
ORIGINAL PAPER

Novel approach to study gastropod-mediated innate immune reactions
against metastrongyloid parasites

Felipe Penagos-Tabares1,2 & Malin K. Lange1 & Anika Seipp3
& Ulrich Gärtner3 & Helena Mejer4 & Anja Taubert1 &

Carlos Hermosilla1

Received: 4 November 2017 /Accepted: 6 February 2018 /Published online: 13 February 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The anthropozoonotic metastrongyloid nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis, as well as
Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus and Troglostrongylus brevior are currently considered
as emerging gastropod-borne parasites and have gained growing scientific attention in the last years. However, the knowledge on
invertebrate immune responses and on how metastrongyloid larvae are attacked by gastropod immune cells is still limited. This
work aims to describe an in vitro system to investigate haemocyte-derived innate immune responses of terrestrial gastropods
induced by vital axenic metastrongyloid larvae. We also provide protocols on slug/snail management and breeding under
standardized climate conditions (circadian cycle, temperature and humidity) for the generation of parasite-free F0 stages which
are essential for immune-related investigations. Adult slug species (Arion lusitanicus, Limax maximus) and giant snails (Achatina
fulica) were maintained in fully automated climate chambers until mating and production of fertilized eggs. Newly hatched F0
juvenile specimens were kept under parasite-free conditions before experimental use. An improved protocol for gastropod
haemolymph collection and haemocyte isolation was established. Giemsa-stained haemolymph preparations showed adequate
haemocyte isolation in all three gastropod species. Additionally, a protocol for the production of axenic first and third stage larvae
(L1, L3) was established. Haemocyte functionality was tested in haemocyte-nematode-co-cultures. Scanning electron micros-
copy (SEM) and light microscopy analyses revealed that gastropod-derived haemocytes formed clusters as well as DNA-rich
extracellular aggregates catching larvae and decreasing their motility. These data confirm the usefulness of the presented methods
to study haemocyte-mediated gastropod immune responses to better understand the complex biology of gastropod-borne
diseases.
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Introduction

Gastropods (snails and slugs) are abundant organisms widely
distributed in natural humid habitats worldwide and a source
of many kinds of gastropod-borne diseases. Classically, snails
and slugs are directly involved as obligate intermediate hosts
in the life cycle, dissemination and transmission of several
nematode parasitic species infecting humans and domestic
animals (Giannelli et al. 2016). Some of these gastropod-
borne parasitoses are of increasing importance for human
and animal health due to their emergence into previously
non-reported geographic areas (Colella et al. 2016; Lv et al.
2009; Traversa and Guglielmini 2008; Traversa et al. 2014).
Especially metastrongyloid parasites, such as Angiostrongylus
vasorum, A. costaricensis, A. cantonensis, Aelurostrongylus
abstrusus and Troglostrongylus brevior, have gained growing
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attention in basic as well as in applied research areas of human
and veterinarymedicine (Traversa et al. 2010; Morassutti et al.
2014; Spratt 2015; Hansen et al. 2017; Maksimov et al. 2017).
The reasons for the dissemination ofmetastrongyloid parasites
are still unknown. However, it is assumed that shifts in inter-
mediate host populations may be one factor since these para-
sites are vulnerable to environmental conditions when being
released from the final hosts (Dias and Dos Santos Lima 2012;
Morgan et al. 2009). Meta-analyses revealed that global
warming strongly effects the phenology of molluscs (Root
et al. 2003) thereby also affecting their associated parasites
(Patz et al. 2000). To date, the knowledge on how gastropods
respond immunologically to metastrongyloid infections and
how these parasites develop within gastropod species is still
very limited (Giannelli et al. 2016; Schnyder 2015).

Gastropods have an innate immune system which strongly
resembles that reported in vertebrates in relation to cellular and
molecular mechanisms (Patat et al. 2004; Poirier et al. 2014;
Robb et al. 2014; Wojda 2016). Invertebrate haemocytes (syn.
amoebocytes), which circulate freely within the haemolymph
system, are considered as multifunctional phagocytes of the
gastropod invertebrate immune system (Beck and Peatman
2015; Fried and Lwaleed 2016; Lange et al. 2017; Loker
2010; Yoshino et al. 2013). Gastropod haemocyte-derived in-
nate immune reactions include phagocytosis, multicellular en-
capsulation and cell-mediated cytotoxicity as well as the recent-
ly described invertebrate extracellular phagocyte trap (InEPT)
formation (Lange et al. 2017). Nonetheless, detailed investiga-
tions on haemocyte effector mechanisms, as known for verte-
brate phagocytes, are still very limited (Lange et al. 2017; Loker
2010; Sokolova 2009). However, research on gastropod-
derived innate immune reactions against metastrongyloid para-
sites and other gastropod-borne parasites (e.g. trematode infec-
tions) is fundamental to better understand the molecular, bio-
chemical and signalling pathways involved in these interac-
tions. Improved knowledge on the intricate balance between
the gastropod innate immune response and larval-derived infec-
tion mechanisms may also provide novel insights into general
mechanisms of the evolutionary arms race between host and
pathogen. Nowadays, host–pathogen interactions are consid-
ered as a crucial area of infectious disease research since new
information on host–parasite dynamics will aptly facilitate fur-
ther development in the field of new drugs, therapies and con-
trol strategies (Sen et al. 2016; Yoshino et al. 2013). Especially
some of the antimicrobial peptides being produced during in-
nate immune responses appear promising for drug development
as it is assumed that they do not induce bacterial resistance
(Matsuzaki 2001). Although it is generally accepted that inver-
tebrates only possess an innate immune response (Boehm2007;
Cooper and Alder 2006; Niekerk and Engelbrecht 2015; van
Niekerk et al. 2016), recent data suggest that there may also
exist some kind of adaptive immune mechanisms (Arala-
Chaves and Sequeira 2000; Armitage et al. 2015; Bowden

