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Abstract. The scotogenic model is one of the simplest scenarios for physics beyond the
Standard Model that can account for neutrino masses and dark matter at the TeV scale.
It contains another scalar doublet and three additional singlet fermions (Ni), all odd under
a Z2 symmetry. In this paper, we examine the possibility that the dark matter candidate,
N1, does not reach thermal equilibrium in the early Universe so that it behaves as a Feebly
Interacting Massive Particle (FIMP). In that case, it is found that the freeze-in production of
dark matter is entirely dominated by the decays of the odd scalars. We compute the resulting
dark matter abundance and study its dependence with the parameters of the model. The
freeze-in mechanism is shown to be able to account for the observed relic density over a wide
range of dark matter masses, from the keV to the TeV scale. In addition to freeze-in, the N1

relic density receives a further contribution from the late decay of the next-to-lightest odd
particle, which we also analyze. Finally, we consider the possibility that the dark matter
particle is a WIMP but receives an extra contribution to its relic density from the decay of
the FIMP (N1). In this case, important signals at direct and indirect detection experiments
are generally expected.
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1 Introduction

The identification of the dark matter particle stands as one of the most pressing problems in
fundamental physics today. Its solution requires physics beyond the Standard Model but it is
not yet known what this new physics is. Most of the models studied in the literature assume
that the dark matter consists of Weakly Interacting Massive Particles (WIMPs) and that its
relic density is the result of a freeze-out process. One advantage of this scenario is that it
naturally yields a relic density of the same order as the observed dark matter density — the
so-called WIMP-miracle. In addition, WIMP models generally give rise to signals, in direct
and indirect detection experiments as well as at colliders such as the LHC, that are within
the reach of current experiments. Up to now, however, such signals have not been found and
strong bounds on many of these models have been derived. If this situation persists for the
next few years, the WIMP paradigm would likely have to be abandoned [1] and dark matter
would have to be explained in some other way.

A simple and appealing alternative to the WIMP framework is provided by FIMP
(Feebly Interacting Massive Particle) dark matter [2]. Its basic idea is that, in contrast to
WIMPs, the dark matter interacts so weakly that it does not reach thermal equilibrium
in the early Universe. Thus, its relic density is not the result of a freeze-out. Instead,
the dark matter particles are slowly produced via decays or scatterings of the particles in
the thermal plasma — a process dubbed freeze-in — but they are never abundant enough
for their annihilations to be relevant. Consequently, the dark matter abundance steadily
increases as the Universe cools down until the so-called freeze-in temperature is reached,
and it remains constant afterward. Due to its feeble interactions, FIMPs do not give rise to
observable signals neither in direct nor in indirect dark matter detection experiments. These
experiments, therefore, provide an unambiguous way of testing or falsifying this scenario: if
a signal were detected, one could immediately conclude that dark matter does not consist of
FIMPs. Currently, FIMPs provide a viable and attractive framework to account for the dark
matter.

– 1 –
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Several explicit realizations of the FIMP framework have already been investigated [3–
13]. FIMPs are necessarily singlets under the Standard Model (SM) gauge group so the two
simplest extensions of the SM that incorporate a FIMP include a new singlet scalar [3, 8, 9]
or a new singlet fermion [13], both of which give rise to an interesting phenomenology. In
this paper, we will study a richer realization of the FIMP framework based on the scotogenic
model (also known as the radiative seesaw model) [14]. This model is one of the simplest
scenarios for physics beyond the SM that can simultaneously account for neutrino masses
and dark matter at the TeV scale. It contains another scalar doublet and three additional
singlet fermions (Ni), all odd under a Z2 symmetry. Even though the phenomenology of this
model has been extensively studied in a number of previous works — see e.g. [15–23] —,
none of them considered the possibility of FIMP dark matter. The basic idea is that the
couplings of one of the singlet fermions, N1, are so small that it does not reach thermal
equilibrium in the early Universe and is instead produced via freeze-in. We show that dark
matter production is dominated by the decays of the odd scalars and study the dependence
of the resulting abundance with the different parameters of the model. In particular, the
viable parameter space for FIMP dark matter is precisely determined and it is shown to span
a wide range of dark matter masses, from the keV to the TeV scale. Besides freeze-in, the
dark matter relic density receives an additional contribution from the so-called superWIMP
mechanism [24] which strongly depends on the identity of the next-to-lightest odd particle.
We identify an important region of the parameter space where this contribution is always
negligible and freeze-in production is dominant.

