ± 0.02
SVM_sigmoid {1, 0.001} 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.94 ± 0.06 0.93 ± 0.03 0.94 ± 0.03
XGBoost {2, 1} 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.91 ± 0.07 0.88 ± 0.04 0.89 ± 0.03

✓

kNN 3 0.92 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.90 ± 0.04 0.95 ± 0.02 0.95 ± 0.02

SVM_lin 1 0.94 ± 0.01 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.04 0.96 ± 0.03 0.96 ± 0.03
SVM_RBF {10, 0.0001} 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.04 0.90 ± 0.04 0.91 ± 0.04
SVM_sigmoid {10, 0.0001} 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.90 ± 0.03 0.95 ± 0.04 0.96 ± 0.04
XGBoost {2, 1} 0.90 ± 0.05 0.90 ± 0.05 0.90 ± 0.05 0.93 ± 0.05 0.87 ± 0.06 0.88 ± 0.05

sEMGP2 +
Speech

✗

kNN 4 0.810 ± 0.1 0.78 ± 0.16 0.81 ± 0.09 0.71 ± 0.21 0.91 ± 0.12 0.91 ± 0.10

Acc +
Speech

✓

SVM_lin 1 0.93 ± 0.03 0.93 ± 0.04 0.93 ± 0.03 0.91 ± 0.07 0.95 ± 0.06 0.95 ± 0.05
SVM_RBF {1, 0.001} 0.92 ± 0.05 0.93 ± 0.05 0.92 ± 0.05 0.92 ± 0.07 0.93 ± 0.05 0.93 ± 0.05
SVM_sigmoid {1, 0.001} 0.93 ± 0.05 0.93 ± 0.06 0.93 ± 0.05 0.90 ± 0.13 0.97 ± 0.03 0.97 ± 0.03
XGBoost {2, 1} 0.88 ± 0.04 0.89 ± 0.04 0.88 ± 0.04 0.91 ± 0.09 0.86 ± 0.05 0.87 ± 0.04
kNN 4 0.94 ± 0.05 0.94 ± 0.06 0.94 ± 0.05 0.90 ± 0.09 0.99 ± 0.03 0.98 ± 0.04

✗

SVM_lin 1 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.06 0.92 ± 0.05 0.93 ± 0.04
SVM_RBF {10, 0.0001} 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04 0.92 ± 0.07 0.93 ± 0.03 0.93 ± 0.03
SVM_sigmoid {10, 0.0001} 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.06 0.92 ± 0.05 0.93 ± 0.04
XGBoost {2, 1} 0.89 ± 0.06 0.90 ± 0.05 0.89 ± 0.06 0.93 ± 0.04 0.84 ± 0.10 0.86 ± 0.08
kNN 17 0.77 ± 0.07 0.71 ± 0.13 0.76 ± 0.07 0.61 ± 0.18 0.93 ± 0.06 0.91 ± 0.06

The hyperparameters are provided in the following order: SVM: {C, γ} (for linear kernel, γ doesn’t apply); XGBoost: {depth, negat-
ive/positive balance}; kNN: {neighbors}.
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terizing effortful swallows from healthy community dwelling adults across
the lifespan using high-resolution cervical auscultation signals and MBSImP
scores: A preliminary study”. Dysphagia, Vol. 37, No. 5, pp. 1103–1111,
2022.

[Dos 21] K. W. Dos Santos, E. da Cunha Rodrigues, R. S. Rech, E. M. da Ros Wend-
land, M. Neves, F. N. Hugo, and J. B. Hilgert. “Using Voice Change as an
Indicator of Dysphagia: A Systematic Review”. Dysphagia, pp. 1–13, 2021.

[Duan 16] F. Duan, L. Dai, W. Chang, Z. Chen, C. Zhu, and W. Li. “sEMG-based iden-
tification of hand motion commands using wavelet neural network combined
with discrete wavelet transform”. IEEE Transactions on Industrial Electron-
ics, Vol. 63, No. 3, pp. 1923–1934, 2016.

[Dudi 15a] J. M. Dudik, J. L. Coyle, and E. Sejdić. “Dysphagia screening: contributions
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of dry chin-tuck swallowing vibrations and sounds”. IEEE Transactions on
Biomedical Engineering, Vol. 62, No. 10, pp. 2456–2464, 2015.
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on stationary characteristics of EEG signal in healthy adults”. Brain research,
Vol. 1589, pp. 45–53, 2014.
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