2017; Coustau et al. 2015; Milutinović and Kurtz 2016; Pham
et al. 2007). Invertebrate haemocytes may also play a funda-
mental role in these adaptive processes (Arala-Chaves and
Sequeira 2000; Coustau et al. 2016). For example, gastropod-
derived haemocytes were found to be involved in cell prolifer-
ation, morphological activation, cellular memory and expres-
sion of humoral factors, such as fibrinogen-related proteins
(FREPs) and the Down syndrome adhesion molecule
(Dscam) (Coustau et al. 2016). Rapid progress is currently
made in elucidating molecules involved in the complex inver-
tebrate immunity. However, research on single molecules runs
the risk of missing ancient and well-conserved effector mecha-
nisms (for review, see Little et al. (2005)), such as the capacity
of invertebrate haemocytes to extrude InEPTs to attack patho-
gens as previously demonstrated for metazoan parasites in vivo
and in vitro (Lange et al. 2017).

Therefore, this work intends to describe detailed in vitro
and in vivo systems allowing analyses of gastropod
haemocyte-derived innate immune reactions directed against
any kind of pathogen of terrestrial molluscs (as an example,
we here chose metastrongyloid larvae). Thus, a useful tech-
nique for the isolation of adequate haemolymph volumes and
haemocyte numbers is presented in addition to a suitable
method for generating axenic metastrongyloid larvae and
standardized in vitro mollusk breeding conditions. These are
essential for basic research on immunobiology of gastropods
and to allow future detailed research on gastropod-borne
metastrongyloid parasite species, including anthropozoonotic
(i.e. A. cantonensis, A. costaricensis) and domestic/wildlife
parasite species (i.e. A. vasorum, A. chabaudi, A. mackarrei,
A. abstrusus, T. brevior, Crenosoma vulpis).

Materials and methods

Ethics approval statement

Accord ing to the German Animal Wel fa re Ac t
(Tierschutzgesetz of 25.05.1998—BGBL I S.1105—section
5 paragraph 8a), ethics approval research with invertebrates
is only required for experiments where animals of the classes
Cephalopoda and Decapoda are used. Thus, an approval of an
ethic committee was not necessary for the current studies.
Nevertheless, we took every precaution to ensure the animals
were under the least amount of pain and stress.

Gastropod maintenance under standardized
and parasite-free conditions

Slugs

Terrestrial slugs (Arion lusitanicus and Limax maximus)
(Fig 1a and b) originated from natural populations in the
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Federal State of Hesse, Germany. They were then bred and
maintained in fully automated climate incubators (model
ECP01E®; Snijders Scientific B.V. Tilburg) applying the fol-
lowing conditions: 10 h of dark/10 h of illumination plus 2 h
for dawn and dusk each, corresponding to circadian cycles;
temperatures ranging from 10 to 16 °C (night/day) and 50%
humidity. The specimens used for standardization and estab-
lishment of the current model were all F0 generation of the
specimens initially isolated from natural occurring slug popu-
lations. All slug species were kept in perforated plastic con-
tainers (Tupperware®) (boxes 3300–12,000 cm3; approxi-
mately 1 gastropod per 1000 cm3) supplied with a humidified
absorption paper at the bottom, plastic petri dishes (Nunc) for
food and a plastic dim house (Tecniplast®) as adequate hiding
place to reduce stress (see Fig. 1g). The feedings were per-
formed ad libitum twice a week with lettuce leaves (Lactuca
sativa), cucumber fruits (Cucumis sativus), carrot roots
(Daucus carota subsp. sativus), champignons (Agaricus
campestris), rabbit pelleted food (VERSELE-LAGA®;
CUNIFIT pure) and dry dog food (Purina®, Beneful) (Fig. 1g).

Giant snails

Terrestrial giant African snails (Achatina fulica) (Fig. 1c) pur-
chased from a German hatchery (Deine Tierwelt GmbH&Co.
KG, Hannover, Germany) were bred and maintained as
abovementioned but applying the following conditions: 20
to 25 °C and 60% humidity. For experiment standardization,
exclusive specimens of the F0 generation were used. The
snails were maintained in plastic containers on terrarium soil
(5 cm height, TerraBasis® and TerraCocoshumus® mixed at
1:1 ratio, JBL). The feeding proceedings were performed as
described for the slugs; additionally a calcium supplement (ad
libitum 21% calcium, Calcina Calcium Citrat®, Canina) was
administered (see Fig. 1h).