Another interesting setup we discuss occurs when the dark matter particle (the lightest
odd particle) is not N1 but H0, a WIMP. In that case, N1, which is produced via freeze-in,
decays into the dark matter, increasing its relic density and allowing for new viable regions
in the parameter space. We show that interesting signals from direct and indirect detection
experiments are generally expected in this configuration.

The rest of the paper is organized as follows. In the next section, we introduce the
model and discuss the experimental bounds it is subject to. Then in section 3 we obtain
the conditions necessary to ensure that N1 does not reach thermal equilibrium in the early
Universe. Our main results are presented in sections 4 and 5. In the former, we carefully
study the production of FIMP dark matter and obtain the corresponding viable parameter
space. Section 5 is dedicated to the case where the dark matter particle is H0 and receives
a contribution to its relic density from FIMP decays. Finally, we present our conclusions in
section 6.

2 The model

The model we consider is the so-called scotogenic model [14], one of the simplest models that
can simultaneously explain neutrino masses and dark matter at the TeV scale. In it, the
SM is extended with a second Higgs doublet H2 ≡ (H+, H0

2 ) and three Majorana neutrinos
Nj (j = 1, 2, 3), all odd under an exact Z2 symmetry (the SM fields are instead even under
it). This symmetry forbids the coupling between H2 and the quark fields, which would give
rise to flavor changing neutral currents, and it guarantees the stability of the dark matter
particle.

The Lagrangian of the model contains the following new terms involving the singlet
fields

L ⊃ Y ν
αi

(
ναLH

0
2 − `αLH

+
)
Ni +

1

2
Mj N j N

C
j + H.c. (2.1)
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Hence, the singlets have Majorana masses Mj and interact only with H2 and the lepton
doublets. The most general scalar potential of this model is given by

V (H1, H2) = −µ21
(
H†1 H1

)
+ λ1

(
H†1 H1

)2
+ µ22

(
H†2 H2

)
+ λ2

(
H†2 H2

)2
+λ3

(
H†1 H1

) (
H†2 H2

)
+ λ4

(
H†1 H2

) (
H†2 H1

)
+
λ5
2

[(
H†1 H2

)2
+ H.c.

]
, (2.2)

where µ21,2 > 0 and H1 is the SM Higgs doublet. It is convenient to write H0
2 = (H0 +

iA0)/
√

2 as the λ5 term in the Lagrangian creates a mass-splitting between H0 and A0. After
electroweak symmetry breaking, 〈H1〉 = (0, v/

√
2) with v ' 246 GeV, the scalar spectrum

consists of one Z2 even field (H, the SM Higgs boson recently discovered at the LHC with a
mass of 125 GeV [25, 26]) and four Z2 odd particles:

• A CP-even neutral scalar H0 with mass m2
H0 = µ22 + v2 (λ3 + λ4 + λ5) /2.

• A CP-odd neutral scalar A0 with mass m2
A0 = µ22 + v2 (λ3 + λ4 − λ5) /2.

• Two charged scalars H± with masses m2
H± = µ22 + v2 λ3/2.

The free parameters of the model can be taken to be the masses of all the odd particles (Mk,
mH0 ,mA0 , mH±), two quartic couplings λ2, λL ≡ (λ3 + λ4 + λ5)/2, and the set of 9 Yukawa
couplings (Y ν

αi), which for simplicity we take to be real. As explained below, these parameters
are subject to a number of phenomenological constraints. In our numerical estimates, we will
often use yk (k = 1, 2, 3) to denote a typical value for the Yukawa coupling associated with
the singlet Nk, Y

ν
ik ∼ yk. We will also assume, following the spirit of this model, that the

masses of the odd particles all lie at or below the TeV scale.
Notice that this model includes the well-known inert doublet model [27–33] but has a

more interesting phenomenology. It can explain neutrino masses, it gives rise to lepton-flavor
violating processes [15, 34], it contains another dark matter candidate, it can realize thermal
leptogenesis [19, 22, 35, 36], and it allows for new effects on the relic density [37]. From
the inert doublet model, it inherits several features, including the bounds on the masses of
the odd scalar particles. They read mH0 +mA0 > MZ from the Z-width measurement, and
max[mH0 ,mA0 ] & 100 GeV [38] and mH+ > 70−90 GeV [39] from collider searches at LEP.

