
A complexity fingerprint for the localization of the Epileptogenic Zone
using machine learning and data-driven approaches

Yorguin José Mantilla Ramos

This thesis is submitted for the degree of
Electronics Engineer

Advisors
Richard Leahy, Ph.D.
Karim Jerbi, Ph.D.

Hernán Felipe García Arias, Ph.D.

Universidad de Antioquia
Facultad de Ingeniería

Departamento de Ingeniería Electrónica y de Telecomunicaciones
Ingeniería Electrónica
Medellín, Colombia

2023



Citation Mantilla-Ramos, 2023 [1]

Reference

IEEE (2020)

[1] Mantilla-Ramos, Y. J., “A complexity fingerprint for the localiza-
tion of the Epileptogenic Zone using machine learning and data-
driven approaches”, Undergraduate Thesis. Universidad de An-
tioquia, Medellín, 2023.

Biomedical Imaging Group, University of Southern California.
Cognitive and Computational Neuroscience Laboratory, Université de Montréal.
Grupo Neuropsicología y Conducta, Universidad de Antioquia.

Centro de Documentación de Ingeniería (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.
Decano: Julio César Saldarriaga Molina.
Jefe del departamento: Eduard Emiro Rodríguez Ramírez.

El contenido de esta obra corresponde al derecho de expresión de los autores y no com-
promete el pensamiento institucional de la Universidad de Antioquia ni desata su re-
sponsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos
de autor y conexos.



I would like to dedicate this thesis to . . .

learning from others,
and others learning from me.

family, and friends
mentors, and mentees

beings... living and non-living alike
the places that received me.

No matter where I’d go,

Venezuela,
Colombia,
Australia,
Canada,

the United States. . .

I would find you
and your enchantment

and enraptured
you would transform me.

Te encontraría a ti
y a tu magia
y encantado
me transformarías.



Acknowledgements

I wish to give my deepest gratitude to my advisors Dr. Richard Leahy, Dr. Karim
Jerbi, and Dr. Hernán F. García. Their unwavering support, insightful comments,
and valuable suggestions significantly enhanced both the project and this document. In
the moments I was filled with doubt, you would ask "but these results are good,
right? What do you think?". It often felt as though you believed in the results
more than I did, but yes... I will give in, I finally think they are good, and I ended up
believing so much in them that I wanted this document to be the best I could do.

More on the material side, all of this wouldn’t have been possible without funds,
specially for a broke student making his way through LA. Thus, I would like to acknowl-
edge the funds given by National Institutes of Health under award R01-EB026299 and
R01-NS089212.

The following acknowledgements are beyond this project, as I consider this thesis a
culmination of my undergraduate development as a whole; a journey that took me 10
years, and almost five countries. I will acknowledge all of it, and I hope everyone is here.
For you my dear, I will start from the beginning... I want to thank and acknowledge...

My friends, teachers and groups from Colegio Arturo Michelena, and Instituto
Madre Matilde; among you I enjoyed my childhood and teen years.

My friends from Gaitas Intercolegiales, Toto Music, Conservatorio Juan José
Landaeta, Crea Musica, Grupo Instrumental y Voces USB; from you I learned
the way of music which accompanies me forever and wherever.

My professors and friends from Universidad Simón Bolívar: Electrónica, Física,
Matemática, Mecánica, Computación, Teleco..., Club de Audio USB, Labo-
ratorio de Acústica y Comunicaciones; from you I learned the way of Audio and
Acoustics, the way of Math, Physics and their Philosophy, and to dream big and
endure, even if your country is on fire.

My professors and friends from Universidad de Antioquia, and in particular from
Electrónica y Bioingeniería. From you I learned the way of the engineer, and to be
a friend no matter where you are from, and how weird you are.



Biohacking Colombia and Grupo Genética y Bioquímica de Microorganis-
mos. From you I learned the way of Biology, but more importantly, how Science has
something for all of us: for children, for parents, for grand-parents, for the victims,
for the victimizers, for the lucky and the unlucky, for the professional and for the curious
bypasser, for you and for me. I only came to work and to climb as high as I could...
Who knew I would find this much and much else...

Grupo Neuropsicología y Conducta, its Línea de Enseñanza y Aprendizaje
de la Investigación, Semillero Neurociencias Computacionales NeuroCo and
my friends from Medicina. From you I learned the way of the Scientist in Neuro-
science, EEG, Medicine, Social Science, and more importantly, what it means to be
a mentor and a mentee, and to have una alma semillerista. It is all in the spirit
of multidisciplinary curiousness and I’m forever sorry that I had to go.

My mentors and friends from CoCo Lab at Université de Montréal, from the
neuroscience community I found in Queensland and Swinburne, Australia, from the
BIG Lab at the University of Southern California, the Cleveland Clinic and
from the Open Source Neuroscience Software Community and Hackathons.
From you I learned the way of Neuro-AI and Neuroinformatics, how science is connected
through the world and its cultures, and how it all stems from collaboration. And so,
we shall collaborate away and even when away collaborate.

My family and friends from all over the world: Baruta, Rosales, Gavilán, Cara-
cas, Valencia, Mariara, Maracaibo, Río Caribe, Táchira, Coro, Medellín, Bar-
ranquilla, Bucaramanga, Sincelejo, Arauca, Miami, Orlando, Jacksonville,
Homestead, Montréal, Austin, San Francisco, Mayo Clinic, Londombia, Aus-
tralia, España, Grecia, Francia, Italia, Inglaterra, Noruega, Alemania, Nige-
ria, Rumania, Serbia, Argentina, Chile, México, Brásil, Los Angeles, the
drum circle at Venice Beach, the dance community from the 3rd Street
Promenade, West LA and Moorpark, and who knows where else... I keep dis-
covering you. You accompanied me through all of these stages and those to come, from
you I learned the most important: to love.

My parents Ingrid Soledad Ramos Blanco and Yorguin Mantilla Colmenares.
My sisters Gabriela and Daniela. My close friends, and dogs, and cats, and opossums,
and parrots, and turtles, the mountains, the beaches ... From you, I . . . And there
are no words expressive enough that would do justice... Let us just enjoy the journey.

It all began, is, and will be...



because of you...



Abstract

In this research, we sought to delineate the epileptogenic zone using a dataset from the
Cleveland Clinic, encompassing 28 patients who successfully underwent resective surgery
and had prior SEEG recordings from both ictal and interictal periods. From time-
windowed segments of these recordings, we derived complexity features and characterized
them using their mean and standard deviation. Our analysis incorporated features such
as Lempel-Ziv complexity, various entropies, fractal dimensions, and the 1/f slope of the
brain activity spectrum, among others. We trained three distinct Logistic Regression
Models: one using only ictal data, another using only interictal data, and a hybrid model
leveraging both periods. Additionally, we trained a model using the Bern-Barcelona
dataset, a known benchmark in interictal prediction. Our findings underscored that while
the interictal period might be less informative in isolation, it enhances the insights drawn
from the ictal phase when combined. A pivotal aspect of our research was discerning
a distinctive epileptogenic zone fingerprint. Feature importance analysis pinpointed
the Mean Lempel-Ziv Complexity, the standard deviation of the 1/f Slope, and the
standard deviation of specific fractal dimensions as the most significant characteristics
differentiating resected locations. These results not only contribute to understanding the
epileptogenic zone but also foster discussions about complexity in the brain, particularly
in the context of the brain criticality hypothesis.
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Chapter 1

Introduction

1.1 Context

Epilepsy is a common neurological disease that affects 50 million people worldwide [6, 61]
and has an estimated point prevalence of 6.38 per 1000 persons for active epilepsy[20].
The first line of treatment consists of anti-epileptic drugs. Unfortunately, around one
third of the cases turn out to be pharmacoresistant [42, 82]. In these cases, one common
course of action is to evaluate the viability of a surgical treatment, as this has the
potential to eliminate the seizures. In some cases, other alternatives such as neural
stimulation or the ketogenic diet are also considered [19]. If a surgery is successful, the
patient becomes seizure-free, and in turn his/her quality of life greatly improves. Indeed,
epilepsy is associated with psychological and social problems including conditions such
as depression, anxiety, and cognitive dysfunction [15, 54].

A prerequisite for a surgical intervention is the identification of the Epileptogenic
Zone (EZ). Currently, the standard procedure for this is through the visual inspection
of intracranial electroencephalography (iEEG), a process which is challenging, time-
consuming and prone to subjectivity [26, 35, 63]. Therefore, finding an objective set of
characteristics to localize the EZ is of utmost importance. With advances in quantitative
electroencephalography and data-driven approaches, researchers have made efforts to
obtain a set of biomarkers of the EZ. So far, the most common clinical approach has
relied on pathological high-frequency oscillations (HFOs) as the main characteristic [3,
35]. Nonetheless, the precise localization of the EZ is still an unsolved and challenging
problem [26, 35].

In 2017, Grinenko et al. [26] proposed the use of time-frequency characteristics for
the identification of the EZ, which they conceptualized as a “fingerprint”. Such a spec-
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trotemporal fingerprint expanded the set of high-level features by including not only fast
activity but also preictal spikes and low-frequency suppression.

Interestingly, beyond oscillation-related features, electrophysiological brain signals
contain a wealth of other properties that have remained largely underexplored in the
context of epilepsy surgery; these include complexity-related metrics such as power laws
appearing in the form of 1/f aperiodic component of the electrophysiological spectrum
[16, 29, 56], and brain criticality measures [60]. Thus, the idea of deriving complexity
fingerprints of the epileptogenic zone may be a promising approach that complements
and extends previous work. If found to be efficient, novel complexity fingerprints may
pave the way for more efficient approaches to localize the EZ and thereby improve the
outcome of surgical resection in drug-resistant epilepsy. Furthermore, these fingerprints
may improve our understanding of the etiology and pathophysiology of pharmacoresis-
tant focal epilepsies.

1.2 Aims

1.2.1 General aim

To identify a complexity fingerprint for the localization of the Epileptogenic Zone using
intracranial electroencephalography, machine learning and exploratory data-driven ap-
proaches with the goal of supporting the process of resective surgery and further improve
the understanding of epilepsy.

1.2.2 Specific aims

1. To characterize and contrast through exploratory data analysis different complex-
ity metrics with the goal of establishing a basis for the identification of the finger-
print.

2. To develop machine learning models through the iterative testing of different com-
binations of parameters, hyperparameters and feature sets.

3. To evaluate the complexity fingerprint and the developed models through perfor-
mance metrics adapted to the clinical context of resective epilepsy surgery.
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1.3 Research Contribution

In this study, a complexity-based approach to understanding the epileptogenic zone is
presented. The research offers deeper insights into both ictal and interictal periods
through the evaluation of different machine learning models leveraging each of them.
The results showcase how information from seemingly less informative periods can bol-
ster overall insights. A notable contribution lies in the identification of a distinctive
fingerprint for the epileptogenic zone, emphasizing the importance of Lempel-Ziv Com-
plexity, Multi-Scale Entropy, the 1/f Slope and specific fractal dimensions. Additionally,
benchmarking against the recognized Bern-Barcelona dataset strengthens the validity
of some of the main results. This work not only deepens the comprehension of the
epileptogenic zone but also catalyzes discussions on the role of complexity in the brain,
echoing implications relating to the broader brain criticality hypothesis.

1.4 Outline of the Thesis

The thesis is structured as follows:

• Chapter 1 Provides general context to the problem and presents the aims and
contributions of the project, setting the stage for the subsequent chapters.

• Chapter 2 delves into the theoretical background, introducing concepts from Epilepsy,
Complexity, and Machine Learning.

• Chapter 3 details the methodology employed, discussing the process of data acqui-
sition, feature extraction, and the design and training of the Logistic Regression
Models.

• Chapter 4 presents the results of the models, comparing the insights drawn from
the ictal, interictal, and hybrid approaches. Benchmark comparisons with the
Bern-Barcelona dataset are also shown.

• Chapter 5 provides interpretations of the results obtained for the exploratory anal-
ysis of the dataset, the machine learning performances, and their feature impor-
tance.

• Chapter 6 summarizes the key contributions of the thesis and discusses potential
avenues for future work.



Chapter 2

Theoretical Framework

2.1 Epilepsy

Epilepsy can be thought of as a family of disorders with a common factor: an enduring
predisposition for seizures once one has occurred [21]. Epilepsy syndromes comprise
a diverse set of etiologies (e.g. structural, genetic, among others); nevertheless they
can be classified into two broad categories depending on whether the seizure is gener-
alized or focal in nature [87]. A generalized epilepsy will have seizures with an onset
occurring on both hemispheres while a focal epilepsy will be characterized by seizures
originating in one hemisphere from one or multiple foci [10]. In the current work, the
epilepsies best treated by surgical resection are explored; these correspond to the focal
pharmacoresistant variants [43].

2.1.1 The Epileptogenic Zone

The surgical procedure rests on the assumption of a region of the cortex that upon re-
section produces seizure freedom, and moreover, such area must be the one necessary
and sufficient for their generation. Lüders et al. [49] coined the term “Epileptogenic
Zone" (EZ) to conceptualize this region. More than a decade later the authors revised
the concept as the minimum cortex region that when resected causes seizure freedom
[50]. Neither of these concepts is directly measurable as they are not tied to electro-
physiological discriminative features. Nevertheless, it is postulated that this region must
include the Seizure Onset Zone (SOZ, also known as Ictal Onset Zone), which is defined
as the area of the cortex that initiates seizures [48, 72]. This zone could be measured as
it may showcase a signal signature such as fast synchronizing discharge [48]. To further
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complicate the issue, the SOZ is only a subset of the EZ, as the later also encompass a
“Potential Seizure Onset Zone" (PSOZ), which accounts for multiple SOZs in the same
epileptogenic zone, but some of them being evident only after the resection of the others
[72]. Thus the Epileptogenic Zone can be thought of as including an "Actual" SOZ (the
conventional one) and a "Potential" SOZ. As illustrated in Figure 2.1, failing to resect
both the actual and the potential SOZs would lead to a lack of seizure freedom. There
is no agreement over what characteristics could the PSOZ have or if it can be measured
at all [50]; some viewpoints conceptualize it as part of the areas of early seizure spread,
others as it being related to another conceptual region called the Irritative Zone, which
is defined as the cortex area that generates interictal spikes [36]. As it may be apparent
from the previous recount of concepts, the question of “what to cut?" is complex. More-
over, it is extremely relevant as the resection has the potential of causing postoperative
neurological deficits, particularly if it is near the eloquent cortex [85].
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Actual
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Seizure-Free Resection
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Figure 2.1: Illustration of the different overlaps between the Epileptogenic Zone and the
surgical resection. The Epileptogenic Zone is theorized to encompass both an actual and
a potential seizure onset zone. The two must be resected to achieve seizure freedom.
Adapted and redrawn from Lüders et al. [50].
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2.1.2 Ictal and Interictal Activity

Different periods naturally arise in the study of epilepsy, each defined in relation to
the occurrence and development of a seizure, known as the ictal phase. The periods
immediately before and after a seizure are defined as the preictal and postictal periods,
respectively. Importantly, the interictal stage refers to the periods of time when no
seizure is occurring, and the brain is not in a state particularly close to one. This is
the stage where most people with epilepsy spend the majority of their lives. Thus, the
ability to extract useful information from this stage is especially relevant. Naturally,
these two periods have different behaviors within the Epileptogenic Zone. These can be
seen on the time-frequency maps of Figure 2.2. Notably, Grinenko et al. [26] proposed
a spectro-temporal fingerprint of the Epileptogenic Zone, which comprised three main
characteristics: 1) Spikes, preceding (2) Multiband Fast Activity, coinciding with (3)
Low-Frequency Suppression, also shown on Figure 2.2.

Figure 2.2: Ictal and Interictal stages on Epileptogenic and Non-Epileptogenic contacts.
Grinenko et al. [26] hypothesizes that the Epileptogenic Zone has a particular spec-
trotemporal behavior during the ictal stage: Spikes preceding Multiband Fast Activity,
which coincides with Low-Frequency Suppression.
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2.2 Intracranial Electroencephalography

To diagnose, study and localize focal epilepsy, the first line of techniques consists of non-
invasive methods like video-electroencephalography and magnetic resonance imaging; in
some cases, these tools may be sufficient to select a resection area [5, 59]. Nevertheless,
the gold standard remains intracranial electroencephalography (iEEG), used when non-
invasive methods are insufficient. iEEG provides a higher signal-to-noise ratio, less
artifacts, and naturally, a more close view of the phenomenon [58]. Two common forms
of iEEG are used for epilepsy: stereotactic electroencephalography (SEEG) and subdural
electrodes electroencephalography (SDE) [38]. In this work, SEEG recordings from
pharmacoresistant epilepsy patients are used. Stereoelectroencephalography consists of
depth electrodes with contacts spaced 2 to 10 mm apart and with less than 1 mm of
diameter [33]. In comparison to SDE, SEEG has a sparse sampling on the cortical
surface but offers access into the depth of the brain, such as sulcal areas and deep brain
structures along with fewer surgical risks [24, 33].

2.3 Complexity Features

Here "complexity" is used in the sense of complexity science, which is an umbrella term
encompassing the study of complex systems, across many domains, under the same view:
the appearance of emergent behavior from the interconnection and dynamics of inter-
dependent components [44]. In this framework, tools such as those derived from chaos
theory in mathematics and dynamical systems in physics are used to get insights about
the behavior of complex systems. In the last decade, the study of brain dysfunction
through a complexity point of view has become increasingly relevant [44, 52, 93]. Dif-
ferent categories of complexity features extracted from electrophysiological brain signals
were explored in this project. Motivation for each one of these stems from the literature
as will become apparent in the following paragraphs.

2.3.1 Brain Criticality

Criticality is a concept stemming from the study of dynamical systems. It consists of
the idea of "critical states" near phase transitions where many-bodied systems exhibit
a special kind of collective behavior. Correspondingly, Brain Criticality consists of the
hypothesis of the brain self-organizing into critical-states to achieve optimal information
processing capabilities [60, 97]. One of the core concepts of criticality is the existence of a
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control parameter (or many), which upon its crossing through a critical point, makes the
collective behavior of the system different. For example, one may think of temperature
as the control parameter of water, as it is possible to change its large-scale behavior (e.g.
solid, liquid, gas states) through the variation of temperature.

Some natural questions that arise when discussing Brain Criticality include: What
kinds of states are near the phase transition? What is the control parameter in the
context of brain dynamics?. In the case of water, the large-scale behavior is radically
different when it freezes or boils. This is an example of a discontinuous phase transi-
tion. In the case of the brain, its dynamics don’t suddenly jump, but rather a more
gradual or continuous transition is exhibited. In particular, the brain seems to main-
tain itself at -or near- a phase transition point. To achieve this some degree of tuning
is expected to be happening , and even more, some systems exhibit what is known as
Self-Organized Criticality (SOC), which consists of a system being able to self-tune to
be around these critical points (e.g. sandpiles). Indeed, some authors support that SOC
may be happening in the brain [30]. On the other hand, one of the possible candidates
of a control parameter in the brain is the Excitation/Inhibition (E/I) balance, which
reflects the interplay between excitatory and inhibitory neural signals, and its role on
brain functioning. It is important to note that Criticality is not a single feature or
metric but rather a property of a system that can be measured through many different
ones, such as the E/I balance. Which metric to use is also subject to the theoretical
underpinnings of the study.

Despite the growing interest in criticality interpretations of brain dynamics, these
approaches have very rarely been explored for the specific task of EZ delineation. How-
ever, it has been used to characterize the epileptic brain. Witton et al. [91] argues that
the Hurst Exponent may capture the deviation of the epileptic brain from a “healthy
criticality" state, and that it could be used to localize the EZ. Similarly, Meisel et al. [55]
suggest that during epileptic seizures the brain departs from self-organized criticality. In
apparent contradiction, Cranstoun et al. [13] shows that the human epileptic hippocam-
pus demonstrates SOC, and the work by Worrell et al. [92] agrees by mentioning that
the epileptic focus may exhibit SOC. Moreover, Hagemann et al. [27] points out that
in spite of epilepsy, the cortex works in a stable, slightly subcritical regime, disproving
their initial hypothesis of focal areas operating at instability.
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2.3.2 The 1/f Aperiodic Component

The 1/f distribution of the power spectral density of brain signals can be related to scale-
free network dynamics which follow power laws [29, 56]. Specifically what this means is
that the brain shows decaying power as frequency increases, following a power law with
a negative exponent. This type of behavior has been associated to networks that show
self-similar properties when inspected at different scales, hence “scale-free”. In the brain
this is represented by similar patterns occurring across many spatiotemporal scales, e.g.
when comparing the spectrum of electroencephalograpic signals to functional magnetic
resonance imaging signals (which have a higher spatial resolution but a lower temporal
one in respect to electroencephalography) [28]. One of the defining properties of the
power laws representing this scale-free behavior is the exponent, which correspond to
the slope when the data is plotted on log-log space. A neurophysiological interpretation
of this exponent of the 1/f distribution as a power law has been made by Gao et al. [22],
relating the log-log space 1/f slope to the excitation-inhibition balance in the brain.
Some research has suggested that this balance may be relevant to the pathophysiolgical
underpinnings of epilepsy [18, 47, 79]. Recently, Jiang et al. [37] noted that the 1/f slope
was steeper inside the Seizure Onset Zone, and that it was insufficient when used as a
feature in isolation to discriminate the EZ from normal tissue. In particular, the slope
will be negative, and one is interested in its magnitude: the steeper (higher magnitude)
suggests more inhibition, and correspondingly, more flatness represents more excitation.

Electroencephalographic brain signals exhibit both a periodic (e.g. oscillatory) com-
ponent and an aperiodic one. The periodic components have been studied thoroughly
since the birth of electroencephalography, being usually associated with oscillations in
frequency bands such as alpha, beta, and gamma. On the other part, the aperiodic
component, as the name suggest, is related to arrhythmic activity and it is actually the
part of the spectrum corresponding to the 1/f dynamic. Because of this, one way to
measure the exponent (or slope) of the 1/f power law is to first remove the periodic
component and then model the remaining spectrum as a decaying power law (or line in
log-log space) to parameterize the 1/f. Figure 2.3 (A) illustrates the original raw spec-
trum typical of an electroencephalographic signal; notice the decaying power behaviour
and the oscillatory peaks. Figure 2.3 (B) shows the decomposition of the spectrum
into the periodic and aperiodic components, where the aperiodic would be subsequently
parameterized to obtain the exponent of the decaying power law.
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Figure 2.3: Illustration of the typical 1/f distribution of electrophysiological brain sig-
nals. (A) shows an example of an electroencephalography spectrum with two oscillatory
components centered around 8 and 23 Hz. (B) shows the decomposition of this spectrum
into its periodic and aperiodic components, where the sum should sum to the full spec-
trum. The exponent (or slope) can be extracted from the aperiodic component which
serves as a characteristic parameter of the 1/f behavior.