Generation of parasite-free gastropod FO

Reproduction of the slug species Ar. lusitanicus and
L. maximus as well as the snail Ac. fulica occurred under the
abovementioned conditions. However, due to special mating
behaviour of L. maximus [chasing/climbing activities before
mating in a free-hanging position (Langlois 1965)], large glass
containers (40 cm height) containing branches were used for
breeding of this species (Fig. 1d and e). Single eggs or egg
clusters of slug/snail species were collected from breeding
containers and immediately transferred into small plastic cups
with humidified papers and fenestrated lids for aeration. The
search for hatching of F0 juvenile slugs/snails was performed
weekly (Fig. 1f). Each plastic cup exclusively contained eggs
of one species of gastropod which were maintained under the
same climatic conditions as adult specimens. Time period
(days) from egg deposition to hatching as well as the number

of offspring per egg batch were quantified to confirm that the
gastropods have appropriate reproductive rates. Freshly
hatched F0 slugs/snails were then transferred to plastic con-
tainers and counted. Juvenile slugs were observed to feed only
on leftovers of empty eggshells during the first day after
hatching although food was administered as described above.
To confirm the parasite-free status of the slugs a control group
of 10 L. maximus, 10 Ar. lusitanicus and 10 Ac. fulica speci-
mens were analyzed by artificial digestion and microscopy as
described below.

Isolation of A. vasorum first-stage larvae (L1)

The isolation of A. vasorum L1 from feces of experimentally
infected red foxes (Vulpes vulpes) (kindly provided by the
Department of Veterinary Disease Biology, University of
Copenhagen, Denmark, Danish experimental animal license
no. 2010/561-1914) was performed as described by Lange
et al. (2017). Briefly, faecal samples were incubated in a fun-
nel partially filled with water, where additionally a sieve (ap-
erture 100 μm) was placed and three layers of gauze (117
threads/cm2), at room temperature (RT) for 24 h. Owing to
positive hydrotactic properties, L1 migrated from the faeces
into the water and sedimented. Five-milliliter sediments con-
taining L1 were collected in 15-mL conical tubes (Greiner) by
carefully opening the clamp at the bottom of the Baermann
funnel apparatus. L1 was pelleted by centrifugation (400 g,
10 min, 20 °C). Afterwards, the larvae were separated from
the faeces fragments by a 45/72% discontinuous Percoll gra-
dient as described by Graeff-Teixeira et al. (1999). First, an
isosmotic (90%) Percoll (IOP) solution was prepared by
mixing of 9 parts of Percoll (density 1.128 g/mL, Sigma-
Aldrich) with 1 part of 2.5 M sucrose (Carl Roth). Then, 45
and 72% Percoll gradients were prepared with the following:
45% IOP = 3.15 mL IOP + 3.85 mL 0.25 M sucrose and 72%
IOP = 3.6 mL IOP + 1.4 mL 0.25 M sucrose. Subsequently,
the gradients were prepared in a 15-mL conical tube by over-
laying 5 mL 72% IOP with 7 mL 45% IOP. Then, the pellet
with larvae was added on top of the gradient. The sample was
then centrifuged (400 g, 40 min, 20 °C). L1 was then recov-
ered from the boundary layer in between the 45 and 72%
gradients.

Isolation of vital A. vasorum third-stage larvae (L3)
by artificial digestion of experimentally infected slugs

To generate A. vasorum L3, L. maximus slugs were previously
infected orally with vital 100 larvae/slug. First, slugs were
placed individually in small plastic containers and not fed
for 2 days before infection. The larvae were then re-
suspended in 200 μL distilled water and carefully deposited
on a single dog food pellet with a hollow in the centre (Fig. 2).
The slugs were kept in the plastic boxes until the dog food
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pellet was entirely eaten to help ensure maximum oral uptake
of infective larvae. The larvae recovery rate regarding
L. maximuswas 2.5%mean, ranging from 0.5 to 14%whereas
larval recovery from A. lusitanicus constituted 2% mean,
ranging from 1 to 3.5%.

A. vasorum L3 was isolated 30 days post-infectionem (p.i.)
via artificial digestion: the slugs were cut into small pieces and
placed in the digestion solution [1 L containing 10 g pepsin-
ogen powder 2000 FIP-U/g (Robert Kind), 8.5 g NaCl (Carl
Roth), 30 mL HCl 37% (Carl Roth), distilled water ad 1 l].
The digestion was performed in 50 mL conical tubes (Greiner
Bio-One International GmbH) under constant shaking (4 h,
40 °C). Digested samples were sieved first through a
300-μm-pore-size metal sieve (Retsch GmbH) to remove un-
digested material and then through a 25-μm-pore-size metal
sieve (Retsch GmbH). The contents in the last sieve were
transferred to 15 mL Falcon tubes and centrifuged (400 ×g,

10 min). Pellets were re-suspended and examined microscop-
ically (Leica light microscope at 4× and 20× magnification).
Viable A. vasorum L3 were carefully collected by pipetting
under a microscope (Pasteur pipette, Hirschmann GmbH &
Co. KG), washed thrice in sterile PBS in Petri dishes (Greiner
Bio-One International GmbH) to remove debris and deposited
in 1 mL plastic tubes (Eppendorf).