2.3.3 Entropies

In complexity science, the concept of “entropy" is used in the sense explored in infor-
mation theory, that is, it can be thought of as a measure of the amount of uncertainty
(or surprise) inside of a signal, which in turn can arguably be interpreted as the amount
of information it contains. In the theory of dynamical systems, entropy can be inter-
preted as a measure of the amount of disorder (or conversely, regularity), in a dynamical
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system [57]. For example, one could measure the amount of repetition in a time series
stemming from a biological system. Nevertheless, one may ask what is the connection
between complexity and entropy. What becomes apparent is that there is a close re-
lation between complexity, information and the order-disorder gradient. Grassberger
[25] emphasizes that complexity is mediated by perception, as it is related to something
having meaning, which requires an observer. To simplify the discussion, one can think
of complexity as being somewhere in between order and disorder, as illustrated in Figure
2.4. There we can see that meaningful information is not equated to randomness.

In the context of epilepsy, a wide range of entropy approaches for the identification
of the EZ were reported in a recent survey done by Islam et al. [35]. Another example is
the work by Akter et al. [1] where a set of 8 entropy metrics, computed along the high-
frequency components of interictal iEEG, were used for the problem of EZ localization.
In these works, many different variants of entropy are employed. Here we will make use
of the following measures of entropy.

Order Complexity Disorder

Figure 2.4: Illustration of complexity arising between order and disorder. The image
at the center is a photo of a beach, where meaningful objects can be perceived. The
image to the left is the same photo sorted by intensity on each column, representing an
ordered set. The image to the right is the same image but randomly ordered, where no
meaningful information is distinguished by us. Adapted and redrawn from [35].

Shannon’s Entropy

The first introduction of entropy to the field of information theory was done by Claude
Shannon [76]. For a discrete random variable X taking values in the alphabet X with
probability mass function p(x) Shannon’s Entropy can be defined as:

H(X) =
∑
x∈X

p(x) log2

(
1

p(x)

)
= −

∑
x∈X

p(x) log2 p(x) (2.1)
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Intuitively, Shannon’s entropy can be thought of as the average amount of uncer-
tainty of a sequence. It involves the sum of the probabilities of the occurring elements
of a sequence weighted by the amount of surprise associated to them. Surprise has an
inverse relation to probability (e.g. 1/p), but to avoid obtaining 1 when there is com-
plete certainty (1/p=1/1), the logarithm is applied (log(1/1) = 0). Shannon’s formula
includes the negative as a result of simplifying the logarithm of a fraction. The logarithm
base used is flexible as one can convert between bases easily.

Approximate Entropy

Approximate Entropy (ApEn) is a metric used to gauge the consistency, stability, or
predictability within a data series introduced by Pincus et al. [68]. Low ApEn scores
indicate a highly stable, repetitive, and easily forecastable system with recurring patterns
throughout the data set. In contrast, high ApEn values suggest a lack of correlation
among the data points, fewer repeating sequences, and greater randomness.

Approximate Entropy quantifies a data series’ predictability by measuring the fre-
quency of similar sub-sequences for varying lengths. Consider a time-series {u(t)}N

t=1 =
{u1, u2, . . . , uN}, parameters m (window length) and r (tolerance), and a choice of a
distance metric d(a, b). We can define Approximate Entropy procedurally as follows:

• Vector Formation. Construct N − m + 1 vectors which are subsequences of
length m from the original vector:

X(i) = [u(i), u(i + 1), ..., u(i + m − 1)] (2.2)

• Distance Computation. Calculate the distance of each subsequence to all oth-
ers. In essence, this produces a 2D distance matrix between all pairs of sequences.

D(i, j) = d(X(i), X(j)) (2.3)

• Calculate Counts. For each subsequence (the current one being called the tem-
plate), we obtain the number of subsequences whose distance are below a tolerance
r. This means that we consider those vectors as similar to the current template.
During this we accept the occurrence of i = j, that is the template matches it-
self. The result is normalized by the number of subsequences. More formally, this
quantity represents a conditional probability.
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Cm
r (i) = Number of X(j) similar to X(i) given the distance metric and r

N − m + 1 (2.4)

• Average the Counts after using the natural logarithm to transform the data.
This quantity is define as ϕ.

ϕm
r = 1

N − m + 1

N−m+1∑
i=1

ln(Cm
r (i)) (2.5)

• Compare to an increase of window length. Approximate Entropy quantifies
the log-based probability that sequences similar over m data points continue to be
similar in subsequent, incremental comparisons. As such, the metric is defined as:

ApEn(m, r, N)(u) = ϕm
r − ϕm+1

r (2.6)

Typically, the distance metric used corresponds to the Chebyshev distance, which is
defined as the largest disparity between two vectors in any single coordinate dimension.
Moreover, the tolerance is usually chosen between 0.1 and 0.25 times the standard devi-
ation of the signal under study. For a more comprehensive explanation of Approximate
Entropy, many works exists such as the ones by Delgado-Bonal and Marshak [14], and
Pincus and Goldberger [67].

Sample Entropy

Sample Entropy (SampEn) is a modification of Approximate Entropy proposed by Rich-
man and Moorman [71]. This adjustment makes the metric less dependent on the length
of the data N in comparison to ApEn. The argument is that, since ApEn counts similar-
ities of subsequences to themselves, this generates a bias that makes the signal appear
more regular than it actually is [71]. Specifically, when the data length is large, the
frequency of self-matches increases, augmenting this bias. On the contrary, Sample
Entropy approaches the same question and procedure as ApEn but without including
self-similarities. Moreover, the logarithm in SampEn is included in a slightly different
manner to avoid indeterminations.

Consider a time-series {u(t)}N
t=1 = {u1, u2, . . . , uN}, parameters m (window length)

and r (tolerance), and a choice of a distance metric d(a, b). Similar to ApEn, the pro-
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cedure involves the formation of subsequences and distance calculations. The difference
between the two occurs at the counting stage:

• Calculate Counts. For every specific subsequence, referred to as the template,
the count of other subsequences that fall within a predefined distance r is deter-
mined. In this context, these counted subsequences are viewed as similar to the
template in question. The template’s self-match, where i = j, is deliberately not
included in the count. Finally, this count is normalized by dividing it by the total
number of possible subsequences (excluding the self-match).

Bm
r (i) = Num. of Xm(j) similar to Xm(i) given d(a,b) and r, excluding self-matches

N − m − 1
(2.7)

Similarly this is defined for the incremental increase of the points:

Am
r (i) = Num. of Xm+1(j) similar to Xm+1(i) given d(a,b) and r, excluding self-matches

N − m − 1
(2.8)

• Average the Counts. Contrary to ApEn, the natural logarithm won’t be applied
prior to this step.

Bm
r =

∑N−m
i=1 Bm

r (i)
N − m

(2.9)

Am
r =

∑N−m
i=1 Am

r (i)
N − m

(2.10)

• Compare. Find the ratio of Am
r to Bm

r and apply the natural logarithm.

SampEn(m, r, N) = −ln

(
Am

r

Bm
r

)
(2.11)

Permutation Entropy

Permutation Entropy (PE) is a non-parametric complexity metric that uses the order of
data points to analyze the patterns and relationships over time in either linear or non-
linear sequences. It was defined by Bandt and Pompe [4]. It has the advantage of being
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robust against dynamical or observational noise. Consider a time-series {u(t)}N
t=1 =

{u1, u2, . . . , uN}, parameters m (segment length, or embedding dimension) and τ (delay).
Permutation Entropy is computed as follows:

• Produce a time-delay embedding of the signal through a series of N −(m−1)τ
vectors defined as:

Xi = (ui, ui+τ , ui+2τ , . . . , ui+(m−1)τ ) for i = 1, . . . , N − (m − 1)τ (2.12)

From this, the embedding space is constructed as:

X = [X1, X2, . . . , XN−(m−1)τ ]⊤ (2.13)

The resulting embedding will be of shape [N − (m − 1)τ, m], which represents
N − (m − 1)τ segments produced by taking samples of the signal each τ indexes,
until you have m samples (so the segments are of length m). This is done separately
for consecutive starting points until the last one possible (the N −[m−1]τ sample).
The use of such embedding is supported by Taken’s theorem, which states that
it is possible to reconstruct the phase space of a dynamical system through its
observed time-series by constructing a time-delay embedding [80]. In particular,
the phase space reconstructed is m dimensional. An exploration of the different
choices of embedding can be found in [81].

• Find sorted permutations for each embedding vector. Specifically, compute the
indexes that order each vector in ascending order after performing a ranking of the
values, which is equivalent to one of its possible permutations. Each permutation
is a list of integers, as follows for embedding vector Xi:

πi = (πi1, πi2, . . . , πij, . . . , πim) (2.14)

Where πij represents the position of the j-th smallest element in the embedded
vector Xi. Thus there will be N − (m − 1)τ total permutations found, which are
not necessarily unique.

• Calculate the frequency of each permutation. Each embedding vector will
have an associated permutation, but some vectors will have the same permutation
that sorts them. Given this, count the number of times a given permutation
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appears and divide that count by the total number of permutations (N − [m−1]τ),
effectively obtaining the frequency of each. This can also be interpreted as the
probability of permutation π.

p(π) = Count of π

N − (m − 1)τ (2.15)

• Compute Shannon’s Entropy over the possible permutations Π to obtain the
desired permutation entropy:

PE = −
∑
π∈Π

p(π) log2(p(π)) (2.16)

Spectral Entropy

Inouye et al. [34] proposed to calculate Shannon’s Entropy over the Power Spectral
Density (PSD) of a signal as a way to measure the "relative peakedness or flatness"
of the power spectrum. Highly oscillatory signals will have pronounced peaks in the
spectrum, whereas irregular signals will show a flatter spectrum. For example, a pure
sine will have the smallest amount of entropy, while white noise produces the greatest
entropy. Thus, the degree of signal irregularity can be measured by applying the concept
of entropy to the spectrum.

To calculate Spectral Entropy (SE), one merely has to extract the PSD, normalize
it to obtain relative power, and then apply Shannon’s formula. Supposing f is the fre-
quency variable, P (f) the relative power spectral density, and fs the sampling frequency,
we obtain spectral entropy as:

SE = −
fs
2∑

f=0
P (f) log2(P (f)) (2.17)

Singular Value Decomposition Entropy

Similar to Spectral Entropy, Singular Value Decomposition Entropy (SVDEn) transforms
the data before computing Shannon’s Entropy. Singular Value Decomposition (SVD) is
a classical matrix factorization method developed in the late 18th century by a number
of mathematicians. The idea to apply an entropy calculation to it was first introduced
by Alter et al. [2] in the context of genome-wide expression data. SVD factorizes a
matrix A into three matrices:
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A = UΣV ∗ (2.18)

Matrices U and V ∗ represent the the left and right singular vectors in column and
row space respectively. These vectors constitute orthonormal bases. Matrix Σ is a non-
negative diagonal matrix containing the singular values associated to the singular vectors
of the other two matrices. It is possible to think of each singular vector as a mode or
component of the data. The vectors in U capture patterns in the column dimension
whereas vectors in V ∗ capture them in the row dimension of the original data. Thus,
a specific singular value of Σ is linked to two vectors, one in row-space and the other
in column-space, serving as a coupling between these two dimensions. Moreover, the
singular values can also be interpreted as the variance, energy, or even importance of
the modes linked to it.

To compute SVDEn the following steps are carried out:

• Produce a time-delay embedding as done in Equation 2.12. Thus, from a
single time-series we obtain a matrix where the row and column dimensions cor-
respond to the N − (m − 1)τ delayed time series samples and the m embedding
dimensions respectively.

• Apply the Singular Value Decomposition to the time-delay embedding.

• Normalize the singular values. Assuming K singular values calculated, divide
each by the total sum:

σi = σi∑K
i=1 σi

(2.19)

• Compute Shannon’s Entropy over the normalized singular values to obtain the
desired SVD Entropy:

SV DEn = −
K∑

i=1
σi log2(σi) (2.20)

SVDEn captures the amount to which each mode found by the SVD reflects an
equal amount of information [78]. Notice that it incorporates a similar idea as Spectral
Entropy, but instead of acting over a power spectrum across frequencies, it acts over a
"Singular Value Spectrum" across the different modes. Some sources use a Euclidean
normalization: σi = σ2

i∑K

i=1 σ2
i

.
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Multiscale Entropy

Costa et al. [11] introduced Multi-Scale Entropy (MSE) to address the issue of con-
ventional entropy measures assigning high complexity values to processes with random
outputs, in contrast to those exhibiting long-range correlations, such as the ones stem-
ming from biological systems. The authors’ argument rests on the fact that by not
considering multiple time scales, the rich complexity of long-range correlations is lost.
Thus, MSE proposes a method to account for multiple time-scales [12]. The main idea
of the procedure is to calculate an Entropy value for each time scale, and from them
make a profile curve. This curve is then summarized into an index by finding the area
under the curve. More formally, starting from a one-dimensional discrete time-series
{x1, · · · , xi, · · · , xN}, the embedding dimension m, and tolerance r:

• Choose a range of consecutive scales to explore. One choice is to use a
range from 1 to N

(m+10) or to N
2 .

• Make the coarse-grained signal for each scale. Mathematically we construct
the coarse-grained signal {y(τ)} for scale factor τ following the equation:

y
(τ)
j = 1

τ

jτ∑
i=(j−1)τ+1

xi , for j = 1, 2, · · · ,
N

τ
(2.21)

• Calculate entropies for each time scale explored. The choice of entropy measure
SE is open. But in general it will depend on the embedding dimension m and
tolerance r. For example, one could use SampEn applied to each {y(τ)}:

SE(τ) = SampEn
(

m, r,
N

τ

)
(2.22)

• Produce the profile of SE against τ , in other words, the SE(τ) curve.

• Reduce the profile to a single index if needed. For example, one may use the
area under the curve:

MSE = Area Under the Curve of SE(τ) (2.23)
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2.3.4 Lempel Ziv Complexity

First introduced by Lempel and Ziv [45], this feature measures the number of different
substrings in a sequence when it is parsed from start to finish. Lempel-Ziv Complexity
(LZC) has been associated to "Edge of Chaos" criticality [84], which reflects critical
points that are between a stable phase and a chaotic one. As it may be apparent, LZC
is related to the lossless compressibility of a sequence using a dictionary. It is thus,
a way to apply the concept of Solomonoff-Kolmogorov-Chaitin Complexity to signals
[9, 41, 77]. One of the interpretations is that it reflects the complexity, randomness, or
repetitiveness of a finite sequence. Procedurally, LZC is calculated as follows:

• Initialize an empty dictionary and an auxiliar empty substring (AUXSTR).

• Parse the sequence from left to right, continuously adding new elements to
AUXSTR. Whenever you encounter an unseen substring, add it to the dictionary,
clear AUXSTR, and advance to the end of the current substring to continue the
procedure.

• Count the number of substrings in the dictionary once you have reached the end
of the string. This is the number of unique substrings encountered during the
parsing.

Naturally, this variant of LZC is highly dependent on the sequence length as longer
sequences will tend to have higher counts. To deal with this, Zhang et al. [96] proposed
a normalized Lempel-Ziv Complexity (LZCn):

LZCn = LZC

(n/logbn) (2.24)

where LZC is the raw count of unique substrings as defined by the procedure, n is
the sequence length, and b is the size of the alphabet (number of unique characters in
the sequence).

Notice that Lempel Ziv Complexity is more appropriate to sequences with a discrete
alphabet. Because of this, LZC is usually applied to a binarized version of an EEG
time-series, e.g. through median clipping as shown in the following function applied to
each element of the sequence x:

f(xi) =

1 if xi > median(x)

0 otherwise
(2.25)
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One may consider LZC as a form of entropy, as it also reflects the amount of in-
formation inside a sequence. In particular, LZC does not rely on the calculations of
probabilities as many of the entropies do.

2.3.5 Number of Zero Crossings

Given a signal, count the number of times it crosses zero, or alternatively, the number of
sign changes. Despite its simplicity, the Number of Zero Crossings (NZC) is widely used
in seizure detection tasks [17, 70, 94, 95]. Naturally, to make the feature less dependent
on signal length, one may normalize it. One of the common options for this is to divide
the count by the number of samples in the signal. In this context, the NZC can be
interpreted as the rate of zero crossings per sample (Zero Crossing Rate, ZCR).

2.3.6 Hjorth Parameters

Proposed by Hjorth [32] in the 70s, these parameters characterize the signal through
statistical means, retaining information about its trace. These features were originally
conceived in the context of EEG analysis, and correspondingly, have been widely-used
in neuroscience, including seizure detection and lateralization tasks [8, 40, 62, 83]. Two
of the parameters, mobility and complexity, were used in this work, given that the
activity is essentially equivalent to the variance of the signal.

• Hjorth Mobility (HMob) reflects the mean rate of change of the signal, which is
related to its frequency content. It is usually thought of as the "mean frequency"
of the signal. Correspondingly, a high mobility suggests a rough signal whereas a
low mobility indicates a smoother one. Given the signal y(t), Hjorth Mobility is
calculated as follows:

Mobility =

√√√√var
(

dy(t)
dt

)
var(y(t)) (2.26)

• Hjorth Complexity (HComp) can be considered as a way to estimate the fre-
quency bandwidth of the signal. More irregular and unpredictable signals will
have a higher complexity, and viceversa. In particular, the lowest value of Hjorth
complexity is 1, indicating that the signal is a pure sinusoid. Given the signal y(t),
Hjorth Complexity is defined as:



22 Theoretical Framework

Complexity =
Mobility

(
dy(t)

dt

)
Mobility(y(t)) (2.27)

2.3.7 Fractal Dimensions

Mandelbrot [53] coined the term fractal dimension (FD) motivated by the current inabil-
ity to characterize intricate structures appearing in nature, such as coastlines, mountain
landscapes, lighting bolts, etc. These structures would usually be described as rough in
contrast to more regular euclidean shapes. A dimension is usually defined as the number
of coordinates to specify a point in a space. Nevertheless, in the context of rough shapes
a dimension is defined in terms of what happens to a measure of size when you change
the scale of the unit of measure. To illustrate this, imagine a square, then suppose the
side of the square doubles. How many of the original squares fit on the larger square? In
this case is 4. The fractal dimension is extracted from this procedure following N = ϵD,
where N is the number of the original squares inside the scaled one (here 4), ϵ the scale
applied (in this case 2), and D the fractal dimension. Naturally, 4 = 2D and solving for
D we get that the fractal dimension of a square is 2, consistent with what is expected of
the euclidean definition. This same procedure is applied to rough shapes, allowing for D

to be a fraction, hence the term "fractal dimension". For example, the Koch snowflake,
one of the earliest fractals described, has a fractal dimension of approximately 1.262.
The value itself can be interpreted as a measure of complex detail in a pattern, in partic-
ular, higher values indicate higher complexity, irregularity, more intricate details, more
space-filling capacity, less predictability of the pattern, etc. It is possible to apply these
concepts to the analysis of time series, as has been done for physiological and financial
signals [69, 74]. Three measures of fractal dimension will be explored:

Katz Fractal Dimension

Katz [39] devised a procedure in the late 80s for the analysis and comparison of complex
waveforms (such as EEGs). For a planar curve, the fractal dimension is generally the
ratio:

D = log10(L)
log10(d) (2.28)

where d is the planar extent of the curve and L the total length. Here L is simply the
sum of euclidean distances between successive points. The planar extent is the farthest
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distance between the first point and any other.
Fractal characterizations assume that the pattern is formed by similarly-sized discrete

units. For Katz’s procedure, the relative unit of measure will be the "average step" a,
i.e. the average distance between successive points. Considering that the total number
of steps is n = L/a, the full formula of the Katz fractal dimension (KFD) becomes:

KFD = log10(L/a)
log10(d/a) = log10(n)

log10(n) + log10(d/L) (2.29)

Petrosian Fractal Dimension

Petrosian [66] defined this measure for the characterization of epileptic EEG recordings,
in particular the interictal, ictal and postictal stages. It leverages the idea of binarizing
the sequence as done in Lempel-Ziv Complexity. Different ways of binarization were
explored by the author. However, in this context, we use binarization through the
"differential zero crossing" method. This means the sequence from which the fractal
dimension is derived represents sign changes in the signal’s derivative. Mathematically,
the Petrosian fractal dimension (PFD) formula is as follows:

PFD = log10(N)
log10(N) + log10

(
N

N+0.4Nδ

) (2.30)

where N is the length of the sequence and Nδ is the number of sign changes in the
signal’s derivative.

Higuchi Fractal Dimension

Higuchi [31] introduced his non-parametric method in the late 80s as a way to present
a more stable and precise metric. In particular, the author notes that for natural phe-
nomena the fractal dimension may not be constant over all time scales, but it can be
defined over a range in which the self-similarity property holds. Thus, Higuchi’s method
contemplates finding the fractal dimension D by evaluating it over different time-scales
explored until a final scale kmax. Consider a time-series X(1), X(2), . . . , X(N). Higuchi’s
method is defined procedurally as:

• Generate new time-series exploring different scales (or interval times) at dif-
ferent starting points. That is, explore interval times k = 1, 2, . . . , kmax from the
starting points m = 1, 2, 3, . . . , k:
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Xk
m : X(m), X(m + k), X(m + 2k), . . . , X

(
m + ⌊N − m

k
⌋ · k

)
(2.31)

where ⌊ ⌋ denotes the floor function. Notice that the greater the scale, the more
starting points are explored. Thus, each k time-scale will have its own k starting
points and time-series, constituting a sub-sampling of the original time series by
taking each k-point of it.