Preparation of axenic A. vasorum first (L1)- and third
(L3)-stage larvae

In order to remove any bacterial/fungal contamination and to
achieve an axenic status of L1 and L3, the method reported by
Barçante et al. (2003) was applied with slight modifications.
Briefly, A. vasorum larvae were incubated for 10 min in a
10 mL sodium hypochlorite solution (0.5% v/v) (stock solu-
tion containing 12% sodium hypochlorite; Carl Roth)

Fig. 1 Terrestrial gastropods
maintained under controlled
standardized conditions. Adult
specimens of (a) the Iberian slug
(Arion lusitanicus), (b) the giant
garden slug (Limax maximus),
and (c) the giant African snail
(Achatina fulica). (d) Glass
container used for reproduction of
L. maximus. (e) Limax slugs
chasing one another (due to their
special mating behaviour) in
reproduction container. (f) Eggs
and freshly hatched F0 specimens
of L. maximus. (g) Slugs were
maintained in plastic containers
with humidified absorption paper
and fed lettuce, cucumber fruits,
carrot roots, champignons, rabbit
pelleted food and dry dog food.
(h) Giant snails were maintained
in plastic containers on terrarium
soil and fed in the samemanner as
the slugs with addition of a
calcium supplement
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prepared in sterile PBS (Lange et al. 2017). Subsequently,
larvae were washed twice (250 ×g for 5 min at 20 °C) in sterile
PBS supplemented with 3% penicillin (500 U/mL; Sigma-
Aldrich) and streptomycin (500 μg/mL; Sigma-Aldrich)
followed by two further washings in sterile PBS without anti-
biotics. To confirm the efficacy of this protocol, axenic larvae
(50 larvae per petri dish) were incubated on sterile LBmedium
(10 g LB, 7.5 g agar, 500 mL distilled water) at 37 °C for
7 days (n = 5) and thereafter analyzed for bacterial or fungus
contamination. For improved availability, axenic larvae were
always prepared 1 day in advance of exposure to gastropod
haemocytes in vitro.

Isolation and in vitro culture of gastropod-derived
haemocytes and co-culture experiments with vital
axenic A. vasorum larvae

Adult gastropods (at least 6 months old) were subjected to a
48-h fasting period and cryo-anesthetized (40 min on ice)
before haemocyte isolation. Based on a previously published
technique for insect (caterpillar)-derived haemocyte isolation
(Stoepler et al. 2012), we used a slightly modified serum-free
haemocyte collection solution [77% RPMI 1640 medium,
20% anticoagulant buffer (98 mM NaOH, 186 mM NaCl,
1.7 mM EDTA and 41 mM citric acid, pH 4.5) and 3%
penicillin/streptomycin (Sigma-Aldrich, penicillin 10,000 U/
mL, streptomycin 10 mg/mL)] which was freshly prepared
under sterile conditions and kept on ice at all times. By using
1-mL syringes (Braun) and capillary needles (30-gauge,
Braun), the haemocyte collection solution was injected into
each cryo-anesthetized slug at a volume corresponding to 10%
of its body weight. Thereafter, slugs were cryo-anesthetized
(20min on ice) again before euthanasia was performed via fast

decapitation (Patel et al. 2014). The haemolymph samples
were immediately collected from decapitated slugs by careful
mechanical pressure and aspiration.

In contrast to the slugs,Ac. fulica haemolymphwas directly
collected from living specimens by aspiration after insertion
of a needle with a syringe close to the pneumostome (Cooper
1994). Haemolymph extraction of up to 10% of the snail’s
body weight was previously described to induce no adverse
effects in the animal (Cooper 1998). The extracted snail
haemolymph samples were immediately mixed with equal
volumes of sterile culture medium [RPMI 1640 medium sup-
plemented with penicillin (500 U/mL; Sigma-Aldrich) and
streptomycin (500 μg/mL; Sigma-Aldrich)] (see Fig. 3). The
quality of haemocytes was controlled via Giemsa staining
(Sigma-Aldrich) of haemolymph smears and based on cell
sizes two different types of gastropod haemocytes were found
and categorized as type I (small) and II (large) haemocytes
according to Accorsi et al. (2013). The haemocytes were
washed thrice (250 ×g, 5 min, low acceleration) and counted
in a Neubauer haemocytometer chamber. Haemocytes were
co-cultured with axenic L1 and L3 of A. vasorum on poly-L-
lysine (Sigma-Aldrich) pre-coated coverslips (Nunc) at a ratio
of 200:1 (RT, 30 and 60 min).