• Calculate the length of the curve for each Xk
m. This value will be:

Lm(k) =
(
Sum of distances between consecutive points of Xk

m

)
· η

k

Lm(k) =

⌊ N−m
k

⌋∑
i=1

|X(m + ik) − X(m + (i − 1)k)|

 · η

k

(2.32)

where η = N−1
⌊ N−m

k
⌋k

is a normalization factor for the curve length.

• Average the lengths for each scale. For each time-scale (or interval time) k

calculate the average across the different starting points explored:

⟨L(k)⟩ =
∑k

m=1 Lm(k)
k

(2.33)

• Find the slope of the log-log plot. Specifically, the fractal dimension D exists
if ⟨L(k)⟩ ∝ k−D. Make a log-log plot of ⟨L(k)⟩ against k and apply a linear
regression to obtain the slope. Its absolute value represents the Higuchi Fractal
Dimension (HFD).

2.4 Machine Learning

2.4.1 Binary Logistic Regression

Binary Logistic Regression is a type of Generalized Linear Model (GLM); these are
characterized by three elements, the dependent and independent variables (Y , X), a
linear predictor (e.g η = Xβ), and a link function that relates the distribution of the
response variable to the input the variables (e.g E(Y |X) = f(Xβ)). The particularities
of the Binary Logistic Regression are as follows:
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• The dependent variable follows a Binomial distribution, usually taking values of
either 0 or 1.

• As others GLMs, the predictor is a linear combination of the independent variables:

η = β0 + β1X1 + β2X2 + · · · + βnXn

• The link function corresponds to the logistic function:

σ(η) = eη

1 + eη
= 1

1 + e−η

The logistic function is the inverse of the logit, also known as the log-odds:

logit(p) = ln

(
p

1 − p

)

The reason it is known as the log-odds is because the function outputs the natural
logarithm of the odds, which is the ratio between the probability of an event occur-
ring to the probability of that event not occurring, provided that input is between
0 and 1.

The output of the model corresponds to the probability of the response variable Y

equating a success case rather than a failure case. In the context of machine learning this
corresponds to the probability of belonging to the positive class. Naturally, the output
is between 0 and 1, and the final class prediction can be obtained by thresholding this
value. The full input-output formula is:

p(X) = σ(η(X)) = 1
1 + e−(β0+β1X1+β2X2+···+βnXn) (2.34)

2.4.2 Training

Training the Logistic Regression model is formally the process of optimizing the following
objective function:

min
w

C
n∑

i=1
[−yilog(p(Xi)) − (1 − yi)log(1 − p(Xi))] + r(w) (2.35)

where r(w) is the regularization term, and C is the inverse of regularization strength.
X and y correspond to the feature input vector and the binary class variable respectively.



26 Theoretical Framework

2.4.3 Subject-wise Cross-validation

Cross-validation is a statistical technique used in machine learning to gauge the pre-
dictive performance of models on unseen data. Typically, the dataset is divided into
a training set, where the model learns patterns, and a test set, which evaluates its
predictive capabilities.

Expanding on this, k-fold cross-validation systematically divides the dataset into k

equally sized folds or subsets. Here, the model undergoes k training iterations, with each
iteration using k − 1 folds for training and a unique fold for testing. The model’s final
performance is the average of its scores across the k test folds. This rigorous approach
ensures every data point’s involvement in both training and testing, providing a robust
performance assessment.

In clinical scenarios, where data characteristics can differ dramatically between sub-
jects, the approach of subject-wise cross-validation is especially relevant. Sometimes
referred to as leave-p-subjects-out validation, this method trains the model on data
from all subjects minus p, subsequently testing its predictions on those p omitted sub-
jects. This strategy ensures the model’s capacity to generalize over diverse individuals,
upholding its dependability in real-world clinical situations where patient variability is
a given.

2.4.4 Hyperparameter Optimization

In machine learning, hyperparameter optimization or tuning refers to the systematic pro-
cess of finding the best combination of model settings (hyperparameters) that maximizes
performance. Unlike model parameters, which are learned directly from the training data
(e.g., coefficients in a linear regression), hyperparameters are external configurations to
the model and cannot be estimated from the data. Notably, hyperparameters can sig-
nificantly influence model outcomes. To ensure the optimal configuration is robust and
avoids overfitting to the training data, it’s imperative to use a separate validation set
for this purpose rather than the training or test sets. By doing so, the selected hyperpa-
rameters are more likely to generalize well to new, unseen data. For logistic regression,
the following hyperparameters can be tuned:

• Penalty: In logistic regression, the penalty parameter determines the type of reg-
ularization introduced to the model. Regularization introduces a penalty to the
optimization process to avoid overfitting, aiding model generalization. L1 regular-
ization applies a penalty equivalent to the absolute magnitude of coefficients. L2
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regularization uses a penalty proportional to the squared magnitude of coefficients,
ensuring they remain small. One could use a hybrid approach, incorporating both
L1 and L2 penalties or no regularization at all.

• Formulation: Determines whether to approach logistic regression from a primal
or dual perspective. The primal form directly optimizes the model’s weights by
minimizing the logistic loss, typically with a regularization term. The dual form,
stemming from the Lagrangian duality principle, offers an alternative viewpoint
by optimizing over Lagrange multipliers associated with the problem’s constraints.
While the primal form is more commonly employed, the dual can be advantageous
in specific contexts, especially when the number of features surpasses the number
of samples.

• Tolerance: Specifies the threshold for the stopping criteria during the optimization
process in logistic regression. When the improvement in the model’s objective
function between iterations is less than this set tolerance, the algorithm deems the
optimization as converged and halts further iterations. A smaller tolerance value
demands a more precise solution, potentially requiring more iterations, while a
larger value might result in a quicker but potentially less accurate convergence.

• C: Is the inverse of regularization strength. It plays a crucial role in determining
the extent of regularization applied to the model. A smaller value of C indi-
cates stronger regularization, leading to more significant constraint on the model’s
weights, which can help in preventing overfitting. Conversely, a larger value im-
plies weaker regularization, allowing the model to fit more closely to the training
data.

• Decision Function Bias: indicates whether to include an intercept (or bias) in the
logistic regression model. If included the model adds an intercept to the decision
function, enabling more flexible fits.

• Class Weights: allows for the adjustment of importance assigned to different classes
during model training. By manipulating these weights, one can counteract the
potential biases arising from imbalanced class distributions in the dataset. Even if
a dataset is balanced, there might be situations where certain classes are deemed
more important or critical than others based on the problem’s context.
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• Solver: designates the optimization algorithm used. The choice of solver can influ-
ence the convergence speed, memory usage, and compatibility with certain penalty
terms or problem types. Experimenting with different solvers allows for fine-tuning
the model’s efficiency and effectiveness based on the dataset’s characteristics and
the problem’s requirements.

• Maximum Solver Iterations: sets the maximum number of iterations the optimiza-
tion algorithm will run before halting. The purpose of this parameter is to prevent
endless running in cases where the solver struggles to converge.

2.4.5 Confusion Matrix and Performance Metrics

The confusion matrix offers a comprehensive view of a classifier’s performance, going
beyond simple accuracy to provide insights into types of errors made. It is especially
useful when classes are imbalanced or when the costs of different types of errors vary.
Considering a binary classification problem, the matrix is structured as shown in Table
2.1.

Predicted Positive Predicted Negative
Actual
Positive

True Positive (TP) False Negative (FN)

Actual
Negative

False Positive (FP) True Negative (TN)

Table 2.1: A typical binary confusion matrix.

From the confusion matrix, several insightful metrics can be derived:

• True Positive Rate (TPR) or Sensitivity: Measures the proportion of actual
positives correctly identified. Useful to know the model’s capability to detect the
positive class.

TPR = TP

TP + FN
(2.36)

• True Negative Rate (TNR) or Specificity: Indicates the proportion of actual
negatives correctly identified.

TNR = TN

TN + FP
(2.37)
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• False Negative Rate (FNR): Measures the proportion of actual positives that
got predicted as negative. A lower FNR is desired when the cost of missing a
positive instance is high.

FNR = FN

FN + TP
(2.38)

• False Positive Rate (FPR): Indicates the proportion of actual negatives that
got predicted as positive. Essential when the cost of a false positive is high.

FPR = FP

FP + TN
(2.39)

• Positive Predictive Value (PPV) or Precision: Represents the proportion
of positive identifications that were actually correct. Important when the conse-
quences of falsely claiming a positive are severe.

PPV = TP

TP + FP
(2.40)

• False Discovery Rate (FDR): Denotes the proportion of positive identifications
that were false. A counter to Precision, it’s critical when ensuring the purity of
positive identifications.

FDR = FP

FP + TP
(2.41)

• Accuracy (ACC): Reflects the proportion of total predictions that were correct.
Though commonly used, it might be misleading on imbalanced datasets.

ACC = TP + TN

TP + TN + FP + FN
(2.42)

When one normalizes the confusion matrix, most of the aforementioned metrics ap-
pear naturally on it. Confusion matrices can be normalized in two primary ways: by row
or by column. Row normalization involves dividing each value in a row by the sum of
that row’s values, effectively giving the proportion of correctly (or incorrectly) predicted
instances per predicted class. Column normalization, on the other hand, divides each
value in a column by the sum of that column’s values, presenting the proportion of cor-
rectly (or incorrectly) predicted instances per “actual” class. Normalizing the confusion
matrix provides clearer insights into classification performance, especially in imbalanced
datasets. By presenting values as proportions or percentages, researchers can more
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readily discern patterns, compare classifier performances across different datasets, and
identify specific areas where the model may require improvement.

Beyond the individual metrics, there exist complementary relationships between sev-
eral of the metrics derived from the binary confusion matrix. These relationships are
succinctly described by the following equations:

• Specificity and False Positive Rate: These metrics offer complementary in-
sights into the classifier’s performance concerning actual negative instances. Their
relationship is defined as:

TNR = 1 − FPR (2.43)

• Positive Predictive Value and False Discovery Rate: These two metrics
provide complementary perspectives on the positive predictions made by the clas-
sifier:

FDR = 1 − PPV (2.44)

• Sensitivity and False Negative Rate: These are direct complements, detailing
the classifier’s performance on actual positive instances:

FNR = 1 − TPR (2.45)

2.4.6 Receiver Operating Characteristic

The ROC (Receiver Operating Characteristic) curve is a graphical representation that
showcases the performance of a binary classification model across all possible threshold
settings. It is obtained by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR) as the decision threshold for classification is varied. The area
under the ROC curve, known as the AUC (Area Under the Curve), provides a single
value metric that summarizes the overall performance of the classifier, with a value of 1.0
representing perfect classification and 0.5 indicating performance no better than random
chance. By analyzing the ROC curve and its AUC, one can select an optimal threshold
that balances sensitivity and specificity based on the problem’s objectives, ensuring that
the model performs well in differentiating between the classes. This makes the ROC
curve an essential tool in situations where the classification threshold needs fine-tuning.
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2.4.7 Minimum Redundancy Maximum Relevance Algorithm

The Minimum Redundancy Maximum Relevance algorithm (mRMR, [65]) is a feature
selection technique that aims to identify an optimal subset of features that maximizes
their mutual information with the target while minimizing redundancy among the fea-
tures themselves. A distinct advantage of mRMR is its ability to determine the best
number of uncorrelated features without the user specifying the desired number of fea-
tures.

To achieve this, mRMR is implemented by using the SULOV method and a Recursive
XGBoost stage. SULOV, which stands for "Searching for Uncorrelated List of Variables,"
operates by identifying pairs of highly correlated variables surpassing a specific threshold
(e.g., absolute correlation of 0.7). For each pair, the variable with a lower Mutual
Information Score (MIS) with the target is removed, ensuring that the remaining features
have high information scores and low inter-feature correlations.

Following SULOV’s feature pruning, Recursive XGBoost is employed to refine the
feature selection further. By dividing the data into training and validation sets, XGBoost
iteratively identifies the top features based on their significance to model performance.
This process is repeated multiple times, with each iteration focusing on the remaining
set of features post-SULOV. The culmination of these steps results in a feature set that
embodies both maximum relevance and minimum redundancy.
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Materials and Methods

3.1 Datasets

3.1.1 Cleveland Clinic Dataset

Working under an Institutional Review Board approved protocol at the Cleveland Clinic,
41 pharmacoresistant focal epilepsy patients underwent presurgical evaluation, stereotactic-
EEG (SEEG) implantation and its subsequent inspection. SEEG signals were recorded
on a Nihon Kohden EEG system with a sampling rate of 500Hz (until 2012, 7 patients)
or 1000Hz (2012 and later, 34 patients). The patients had surgery consisting of resection
or laser ablation of the identified epileptogenic zone. 28 of the patients were seizure-free
after the procedure (Table 3.1). Anatomical locations of the electrode leads and their
relation to the resected/ablated region are available through the alignment of a post-
implantation CT image to a preoperative and postoperative MR image respectively.
Table A.1 on Appendix A shows the clinical profiles of these patients.

Each patient in the dataset has the outcome of the resection (Seizure-Free or Non
Seizure-Free), and one label per electrode contact that indicates whether it was resected
or not. Moreover, each patient has a series of seizures where both ictal and interictal
periods of activity were recorded. These periods are of 40 seconds each, except for
some cases where more data (60 seconds) or less (20 seconds) is available. Interictal
segments were captured at least 2 minutes before the seizure onset, and each is paired
to a corresponding ictal record. Each SEEG record corresponds to one of these periods,
and it will contain the time-series for all of the SEEG contacts. The total number of
contacts as well as their exact locations vary from subject to subject as the stereotactic
implantation differs for each. Table 3.1 shows the data available per subject and its
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properties regarding the contacts, resection and outcome. Each SEEG records is a 2D
matrix of contacs × samples (time), as can be seen in Figure 3.1.

Table 3.1: Data available per subject with resection details.

Subject Num.
Interictal
Records

Num.
Ictal
Records

Outcome Num.
Contacts

% of
Resected
Contacts

S001 3 3 Seizure-Free 88 12.0
S002 3 3 Seizure-Free 111 54.0
S003 3 3 Seizure-Free 79 28.0
S004 3 3 Seizure-Free 39 8.0
S005 3 3 Seizure-Free 30 17.0
S006 3 3 Seizure-Free 55 36.0
S007 3 3 Seizure-Free 42 45.0
S008 3 3 Seizure-Free 61 18.0
S009 3 3 Seizure-Free 57 46.0
S010 3 3 Seizure-Free 67 46.0
S011 3 3 Seizure-Free 82 16.0
S012 3 3 Seizure-Free 60 55.0
S013 3 3 Seizure-Free 41 63.0
S014 3 3 Seizure-Free 70 14.0
S015 3 3 Seizure-Free 100 32.0
S016 3 3 Seizure-Free 139 17.0
S017 3 3 Seizure-Free 92 38.0
S101 2 2 Seizure-Free 92 43.5
S102 1 1 Seizure-Free 87 36.0
S103 3 3 Seizure-Free 115 29.0
S106 11 11 Seizure-Free 116 16.0
S108 6 6 Seizure-Free 65 23.3
S111 11 11 Seizure-Free 121 37.1
S112 5 5 Seizure-Free 83 12.0
S113 2 2 Seizure-Free 147 19.5
S116 8 8 Seizure-Free 139 35.0
S118 2 2 Seizure-Free 91 19.0
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Table 3.1: Data available per subject with resection details.

Subject Num.
Interictal
Records

Num.
Ictal
Records

Outcome Num.
Contacts

% of
Resected
Contacts

S140 2 2 Seizure-Free 96 21.5
S215 2 2 Non Seizure-Free 109 4.0
S219 11 11 Non Seizure-Free 88 10.0
S220 9 9 Non Seizure-Free 128 2.0
S221 7 7 Non Seizure-Free 122 10.0
S222 7 7 Non Seizure-Free 117 8.9
S223 3 3 Non Seizure-Free 156 21.0
S226 5 5 Non Seizure-Free 159 15.2
S228 4 4 Non Seizure-Free 75 33.0
S231 3 3 Non Seizure-Free 155 5.0
S232 2 2 Non Seizure-Free 121 25.0
S233 4 4 Non Seizure-Free 157 36.0
S237 3 3 Non Seizure-Free 148 7.0
S238 6 6 Non Seizure-Free 86 9.8

An additional dataset is provided below for minor experiments. Within the context
of this project, the Cleveland Clinic Dataset is the primary dataset. Hence, any reference
to "the dataset" will pertain specifically to the Cleveland Clinic Dataset.

3.1.2 Bern-Barcelona Dataset

This dataset has acted as a benchmark in the literature for the task of epileptic focus
detection based on interictal data. It includes 7500 samples of focal and non-focal sig-
nals, each of 20 seconds and sampled at 512 Hz. Focal signals were defined as those that
exhibited the first ictal signal changes judged visually by at least two expert neurolo-
gists. The signals were recorded from both intracranial strip and depth electrodes. The
dataset was collected from five long-standing pharmacoresistant temporal lobe epilepsy
patients prior to their resective surgery, all having good surgical outcomes. This dataset
is balanced in terms of the classes but has some important drawbacks such as a lack of
information about electrode locations and patient provenance. Given that this dataset
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only includes interictal data, it was only used for a few experiments to obtain perfor-
mance metrics comparable to those in the literature. Any mention of this dataset will
be done explicitly as the "Bern-Barcelona" dataset.

Figure 3.1: Illustration of the content of a SEEG record as visualized on the MNE-
Python software.

3.2 Preprocessing

Data was imported and manipulated within Python, in particular using the MNE-
Python software [23]. Each SEEG record was band-passed between 0.5Hz to 150Hz, and
then resampled to 256Hz (with an antialiasing lowpass filter of 128Hz). Subsequently,
the data was normalized by applying a z-score to the amplitudes of each contact. This
allowed a degree of robustness towards record-wise and contact-wise amplitude differ-
ences in the signals which could affect the process of feature computation. Afterwards,
the data was segmented into 1 second epochs with 0.5 seconds of overlap.

3.3 Feature Extraction and Normalization

The previous epoch segmentation was done to extract multiple instances of a feature per
SEEG channel rather than a single one, which allows to extract statistics (e.g. mean
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and standard deviation) from each SEEG channel. The idea was to decrease the bias
in the measurement of the features, albeit involving an increase in variance. Another
advantage of this windowed approach is that the features will be defined even if some
of the calculations fail for a particular window (unless all of the windows fail which is
highly improbable).

A set of 14 complexity features were computed using the MNE, Antropy, NeuroKit
and FOOOF (specparam) python packages [16, 23, 51, 86]. These features are listed
along the parameters used for their computation in Table 3.2. Note that for each of
these features both the mean and the standard deviation (SD) were computed from the
multitude of windows as explained in the previous paragraph, thus one could consider
this to be actually a set of 28 features. A second level of normalization was applied
given the variance of the ranges natural to each of them (e.g. some of the features won’t
necessarily be on the [0, 1] range by default). This step consisted of applying a z-score
across the contacts (i.e. the channels) of the corresponding SEEG record. That is, the
output values signify the position (number of standard deviations) of a given contact
in respect to the mean value of the feature across the channels. More importantly, this
second level of normalization alleviated variations of the feature ranges that were relative
to each subject.

3.4 Exploratory Analysis

3.4.1 Statistical Characterization

Ideally one would want to study the relationship between epileptogenicity and the com-
plexity features. Nevertheless, this is not possible as the relevant information available
is in regards to the resection area of the subjects that became seizure-free afterwards.
Given this, we characterized the relationship between the resection area and the features
across these Seizure-Free subjects. One possible way to do this would be to apply statis-
tical tests on the means of each feature distributions split by resected and non-resected
locations with data from all of the subjects. Nonetheless, it is also relevant to see these
patterns on a subject-wise level. For example, it could happen that some subjects be-
come over-represented when pooling data from all of them, as some subjects contain
more contacts than others. Importantly the subject-wise level of detail shows whether
a pattern that is observed at the overall level is indeed repeated across most of the sub-
jects. To accomplish both the overall and subject-wise level of detail in a summarized



3.4 Exploratory Analysis 37

Feature Abbreviation Parameters Package

Slope of the aperiodic component 1/f Slope

aperiodic_mode : knee
freq_range : [5,100]
with a previous Welch’s
spectrum calculation using:
n_fft : 51
n_overlap : 26
n_per_seg : 51
window : hamming

FOOOF
MNE

Approximate Entropy ApEn order : 2
metric : chebyshev antropy

Sample Entropy SampEn order : 2
metric : chebyshev antropy

Permutation Entropy PE
order: 3
delay: 1
normalize: True

antropy

Spectral Entropy SE
method : welch
nperseg : 51
normalize : True

antropy

Singular Value Decomposition Entropy SVDEn
order: 3
delay: 1
normalize: True

antropy

Multiscale Entropy MSE

scale : default
dimension : 3
tolerance : sd
method : MSEn

NeuroKit

Lempel-Ziv Complexity LZC normalize : True
with median clipping before antropy

Zero Crossings Rate ZCR normalize : True antropy
Hjorth Mobility HMob None antropy
Hjorth Complexity HComp None antropy
Katz Fractal Dimension KFD None antropy
Petrosian Fractal Dimension PFD None antropy
Higuchi Fractal Dimension HFD kmax : 10 antropy

Table 3.2: Features explored to build the complexity fingerprint. The parameters used
for each as well as the packages used for the computation are detailed.
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manner we characterized the relationship between the resection area and the features by
obtaining t and p values on both levels. This was done using an unpaired Welch’s t-test
with unequal variances and unequal sample sizes [90]. As a matter of fact, the Resected
and Non-Resected groups of contacts have different number of samples as usually the
number of resected locations will be lower than its non-resected counterpart (as shown
in Table 3.1).

Specifically, this t-test was applied to the Resected and Non-Resected groups of
contacts from all of the subjects for all of the features. The statistic applied was
Mean(Resected)−Mean(Non Resected)

Standard Error
. Thus, the t-value will be positive when the mean of

the resected contacts is greater than the mean of the Non-Resected contacts, and vice-
versa. Similarly, we did the same procedure on a subject-by-subject basis, and then
calculated the number of subjects per feature with positive and negative t values, and
within each, the number of significant subjects (i.e. p < 0.05). In addition, the average
t-value and p-value across subjects was computed. Note that these statistical quantities
are only for exploration purposes, so they shouldn’t be interpreted as showcasing rigor-
ous statistical results. Indeed, to do so appropriately one would need to at least apply
a multiple comparisons correction.

3.4.2 Feature Sets and Feature Selection

One of the interests of this project is to explore ictal and interictal features both jointly
and in isolation. In this regard, only using interictal data poses the harshest condition,
but also the most usable and promising one. To study the impact of using these different
feature sets, three different machine learning models were developed:

1. Using only ictal features ("The Ictal Model").

2. Using only interictal features ("The Interictal Model")

3. Using both ictal and interictal periods ("The Hybrid Model").

To prevent feature redundancy a feature selection procedure was carried out. This
was done through automatic means so that subjective judgements didn’t affect the salient
features of epileptogenicity found, which is the main result of this project. Feature
selection was done through the Minimum Redundancy Maximum Relevance (mRMR)
algorithm [65], as implemented in the Featurewiz python package [75]. This was done in
isolation for ictal and interictal feature sets, using a value of 0.7 as the correlation limit
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between features. The hybrid feature set is formed by taking the union of the selected
feature sets for ictal and interictal conditions, each determined separately by the mRMR
procedure.

3.4.3 Correlations to Spiking Activity

In the efforts for Epileptogenic Zone delineation, some biomarkers have become ubiqui-
tuos, such as High Frequency Oscillations and Interictal Epileptiform Discharges (IEDs)
[35]. This last biomarker is seen as spikes in the signal. We are interested in finding
biomarkers beyond these, yet the complexity features explored can be particularly sen-
sible to IEDs. Following this, a simulation experiment was carried out to understand
more deeply the relation between complexity features and spikes.

To this purpose, an interictal recording from one of the subjects was chosen based on
its lack of spiking activity. Then, spikes were added to the recording at random positions.
The spikes were modeled with a Gaussian window with a defined width (which would
represent the abruptness of the spike) scaled by the maximum value of the signal. In ad-
dition, the standard deviation of the Gaussian function was defined as max(width//6, 1).
The spikes are added to the signal by simply summing the resulting Gaussian window to
the signal at appropriate samples. From this scheme, two dimensions of spiking activity
were explored in regards to how they would impact each of the features:

• The width of the Gaussian window, explored from 3 to 41 samples with only odd
numbers.

• The numbers of spikes in the recording, from 3 to 21 with only odd numbers.

Figure 3.2 illustrates the simulated signal spectrogram on the four border cases.
After this procedure, the features are computed using the same epoch segmentation
mentioned in section 3.2. Then, for each combination of width and number of spikes, we
compute the features through each window of time and subsequently obtain the mean
and standard deviation. Afterwards, the correlation between each feature and each spike
parameter (width and number of spikes) is computed. Results are summarized in figures
showcasing the strength of these correlations. As a complementary analysis, heatmaps
for each feature were produced exploring the two spike parameters and from these the
average gradient across each dimension was computed. Before calculating the gradients
the data was normalized through a z-score to avoid seeing differences originating from the
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natural range of each feature. These complementary analysis can be seen on Appendix
B.
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Figure 3.2: Spectrograms of the signals containing the simulated spikes on four border
cases of the Frequency Content and Number of Spikes parameters.

3.5 Machine Learning

3.5.1 Task

The main goal of the machine learning component was the prediction of the epilepto-
genic electrodes, namely, classifying the electrodes into those inside and outside of the
Epileptogenic Zone. On a naive look at the dataset this appears easily accomplishable
through a supervised learning scheme. Nevertheless, this dataset only contains informa-
tion in regards to the resection of the electrodes contacts (whether a particular contact
was resected or not). In respect to epileptogenicity, what is known is that in those pa-
tients that are seizure-free the Epileptogenic Zone is a subset of the resected area. This
means that some of the resected contacts are actually epileptogenic whereas some others
are not, even though they were resected. On the other hand, we can be sure that the
non-resected contacts are not part of the Epileptogenic Zone in the seizure-free patients.
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In the case of non seizure-free subjects, even less information is known as some of the
non-resected electrodes may be epileptogenic. The aforementioned conditions could be
summarized as a "partially uncertain labelled data" problem [26]. For seizure-free sub-
jects, the uncertainty only exists on the resected class. This situation complicates not
only the training but also the evaluation of the model.

One possible way to approach this problem is to apply an unsupervised clustering
within the uncertain class. If there is some intuition regarding the relation of the features
to the uncertain class, then one could change the label or omit those instances that cor-
respond to the cluster that is less prone to be the one reflecting the real underlying class.
This was the approach taken by Grinenko et al. [26], where an intuition was available as
the features were directly related to hypothesized biomarkers of the Epileptogenic Zone.
In our case, there is a lack of such intuition and moreover the goal is to explore and
find features that may then be interpreted as biomarkers, rather than from the clinical
biomarkers design related features. In our work, a more simple approach is taken. The
task proceeds as considering the uncertain class as ground truth, that is, all labels are
initially thought to be correct and that we are predicting Epileptogenicity rather than
the resection. The model is expected to naturally find meaningful patterns among the
"real" epileptogenic electrodes and that it will predict as non-epileptogenic those "fake"
ones that are inside the resection. The underlying assumption is that "real" Epilepto-
genic contacts are separable from the fake ones in the complexity-based feature space
that is explored. And moreover, that the characteristics of the "fake" resected contacts
are closer to those of the non-resected group than to the "real" -and unknown- epilep-
togenic set. The uncertainty is dealt with not at the training phase but rather in the
interpretation and evaluation of the predicted labels. This is detailed on section 3.5.5.
In summary, the model will be trained to predict the resection label using a supervised
learning scheme, but its predictions will be interpreted in terms of epileptogenicity.

3.5.2 Model Architecture

A logistic regression model implemented in scikit-learn [64] was used. One of the advan-
tages of such a model is its simplicity which allows for a straightforward interpretation
of the feature importance and of its decisions. These characteristics are ideal in clinical
contexts, specially for high-stakes decisions [73]. The input of the model are the features
of a single contact. Different combinations of features were explored, stemming from the
usage of both periods (ictal and interictal) or either one in isolation. When both periods
are used, the features entering the model are the concatenation of the features from
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each of the periods. Moreover, a probability aggregation mechanism is implemented
to manage cases where more than a single EEG record is available per subject. The
different records represent different samples of information originating from the same
instance we want to classify (a single subject’s contact). The probability aggregation
mechanism consists of obtaining the probability assigned to the positive class in a sin-
gle classified instance (a contact of a subject in a particular iEEG record). Then the
probabilities from different instances (each classified separately by the model) are aver-
aged and thresholded. If the average probability surpass the threshold (which is defined
on the hyperparameter optimization stage), that particular contact is marked as Posi-
tive (meaning epileptogenic). Otherwise it is marked negative. An illustration of this
probability aggregation mechanism is shown on Figure 3.3.

Features

P1
P2
P3

Mean Threshold

ProbabilitiesSubject’s  recordings available  
for a particular contact

Class
Prediction

Figure 3.3: Probability Aggregation Mechanism. Put simply, each subject’s contact has
different recordings, but the final prediction is done per contact instead of per recording.
To achieve this, the probabilities coming from individual recordings as they pass through
the Logistic Regression model are averaged and subsequently thresholded to get a class
prediction.

3.5.3 Data Balancing and Split

Data from non seizure-free subjects were discarded (S215 to S238, 13 subjects) as the
resected electrodes don’t fully contain the epileptogenic zone, thus preventing the ex-
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traction of useful information from them. The other 28 subjects can be separated into
two groups:

• Set A: 17 subjects (S001 to S017) correspond to the data used in [26].

• Set B: 11 subjects (S101 to S140) correspond to the data used in [46].

Set A was used for training and test using a subject-wise cross-validation strategy.
Prior to the training of the model, Set B was used as a validation set, namely, the
hyperparameters of the model were optimized using Set B.

It is important to note that for both Set A and Set B the data is imbalanced favoring
the Negative (Not-Resected) class, as can be seen in Table 3.1. The degree of imbalance
varies from subject to subject (min: 2%, max: 63%). Moreover, there is an imbalance
regarding the number of contacts per subject (min: 30, max: 159) and the number of
available records per subject (min:1, max: 11) which is shown in the same table. Thus,
there is imbalance at the class and subject level. One way to approach this problem
would be to randomly oversample the minority class on each subject. Nevertheless, the
minority class is usually the Positive (Resected contacts) one, which is precisely the one
with uncertainty. In this sense, randomly grabbing samples from the uncertain class
could bias the dataset in unexpected ways in regards to the actual ground truth, that
is, choosing inadvertely more contacts outside the real Epileptogenic Zone or viceversa.
To keep the unknown but inherent distribution of "real and fake" Epileptogenic contacts
within the Resected class we choose not to randomly oversample but rather copy the
whole minority class samples within a subject as many times times as needed to make
the number of samples of both classes as close as possible.

After this procedure, the number of samples per subject has changed in respect to
the original dataset, so new subject-wise imbalances are encountered. To deal with this,
a similar procedure is done but at the subject level. We identify the subject with the
most samples and then oversample the whole data of the other subjects as much as it
is needed to make their numbers as close to the ones of the most represented subject.
Both balancing procedures are done before splitting the whole seizure-free dataset into
the sets A and B.

3.5.4 Hyperparameter Optimization

The training of the logistic regression model depends on certain hyperparameters, which
are listed in Table 3.3 along with the corresponding ranges that were explored for each
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of them. Some hyperparameters were not varied, instead being defined with a specific
value. This decision was made to save time during the training phase of the project.
These hyperparameters have a single value within their defined range. For the sake of
completeness, the unexplored range is also displayed in Table 3.3.

As mentioned in section 3.5.3, set B was used for the optimization. To explore the hy-
perparameter space, a simple grid search procedure was carried out, albeit incorporating
a subject-wise cross-validation strategy. Concretely, each combination of hyperparam-
eters is used to train the model across 11 folds, each leaving one of the subjects out.
Afterwards, the mean performance metric associated to that particular combination of
hyperparameters is computed. The chosen metric for this procedure was the Epilepto-
genic Predictive Value (equivalent to PPV, as explained in 3.5.5). The result of this is a
table of hyperparameters combinations each linked to a EPV value, and from this, the
combination with the greatest EPV is identified and used to train the model.

Although not strictly considered a hyperparameter, the threshold used in the final
model was chosen at this stage. Basically, after selecting a set of hyperparameters, the
model is trained using the same subject-wise cross-validation strategy on the validations
subjects (11 folds). Thus the threshold is not selected based on the performance
of the training set. The predicted probabilities on each of the test sets of the validation
folds were collected and used to generate a ROC curve. On this ROC curve two points
were identified:

• Point with the highest TPR constrained to a FPR below a certain percentage
(chosen to be 5%). This point is of interest given that the priority is that the
contacts marked epileptogenic reside inside the resection zone.

• Points nearest to the top-left corner (TPR=1, FPR=0). Which is the usual operat-
ing point considered on binary classification models. Nevertheless, here is included
only for completeness’ sake.

3.5.5 Training & Evaluation

As mentioned before, training was done using a subject-wise cross-validation approach.
These folds leave one subject out at a time. Thus for training on Set A, 17 folds are
used. Before training, the data is shuffled using a random number generator which
was initialized with a seed (0). After fitting the model, predictions are obtained for
each subject’s contact by aggregating them using the probability aggregation mechanism
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Hypeparameter Explored Range Unexplored Range
Norm of the Penalty [l1,l2] None, elasticnet
Formulation Primal Dual
Tolerance for stopping crite-
ria

[1e-3,1e-2] ...

Inverse of regularization
strength

[0.001,0.01, 0.1, 1] . . .

Decision Function Bias with without

Class weight
Combinations of :
Negative Class=[1]
Positive Class=[0.25,0.5,0.75,1]

. . .

Solver saga [lbfgs,liblinear,newton-
cg,newton-
cholesky,sag]

Maximum number of itera-
tions to wait for solver con-
vergence

100 . . .

Table 3.3: Hyperparameters explored for the training of the linear regression model

detailed before. Naturally, these predictions correspond to the ones where each subject
was the test set. From these aggregated predictions, confusion matrices are computed
per subject. Afterwards, an overall confusion matrix is constructed by combining the
matrices from all of the subjects. Both levels of detail are shown in the results.

As generally done, we use quantities derived from the confusion matrices to evaluate
the model. Given the uncertainty inherent to the classes, the quantities inside of the
confusion matrix were re-interpreted in the context of Epileptogenic Zone delineation.
Indeed, if we were to interpret them in their usual sense, the fact that one of the classes
is uncertain is loss. The re-interpretation can be seen on Table 3.4.
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Predicted
Epileptogenic

Predicted
Non-Epileptogenic

Inside
Resection

EIR (TP) NEIR (FN)

Outside
Resection

EOR (FP) NEOR (TN)

Table 3.4: Reinterpretation of the quantities inside the confusion matrix in the con-
text of Epileptogenic Zone Delineation when only resection labels are available. EIR:
(Predicted) Epileptogenic Inside Resection. NEIR: (Predicted) Non-Epileptogenic In-
side Resection. EOR: (Predicted) Epileptogenic Outside Resection. NEOR: (Predicted)
Non-Epileptogenic Outside Resection.

The ideal performance of the classifier would result in EOR to be empty, while
NEOR would contain every non-resected contact. NEIR contacts would correspond to
locations resected but that were not part of the (real) Epiletogenic Zone, and EIR would
be interpreted as the (real) epileptogenic contacts. Nevertheless, neither EIR nor NEIR
have a ground truth. The result we can be most confident about is EOR being as low
as possible without recurring to label everything as Non-Epileptogenic.

From the confusion matrices, three performance metrics were chosen to carry out the
evaluation of the models based -as before- on their interpretation given the uncertainty of
the positive class. These metrics were calculated from the subject-by-subject confusion
matrices as well as on the overall one. The chosen metrics were:

• Epileptogenic Predictive Value (EPV) which is a re-interpretation of the Positive
Predictive Value. This quantity reflects our confidence on the fact that the contacts
that were marked epileptogenic are at least inside the resection zone. Naturally,
the desire is to maximize this quantity.

EPV = TP

TP + FP
= EIR

EIR + EOR

= Marked Epileptogenic Inside Resection
All Marked Epileptogenic (Inside or Outside) (3.1)

Note this corresponds to the complement of the False Discovery Rate (PPV=1-
FDR). To discourage the model from marking none of the contacts as epileptogenic,
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EPV is defined as 0 when this happens.

• False Epileptogenic Rate (FER), which is a re-interpretation of the False Positive
Rate. This quantity reflects the percentage of contacts marked Epileptogenic which
we know can’t actually be so (as they were non-resected and the patients became
seizure-free). Ideally we want to minimize this quantity.

FER = FP

FP + TN
= EOR

EOR + NEOR

= Marked Epileptogenic Outside Resection
All Outside Resection (3.2)

Note this corresponds to the the complement of specificity (TNR=1-FPR).

• Resected Miss Rate (RMR), which is a re-interpretation of the False Negative
Rate. This quantity reflects the amount of contacts resected that were marked
Non-Epileptogenic. In a classical task were labels are completely certain, the ideal
would be to minimize this quantity. Nevertheless, it is suspected that some resected
contacts were Non-Epileptogenic. Thus, having a null FNR in this context would
actually be both unexpected and undesirable.

RMR = FN

FN + TP
= NEIR

EIR + NEIR

= Marked Non-Epileptogenic Inside Resection
All Inside Resection (3.3)

Note this corresponds to the complement of sensitivity (TPR=1-FNR).

Moreover, ROC curves are obtained for each model trained based on the unseen
data results and the averaged probability of the positive class obtained through the
probability aggregation mechanism.
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3.5.6 Feature Importances

Apart from the performance evaluation, feature importance is characterized for each
model. As we used a cross-validation strategy, multiple sets of models are obtained (and
thus different weights for the same feature exist given the different folds). Because of
this, boxplots are made from the distributions of the weights per feature.

3.5.7 Benchmark Experiment

The Bern-Barcelona dataset was used to have performance metrics comparable to other
results in the literature as explained in section 3.1.2. Specifically, the interictal feature
set was computed on this dataset and a single machine learning model was trained
with a 5-fold cross-validation strategy. Notice that since no subject labels are given
in this dataset it is not possible to do a subject-wise cross-validation procedure. The
hyperparameters used for training were likewise obtained from Set B as mentioned in
section 3.5.3. An overall confusion matrix is built from the unseen data in each fold
along with the previously described performance metrics. The model resulting from this
experiment will be referred to as "The Benchmark Model".

3.6 Methods Overview

To summarize, Figure 3.4 illustrates the complete methodology:
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0.5 to 150Hz Band pass
Resampling 256 Hz 

z-score amplitude
normalization per contact
Segmentation into 1 sec

windows with 0.5 sec overlap

Preprocessing

(with anti-aliasing)

Windowed Feature
Extraction

Calculate Mean and SD
across windows 

z-score normalization
across contacts

Per iEEG record apply:

mRMR Feature
Selection

Statistical
Characterization

per feature

Spike Simulation Analysis
from 1 interictal spike-free recording

Data Balancing
For each subject: class-wise

then subject-wise
(both by oversampling)

on subject-wise folds 

Maximize EPV

Hyperparameter Optimization

of Set B (11 Subjects) 

Ictal Feature Set

Interictal Feature Set

Hybrid Feature Set

Training
on subject-wise folds 
of Set A (17 Subjects) 

Probability
Aggregation
Mechanism

for each subject’s
contact

Confusion Matrices
EPV, FER, RMR

Performance Metrics
(both overall and per subject)

Cleveland Clinic Dataset

Exploratory Analysis

Dataframe

17 Logistic Regression 
models

(1 per subject fold)

Machine Learning Model Development

Preparation

For each subject  using the 
fold where it is the test set

Feature Importance
from the distribution of weights

across the 17 models 
(all subjects/ folds)

Evaluation

Figure 3.4: Overview of the Methodology. The switch of feature sets explores the three
possibilities. For the Benchmark experiment, Set A is replaced by the data from the
Bern-Barcelona Dataset and is only applicable to the interictal feature. Notice that
Set B of 11 subjects (from the Cleveland Clinic Dataset) is still used in this case for
hyperparameter optimization. Moreover, all folds from the Benchmark experiment grab
data from its 5 subjects randomly, as no subject label is available for that dataset.



Chapter 4

Results

4.1 Results from the Exploratory Analysis

4.1.1 Statistical Characterization

The analysis of the data presented in Table 4.1, which is sorted by the magnitude of
the average t-value across subjects, reveals a diverse mix of both positive and negative
t-values, signifying the variability in how features differentiate the Resected from the
Non-Resected groups during the ictal period. A closer examination shows that 12 mean-
based features have negative t-values, indicating a lower metric in the Resected group
relative to the Non-Resected group. Conversely, two mean-based features have positive t-
values, suggesting that the majority of mean-based features tend to have more negative
values within the resected area. In stark contrast, all 14 standard deviation features
exhibit positive t-values, pointing towards greater variability in the Resected group.

Specific features, such as Approximate Entropy SD, stand out with higher t-values
within the resection area, hinting at their potential discriminative power. However,
others like ApEn Mean display lower values, suggesting a different trend. The t-values’
absolute magnitude spans an expansive range, from 4 to 30, and similarly, the p-values
range from 1×10−186 to 1×10−5. This broad variability implies that while some features,
like the mean Hjorth Mobility and the mean 1/f slope, may not be highly discriminative,
others, particularly the standard deviation of Approximate Entropy and the Higuchi
Fractal Dimension, markedly stand out. An intriguing observation is the prominence of
standard deviations in the upper part of the table, which implies that variability within
certain features might be pivotal in distinguishing the two groups during ictal states.
Interestingly, the mean Multiscale Entropy secures a top position in the table.
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Diving deeper into a subject-wise analysis, the data unveils notable variability across
features. For instance, although the mean Multiscale Entropy predominantly has a neg-
ative t-value for most subjects, 4 out of the 28 subjects deviate from this pattern. The
1/f Slope’s standard deviation emerges as a standout feature, consistently presenting
a similar pattern across all subjects, underlining its significance. Yet, as we navigate
towards the table’s lower end, we encounter increasing ambivalence concerning the per-
centages of subjects with positive and negative trends, epitomized by the HFD Mean,
which is split evenly at 50/50.

The analysis of the interictal features, as detailed in Table 4.2, reveals a few distinct
patterns. When sorted by the magnitude of the average t-value across subjects, the
table displays a clear dominance of features reflecting a mean-based value. This is in
stark contrast to the ictal table, where standard deviations took precedence. Unlike
the mixed directions of the mean-based t-values seen in the ictal table, the interictal
table presents a more consistent direction, with the majority of t-values being negative,
delineating a trend. Specifically, 13 out of 14 mean-based features show negative t-values,
signifying a lower metric in the Resected group in comparison to the Non-Resected group,
while only one mean-based feature leans towards a positive t-value. On the other hand,
for the interictal period, only 9 out of the 14 standard deviation features exhibited
positive t-values, suggesting enhanced variability in the Resected group. This lack of
directional consistency contrasts with the ictal table’s standard deviations, which all
displayed positive t-values. Notably, features such as SampEn and LZC Mean emerged
with particularly high t-values, indicating their potential discriminative power during
the interictal phase. The KFD and ZCE means displayed an impressively consistent
pattern, with 24 out of the 28 subjects mirroring the same trend. Interestingly, when
juxtaposed with the ictal period, the interictal table manifests more features with t-
values proximal to zero, suggesting a potentially reduced discriminative capability during
interictal states.
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Feature t
value
(All
Subs.)

p value
(All
Subs.)

% Subs.
with +t
values

% Sig.
Subs.
with +t
values

% Subs.
with -t
values

% Sig.
Subs.
with -t
values

Average
t value
across
subs.

Average
p value
across
subs.