Phase-contrast microscopy and scanning electron
microscopy (SEM) analyses

Haemocyte-parasite co-cultures were analyzed either by phase
contrast microscopy (Olympus IX8® microscope equipped
with a digital camera and the Olympus analySIS® software)
or by SEM. For SEM analyses, the samples were fixed in
2.5% glutaraldehyde (RT, Merck), which was prepared using
1% osmium tetroxide (Merck), washed in distilled water,
dehydrated, critical point dried by CO2 treatment and
sputtered with gold. Thereafter, the samples were examined
with a Philips XL30 scanning electron microscope at the
Institute of Anatomy and Cell Biology, Justus Liebig
University Giessen, Germany.

Results and discussion

Gastropod breeding under standardized climate
conditions results in successful generation
of parasite-free F0 specimens

In order to maintain terrestrial gastropods as close as possible
to their optimal environmental conditions, the animals were
kept in fully automated climate chambers, simulating circadi-
an conditions, where successful breeding of all mentioned
gastropod species was achieved (Tables 1 and 2). For experi-
ments on innate immune responses, it is mandatory to main-
tain experimental animals under fully standardized conditions

Fig. 2 Oral slug/snail infection. One hundred larvae suspended in 0.2-mL
distilled water were deposited on a single dog food pellet
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to avoid interference by other factors, such as diet, climate
conditions and stress (Kangassalo et al. 2015; Krams et al.
2015; Wojda et al. 2004). To reduce stress, we administered
red dim houses in the slug colonies to be used as shelter and
hiding place (this waswell accepted by all slug species) (Fig. 1).

The slug and snail mating behaviour, especially for
L. maximus, were clearly improved under here described con-
ditions and resulted in massive production of fertilized eggs.
Newly hatched juvenile parasite-free gastropods of the three
species (F0 generation) were efficiently propagated in these
climate chambers and successfully used for experimental
A. vasorum infections or as haemolymph donors. No nema-
tode stages were found in artificially digested F0 generation
slugs and snails (n = 30) validating their parasite-free status.
Diet and climate conditions were, as described above, utterly
standardized and automated to guarantee a high reproducibil-
ity of the experiments. Under these breeding conditions, cli-
matic factors could easily be controlled and regulated in a way
which simulates the in vivo situation, by, for example,
adapting the day length to seasonal changes. This allows to
evaluate the influence of different climatic scenarios or
season-triggered effects on innate immune responses or meta-
strongyloid infection characteristics in gastropods.

Given that ambient temperature, humidity, circadian cycles
and diet can significantly influence the host innate immune
response of vertebrates and invertebrates (Kangassalo et al.
2015; Krams et al. 2015; Leicht et al. 2013), these factors
should be considered in immunity-related experiments. We
recommend and consider these factors vital to maintain gas-
tropod colonies under standardized conditions (i.e. tempera-
ture, photoperiod, feeding and humidity) as slight environ-
mental changes can result in the modification of host–patho-
gen interactions as demonstrated elsewhere (Barber et al.
2016; Mitchell et al. 2005; Seppälä and Jokela 2011). The
advantages of controlled climate conditions with circadian
cycles also ensure that breeding conditions resemble the
in vivo situation. These conditions can then be further manip-
ulated in order to analyze the impact of seasonal variations or
climate change on gastropod development or infections. This
has previously been suggested to be important for the devel-
opment of metastrongyloid larvae within terrestrial intermedi-
ate hosts (Morgan et al. 2009). Furthermore, the
abovementioned investigations can be performed with ease
and will contribute to unveil the complex epidemiology of
lungworm infections (Maksimov et al. 2017; Morgan et al.
2009).

Fig. 3 Haemolymph extraction process. (a) Injection of collection solution (~ 10% of the body weigh). (b) Haemolymph recovery from A. lusitanicus
and (c) L. maximus. (d) haemolymph collection via aspiration close to the pneumostome. (e) Haemolymph samples from slugs and (f) from snails

1216 Parasitol Res (2018) 117:1211–1224



Axenic status of A. vasorum first (L1)- and third (L3)
-stage larvae

Analyses on immune responses should generally be per-
formed with axenic larvae in the case of nematode pathogens
to avoid reactions due to bacterial or fungal contamination.
Due to the lifecycle of metastrongyloids, the isolation of L1
is associated with considerable contamination problems since
the larvae have to be separated from the final host faeces.
Faeces obviously contain large amounts of bacteria and fungi
which themselves function as potent extracellular trap (ET)
inducers in mammalian and invertebrate phagocytes
(Brinkmann et al. 2004; Ng et al. 2013). In addition, the L3
isolation from dead slugs/snails may also lead to bacterial/
protozoal contamination since these intestinal microbes may
be set free during the extraction process. Therefore, it is man-
datory to generate axenic first- and third-stage larvae to ex-
clude unspecific reactions. The protocol described herein suc-
cessfully resulted in the generation of axenic metastrongyloid
larvae since neither bacterial nor fungal growth occurred after
an incubation at 37 °C for 7 days (Fig. 4). In this way, it is
possible to declare that immune reactions produced by
haemocytes during the experiments were exclusively induced
by larval antigens.

Isolation of axenic metastrongyloid larvae from faeces is a
pivotal step for in vitro experiments on gastropod immune
responses to avoid false interpretation of results (Barçante
et al. 2003). The current protocol of L1 purification and
sterilisation from carnivore faeces resulted in low levels of
debris contamination without reducing the number of viable
metastrongyloid larvae. These larvae proved bacteria-free and
showed good results in preliminary ET-related experiments.
Thus, these larvae may also be used for antigen preparations
or other purposes. Furthermore, the development from L1 into
L3 of A. vasorum was achieved in F0 specimens as

demonstrated by viable L3 stages after slug/snail digestion.
More importantly, the development time from L1 into infec-
tive A. vasorum L3 corresponded well to previously reported
data (Koch and Willesen 2009).

Haemolymph extraction from slugs and snails

The current haemolymph extraction protocols delivered a
rather high volume of haemolymph containing adequate num-
bers of haemocytes. Thus, Giemsa-stained haemolymph
smears revealed the presence of high numbers of intact
haemocytes in each gastropod species tested, i.e. in Ar.
lusitanicus, L. maximus and Ac. fulica as previously reported
(Adamowicz and Bolaczek 2003; Pengsakul et al. 2013)
(Fig. 5, Table 3). Type I (small) haemocytes were more abun-
dant (85.2, 94, 96.9%) than type II (large) haemocytes (14.8,
5.9, 3.1%) in the gastropod species L. maximus, Ac. fulica and
Ar. lusitanicus, respectively (Table 3). The median collected
haemolymph volumes were 112.5 μL in L. maximus, 125 μL
in Ar. lusitanicus and 340 μL in Ac. fulica) with total
haemocyte counts of 61,250 cells, 27,500 cells and 156,565
cells, respectively. Haemolymph volumes and haemocyte
counts varied considerably between individuals of the same
gastropod species and also between the different gastropod
species (Table 4).

One emphasis of the current study was to develop a rapid
and reproducible method for the collection of large volumes of
haemolymph for haemocyte isolation. We here provide a nov-
el haemolymph extraction protocol that may potentially be
used for the terrestrial intermediate host species: the Iberian
slug (Ar. lusitanicus), the giant garden slug (L. maximus) and
the giant African snail (Ac. fulica) for a wide range lungworm
infections of dogs and cats (i.e. A. vasorum, C. vulpis,
A. abstrusus, T. brevior) as well as for anthropozoonotic

Table 2 Time period (days) from
egg deposition to gastropod
juvenile hatching

Arion lusitanicus Limax maximus Achatina fulica

Batch 1 22 19 30

Batch 2 31.5 ± 5.1 24 31

Batch 3 31.5 ± 7.3 26

Batch 4 31.0 29.5 ± 7.8

Batch 5 30.5 ± 4.9

Mean hatching time 29.5 ± 4.1 24.6 ± 4.4 30.5 ± 0.7

Mean death rate 9.9 ± 7.3% 10.9 ± 15.3% 4.0 ± 2.1%

Table 1 Reproduction of
gastropod species in fully
automated climate chambers

Arion lusitanicus Limax maximus Achatina fulica

Mean number of offspring/egg batch ± SD 85 ± 71 109 ± 74 129 ± 103

Maximum number of offspring/egg batch 191 181 202

Minimum number of offspring/egg batch 3 22 56
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lungworms in tropical/subtropical geographic areas (i.e.
A. cantonensis, A. costaricensis).

The method can easily be transferred to obtain haemocytes
from other terrestrial/amphibian or aquatic gastropod species
and allows basic research of the snails’ immunocompetence
against larval stages of other nematodes. The same applies to
other gastropod-borne pathogens including important trema-
tode genera affecting public health as well as livestock ani-
mals such as Schistosoma, Fasciola, Opisthorchis,
Clonorchis, Gastrodiscoides, Echinostoma, Paragonimus,
Fasciolopsis, Heterophyes and Metagonimus among others.

Since it proved realistic to obtain sufficient haemolymph
from giant African snail species achieving a volume of up to
10% of the snail’s body weight without sacrificing the donor,
estimated volumes of up to 5 mL per snail may be easily
extracted from full-grown specimens. Consequently, Ac.
fulica also appears as a promising and suitable model for more
detailed research on invertebrate innate immunity using more
cell-consuming techniques, such as fluorescence-activated
cell sorting (FACS) analyses or biochemical studies.