MSE Mean -30.32 9.9e-186 14% (4) 7% (2) 86% (24) 79% (22) -6.29 7.1e-02
ApEn SD 28.36 4.5e-163 82% (23) 79% (22) 18% (5) 7% (2) 5.68 1.1e-01
HFD SD 26.32 7.0e-141 89% (25) 71% (20) 11% (3) 7% (2) 5.54 7.2e-02
ApEn Mean -26.3 1.8e-143 25% (7) 11% (3) 75% (21) 57% (16) -5.32 1.2e-01
SVDEn SD 26.2 5.2e-140 86% (24) 68% (19) 14% (4) 7% (2) 5.08 7.1e-02
1/f Slope
SD

26.63 5.3e-143 100% (28) 89% (25) 0% (0) 0% (0) 5.07 1.5e-02

MSE SD 24.95 2.6e-128 93% (26) 75% (21) 7% (2) 7% (2) 4.92 4.6e-02
SampEn SD 20.83 1.7e-91 86% (24) 71% (20) 14% (4) 7% (2) 4.65 1.1e-01
SE SD 22.54 1.8e-106 82% (23) 57% (16) 18% (5) 14% (4) 4.62 1.1e-01
PFD SD 25.29 1.2e-131 89% (25) 71% (20) 11% (3) 7% (2) 4.4 1.0e-01
PE SD 24.33 5.0e-123 82% (23) 68% (19) 18% (5) 11% (3) 4.23 9.8e-02
HComp SD 23.47 4.4e-115 89% (25) 64% (18) 11% (3) 0% (0) 4.19 1.7e-01
HMob SD 19.81 3.5e-83 79% (22) 64% (18) 21% (6) 4% (1) 4.14 1.1e-01
LZC SD 18.93 1.5e-76 82% (23) 64% (18) 18% (5) 11% (3) 4.13 1.0e-01
SampEn
Mean

-20.0 7.2e-86 39% (11) 18% (5) 61% (17) 46% (13) -4.11 1.1e-01

KFD SD 19.83 2.4e-83 79% (22) 68% (19) 21% (6) 7% (2) 4.01 1.1e-01
LZC Mean -15.2 4.9e-51 36% (10) 29% (8) 64% (18) 43% (12) -3.21 1.3e-01
ZCR SD 14.43 5.5e-46 75% (21) 61% (17) 25% (7) 18% (5) 3.02 1.0e-01
HComp
Mean

13.89 5.6e-43 57% (16) 54% (15) 43% (12) 29% (8) 2.33 8.7e-02

SVDEn
Mean

-11.91 3.1e-32 43% (12) 32% (9) 57% (16) 36% (10) -2.16 1.7e-01

SE Mean -10.63 4.1e-26 39% (11) 32% (9) 61% (17) 39% (11) -2.11 1.1e-01
PE Mean -13.88 4.9e-43 36% (10) 21% (6) 64% (18) 43% (12) -2.05 1.8e-01
ZCR Mean -9.19 5.6e-20 43% (12) 32% (9) 57% (16) 39% (11) -1.94 1.4e-01
KFD Mean -9.0 3.1e-19 46% (13) 32% (9) 54% (15) 39% (11) -1.75 1.6e-01
PFD Mean -9.55 1.9e-21 39% (11) 25% (7) 61% (17) 39% (11) -1.47 1.4e-01
1/f Slope
Mean

8.1 7.3e-16 64% (18) 32% (9) 36% (10) 11% (3) 1.29 2.8e-01

HFD Mean -5.49 4.2e-08 50% (14) 39% (11) 50% (14) 39% (11) -0.74 4.1e-02
HMob
Mean

-4.02 5.9e-05 54% (15) 36% (10) 46% (13) 36% (10) -0.69 1.4e-01

Table 4.1: t-test statistics at the overall and subject-wise levels for ictal complexity
features. The compared groups are the Resected and Non-Resected contacts. The "All
Subs." columns show the t and p values at the overall level (the contrasted groups have
the corresponding contacts from all of the subjects). The columns starting with "%
Subs. with ± t values" showcase the percentage of subjects that had positive or negative
t values respectively. After the percentage, the real number of subjects is shown in
parentheses. Similarly, columns starting with "% Sig. Subs. with ± t values" present
the percentage of subjects that had positive or negative t values respectively and that
were also significant (i.e. p < 0.05). All percentages are with respect to the total number
of seizure-free subjects (28). No multiple-comparisons correction was applied.
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Feature t
value
(All
Subs.)

p value
(All
Subs.)

% Subs.
with +t
values

% Sig.
Subs.
with +t
values

% Subs.
with -t
values

% Sig.
Subs.
with -t
values

Average
t value
across
subs.

Average
p value
across
subs.

SampEn
Mean

-35.12 2.9e-244 18% (5) 4% (1) 82% (23) 82% (23) -7.09 5.2e-02

LZC Mean -33.05 1.5e-218 18% (5) 7% (2) 82% (23) 75% (21) -6.97 6.9e-02
ApEn Mean -33.67 9.7e-225 18% (5) 7% (2) 82% (23) 79% (22) -6.79 4.8e-02
MSE Mean -34.6 4.1e-234 18% (5) 7% (2) 82% (23) 75% (21) -6.65 7.6e-02
KFD Mean -30.37 1.1e-187 14% (4) 4% (1) 86% (24) 64% (18) -6.24 1.0e-01
ZCR Mean -29.62 1.4e-179 14% (4) 7% (2) 86% (24) 64% (18) -6.12 9.4e-02
SVDEn
Mean

-26.32 2.9e-143 25% (7) 14% (4) 75% (21) 64% (18) -5.46 6.0e-02

HMob
Mean

-25.19 1.0e-132 21% (6) 18% (5) 79% (22) 57% (16) -5.38 5.3e-02

SE Mean -23.59 7.7e-117 29% (8) 14% (4) 71% (20) 54% (15) -5.19 7.7e-02
HComp
Mean

22.76 1.2e-108 75% (21) 61% (17) 25% (7) 11% (3) 4.37 7.3e-02

HFD Mean -19.37 9.1e-81 25% (7) 18% (5) 75% (21) 61% (17) -3.77 6.2e-02
HComp SD 20.23 3.7e-87 82% (23) 64% (18) 18% (5) 4% (1) 3.64 1.2e-01
KFD SD -15.94 6.1e-56 18% (5) 11% (3) 82% (23) 46% (13) -3.03 1.5e-01
ZCR SD -16.92 1.2e-62 25% (7) 14% (4) 75% (21) 54% (15) -3.0 1.5e-01
ApEn SD 8.44 4.2e-17 75% (21) 57% (16) 25% (7) 11% (3) 1.83 1.2e-01
HMob SD -9.53 2.4e-21 39% (11) 14% (4) 61% (17) 36% (10) -1.79 2.1e-01
LZC SD -9.0 3.1e-19 29% (8) 11% (3) 71% (20) 25% (7) -1.37 1.6e-01
PFD Mean -8.2 2.9e-16 39% (11) 21% (6) 61% (17) 39% (11) -1.23 1.6e-01
PE Mean -9.95 4.3e-23 43% (12) 21% (6) 57% (16) 39% (11) -1.2 1.8e-01
SampEn SD -8.55 1.6e-17 39% (11) 14% (4) 61% (17) 29% (8) -1.05 1.7e-01
PE SD 9.1 1.3e-19 57% (16) 36% (10) 43% (12) 25% (7) 1.02 1.6e-01
1/f Slope
SD

6.61 4.4e-11 61% (17) 39% (11) 39% (11) 11% (3) 0.91 1.9e-01

SE SD 6.51 8.5e-11 61% (17) 39% (11) 39% (11) 14% (4) 0.82 2.0e-01
SVDEn SD 3.79 1.6e-04 61% (17) 36% (10) 39% (11) 18% (5) 0.78 1.8e-01
1/f Slope
Mean

-2.2 2.8e-02 46% (13) 18% (5) 54% (15) 32% (9) -0.58 2.4e-01

PFD SD 5.96 2.6e-09 61% (17) 25% (7) 39% (11) 29% (8) 0.56 1.9e-01
MSE SD 1.48 1.4e-01 39% (11) 29% (8) 61% (17) 32% (9) 0.1 2.2e-01
HFD SD 0.53 5.9e-01 54% (15) 29% (8) 46% (13) 21% (6) -0.08 2.0e-01

Table 4.2: t-test statistics at the overall and subject-wise levels for interictal complexity
features. The compared groups are the Resected and Non-Resected contacts. The "All
Subs." columns show the t and p values at the overall level (the contrasted groups have
the corresponding contacts from all of the subjects). The columns starting with "%
Subs. with ± t values" showcase the percentage of subjects that had positive or negative
t values respectively. After the percentage, the real number of subjects is shown in
parentheses. Similarly, columns starting with "% Sig. Subs. with ± t values" present
the percentage of subjects that had positive or negative t values respectively and that
were also significant (i.e. p < 0.05). All percentages are with respect to the total number
of seizure-free subjects (28). No multiple-comparisons correction was applied.
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4.1.2 Feature Selection through the mRMR algorithm

The ictal and interictal features selected through the mRMR algorithm can be seen in
Table 4.3. The selected features are surprising given the patterns seen on the previous
statistical characterization. Specifically, in the analysis of the ictal period, while the sta-
tistical results highlighted a pronounced dominance of standard deviation (SD) features,
the mRMR feature selection incorporated a blend of both mean and SD features. Simi-
larly, for the interictal period, despite the statistical emphasis on mean-based features,
the mRMR selection introduced a mix of both mean and SD metrics. This suggests
that while one type of feature (mean or SD) might show stronger statistical differences,
the mRMR method recognizes the value in incorporating both types. The selection of
a diverse set of features by the mRMR procedure may hint at potential redundancy
when solely relying on the dominant feature type and underscores the importance of
leveraging both mean and SD features to capture comprehensive information about the
Resected and Non-Resected groups of contacts.

Rank Ictal Interictal
1 MSE Mean LZC Mean
2 1/f Slope SD 1/f Slope SD
3 HFD Mean PFD Mean
4 HFD SD 1/f Slope Mean
5 MSE SD HComp SD
6 HComp SD PFD SD
7 PFD SD HFD SD
8 PE Mean

Table 4.3: Ictal and Interictal features selected by the mRMR algorithm.

4.1.3 Correlations with Spiking Activity

Figure 4.1 showcases the correlations of various features with the parameters designated
for spike emulation. The main parameters examined are the width of the Gaussian win-
dow—which is inversely related to the spike’s frequency content—and the total number
of spikes in the signal. Notably, when the correlations are sorted by their absolute mag-
nitude, both parameters preserve the same order of features. The figure elucidates both
the mean and standard deviation variants of the features; intriguingly, their positions
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appear mixed, without a clear pattern. An established correlation threshold at 0.5 re-
veals that more features (17) exhibit a strong correlation with the frequency content of
the spikes than with the number of spikes (10). To further illustrate the relation be-
tween the features and the spike parameters, Appendix B contains figures B.1 and B.2
showcasing 2D heatmaps of the spike parameters against each feature (mean and stan-
dard deviations respectively). In addition, Figure B.3 in Appendix B shows the average
normalized gradients of each feature with respect to the spikes parameters, calculated
from the 2D heatmaps.

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Correlation

HComp Mean (-)
SE Mean (+)

HMob Mean (+)
HFD SD (-)
MSE SD (-)

1/f Slope Mean (-)
ApEn SD (-)

SampEn SD (-)
SE SD (+)

SVDEn SD (+)
HFD Mean (+)

SVDEn Mean (+)
PFD Mean (+)

PFD SD (-)
PE Mean (-)

LZC Mean (+)
MSE Mean (+)

ApEn Mean (+)
HComp SD (+)

SampEn Mean (+)
1/f Slope SD (-)

ZCR SD (+)
ZCR Mean (+)
HMob SD (+)

PE SD (+)
LZC SD (+)
KFD SD (-)

KFD Mean (+)

Correlation with Spike Freq. Content
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PFD SD (+)
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LZC Mean (-)
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SampEn Mean (-)
1/f Slope SD (+)

ZCR SD (-)
ZCR Mean (+)
HMob SD (+)

PE SD (-)
LZC SD (-)

KFD SD (+)
KFD Mean (-)

Correlation with Num. Spikes

Figure 4.1: Absolute correlation of each feature with respect to the spike parameters.
To the right of each feature the sign of the correlation is indicated (±).
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4.2 Machine Learning Models’ Performances

4.2.1 Fold-wise performance
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Figure 4.2: Performance metrics of the Ictal model across the different subject-wise folds.
The metrics are calculated on the test sets, which each represents a different subject.
The mean value of each of the metrics is illustrated with a dashed red line and the
exact value is shown in the title of each subplot. The number of contacts per subject is
indicated in parentheses below the subject.

Figure 4.2 shows the performance of the Ictal Model across the 17 cross-validated sub-
jects. This model used a threshold of 0.41, as explained in section 4.2.2. The model is
conservative but every subject had at least one contact classified as epileptogenic. In
particular, five subjects were problematic for the model: S004, S008, S012, S015 and
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S016. These had low Epileptogenic Predictive Values and/or high False Epileptogenic
Rates. Overall we can expect that around 72% of the contacts that were predicted
epileptogenic to actually have been resected, implying a False Discovery Rate of 28%.
Around 4% of the contacts outside the resection will be marked epileptogenic (96% of
specificity) and 68% of the resected contacts won’t be marked epileptogenic (32% of
sensitivity).
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Figure 4.3: Performance metrics of the Interictal model across the different subject-wise
folds. The metrics are calculated on the test sets, which each represents a different
subject. The mean value of each of the metrics is illustrated with a dashed red line and
the exact value is shown in the title of each subplot. The number of contacts per subject
is indicated in parentheses below the subject.
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Figure 4.3 shows the performance of the Interictal Model across each fold associated to
one of the 17 subjects. This model used a threshold of 0.43, as explained in section 4.2.2.
Given that it has less information, this model has to be even more conservative, and
as a result one of the subjects (S010) didn’t have any contacts marked epileptogenic.
Apart from this subject, six subjects were problematic for the model: S004, S006, S008,
S011, S015 and S016. These had low Epileptogenic Predictive Values and/or high False
Epileptogenic Rates. S006 and S011 proved to be particularly difficult with high False
Discovery Rates between 70% and 90%. Nevertheless the mean False Discovery Rate
was around 29%, thus, we can expect that around 71% of the contacts predicted epilep-
togenic will actually belong to the resection area. Around 3% of the contacts outside the
resection area will be marked epileptogenic (97% of specificity) and 84% of the resected
electrodes won’t be marked epileptogenic (26% of sensitivity).

Hybrid Model

The use of both sets of features resulted in a 10% increase in the Epileptogenic Predictive
Value, going as high as 80% (20% FDR). The threshold is set at 0.42. Every subject
had at least one contact marked epileptogenic. As in the other models, six subjects
were problematic, namely S004, S005, S008, S011, S015, and S016. These had high
FER values and/or low EPV. Around 65% of the resected contacts will be marked non-
epileptogenic, implying a 35% of sensitivity. The mean False Epileptogenic Rate is 3%
which is more or less the same as in the Ictal and Interictal models, displaying 97 % of
specificity.
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Figure 4.4: Performance metrics of the Hybrid model across the different subject-wise
folds. The metrics are calculated on the test sets, which each represents a different
subject. The mean value of each of the metrics is illustrated with a dashed red line and
the exact value is shown in the title of each subplot. The number of contacts per subject
is indicated in parentheses below the subject.

The Benchmark Model

The Bern-Barcelona dataset proved to be less problematic for the model. Using only
interictal features it achieved around the same performance metrics as the Hybrid Model.
This suggest that the statistical properties of this dataset are easier to handle, which
can be observed from the fact that every fold behaves more or less the same in terms of
the performance metrics. The Epileptogenic Predictive value sits at 82% (FDR=18%).
While the False Epileptogenic Rate is actually a bit higher in comparison to the other
models (6%) and implying a 94% of specificity. The sensitivity is similar to the ones of
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the other models as it is around 30%.
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Figure 4.5: Performance metrics of the Benchmark model across the different folds.
The metrics are calculated on the test sets. The mean value of each of the metrics
is illustrated with a dashed red line and the exact value is shown in the title of each
subplot.

4.2.2 Receiver operating characteristic curves

Figure 4.6 shows the ROC curves for all of the models. All ROCs were calculated
from the predicted probabilities of the positive class in the corresponding test sets of
the cross-validation folds. To the left of the figure are the ROC curves obtained from
the hyperparameter optimization stage (using 11 validation subjects from Set B as ex-
plained in section 3.5.3). For each, the "Low FPR" threshold was selected and used as a
threshold for the corresponding trained model to the right (which used the 17 training
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subjects or the Bern-Barcelona dataset for the Benchmark model). Even though each
trained model’s ROC also shows its own optimal operating points, those were not used
as operating points for the predictions, with the purpose of maintaining the test sets
out of any parameter decision. Thus, they are included in the figures for completeness’
sake. Concretely, the operating points for the models in Figures 4.2, 4.3, 4.4 and 4.5
are respectively 0.41, 0.43, 0.42 and 0.43, as shown in the "Low FPR" optimal points
of their respective hyperparameter models. The hyperparameter validation set for the
Benchmark model is the 11 validation subjects from set B using their interictal features,
which is precisely the same as the set used in the hyperparameter phase of the Interictal
Model. Thus, these two models have the same hyperparameter ROC curve and use the
same operating point correspondingly.

Notably, all of the "Top-Left Corner" optimal points sit around a threshold of 0.2,
while the chosen thresholds using the "Low FPR" criteria are around 0.4. The areas
under the curve (AUCs) where around from 0.75 to 0.8 if the model used a feature set
that included ictal data. The interictal feature set seems to provide lower AUCs that
are around 0.7, except for the Benchmark Model which showed too an AUC around 0.8.
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Figure 4.6: ROC curves of all of the models at the hyperparameter stage and after
training.
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4.2.3 Confusion Matrices

Figures 4.7 and 4.8 show the confusion matrices for each model in their row and column
normalizations respectively. For Figure 4.7, the row normalization is equivalent to a
normalization by the total count of each Resection class (Inside or Outside). In this
Figure all models behave similarly, 95% of contacts outside the resection are marked Non-
Epileptogenic and around 30 % of contacts inside the resection are marked Epileptogenic.
The deviation is on the Interictal model where only 13% of contacts inside resection are
marked as Epileptogenic, making this model more conservative. More details can be
found in Appendix C.1, where the confusion matrices per fold and normalized by the
resection class count are shown.

For Figure 4.8 the column normalization is equivalent to a normalization by the
total count of each Predicted Class (Epileptogenic or Non-Epileptogenic). Here the
patterns are more diverse. The Ictal and Hybrid models have a similar behavior, with
both Epileptogenic and Non-Epileptogenic Predictive Values around the 75% mark. The
Non-Epileptogenic Predictive Value of the Benchmark Model is 10% lower (around 60%)
and for the Interictal model it is only 5% less (70%). In contrast, the Epileptogenic
Predictive Value for the Benchmark model is higher than that of any model (83%).
On the other hand, the Interictal model has the lowest Epileptogenic Predictive Value
(62%). More details can be found in Appendix C.2, where the confusion matrices per
fold and normalized by the predicted class count are shown.

It is important to note that the values in Figures 4.7 and 4.8 are obtained by ag-
gregating all the predictions into a single confusion matrix, and then calculating the
metrics. This is different from what was done in the per-fold performance analysis
(section 4.2.1), where the quantities are computed per fold and then averaged without
previously aggregating the predictions into a single matrix.
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Figure 4.7: Confusion Matrices of the models normalized by Resection class count (row
sum). In parentheses the absolute number of samples is indicated. Each single sample in
a confusion matrix correspond to a single contact of a single subject. All of the samples
used in each confusion matrix are extracted from the collected predictions across the
test sets of the corresponding cross-validation folds and model.
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Figure 4.8: Confusion Matrices of the models normalized by predicted class count (col-
umn sum). In parentheses the absolute number of samples is indicated. Each single
sample in a confusion matrix correspond to a single contact of a single subject. All of
the samples used in each confusion matrix are extracted from the collected predictions
across the test sets of the corresponding cross-validation folds and model.
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4.2.4 Summarized Performances

Table 4.4 summarizes the performance results of the previous sections. Notably from the
models tested on the Cleveland Clinic Dataset, the best Epileptogenic Predicted Value
performance (either from the mean across folds or the confusion matrices) is showcased
by the Hybrid Model, followed by the Ictal and Interictal models in that order. This
pattern is mirrored by the AUC metric. The False Epileptogenic Rates of all models
trained on the Cleveland Clinic dataset are below 5% (whether from the fold-average or
the confusion matrices). This is nonetheless counteracted by the low EPV value (62%)
obtained from the confusion matrix of the Interictal model. The Resected Miss Rate
tends to be relatively high, between 65% and 90%. With respect to the Benchmark
Model, the performance is better than that found in the Interictal Model and even the
Hybrid model. Nonetheless, this is potentially a result of the less challenging statistical
properties of the Bern-Barcelona dataset.