Gastropod haemocytes form ETs in response
to A. vasorum larvae (L1 and L3)

The phase-contrast microscopy showed that haemocytes de-
rived from Ar. lusitanicus, L. maximus and Ac. fulica when
exposed to vital A. vasorum L1 and L3 larvae formed cellular

aggregates and extracellular haemocyte-derived ET-like struc-
tures in contact with the larvae or even entangling them so
larval movement was decreased (Figs. 6 and 7/Supplementary
material Videos 1 and 2). Ultrastructural characterization by
SEM analyses confirmed gastropod-derived InEPTs being at-
tached to larval stages (Fig. 7). These extracellular structures
were recently analyzed in more detail by Lange et al. (2017).
Interestingly, different types of ETs, i.e. spread (sprInEPTs)
and aggregated InEPTs (aggInEPTs) [Figures 2 and 3 in
Lange et al. (2017)], are observed in mammalian ETs
(Muñoz-Caro et al. 2015b).

Additionally, the phase-contrast microscopy and SEM
analyses of haemocyte-larvae co-cultures revealed signs of
chemotaxis, the formation of haemocyte aggregates and of
intense cellular activity (i.e. vacuolization and fibrillary ar-
rangement). This is in line with observations of Boisseaux
et al. (2016) on Lymnaea stagnalis-derived haemocytes and
on gastropod-derived InEPTs (Lange et al. 2017). Overall,
A. vasorum-driven InEPTs revealed parasite stage indepen-
dency, since L1 and L3 induced these reactions. Although
several surveys have showed a parasite stage-independent
ET formation (Guimaraes-Costa et al. 2009; Hermosilla
et al. 2014; Muñoz-Caro et al. 2015a; Silva et al. 2014), dif-
ferences in efficacy between diverse parasitic stages have been
described earlier by Hermosilla et al. (2014). In addition,
A. vasorum-induced InEPTs also proved to be host species-
independent since haemocytes isolated from two different

Fig. 4 Axenic culture of
Angiostrongylus vasorum. (a) L1
isolated from feces of
experimentally infected foxes. (b)
L3 isolated from experimentally
infected slugs Limax maximus

Fig. 5 Haemolymph smears stained by Giemsa. (a) Haemocytes of Arion lusitanicus (400×), (b) haemocytes of Limax maximus (400×) and (c)
haemocytes of Achatina fulica (400×). Black arrows indicate type I (small), and white arrows indicate haemocyte type II (large)
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slug species and from one snail species performed this effector
mechanism, which is in line with previous data on ETosis and
InEPTosis (Lange et al. 2017; Muñoz-Caro et al. 2015a).

Intriguingly, many similarities exist between the innate im-
mune system of vertebrates and invertebrates (Coustau et al.
2016; Little et al. 2005; McCormick-Ray and Howard 1991).
This applies not only for soluble defense molecules but also
for conserved effector mechanisms of professional phagocytes
(Hermosilla et al. 2014; Lange et al. 2017; Silva et al. 2016).
As such, antimicrobial lectins, peptides, proteases, C-reactive
proteins, alpha 2-macroglobulins and histones (H1-like, H5-
like) have been reported as effector molecules of the inverte-
brate immune system (Coates and Decker 2017; Foelix 1996;
Goins 2003; Iwanaga and Lee 2005; Little et al. 2005; Liu
et al. 2016; Poirier et al. 2014; Van Wettere and Lewbart
2007). Patat et al. (2004) suggest that multifunctional histone
proteins are a conserved characteristic of the innate immunity
in all organisms possessing histones. In addition, similarities
on molecular and structural level have also been assumed for
invertebrate and vertebrate effector mechanisms (Arala-
Chaves and Sequeira 2000), such as ETosis (Hermosilla
et al. 2014; Lange et al. 2017; Poirier et al. 2014; Silva et al.
2016). Consistently, it has been shown that several innate
immune signalling pathways and transcription factors are con-
served in invertebrates and vertebrates, such as the peptido-
glycan recognition protein LC/immune deficiency (PGRP-
LC/IMD) pathway, Janus kinase (JAK)/signal transducer
and activator of transcription (STAT) and mitogen-activated

protein kinases (MAPK)/extracellular signal-regulated ki-
nases (ERK) pathways, nuclear factor kappa B (NF-kB) and
Toll-like receptors (TLRs) (Coustau et al. 2016; Kang et al.
1998; Pila et al. 2016; Sun et al. 2016; Wojda et al. 2004;
Zhang and Coultas 2011). Highly diversified non-self-
recognition molecules, such as FREPs and the Dscam
(Coustau et al. 2016), are also reported to occur in inverte-
brates. Haemocytes, as key players of invertebrate immunity
(Beck and Peatman 2015), have a pivotal role not only in early
innate responses against pathogens by encapsulation, nodula-
tion and melanisation (Tsakas and Marmaras 2010) but also in
invertebrate immune memory reactions. As such, haemocytes
produce FREPs after their encounter with trematodes
(Romero et al. 2011; Zhang et al. 2004). Overall, the inverte-
brate immune system represents a mosaic of evolutionary con-
served processes as well as evolutionarily independent inno-
vative immune mechanisms that require more detailed inves-
tigation (Cerenius and Söderhäll 2013; Coustau et al. 2016;
Malagoli 2016). In this context, rapid progress has been made
in elucidating the molecular mechanisms to be involved in
invertebrate innate immunity, particularly in arthropods
(Jiravanichpaisal et al. 2006; Milutinović and Kurtz 2016).
However, much less data are available on gastropods although
these species are well-known for their pivotal role in spreading
of anthropozoonotic and veterinary relevant lungworm infec-
tions worldwide.