Mean across Folds ROC Confusion Matrices
Model EPV FER RMR AUC EPV FER RMR
Ictal 72.43% 4.23% 67.73% 0.78 72% 5% 73%

Interictal 70.86% 2.78% 83.51% 0.73 62% 4% 87%
Hybrid 80.15% 3.07% 65.29% 0.8 77% 4% 70%

Benchmark 82.71% 6% 71.20% 0.8 83% 6% 71%

Table 4.4: Summary of the performances metrics. The "Mean across Folds" columns
corresponds to the average values across the fold of the metrics shown in section 4.2.1.
The ROC column has the area under the curve of the trained models shown in section
4.2.2. The "Confusion Matrices" columns has the performance metrics extracted from
section 4.2.3, which -in contrast to the fold averages- first accumulates the predictions
in the matrix and then calculates the metrics.
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4.3 Feature Importances

4.3.1 Ictal Model

Figure 4.9 shows the feature importances of the Ictal Model. Notably, the first 4 features
decline in an almost linear way, after which there is more pronounced decline for the
5th feature, and then similar low values are shared by the last 3 features. The overall
shape seems to be that of a half Bell curve. Three out of the first four features consist
of standard deviations. Interestingly, some of the features show narrow boxplots (MSE
Mean, 1/f Slope SD, MSE SD and PFD SD), while the other display more broad ones.
From this, it is expected that some features interchange rankings for some of the subjects,
e.g. the 1/f Slope SD with HFD SD. Nevertheless, the variability is low enough to
consider the feature importance to be somewhat stable across the different subjects.
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Figure 4.9: Feature Importances of the Ictal Model.
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4.3.2 Interictal Model

Figure 4.10 shows the feature importances of the Interictal Model. Interestingly, the
decline of the features seem to follow an almost exponential curve. The variability of
the importances is also quite narrow. For the first 3 features, the variability is low and
the features occupy well separated spaces of the plot; thus the ranking of the first three
features should be completely stable across the 17 subjects. The other four features also
exhibit low variability but they overlap in the feature importance space.
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Figure 4.10: Feature Importances of the Interictal Model.
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4.3.3 Hybrid Model

The shape of the feature importance curve for the Hybrid Model (showcased in Figure
4.11) resembles that of the Ictal model but with more features. In this case the Bell curve
seems more clear. Importantly, the variability of the feature importances in conjunction
with the overlap of the features in the importance space suggests that the features prob-
ably exchange ranking across the folds more often than not. Nonetheless, the pattern is
clear enough to make inferences at least at the level of groups of features. For example,
the first five features seem to create a first group, then the next 6 features can be use
to do a second one, and finally the last four features could be clustered together. The
first group described is dominated by ictal features, while the second one has majorly
interictal ones. The last group also has mostly ictal features. There is also a mix of
Mean and SD features across the ranking. Perhaps not surprisingly, the order in which
ictal and interictal features appear seems to somewhat resemble the original order in
which those features appeared when the periods were considered in isolation.
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Figure 4.11: Feature Importances of the Hybrid Model.
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4.3.4 Benchmark Model

Figure 4.12 shows the feature importance for the Benchmark model. Intriguingly, the
first feature (LZC Mean) seems to vastly dominate the model, along with a second feature
but in a significantly less amount. The next four features seem to cluster together and
exchange ranking through the different folds. The last feature corresponds to the 1/f
Slope mean, and it seems to be so in every fold as it is not superposed in the importance
space with any other feature. Moreover, the order of the interictal features in this
model differs from that found in the Interictal model, though both share the same most
dominant feature (LZC Mean), which accentuates the relevance and reproducibility of
this feature.
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Figure 4.12: Feature Importances of the Benchmark Model.



Chapter 5

Discussion

5.1 About Feature Statistics and Selection

Both ictal and interictal tables share the presence of "fake" and "real" epileptogenic con-
tacts within the Resected group, which hinders stronger statistical patterns. Moreover,
the reduced statistical significance at the subject-level, when compared to the overall
level, hints at the inherent variability across subjects and the possibility that some indi-
viduals deviate from general trends. Importantly, some features in both tables exhibit a
stable pattern across subjects, such as the 1/f Slope standard deviation and the Multi-
Scale Entropy mean in the ictal period, and the KFD and ZCR means in the interictal
period. These offer intriguing avenues for further exploration and validation.

Delving more into each of the periods we note that the prominence of standard devi-
ations in the upper part of the ictal table and means in the lower part may suggest that
variability within features provides more discriminatory power than central tendencies
in the ictal state. This could be a reflection of the evolving dynamic shown in the ictal
period (Figure 2.2). Despite this, some mean-based features such as Multiscale Entropy
and Approximate Entropy were able to stand out in the ictal period, which might in-
dicate unique qualities or sensitivities of these features in capturing something beyond
the transient dynamics. Furthermore, the dominance of mean features in the interictal
period could reflect the stable dynamics inherent to this state, in contrast to the evolving
dynamics observed during the ictal period. Curiously, in both tables the mean-based
features tend to have negative t-values, which may indicate that the Resected group
exhibits less complex dynamics, given that most of these features reflect an aspect of
complexity.
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Consistency between the selection carried out by the mRMR algorithm and the
statistical characterization tables can be seen when observing the first features drawn
for each period. In example, both MSE Mean and LZC Mean were around to the top of
the ictal and interictal tables respectively. Nevertheless, the selection also encompasses
features which don’t reflect strong statistical patterns, such as the case of selecting HFD
SD for the interictal period. The inclusion of such features indicates that they may
have useful information that is not found in the most statistically dominant features,
possibly exhibiting more complex patterns that are more easily captured from a machine
learning framework [7], and which may have been highlighted by the XGBoost stage of
the mRMR algorithm. Another possibility is that they don’t carry as much information
but they got selected as the statistically dominant features were deemed redundant.

One avenue not explored within this analysis involves the experiment of applying
the mRMR algorithm per subject and then looking for features appearing in most of
the subjects. This could have diminished the bias of over-represented subjects in the
feature selection process. Similarly, it could also be possible to select the features based
solely on the statistical results rather than the automated mRMR, though this would
involved a careful consideration of the correlations between the features. At this, a
promising approach would be to select the features with patterns that are most stable
across subjects rather than the strength at the overall level.

5.2 About the spiking activity

In the results from the correlation of the features to the spike emulation parameters it is
seen that a high number of features have correlations above 0.5. This means that if there
is significant spiking in the signals, then it cannot be guaranteed that these features are
predominantly reflecting criticality-related properties rather than the spikes themselves.
Such a scenario potentially impedes the objective of this thesis. In the literature some
researchers describe entropy features as their own set of properties of a signal (e.g. [35]),
while others use them as ways to quantify biomarkers such as spiking and even high-
frequency oscillations (e.g. [89]). From the analysis done in our work, we find that more
features tend to be strongly correlated to the frequency content of the spikes than to the
number of spikes. This may be a result of the features being computed on time windows.
From this experiment it becomes apparent the importance of characterizing the amount
of spikes in the dataset and possibly the need of improving the pre-processing steps,
such that the windows extracted from the signal become spike-free.
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5.3 About the models’ performances

When focusing only on the main models (the ones trained on the Cleveland Clinic
Dataset) it can be seen that the highest performing one is the Hybrid model, which
naturally comes down to the fact that it has a greater amount of diverse information. If
we pursue this association between model performance and information availability, it
can also be seen that the ictal period contains more informative features in comparison
to the interictal period. Nevertheless, the 10% performance increase in the Hybrid Model
suggests that the interictal period has relevant information unavailable in the ictal stage.

Notably, there are some important disagreements between the subject-wise mean of
performance metrics and their equivalents extracted from the confusion matrices. This is
particularly worrying in the case of the EPV performance of the interictal model, which
has as 8% decrease when computed on the overall matrix. Nevertheless, the opposite
case (having lower performance in the subject-wise folds) would be even more worrying.

Grinenko et al. [26] developed a Support Vector Machine (SVM) model based on
spectrotemporal features of the signal. Concretely, it was conceptualized as a fingerprint
quantified by the extraction of properties from the normalized spectrogram of the ictal
period by the interictal one. Given this, the most directly comparable model from
our work to this SVM model corresponds to the Hybrid Model. The performances
of the Hybrid model is indeed below that of the SVM model (SVM: 90.6 % PPV vs
80% PPV, and SVM: 0.7% FPR vs 3% FPR). The Hybrid model mostly fairs better
in terms of the simplicity of the model. Notably, the SVM model leverages a set of
features that quantify some biomarkers already conceptualized as possible delineators
of the epileptogenic zone. In contrast, the model developed in the present work is more
exploratory in nature. Curiously, the Hybrid model exhibits a lower FNR (SVM:84%
FNR vs 65% FNR). It would be possible then to find an operating point of the Hybrid
Model where the threshold results in an increased PPV at the cost of increasing the
FNR to 84%.

Interestingly, the performance of the Benchmark Model -which is based on using
only interictal data- is similar to that of the Hybrid Model (which uses both periods).
This is probably a result of the benchmark dataset having more homogeneous statistical
properties stemming from the fact that it has less subjects (5 vs 17) and that the
corresponding folds of its training aren’t done per subject, given that such information
is missing from the dataset. From the confusion matrices shown in section 4.2.3 one
can extract features such as Accuracy, Specificity and Sensitivity, which are the most
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commonly evaluated. Concretely, this Benchmark Model shows an accuracy of 61.4%,
which is much lower than many of those found in the literature [35]. It is important
to note that these models are usually more complex (e.g. SVMs) which hindrances
their interpretabillity. Moreover, many of them employ decomposition methods such as
wavelets to further treat the signal. Importantly, some of these models show a lower
specificity (e.g. 84% vs 94%) which suggests that they were tuned to optimize the overall
accuracy rather than the positive predictive value. In addition, it is possible that some
of those models didn’t use cross-validation strategies, which further affects the estimated
performance.

5.4 About feature importance

The dominant features in the ictal period correspond to the 1/f Slope standard deviation
(SD), the Higuchi Fractal Dimension SD, and the Multiscale Entropy (MSE) Mean and
SD. The prevalence of standard deviations may reflect the transient dynamics of the ictal
stage in epileptogenic (or at least resected) contacts. Similar to what happened in Table
4.1, it is surprising to see a mean-based feature at the top of the feature importance. The
fact that MSE reflects a complexity measure less-biased towards randomness through
the use of multiple time-scales may have provided a basis for it to capture information
beyond the transient dynamics of the ictal phase. It is important to note that in the
ictal signals some pre-ictal spikes may be present, but MSE is relatively unaffected by
the spikes (particularly if they have high frequency content) as can be seen in Figures
4.1 and Appendix B. Moreover, MSE is anchored to the concept of long-range temporal
correlations, but given that we analyze the signal on short windows of 1 second it may
be that it reflects this property relative to much shorter time scales. On the other
hand, the interpretation of the 1/f Slope SD is less straightforward; its natural value
(the mean) should reflect the Excitation/Inhibition balance in the brain. The standard
deviation of such characteristic in the ictal phase could reflect transient changes of the
system state of a particular location of the brain during a seizure. Likewise, the HFD
represents a fractal dimension, which on one-dimensional signals could be portraying the
long-range correlations properties of the system, though the same nuance of the MSE
applies given the short windows. In general, and noting that from Table 4.1 we know
that all standard deviations are larger among resected contacts, it could be that these
bigger standard deviations imply a similar conclusion to that of the 1/f Slope standard
deviation: the sudden changes in the local state of the system but in respect to their
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correlations at different scales.
Nonetheless, a different cause could be identified. The work of Grinenko et al. [26]

proposed that the epileptogenic regions exhibit special characteristics such as Multiband
Fast Activity, Low Frequency Suppression and Pre-ictal Spikes. There may be some
correlations between the complexity-based features used and those characteristics. In
particular, it is possible that the standard deviation of some of the features in the
ictal period reflect aspects of these biomarkers. Concretely, the combination of low
frequency suppression and multiband fast activity could result in a mostly oscillatory
signal that exhibits low complexity. Thus, if this signature is transient it will affect only
some percentage of the segmented windows, being ultimately reflected on the standard
deviation of the features. Moreover, one hindrance the HFD SD has is the fact that
it is one of the features that reflect more strongly both the number of spikes and their
frequency content. Importantly, the 1/f Slope SD does not show strong correlations for
neither of these.

Moving into the interictal feature importance, we note that the mean of the Lempel-
Ziv Complexity (LZC) has the largest weight with a considerate margin, both for the
Interictal model and the Benchmark model. Interestingly, Toker et al. [84] proposed that
LZC was maximized at the edge of chaos, which is a particular class of criticality where
the transition happens between stable and chaotic phases of the system. Nevertheless,
the interpretation of LZC becomes problematic in this project, as it can be thought
of as a measure of Kolmogorov Complexity, which is maximized in randomness rather
than in meaningful long-range correlations as happens for MSE [88]. Despite this, and
in similarity with MSE, LZC wasn’t particularly among the features most affected by
spikes. Intriguingly, the next two more important features in the interictal model are the
1/f Slope SD and the Petrosian Fractal Dimension (PFD) SD, which mimics the same
pattern seen in the ictal importances: one mean-based feature, the 1/f Slope SD, and one
Fractal Dimension SD. In contrast to the Higuchi Fractal Dimension SD, the PFD SD
has moderate correlations to the frequency content of the spikes, and low correlation with
their number. This is surprising since PFD involves the sign changes of the derivative of
the signal as one of the main concepts of its calculation, which could reflect spikes or the
seizure itself. Apart from this and in regards to the 1/f Slope SD, its significance may
be disputed in the interictal period because it does not show a stable pattern (only 61%
of the subjects have a positive t value), though the exact same happens for the PFD SD
(Table 4.2). This contrasts the stable patterns of the 1/f Slope SD and HFD SD in the
ictal period where 100% and 89% of the subjects have the same pattern respectively.
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Conclusions and Future Work

6.1 Conclusions

This project explored the many intricacies involved in the task of Epileptogenic Zone
localization. Importantly, both ictal and interictal periods display challenges due to the
presence of "fake" and "real" epileptogenic contacts within the Resected class. Despite
this, our research underscores that while the interictal feature set might offer less infor-
mation for the task, its incorporation into a hybrid model, which combines both ictal
and interictal phases, enhances the performance beyond the ictal-only model. Feature
importance evaluation showed that there were both commonalities and differences in
the feature sets that were dominant in both periods. Notably, pivotal characteristics
were identified in determining the fingerprint of the epileptogenic zone. This includes
the prominence of the mean Multi-Scale Entropy during the ictal phase and the mean
Lempel-Ziv Complexity in the interictal phase. Such characteristics show stable statis-
tical results across subjects, and resonate with the brain criticality hypothesis, shedding
light on temporal correlations across varying scales and the transitions between stable
and chaotic brain phases. Furthermore, the present work emphasizes the importance of
fractal dimension measures reflected in the top-3 critical features. Both interictal and
ictal phases reveal that the standard deviation of the 1/f slope and fractal dimensions
bear significant information, especially pronounced during the ictal phase. However,
caution is advised in the interpretation of these findings due to potential metric dis-
tortions caused by spikes. Lastly, while this research ventured into analyzing model
performance with a benchmark dataset, the results weren’t groundbreaking. The dimin-
ished performance may be attributed to the simplicity of the utilized model and signal
processing techniques.
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In general, given the promising insights unveiled in this exploration, there remains
an optimistic horizon for subsequent studies that delve deeper into complexity features,
potentially heralding groundbreaking advancements in our understanding of epilepsy
within the framework of the brain criticality hypothesis.

6.2 Future Work

Potential directions for upcoming research could focus on addressing the existing con-
straints of the methods shown and advancing the techniques developed. Specifically:

• The interference of spikes obfuscate conclusions framed in the critical brain hy-
pothesis. Logically, one point of improvement would be to include a method to
detect the spikes, and subsequently select only spike-free windows. This could be
done through a dynamic segmentation of the signal that allows for big overlaps,
maintaining the amount of usable time windows.

• The machine learning model implemented in this project is simpler than those
found in the literature. An avenue that could be explored to improve performances
is to try models that are more complex, at the cost of sacrificing interpretability.

• Another of the main limitations is the uncertainty in regards to the epileptogenic-
ity of the resected class. Two avenues can be explored here through the use of
unsupervised learning: A) to find clusters of contacts with similar characteristics
and relate the results to their location and resection class. And B) to leverage an
unsupervised clustering approach within the resected class. This needs an assump-
tion that is able to determinate which cluster is more likely epileptogenic. In our
case this wouldn’t be possible using complexity features but it can be achieved by
leveraging other features only used to this purpose, such as those found by Gri-
nenko et al. [26]. On the other hand, this would constitute a bias that constrains
which features become important.

• The feature selection process could involve an approach that privileges the features
with more stable statistical patterns across all of the subjects. This could in turn
increase the subject-wise fold performance.

• When making a prediction, it could be possible to leverage information from sur-
rounding contacts. Such effort would be motivated by the known network nature
of epilepsy.
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Clinical profiles of the patients

Table A.1: Clinical profile of the patients.
Sub
IDa

Age
(years)

Num.
Epilepsy
years

MRI lesion Surgical pathol-
ogy

Resection (or ab-
lation) details

Outcome Follow-
up
months

S001 43 37 FCD, insu-
lar/frontal oper-
culum

FCD, type 2B Anterior in-
sula/frontal
operculum

Seizure-
free

13

S002 29 22 Negative FCD, type 1C Temporal-
parietal-occipital

Seizure-
free

49

S003 33 17 Hippo-campal
sclerosis

Hippocampal
sclerosis type 1

Anterior temporal
lobe

Seizure-
free

48

S004 17 8 Negative No pathology Laser ablation,
superior frontal
gyrus

Seizure-
free

19

S005 16 1 Benign neoplasm,
posterior parahip-
pocampal gyrus

Low grade glial-
glioneuronal neo-
plasm

Posterior parahip-
pocampus gyrus
and neoplasm

Seizure-
free

39

S006 46 41 FCD, mesial
frontal

Non-specific
changes

Prefrontal lobe Seizure-
free

38

S007 5 1 Negative FCD, type 2B Superior frontal
gyrus, superior
frontal sulcus,
frontal pole

Seizure-
free

21

S008 63 14 Negative FCD, type 1 Orbitofrontal Seizure-
free

44

S009 33 19 Gliotic postop
changes

FCD, type 1B Anterior temporal
lobe

Seizure-
free

40

S010 21 11 Negative Grey matter het-
erotopia, FCD
type 1B

Occipital lobe Seizure-
free

12

S011 32 27 FCD, precentral
gyrus

Non conclusive Precentral gyrus Seizure-
free

77



79

S012 22 3 FCD, superior
frontal sulcus

FCD type 2 B Superior and mid-
dle frontal gyri,
anterior cingulate

Seizure-
free

78

S013 19 18 Negative FCD type 1 Middle frontal
gyrus

Seizure-
free

48

S014 30 18 Negative FCD type 2 B Frontal opercu-
lum

Seizure-
free

47

S015 20 11 Negative FCD, type 1 Frontal lobe Seizure-
free

82

S016 65 25 Negative FCD, 1C Anterior temporal
lobe

Seizure-
free

39

S017 65 9 Negative FCD, 1C Anterior temporal
lobe

Seizure-
free

36

S101 25 11 Normal Focal gliosis L lateral temporal
cortexectomy

Seizure-
free

27

S102 17 7 Normal FCD Type 1 L temporal polar
and amygdala re-
section

Seizure-
free

36

S103 30 12 Normal FCD Type 1 R anterior tempo-
ral lobectomy

Seizure-
free

36

S106 17 9 Normal FCD Type 2B R SMA/cingulate
resection

Seizure-
free

28

S108 37 32 Suspected, FCD FCD Type 2B R subcentral re-
section

Seizure-
free

20

S111 48 6 Normal FCD Type 1 L anterior tempo-
ral lobectomy

Seizure-
free

28

S112 21 18 Normal No due to laser
surgery

L insular / tempo-
ral / frontal oper-
culum laser abla-
tion

Seizure-
free

31

S113 24 17 Suspected FCD FCD Type 1 R anterior tempo-
ral lobectomy

Seizure-
free

29

S116 11 7 Prior resection,
otherwise normal

Gliosis R insular/ fronto-
parietal and tem-
poral operculum

Seizure-
free

22

S118 33 13 Normal Gliosis R prefrontal re-
section

Seizure-
free

19

S140 39 3 Normal Focal perivascular
gliosis

Anterior temporal
lobectomy

Seizure-
free

21

S215b 35 4 PNH No due to laser
surgery

Laser ablation,
periventricular
nodule

Seizures

S219c 30 5 Normal No due to laser
surgery

Laser ablation, L
cingulate/SMA

One-year
seizure-
free then
seizure
recurred

S220 38 22 Normal FCD Type 1 R posterior basal
temporal resec-
tion

Seizures
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S221 41 39 Normal Gliosis R lateral
temporo-parietal
resection

Seizures

S222 24 14 Normal FCD Type 1 R basal poste-
rior temporal
resection

One-year
seizure-
free then
seizure
recurred

S223 6 2 Normal Inflammation,
FCD Type 1

L anterior lat-
eral temporal
resection

Seizures

S226 24 18 Normal FCD Type 1 L prefrontal resec-
tion

Seizures

S228b 25 12 Multiple areas of
gliosis

Gliosis R parieto-
occipital resection

Seizures

S231c 34 34 Normal No due to laser
surgery

Laser ablation, L
frontal operculum

Seizures

S232b 10 10 Bilateral occipital
lesion

Ulegyria, inflam-
mation

L parieto-
occipital resection

Seizures

S233 29 10 Heterotopic gray
matter

FCD Type 1 R temporooccipi-
tal resection

Seizures

S237 20 16 Normal No due to laser
surgery

Laser ablation, R
angular gyrus

Seizures

S238 35 35 PMG No due to laser
surgery

Laser ablation, L
fronto-parietal op-
erculum, subcen-
tral gyrus

Seizures

Abbreviations. FCD: focal cortical dysplasia; L: left; PMG: polymicrogyria; PNH: periventricular nodular
heterotopia; R: right; SMA: supplemental motor area.
aSubjects from 101 to 140 were seizure-free (SF) after the surgery and subjects from 215 to 238 were nonseizure-
free (NSF).
bPatients had seizures initiated from different area than fast activity, which influenced the surgery planning.
cSparse implantation with inadequate sampling of the epileptogenic zone.
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Complementary Spiking Analysis
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Figure B.1: Heatmaps for the Mean of the Features across the two spiking parameters:
Width of the Gaussian window and number of spikes. Note that the width has an inverse
relationship to the frequency content of the spike. For ease of interpretation, the width
axis corresponds to the inverse of the width so that a high frequency content is at the
right border of the axis.
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Figure B.2: Heatmaps for the Standard Deviation of the Features across the two spiking
parameters: Width of the Gaussian window and number of spikes. Note that the width
has an inverse relationship to the frequency content of the spike. For ease of interpre-
tation, the width axis corresponds to the inverse of the width so that a high frequency
content is at the right border of the axis.