So far, most studies performed on immunological gastro-
pod–parasite interactions have been restricted to the aquatic
snail Biomphalaria glabrata (Zhang et al. 2007; Zhang and
Coultas 2011; Coustau et al. 2015) and related to digenean
trematode infections (e.g. schistosomosis, opisthorchiosis,
clonorchiosis and fasciolosis), and only few studies have been
performed on gastropod-borne nematode infections (van der
Knaap and Loker 1990; Ataev et al. 2016; Pila et al. 2016;
Lange et al. 2017). Haemocytes obtained from trematode-
infected snails have altered morphology, stickiness, spreading
behaviour on glass surfaces, and phagocytic activity. The

Table 4 Haemolymph volumes
and total cell counts of
haemocytes extracted from Limax
maximus, Arion lusitanicus and
Achatina fulica

Limax. maximus (n = 12) Haemolymph volume (μL) Haemocyte number

Maximum 250 555,000

Minimum 65 15,000

Median 112.5 61,250

Arion lusitanicus (n = 18) Haemolymph volume (μL) Haemocyte number

Maximum 600 256,000

Minimum 50 5000

Median 125 27,500

Achatina fulica (n = 9) Haemolymph volume (μL) Haemocyte number

Maximum 1000 731,200

Minimum 278 156,565

Median 340 396,880

Table 3 Proportion of haemocytes type I (small) and type II (large) in
gastropod haemolymph samples

Arion lusitanicus Limax maximus Achatina fulica

Type I cells 559 (96.9%) 104 (85.2%) 112 (94.1%)

Type II cells 18 (3.1%) 18 (14.8%) 7 (5.9%)

Total 577 122 119
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nature of the changes depends on both gastropod and trema-
tode species as well as on the developmental stage of the
parasite (van der Knaap and Loker 1990). Haemocytes of
B. glabrata entrapped mother sporocysts of Schistosoma
mansoni in an in vitro confrontation through extracellular pro-
longation described as filopodia (van der Knaap and Loker
1990). Given that ETs were not reported until 2004, it would
be interesting to investigate if trematode–gastropod interac-
tion can induce similar innate immune mechanisms.
Previous data on gastropod-borne trematode infections em-
phasize that these interactions are regulated by a highly com-
plex molecular crosstalk which involves numerous antigens,
immune receptors and anti-effector systems [for details, see
Coustau et al. (2015)]. Some of these molecules are highly
diversified among gastropods and digenean parasite popula-
tions (Adema and Loker 2015; Coustau et al. 2015; Dheilly
et al. 2015). These findings could be similar for metastrongy-
loid infections of humans, domestic animals and wildlife an-
imals. Thus, better understanding of invertebrate-pathogen
molecular crosstalk and the identification of key factors

capable to impair metastrongyloid development is crucial.
Utilizing these novel data raises interesting possibilities for
developing new strategies towards blocking/controlling or
even disrupting the transmission of gastropod-borne diseases.

Conclusions and future perspectives

The present study describes how gastropods can be bred suc-
cessfully under standardized conditions and how offspring can
be used for immunological analyses. Therefore, emphasis was
taken on improved protocols for the collection of sufficient
volumes of haemolymph and for the isolation of vital
haemocytes which can be used for experiments on
haemocyte-mediated innate effector mechanisms.
Interactions of gastropod-derived haemocytes with metastron-
gyloid parasites were also addressed here.

The presented methods will improve basic investiga-
tions on molecular immunological interactions between
slugs as well as snails and metastrongyloids or other

Fig. 6 Co-cultures of gastropod haemocytes and A. vasorum larvae. (a)
Limax maximus haemocytes co-cultured with axenic and viable
A. vasorum L1. (b) Cluster of Arion lusitanicus haemocytes acting
against A. vasorum L1s forming aggregated material (arrows, 30 min).

(c) Non-activated Limax maximus haemocyte. (d) Limax maximus
haemocytes reacting against A. vasorum L1 showing activated cell
surface (arrows, 30 min). (e) Achatina fulica haemocytes acting against
A. vasorum L1 at an early time point in the reaction (arrows, 5 min)
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nematodes and therefore contribute to more detailed
knowledge on invertebrate immunology. Basic research
on early innate immune responses against parasites is fun-
damental in determining which pathways control these
interactions. The methods described here could also set
the basis for in-depth investigations not only on the path-
ophysiology and biology of gastropod-borne parasitoses
but also on classical immune defense strategies, such as
encapsulation, nodulation and melanisation. A solid
knowledge on intermediate host–parasite molecular
crosstalk and interplay may provide new strategies to dis-
rupt the life cycle of emerging anthropozoonotic parasitic
diseases, such as A. cantonensis and A. costaricensis
infections.
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