84 Complementary Spiking Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Absolute Average Gradient

HMob Mean (+)
SE Mean (+)

LZC Mean (+)
HComp Mean (-)

SE SD (+)
HMob SD (+)

SVDEn SD (+)
SVDEn Mean (+)

HFD SD (-)
PFD Mean (+)
HFD Mean (+)

1/f Slope Mean (-)
PE Mean (-)
MSE SD (-)

ApEn SD (-)
SampEn SD (-)

PFD SD (-)
MSE Mean (+)

ApEn Mean (+)
1/f Slope SD (-)

SampEn Mean (+)
ZCR SD (+)

HComp SD (+)
ZCR Mean (+)

PE SD (+)
LZC SD (-)

KFD Mean (+)
KFD SD (-)

Gradient with Spike Freq. Content (Normalized Data)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Absolute Average Gradient

HMob Mean (-)
SE Mean (+)
LZC Mean (-)

HComp Mean (-)
SE SD (+)

HMob SD (+)
SVDEn SD (+)

SVDEn Mean (+)
HFD SD (+)

PFD Mean (-)
HFD Mean (-)

1/f Slope Mean (+)
PE Mean (+)
MSE SD (+)

ApEn SD (+)
SampEn SD (+)

PFD SD (+)
MSE Mean (-)

ApEn Mean (-)
1/f Slope SD (+)

SampEn Mean (-)
ZCR SD (-)

HComp SD (-)
ZCR Mean (+)

PE SD (-)
LZC SD (-)

KFD Mean (-)
KFD SD (+)

Gradient with Num. Spikes (Normalized Data)

Figure B.3: Absolute Average gradient of each feature in respect to the spike parameters.
Prior to the calculation of the gradient the features were z-scored to avoid scaling effects.
To the right of each feature the sign of the gradient is indicated (±).
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Confusion Matrices per Fold

C.1 Normalized by Resection Class Count
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Figure C.1: Confusion Matrix for the Ictal model across the different subject-wise folds,
normalized by the resection class count.
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Figure C.2: Confusion Matrix for the Interictal model across the different subject-wise
folds, normalized by the resection class count.
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Figure C.3: Confusion Matrix for the Hybrid model across the different subject-wise
folds, normalized by the resection class count.
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Figure C.4: Confusion Matrix for the Benchmark model across the different folds, nor-
malized by the resection class count.



90 Confusion Matrices per Fold
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Figure C.5: Confusion Matrix for the Ictal model across the different subject-wise folds,
normalized by the predicted class count.
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Figure C.6: Confusion Matrix for the Interictal model across the different subject-wise
folds, normalized by the predicted class count.
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Figure C.7: Confusion Matrix for the Hybrid model across the different subject-wise
folds, normalized by the predicted class count.



C.2 Normalized by Predicted Class Count 93

NEOR (TN) EOR (FP) NEIR (FN) EIR (TP)

1

2

3

4

5

57.07%
(706)

16.73%
(44)

42.93%
(531)

83.27%
(219)

57.12%
(702)

17.71%
(48)

42.88%
(527)

82.29%
(223)

55.58%
(707)

18.86%
(43)

44.42%
(565)

81.14%
(185)

57.34%
(703)

17.15%
(47)

42.66%
(523)

82.85%
(227)

57.43%
(707)

15.99%
(43)

42.57%
(524)

84.01%
(226)

0

20

40

60

80

100

Pe
rc

en
ta

ge

Benchmark Model Confusion Matrix per fold

Figure C.8: Confusion Matrix for the Benchmark model across the different folds, nor-
malized by the predicted class count.



References

[1] M. S. Akter, M. R. Islam, Y. Iimura, H. Sugano, K. Fukumori, D. Wang, T. Tanaka,
and A. Cichocki. Multiband entropy-based feature-extraction method for automatic
identification of epileptic focus based on high-frequency components in interictal
iEEG. Scientific Reports, 10(1), Apr. 2020. doi: 10.1038/s41598-020-62967-z. URL
https://doi.org/10.1038/s41598-020-62967-z. (page 12)

[2] O. Alter, P. O. Brown, and D. Botstein. Singular value decomposition for genome-
wide expression data processing and modeling. Proceedings of the National
Academy of Sciences, 97(18):10101–10106, Aug. 2000. doi: 10.1073/pnas.97.18.
10101. URL https://doi.org/10.1073/pnas.97.18.10101. (page 17)

[3] L. P. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann, and J. Gotman. Interictal
scalp fast oscillations as a marker of the seizure onset zone. Neurology, 77(6):524–
531, July 2011. doi: 10.1212/wnl.0b013e318228bee2. URL https://doi.org/10.
1212/wnl.0b013e318228bee2. (page 1)

[4] C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure for
time series. Physical Review Letters, 88(17), Apr. 2002. doi: 10.1103/physrevlett.
88.174102. URL https://doi.org/10.1103/physrevlett.88.174102. (page 15)

[5] C. Baumgartner and S. Pirker. Video-EEG. In Clinical Neurophysiology: Basis and
Technical Aspects, pages 171–183. Elsevier, 2019. doi: 10.1016/b978-0-444-64032-1.
00011-4. URL https://doi.org/10.1016/b978-0-444-64032-1.00011-4. (page 8)

[6] E. Beghi, G. Giussani, E. Nichols, F. Abd-Allah, J. Abdela, A. Abdelalim, H. N.
Abraha, M. G. Adib, S. Agrawal, F. Alahdab, A. Awasthi, Y. Ayele, M. A. Barboza,
A. B. Belachew, B. Biadgo, A. Bijani, H. Bitew, F. Carvalho, Y. Chaiah, A. Daryani,
H. P. Do, M. Dubey, A. Y. Y. Endries, S. Eskandarieh, A. Faro, F. Farzadfar, S.-M.
Fereshtehnejad, E. Fernandes, D. O. Fijabi, I. Filip, F. Fischer, A. K. Gebre, A. G.
Tsadik, T. G. Gebremichael, K. E. Gezae, M. Ghasemi-Kasman, K. G. Weldegwergs,
M. G. Degefa, E. V. Gnedovskaya, T. B. Hagos, A. Haj-Mirzaian, A. Haj-Mirzaian,
H. Y. Hassen, S. I. Hay, M. Jakovljevic, A. Kasaeian, T. D. Kassa, Y. S. Khader,
I. Khalil, E. A. Khan, J. Khubchandani, A. Kisa, K. J. Krohn, C. Kulkarni, Y. L.
Nirayo, M. T. Mackay, M. Majdan, A. Majeed, T. Manhertz, M. M. Mehndiratta,
T. Mekonen, H. G. Meles, G. Mengistu, S. Mohammed, M. Naghavi, A. H. Mokdad,
G. Mustafa, S. S. N. Irvani, L. H. Nguyen, M. R. Nixon, F. A. Ogbo, A. T. Olagunju,
T. O. Olagunju, M. O. Owolabi, M. R. Phillips, G. D. Pinilla-Monsalve, M. Qorbani,
A. Radfar, A. Rafay, V. Rahimi-Movaghar, N. Reinig, P. S. Sachdev, H. Safari,
S. Safari, S. Safiri, M. A. Sahraian, A. M. Samy, S. Sarvi, M. Sawhney, M. A.
Shaikh, M. Sharif, G. Singh, M. Smith, C. E. I. Szoeke, R. Tabarés-Seisdedos,

https://doi.org/10.1038/s41598-020-62967-z
https://doi.org/10.1073/pnas.97.18.10101
https://doi.org/10.1212/wnl.0b013e318228bee2
https://doi.org/10.1212/wnl.0b013e318228bee2
https://doi.org/10.1103/physrevlett.88.174102
https://doi.org/10.1016/b978-0-444-64032-1.00011-4


References 95

M.-H. Temsah, O. Temsah, M. Tortajada-Girbés, B. X. Tran, A. A. T. Tsegay,
I. Ullah, N. Venketasubramanian, R. Westerman, A. S. Winkler, E. M. Yimer,
N. Yonemoto, V. L. Feigin, T. Vos, and C. J. L. Murray. Global, regional, and
national burden of epilepsy, 1990–2016: a systematic analysis for the global burden
of disease study 2016. The Lancet Neurology, 18(4):357–375, Apr. 2019. doi:
10.1016/s1474-4422(18)30454-x. URL https://doi.org/10.1016/s1474-4422(18)
30454-x. (page 1)

[7] D. Bzdok, N. Altman, and M. Krzywinski. Statistics versus machine learning.
Nature Methods, 15(4):233–234, Apr. 2018. doi: 10.1038/nmeth.4642. URL https:
//doi.org/10.1038/nmeth.4642. (page 72)

[8] T. Cecchin, R. Ranta, L. Koessler, O. Caspary, H. Vespignani, and L. Mail-
lard. Seizure lateralization in scalp EEG using hjorth parameters. Clinical
Neurophysiology, 121(3):290–300, Mar. 2010. doi: 10.1016/j.clinph.2009.10.033.
URL https://doi.org/10.1016/j.clinph.2009.10.033. (page 21)

[9] G. J. Chaitin. On the simplicity and speed of programs for computing infinite
sets of natural numbers. Journal of the ACM, 16(3):407–422, July 1969. doi:
10.1145/321526.321530. URL https://doi.org/10.1145/321526.321530. (page 20)

[10] B. S. Chang and D. H. Lowenstein. Epilepsy. New England Journal of Medicine,
349(13):1257–1266, Sept. 2003. doi: 10.1056/nejmra022308. URL https://doi.
org/10.1056/nejmra022308. (page 4)

[11] M. Costa, A. L. Goldberger, and C.-K. Peng. Multiscale entropy analysis of complex
physiologic time series. Physical Review Letters, 89(6), July 2002. doi: 10.1103/
physrevlett.89.068102. URL https://doi.org/10.1103/physrevlett.89.068102.

(page 19)

[12] M. Costa, A. L. Goldberger, and C.-K. Peng. Multiscale entropy analysis of biolog-
ical signals. Physical Review E, 71(2), Feb. 2005. doi: 10.1103/physreve.71.021906.
URL https://doi.org/10.1103/physreve.71.021906. (page 19)

[13] S. Cranstoun, G. Worrell, J. Echauz, and B. Litt. Self-organized criticality in
the epileptic brain. In Proceedings of the Second Joint 24th Annual Conference
and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering
in Medicine and Biology. IEEE. doi: 10.1109/iembs.2002.1134468. URL https:
//doi.org/10.1109/iembs.2002.1134468. (page 9)

[14] A. Delgado-Bonal and A. Marshak. Approximate entropy and sample entropy: A
comprehensive tutorial. Entropy, 21(6):541, May 2019. doi: 10.3390/e21060541.
URL https://doi.org/10.3390/e21060541. (page 14)

[15] O. Devinsky, A. Vezzani, T. J. O'Brien, N. Jette, I. E. Scheffer, M. de Curtis,
and P. Perucca. Epilepsy. Nature Reviews Disease Primers, 4(1), May 2018. doi:
10.1038/nrdp.2018.24. URL https://doi.org/10.1038/nrdp.2018.24. (page 1)

[16] T. Donoghue, M. Haller, E. J. Peterson, P. Varma, P. Sebastian, R. Gao, T. Noto,
A. H. Lara, J. D. Wallis, R. T. Knight, A. Shestyuk, and B. Voytek. Parameterizing
neural power spectra into periodic and aperiodic components. Nature Neuroscience,

https://doi.org/10.1016/s1474-4422(18)30454-x
https://doi.org/10.1016/s1474-4422(18)30454-x
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1016/j.clinph.2009.10.033
https://doi.org/10.1145/321526.321530
https://doi.org/10.1056/nejmra022308
https://doi.org/10.1056/nejmra022308
https://doi.org/10.1103/physrevlett.89.068102
https://doi.org/10.1103/physreve.71.021906
https://doi.org/10.1109/iembs.2002.1134468
https://doi.org/10.1109/iembs.2002.1134468
https://doi.org/10.3390/e21060541
https://doi.org/10.1038/nrdp.2018.24


96 References

23(12):1655–1665, Nov. 2020. doi: 10.1038/s41593-020-00744-x. URL https://doi.
org/10.1038/s41593-020-00744-x. (pages 2 and 36)

[17] S. Elgohary, S. Eldawlatly, and M. I. Khalil. Epileptic seizure prediction using zero-
crossings analysis of EEG wavelet detail coefficients. In 2016 IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
IEEE, Oct. 2016. doi: 10.1109/cibcb.2016.7758115. URL https://doi.org/10.
1109/cibcb.2016.7758115. (page 21)

[18] J. Engel. Excitation and inhibition in epilepsy. Canadian Journal of Neurological
Sciences / Journal Canadien des Sciences Neurologiques, 23(3):167–174, 1996. doi:
10.1017/S0317167100038464. (page 10)

[19] J. Engel. Approaches to refractory epilepsy. Annals of Indian Academy of
Neurology, 17(5):12, 2014. doi: 10.4103/0972-2327.128644. URL https://doi.
org/10.4103/0972-2327.128644. (page 1)

[20] K. M. Fiest, K. M. Sauro, S. Wiebe, S. B. Patten, C.-S. Kwon, J. Dykeman,
T. Pringsheim, D. L. Lorenzetti, and N. Jetté. Prevalence and incidence of epilepsy.
Neurology, 88(3):296–303, Dec. 2016. doi: 10.1212/wnl.0000000000003509. URL
https://doi.org/10.1212/wnl.0000000000003509. (page 1)

[21] R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger,
J. Engel, L. Forsgren, J. A. French, M. Glynn, D. C. Hesdorffer, B. Lee, G. W.
Mathern, S. L. Moshé, E. Perucca, I. E. Scheffer, T. Tomson, M. Watanabe, and
S. Wiebe. ILAE official report: A practical clinical definition of epilepsy. Epilepsia,
55(4):475–482, Apr. 2014. doi: 10.1111/epi.12550. URL https://doi.org/10.1111/
epi.12550. (page 4)

[22] R. Gao, E. J. Peterson, and B. Voytek. Inferring synaptic excitation/inhibition
balance from field potentials. NeuroImage, 158:70–78, 2017. ISSN 1053-
8119. doi: https://doi.org/10.1016/j.neuroimage.2017.06.078. URL https://www.
sciencedirect.com/science/article/pii/S1053811917305621. (page 10)

[23] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck,
R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S. Hämäläinen. MEG and EEG
data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. doi:
10.3389/fnins.2013.00267. (pages 35 and 36)

[24] K. M. Grande, S. K. Z. Ihnen, and R. Arya. Electrical stimulation mapping of brain
function: A comparison of subdural electrodes and stereo-eeg. Frontiers in Human
Neuroscience, 14, 2020. ISSN 1662-5161. doi: 10.3389/fnhum.2020.611291. URL
https://www.frontiersin.org/articles/10.3389/fnhum.2020.611291. (page 8)

[25] P. Grassberger. Randomness, information, and complexity, 2012. (page 12)

[26] O. Grinenko, J. Li, J. C. Mosher, I. Z. Wang, J. C. Bulacio, J. Gonzalez-Martinez,
D. Nair, I. Najm, R. M. Leahy, and P. Chauvel. A fingerprint of the epileptogenic
zone in human epilepsies. Brain, 141(1):117–131, 12 2017. ISSN 0006-8950. doi:
10.1093/brain/awx306. URL https://doi.org/10.1093/brain/awx306.

(pages 1, 7, 41, 43, 73, 75, and 77)

https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1109/cibcb.2016.7758115
https://doi.org/10.1109/cibcb.2016.7758115
https://doi.org/10.4103/0972-2327.128644
https://doi.org/10.4103/0972-2327.128644
https://doi.org/10.1212/wnl.0000000000003509
https://doi.org/10.1111/epi.12550
https://doi.org/10.1111/epi.12550
https://www.sciencedirect.com/science/article/pii/S1053811917305621
https://www.sciencedirect.com/science/article/pii/S1053811917305621
https://www.frontiersin.org/articles/10.3389/fnhum.2020.611291
https://doi.org/10.1093/brain/awx306


References 97

[27] A. Hagemann, J. Wilting, B. Samimizad, F. Mormann, and V. Priesemann. As-
sessing criticality in pre-seizure single-neuron activity of human epileptic cortex.
PLOS Computational Biology, 17(3):e1008773, Mar. 2021. doi: 10.1371/journal.
pcbi.1008773. URL https://doi.org/10.1371/journal.pcbi.1008773. (page 9)

[28] B. J. He. Scale-free properties of the functional magnetic resonance imaging signal
during rest and task. The Journal of Neuroscience, 31(39):13786–13795, Sept. 2011.
doi: 10.1523/jneurosci.2111-11.2011. URL https://doi.org/10.1523/jneurosci.
2111-11.2011. (page 10)

[29] B. J. He. Scale-free brain activity: past, present, and future. Trends in Cognitive
Sciences, 18(9):480–487, 2014. ISSN 1364-6613. doi: https://doi.org/10.1016/
j.tics.2014.04.003. URL https://www.sciencedirect.com/science/article/pii/
S1364661314000850. (pages 2 and 10)

[30] J. Hesse and T. Gross. Self-organized criticality as a fundamental property of
neural systems. Frontiers in Systems Neuroscience, 8, 2014. ISSN 1662-5137. doi:
10.3389/fnsys.2014.00166. URL https://www.frontiersin.org/articles/10.3389/
fnsys.2014.00166. (page 9)

[31] T. Higuchi. Approach to an irregular time series on the basis of the fractal theory.
Physica D: Nonlinear Phenomena, 31(2):277–283, 1988. ISSN 0167-2789. doi: https:
//doi.org/10.1016/0167-2789(88)90081-4. URL https://www.sciencedirect.com/
science/article/pii/0167278988900814. (page 23)

[32] B. Hjorth. EEG analysis based on time domain properties. Electroencephalography
and Clinical Neurophysiology, 29(3):306–310, Sept. 1970. doi: 10.1016/
0013-4694(70)90143-4. URL https://doi.org/10.1016/0013-4694(70)90143-4.

(page 21)

[33] K. IIDA and H. OTSUBO. Stereoelectroencephalography: Indication and efficacy.
Neurologia medico-chirurgica, 57(8):375–385, 2017. doi: 10.2176/nmc.ra.2017-0008.
URL https://doi.org/10.2176/nmc.ra.2017-0008. (page 8)

[34] T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, and
M. Hirano. Quantification of eeg irregularity by use of the entropy of the power
spectrum. Electroencephalography and Clinical Neurophysiology, 79(3):204–210,
1991. ISSN 0013-4694. doi: https://doi.org/10.1016/0013-4694(91)90138-T. URL
https://www.sciencedirect.com/science/article/pii/001346949190138T.

(page 17)

[35] M. R. Islam, X. Zhao, Y. Miao, H. Sugano, and T. Tanaka. Epileptic
seizure focus detection from interictal electroencephalogram: a survey. Cognitive
Neurodynamics, May 2022. doi: 10.1007/s11571-022-09816-z. URL https://doi.
org/10.1007/s11571-022-09816-z. (pages 1, 12, 39, 72, and 74)

[36] L. Jehi. The epileptogenic zone: Concept and definition. Epilepsy Currents, 18
(1):12–16, 2018. doi: 10.5698/1535-7597.18.1.12. URL https://doi.org/10.5698/
1535-7597.18.1.12. PMID: 29844752. (page 5)

https://doi.org/10.1371/journal.pcbi.1008773
https://doi.org/10.1523/jneurosci.2111-11.2011
https://doi.org/10.1523/jneurosci.2111-11.2011
https://www.sciencedirect.com/science/article/pii/S1364661314000850
https://www.sciencedirect.com/science/article/pii/S1364661314000850
https://www.frontiersin.org/articles/10.3389/fnsys.2014.00166
https://www.frontiersin.org/articles/10.3389/fnsys.2014.00166
https://www.sciencedirect.com/science/article/pii/0167278988900814
https://www.sciencedirect.com/science/article/pii/0167278988900814
https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.2176/nmc.ra.2017-0008
https://www.sciencedirect.com/science/article/pii/001346949190138T
https://doi.org/10.1007/s11571-022-09816-z
https://doi.org/10.1007/s11571-022-09816-z
https://doi.org/10.5698/1535-7597.18.1.12
https://doi.org/10.5698/1535-7597.18.1.12


98 References

[37] H. Jiang, V. Kokkinos, S. Ye, A. Urban, A. Bagić, M. Richardson, and B. He.
Interictal SEEG resting-state connectivity localizes the seizure onset zone and
predicts seizure outcome. Advanced Science, 9(18):2200887, May 2022. doi:
10.1002/advs.202200887. URL https://doi.org/10.1002/advs.202200887.

(page 10)

[38] B. C. Jobst, F. Bartolomei, B. Diehl, B. Frauscher, P. Kahane, L. Minotti, A. Sha-
ran, N. Tardy, G. Worrell, and J. Gotman. Intracranial EEG in the 21st century.
Epilepsy Currents, 20(4):180–188, July 2020. doi: 10.1177/1535759720934852. URL
https://doi.org/10.1177/1535759720934852. (page 8)

[39] M. J. Katz. Fractals and the analysis of waveforms. Computers in Biology and
Medicine, 18(3):145–156, Jan. 1988. doi: 10.1016/0010-4825(88)90041-8. URL
https://doi.org/10.1016/0010-4825(88)90041-8. (page 22)

[40] G. Kaushik, P. Gaur, R. R. Sharma, and R. B. Pachori. EEG signal based seizure de-
tection focused on hjorth parameters from tunable-q wavelet sub-bands. Biomedical
Signal Processing and Control, 76:103645, July 2022. doi: 10.1016/j.bspc.2022.
103645. URL https://doi.org/10.1016/j.bspc.2022.103645. (page 21)

[41] A. Kolmogorov. On tables of random numbers. Theoretical Computer Science, 207
(2):387–395, Nov. 1998. doi: 10.1016/s0304-3975(98)00075-9. URL https://doi.
org/10.1016/s0304-3975(98)00075-9. (page 20)

[42] P. Kwan and J. W. Sander. The natural history of epilepsy: an epidemiological view.
Journal of Neurology, Neurosurgery & Psychiatry, 75(10):1376–1381, 2004. ISSN
0022-3050. doi: 10.1136/jnnp.2004.045690. URL https://jnnp.bmj.com/content/
75/10/1376. (page 1)

[43] S. Lagarde, S. Buzori, A. Trebuchon, R. Carron, D. Scavarda, M. Milh, A. McGo-
nigal, and F. Bartolomei. The repertoire of seizure onset patterns in human focal
epilepsies: Determinants and prognostic values. Epilepsia, 60(1):85–95, Nov. 2018.
doi: 10.1111/epi.14604. URL https://doi.org/10.1111/epi.14604. (page 4)

[44] Z. J. Lau, T. Pham, S. H. A. Chen, and D. Makowski. Brain entropy, fractal
dimensions and predictability: A review of complexity measures for EEG in healthy
and neuropsychiatric populations. European Journal of Neuroscience, 56(7):5047–
5069, Sept. 2022. doi: 10.1111/ejn.15800. URL https://doi.org/10.1111/ejn.
15800. (page 8)

[45] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):75–81, Jan. 1976. doi: 10.1109/tit.1976.1055501. URL
https://doi.org/10.1109/tit.1976.1055501. (page 20)

[46] J. Li, O. Grinenko, J. C. Mosher, J. Gonzalez-Martinez, R. M. Leahy, and
P. Chauvel. Learning to define an electrical biomarker of the epileptogenic zone.
Human Brain Mapping, 41(2):429–441, Oct. 2019. doi: 10.1002/hbm.24813. URL
https://doi.org/10.1002/hbm.24813. (page 43)

https://doi.org/10.1002/advs.202200887
https://doi.org/10.1177/1535759720934852
https://doi.org/10.1016/0010-4825(88)90041-8
https://doi.org/10.1016/j.bspc.2022.103645
https://doi.org/10.1016/s0304-3975(98)00075-9
https://doi.org/10.1016/s0304-3975(98)00075-9
https://jnnp.bmj.com/content/75/10/1376
https://jnnp.bmj.com/content/75/10/1376
https://doi.org/10.1111/epi.14604
https://doi.org/10.1111/ejn.15800
https://doi.org/10.1111/ejn.15800
https://doi.org/10.1109/tit.1976.1055501
https://doi.org/10.1002/hbm.24813


References 99

[47] V. Lopantsev, M. Both, and A. Draguhn. Rapid plasticity at inhibitory
and excitatory synapses in the hippocampus induced by ictal epileptiform dis-
charges. European Journal of Neuroscience, 29(6):1153–1164, Mar. 2009. doi:
10.1111/j.1460-9568.2009.06663.x. URL https://doi.org/10.1111/j.1460-9568.
2009.06663.x. (page 10)

[48] H. O. Lüders. Textbook of Epilepsy Surgery. 07 2008. ISBN 9781841845760.
(page 4)

[49] H. O. Lüders, J. Engel Jr, and C. Munari. General principles. Surgical treatment
of the epilepsies, pages 137–153, 1993. (page 4)

[50] H. O. Lüders, I. Najm, D. Nair, P. Widdess-Walsh, and W. Bingman. The epilep-
togenic zone: general principles. Epileptic disorders, 8(2):1–9, 2006.

(pages 4, 5, and 6)

[51] D. Makowski, T. Pham, Z. J. Lau, J. C. Brammer, F. Lespinasse, H. Pham,
C. Schölzel, and A. S H Chen. Neurokit2: A python toolbox for neurophysiologi-
cal signal processing, 2020. URL https://github.com/neuropsychology/NeuroKit.

(page 36)

[52] D. Makowski, A. S. Te, T. Pham, Z. J. Lau, and S. H. A. Chen. The structure
of chaos: An empirical comparison of fractal physiology complexity indices using
NeuroKit2. Entropy, 24(8):1036, July 2022. doi: 10.3390/e24081036. URL https:
//doi.org/10.3390/e24081036. (page 8)

[53] B. Mandelbrot. How long is the coast of britain? statistical self-similarity and
fractional dimension. Science, 156(3775):636–638, May 1967. doi: 10.1126/science.
156.3775.636. URL https://doi.org/10.1126/science.156.3775.636. (page 22)

[54] J. McCagh, J. E. Fisk, and G. A. Baker. Epilepsy, psychosocial and cognitive
functioning. Epilepsy Research, 86(1):1–14, Sept. 2009. doi: 10.1016/j.eplepsyres.
2009.04.007. URL https://doi.org/10.1016/j.eplepsyres.2009.04.007. (page 1)

[55] C. Meisel, A. Storch, S. Hallmeyer-Elgner, E. Bullmore, and T. Gross. Fail-
ure of adaptive self-organized criticality during epileptic seizure attacks. PLoS
Computational Biology, 8(1):e1002312, Jan. 2012. doi: 10.1371/journal.pcbi.
1002312. URL https://doi.org/10.1371/journal.pcbi.1002312. (page 9)

[56] K. J. Miller, L. B. Sorensen, J. G. Ojemann, and M. den Nijs. Power-law scaling in
the brain surface electric potential. PLoS Computational Biology, 5(12):e1000609,
Dec. 2009. doi: 10.1371/journal.pcbi.1000609. URL https://doi.org/10.1371/
journal.pcbi.1000609. (pages 2 and 10)

[57] S. Neeman and A. Maharshak. Order and disorder, entropy in math, science, nature
and the arts. In Proceedings of the 3rd WSEAS/IASME International Conference
on ENGINEERING EDUCATION, pages 11–13, 2006. (page 12)

[58] S. Noachtar and J. Rémi. The role of EEG in epilepsy: A critical review. Epilepsy
&amp Behavior, 15(1):22–33, May 2009. doi: 10.1016/j.yebeh.2009.02.035. URL
https://doi.org/10.1016/j.yebeh.2009.02.035. (page 8)

https://doi.org/10.1111/j.1460-9568.2009.06663.x
https://doi.org/10.1111/j.1460-9568.2009.06663.x
https://github.com/neuropsychology/NeuroKit
https://doi.org/10.3390/e24081036
https://doi.org/10.3390/e24081036
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.1016/j.eplepsyres.2009.04.007
https://doi.org/10.1371/journal.pcbi.1002312
https://doi.org/10.1371/journal.pcbi.1000609
https://doi.org/10.1371/journal.pcbi.1000609
https://doi.org/10.1016/j.yebeh.2009.02.035


100 References

[59] S. Noachtar, P. A. Winkler, and H. O. Lüders. Surgical therapy of epilepsy.
In Neurological Disorders, pages 235–244. Elsevier, 2003. doi: 10.1016/
b978-012125831-3/50216-1. URL https://doi.org/10.1016/b978-012125831-3/
50216-1. (page 8)

[60] J. O’Byrne and K. Jerbi. How critical is brain criticality? Trends in Neurosciences,
45(11):820–837, Nov. 2022. doi: 10.1016/j.tins.2022.08.007. URL https://doi.org/
10.1016/j.tins.2022.08.007. (pages 2 and 8)

[61] W. H. Organization et al. Epilepsy: a public health imperative. World Health
Organization, 2019. (page 1)

[62] N. Päivinen, S. Lammi, A. Pitkänen, J. Nissinen, M. Penttonen, and T. Grön-
fors. Epileptic seizure detection: A nonlinear viewpoint. Computer Methods and
Programs in Biomedicine, 79(2):151–159, Aug. 2005. doi: 10.1016/j.cmpb.2005.04.
006. URL https://doi.org/10.1016/j.cmpb.2005.04.006. (page 21)

[63] F. Panzica, G. Varotto, F. Rotondi, R. Spreafico, and S. Franceschetti. Identification
of the epileptogenic zone from stereo-eeg signals: A connectivity-graph theory ap-
proach. Frontiers in Neurology, 4, 2013. ISSN 1664-2295. doi: 10.3389/fneur.2013.
00175. URL https://www.frontiersin.org/articles/10.3389/fneur.2013.00175.

(page 1)

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

(page 41)

[65] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information cri-
teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, Aug. 2005. doi:
10.1109/tpami.2005.159. URL https://doi.org/10.1109/tpami.2005.159.

(pages 31 and 38)

[66] A. Petrosian. Kolmogorov complexity of finite sequences and recognition of different
preictal eeg patterns. In Proceedings Eighth IEEE Symposium on Computer-Based
Medical Systems, pages 212–217, 1995. doi: 10.1109/CBMS.1995.465426. (page 23)

[67] S. M. Pincus and A. L. Goldberger. Physiological time-series analysis: what
does regularity quantify? American Journal of Physiology-Heart and Circulatory
Physiology, 266(4):H1643–H1656, 1994. doi: 10.1152/ajpheart.1994.266.4.H1643.
URL https://doi.org/10.1152/ajpheart.1994.266.4.H1643. PMID: 8184944.

(page 14)

[68] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz. A regularity statistic for
medical data analysis. Journal of Clinical Monitoring, 7(4):335–345, Oct. 1991.
doi: 10.1007/bf01619355. URL https://doi.org/10.1007/bf01619355. (page 13)

https://doi.org/10.1016/b978-012125831-3/50216-1
https://doi.org/10.1016/b978-012125831-3/50216-1
https://doi.org/10.1016/j.tins.2022.08.007
https://doi.org/10.1016/j.tins.2022.08.007
https://doi.org/10.1016/j.cmpb.2005.04.006
https://www.frontiersin.org/articles/10.3389/fneur.2013.00175
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.1152/ajpheart.1994.266.4.H1643
https://doi.org/10.1007/bf01619355


References 101

[69] B. S. Raghavendra, D. N. Dutt, H. N. Halahalli, and J. P. John. Complexity anal-
ysis of EEG in patients with schizophrenia using fractal dimension. Physiological
Measurement, 30(8):795–808, June 2009. doi: 10.1088/0967-3334/30/8/005. URL
https://doi.org/10.1088/0967-3334/30/8/005. (page 22)

[70] S. Raghu, N. Sriraam, and A. S. Hegde. Features ranking for the classification of
epileptic seizure from temporal EEG. In 2016 International Conference on Circuits,
Controls, Communications and Computing (I4C). IEEE, Oct. 2016. doi: 10.1109/
cimca.2016.8053309. URL https://doi.org/10.1109/cimca.2016.8053309.

(page 21)

[71] J. S. Richman and J. R. Moorman. Physiological time-series analysis using ap-
proximate entropy and sample entropy. American Journal of Physiology-Heart and
Circulatory Physiology, 278(6):H2039–H2049, June 2000. doi: 10.1152/ajpheart.
2000.278.6.h2039. URL https://doi.org/10.1152/ajpheart.2000.278.6.h2039.

(page 14)

[72] F. Rosenow and H. O. Lüders. Presurgical evaluation of epilepsy. Brain, 124
(9):1683–1700, 09 2001. ISSN 0006-8950. doi: 10.1093/brain/124.9.1683. URL
https://doi.org/10.1093/brain/124.9.1683. (pages 4 and 5)

[73] C. Rudin. Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead. Nature Machine Intelligence, 1(5):
206–215, May 2019. doi: 10.1038/s42256-019-0048-x. URL https://doi.org/10.
1038/s42256-019-0048-x. (page 41)

[74] M. J. Sánchez-Granero, M. Fernández-Martínez, and J. E. Trinidad-Segovia. In-
troducing fractal dimension algorithms to calculate the hurst exponent of financial
time series. The European Physical Journal B, 85(3), Mar. 2012. doi: 10.1140/epjb/
e2012-20803-2. URL https://doi.org/10.1140/epjb/e2012-20803-2. (page 22)

[75] R. Seshadri. Autoviml/featurewiz: Use advanced feature engineering strategies
and select the best features from your data set fast with a single line of code.
https://github.com/AutoViML/featurewiz, 2020. (page 38)

[76] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

(page 12)

[77] R. Solomonoff. A formal theory of inductive inference. part II. Information and
Control, 7(2):224–254, June 1964. doi: 10.1016/s0019-9958(64)90131-7. URL
https://doi.org/10.1016/s0019-9958(64)90131-7. (page 20)

[78] T. Strydom, G. V. D. Riva, and T. Poisot. SVD entropy reveals the high complexity
of ecological networks. Frontiers in Ecology and Evolution, 9, June 2021. doi:
10.3389/fevo.2021.623141. URL https://doi.org/10.3389/fevo.2021.623141.

(page 18)

[79] C. Symonds. Excitation And Inhibition In Epilepsy. Brain, 82(2):133–146, 06 1959.
ISSN 0006-8950. doi: 10.1093/brain/82.2.133. URL https://doi.org/10.1093/
brain/82.2.133. (page 10)

https://doi.org/10.1088/0967-3334/30/8/005
https://doi.org/10.1109/cimca.2016.8053309
https://doi.org/10.1152/ajpheart.2000.278.6.h2039
https://doi.org/10.1093/brain/124.9.1683
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1140/epjb/e2012-20803-2
https://github.com/AutoViML/featurewiz
https://doi.org/10.1016/s0019-9958(64)90131-7
https://doi.org/10.3389/fevo.2021.623141
https://doi.org/10.1093/brain/82.2.133
https://doi.org/10.1093/brain/82.2.133


102 References

[80] F. Takens. Detecting strange attractors in turbulence. In Lecture Notes in
Mathematics, pages 366–381. Springer Berlin Heidelberg, 1981. doi: 10.1007/
bfb0091924. URL https://doi.org/10.1007/bfb0091924. (page 16)

[81] E. Tan, S. Algar, D. Corrêa, M. Small, T. Stemler, and D. Walker. Selecting
embedding delays: An overview of embedding techniques and a new method using
persistent homology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33
(3), Mar. 2023. doi: 10.1063/5.0137223. URL https://doi.org/10.1063/5.0137223.

(page 16)

[82] F. Tang, A. M. S. Hartz, and B. Bauer. Drug-resistant epilepsy: Multiple hy-
potheses, few answers. Frontiers in Neurology, 8, 2017. ISSN 1664-2295. doi:
10.3389/fneur.2017.00301. URL https://www.frontiersin.org/articles/10.3389/
fneur.2017.00301. (page 1)

[83] M. Tanveer, R. B. Pachori, and N. V. Angami. Classification of seizure and
seizure-free EEG signals using hjorth parameters. In 2018 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, Nov. 2018. doi: 10.1109/ssci.2018.
8628651. URL https://doi.org/10.1109/ssci.2018.8628651. (page 21)

[84] D. Toker, I. Pappas, J. D. Lendner, J. Frohlich, D. M. Mateos, S. Muthuku-
maraswamy, R. Carhart-Harris, M. Paff, P. M. Vespa, M. M. Monti, F. T. Sommer,
R. T. Knight, and M. D’Esposito. Consciousness is supported by near-critical slow
cortical electrodynamics. Proceedings of the National Academy of Sciences, 119(7),
Feb. 2022. doi: 10.1073/pnas.2024455119. URL https://doi.org/10.1073/pnas.
2024455119. (pages 20 and 75)

[85] V. N. Vakharia, J. S. Duncan, J.-A. Witt, C. E. Elger, R. Staba, and J. Engel.
Getting the best outcomes from epilepsy surgery. Annals of Neurology, 83(4):
676–690, Apr. 2018. doi: 10.1002/ana.25205. URL https://doi.org/10.1002/ana.
25205. (page 5)

[86] R. Vallat. Antropy: Entropy and complexity of (eeg) time-series in python. https:
//github.com/raphaelvallat/antropy, 2022. (page 36)

[87] A. Vera-González. Pathophysiological mechanisms underlying the etiologies
of seizures and epilepsy. In Epilepsy. Exon Publications, Apr. 2022. doi:
10.36255/exon-publications-epilepsy-pathopysiology. URL https://doi.org/10.
36255/exon-publications-epilepsy-pathopysiology. (page 4)

[88] F. von Wegner, M. Wiemers, G. Hermann, I. Tödt, E. Tagliazucchi, and H. Laufs.
Complexity measures for EEG microstate sequences - concepts and algorithms.
May 2023. doi: 10.21203/rs.3.rs-2878411/v1. URL https://doi.org/10.21203/rs.
3.rs-2878411/v1. (page 75)

[89] Y. Wang, Y. Yang, S. Li, Z. Su, J. Guo, P. Wei, J. Huang, G. Kang, and G. Zhao.
Automatic localization of seizure onset zone based on multi-epileptogenic biomark-
ers analysis of single-contact from interictal SEEG. Bioengineering, 9(12):769,
Dec. 2022. doi: 10.3390/bioengineering9120769. URL https://doi.org/10.3390/
bioengineering9120769. (page 72)

https://doi.org/10.1007/bfb0091924
https://doi.org/10.1063/5.0137223
https://www.frontiersin.org/articles/10.3389/fneur.2017.00301
https://www.frontiersin.org/articles/10.3389/fneur.2017.00301
https://doi.org/10.1109/ssci.2018.8628651
https://doi.org/10.1073/pnas.2024455119
https://doi.org/10.1073/pnas.2024455119
https://doi.org/10.1002/ana.25205
https://doi.org/10.1002/ana.25205
https://github.com/raphaelvallat/antropy
https://github.com/raphaelvallat/antropy
https://doi.org/10.36255/exon-publications-epilepsy-pathopysiology
https://doi.org/10.36255/exon-publications-epilepsy-pathopysiology
https://doi.org/10.21203/rs.3.rs-2878411/v1
https://doi.org/10.21203/rs.3.rs-2878411/v1
https://doi.org/10.3390/bioengineering9120769
https://doi.org/10.3390/bioengineering9120769


References 103

[90] B. L. Welch. The generalization of `student's' problem when several differ-
ent population variances are involved. Biometrika, 34(1/2):28, Jan. 1947. doi:
10.2307/2332510. URL https://doi.org/10.2307/2332510. (page 38)

[91] C. Witton, S. V. Sergeyev, E. G. Turitsyna, P. L. Furlong, S. Seri, M. Brookes,
and S. K. Turitsyn. Rogue bioelectrical waves in the brain: the hurst exponent
as a potential measure for presurgical mapping in epilepsy. Journal of Neural
Engineering, 16(5):056019, Aug. 2019. doi: 10.1088/1741-2552/ab225e. URL
https://doi.org/10.1088/1741-2552/ab225e. (page 9)

[92] G. A. Worrell, S. D. Cranstoun, J. Echauz, and B. Litt. Evidence for self-organized
criticality in human epileptic hippocampus. NeuroReport, 13(16):2017–2021, Nov.
2002. doi: 10.1097/00001756-200211150-00005. URL https://doi.org/10.1097/
00001756-200211150-00005. (page 9)

[93] A. C. Yang and S.-J. Tsai. Is mental illness complex? from behavior to brain.
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45:253–257,
Aug. 2013. doi: 10.1016/j.pnpbp.2012.09.015. URL https://doi.org/10.1016/
j.pnpbp.2012.09.015. (page 8)

[94] A. Zandi, G. Dumont, M. Javidan, and R. Tafreshi. An entropy-based approach
to predict seizures in temporal lobe epilepsy using scalp EEG. In 2009 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE, Sept. 2009. doi: 10.1109/iembs.2009.5333971. URL https://doi.org/10.
1109/iembs.2009.5333971. (page 21)

[95] R. Zanetti, U. Pale, T. Teijeiro, and D. Atienza. Approximate zero-crossing: a new
interpretable, highly discriminative and low-complexity feature for EEG and iEEG
seizure detection. Journal of Neural Engineering, 19(6):066018, Nov. 2022. doi:
10.1088/1741-2552/aca1e4. URL https://doi.org/10.1088/1741-2552/aca1e4.

(page 21)

[96] Y. Zhang, J. Hao, C. Zhou, and K. Chang. Normalized lempel-ziv complexity and
its application in bio-sequence analysis. Journal of Mathematical Chemistry, 46(4):
1203–1212, Dec. 2008. doi: 10.1007/s10910-008-9512-2. URL https://doi.org/10.
1007/s10910-008-9512-2. (page 20)

[97] V. Zimmern. Why brain criticality is clinically relevant: A scoping review. Frontiers
in Neural Circuits, 14, Aug. 2020. doi: 10.3389/fncir.2020.00054. URL https:
//doi.org/10.3389/fncir.2020.00054. (page 8)

https://doi.org/10.2307/2332510
https://doi.org/10.1088/1741-2552/ab225e
https://doi.org/10.1097/00001756-200211150-00005
https://doi.org/10.1097/00001756-200211150-00005
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1109/iembs.2009.5333971
https://doi.org/10.1109/iembs.2009.5333971
https://doi.org/10.1088/1741-2552/aca1e4
https://doi.org/10.1007/s10910-008-9512-2
https://doi.org/10.1007/s10910-008-9512-2
https://doi.org/10.3389/fncir.2020.00054
https://doi.org/10.3389/fncir.2020.00054



	Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 Context
	1.2 Aims
	1.2.1 General aim
	1.2.2 Specific aims

	1.3 Research Contribution
	1.4 Outline of the Thesis

	2 Theoretical Framework
	2.1 Epilepsy
	2.1.1 The Epileptogenic Zone
	2.1.2 Ictal and Interictal Activity

	2.2 Intracranial Electroencephalography
	2.3 Complexity Features
	2.3.1 Brain Criticality
	2.3.2 The 1/f Aperiodic Component
	2.3.3 Entropies
	2.3.4 Lempel Ziv Complexity
	2.3.5 Number of Zero Crossings
	2.3.6 Hjorth Parameters
	2.3.7 Fractal Dimensions

	2.4 Machine Learning
	2.4.1 Binary Logistic Regression
	2.4.2 Training
	2.4.3 Subject-wise Cross-validation
	2.4.4 Hyperparameter Optimization
	2.4.5 Confusion Matrix and Performance Metrics
	2.4.6 Receiver Operating Characteristic
	2.4.7 Minimum Redundancy Maximum Relevance Algorithm


	3 Materials and Methods
	3.1 Datasets
	3.1.1 Cleveland Clinic Dataset
	3.1.2 Bern-Barcelona Dataset

	3.2 Preprocessing
	3.3 Feature Extraction and Normalization
	3.4 Exploratory Analysis
	3.4.1 Statistical Characterization
	3.4.2 Feature Sets and Feature Selection
	3.4.3 Correlations to Spiking Activity

	3.5 Machine Learning
	3.5.1 Task
	3.5.2 Model Architecture
	3.5.3 Data Balancing and Split
	3.5.4 Hyperparameter Optimization
	3.5.5 Training & Evaluation
	3.5.6 Feature Importances
	3.5.7 Benchmark Experiment

	3.6 Methods Overview

	4 Results
	4.1 Results from the Exploratory Analysis
	4.1.1 Statistical Characterization
	4.1.2 Feature Selection through the mRMR algorithm
	4.1.3 Correlations with Spiking Activity

	4.2 Machine Learning Models' Performances
	4.2.1 Fold-wise performance
	4.2.2 Receiver operating characteristic curves
	4.2.3 Confusion Matrices
	4.2.4 Summarized Performances

	4.3 Feature Importances
	4.3.1 Ictal Model
	4.3.2 Interictal Model
	4.3.3 Hybrid Model
	4.3.4 Benchmark Model


	5 Discussion
	5.1 About Feature Statistics and Selection
	5.2 About the spiking activity
	5.3 About the models' performances
	5.4 About feature importance

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendix A Clinical profiles of the patients
	Appendix B Complementary Spiking Analysis
	Appendix C Confusion Matrices per Fold
	C.1 Normalized by Resection Class Count
	C.2 Normalized by Predicted Class Count

	References