In this model, neutrinos acquire Majorana masses via 1-loop diagrams mediated by the
odd particles. The resulting light neutrino mass matrix is given by

(Mν)αβ =
∑
k

Y ν
αk Y

ν
βk

16π2
Mk

[
m2
H0

m2
H0 −M2

k

log

(
m2
H0

M2
k

)
−

m2
A0

m2
A0 −M2

k

log

(
m2
A0

M2
k

)]
λ5�1

=
λ5 v

2

16π2

∑
k

Y ν
αk Y

ν
βk

Mk

m2
0 −M2

k

(
1−

M2
k

m2
0 −M2

k

log

(
m2

0

M2
k

))
, (2.3)

where m2
0 =

(
m2
H0 +m2

A0

)
/2 and we used m2

H0 −m2
A0 = λ5 v

2. As we will see in the next
section, the out of equilibrium condition forces the Yukawa couplings of N1, Y

ν
i1, to be so small

that they give a negligible contribution to neutrino masses. Effectively, then, N1 decouples
from neutrino masses and the sum in equation (2.3) is only over k = 2, 3. In consequence,
only two light neutrinos acquire non-zero masses in this setup. This result is not generic to
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the scotogenic model but follows instead from the requirement we have imposed of preventing
one particle from reaching thermal equilibrium in the early Universe.

Let us now estimate analytically the range of couplings that gives rise to viable neutrino
masses. If m2

0 �M2
k we can simplify equation (2.3) and write

(Mν)αβ =
λ5 v

2

16π2

∑
k

Y ν
αkY

ν
βk

Mk

(
ln
M2
k

m2
0

− 1

)
(2.4)

≈ 10−2eV

(
λ5 y

2
2,3

10−11

)(
1 TeV

M2,3

)
. (2.5)

Whereas for m2
0 �M2

k we get instead

(Mν)αβ =
λ5 v

2

16π2m2
0

∑
k

Y ν
αkY

ν
βkMk (2.6)

≈ 10−2eV

(
λ5 y

2
2,3

10−11

)(
1 TeV

m0

)(
M2,3

m0

)
. (2.7)

The above expressions tell us that, if we want to generate light neutrino masses with new
physics at the TeV scale, the product λ5 y

2
2,3 must necessarily be very small (∼ 10−11). This

condition can be satisfied in different ways, however. One can, for instance, set λ5 ∼ 10−9

so that y2,3 ∼ 0.1. Or one could fulfill it with λ5 = 10−1 and y2,3 ∼ 10−5. Moreover, we can
use equation (2.5) and (2.7) to set a lower bound on the Yukawa couplings:

y2,3 & 10−6. (2.8)

Smaller values of y2,3 would fail to reproduce the observed neutrino mass scale.

Since equation (2.3) has the same matrix structure as the usual seesaw equation, one
can adapt the Casas-Ibarra parametrization [40] to it and express the Yukawa couplings in
terms of the experimental data on neutrino masses and mixing angles. For the analogous case
of two-right handed neutrinos which is relevant in our scenario, this procedure introduces
only one free parameter [41, 42], an angle that we take to be real. We assume a normal
hierarchical spectrum for the neutrinos and took their oscillation parameters from [43]. In
this way, we guarantee that all the models we consider in the following are compatible with
current neutrino data.

The same interactions that generate neutrino masses induce lepton flavor violating pro-
cesses such as µ → e γ and τ → µγ at the 1-loop level [15, 34]. Since these processes have
not been observed, one must ensure that the predicted branching ratios are below the present
experimental bounds. Given that the current limits read BR(µ→ e γ) < 5.7×10−13 [44] and
BR(τ → µγ) < 4.4 × 10−8 [45], the former decay typically gives a stronger bound. In this
model, the branching ratio for the µ→ eγ process is [15]

BR(µ→ e γ) =
3αem

64π
(
GF m2

H±

)2 ∣∣∣∣Y ν
µk Y

ν
ek
∗ F2

(
M2
k

m2
H±

)∣∣∣∣2 (2.9)

≈ 10−15
(

100 GeV

m±H

)4 ∣∣∣ y2,3
10−2

∣∣∣4 (F2(M
2
2,3/m

2
H±)

3× 10−3

)2

, (2.10)

– 4 –
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where the loop function F2(x) varies in the range [3 × 10−5, 0.14] for x = [104, 0.1] and we
have already taken into account the fact that y1 is negligible. Notice, in particular, that large
Yukawa couplings, y2,3 & 0.1, are strongly disfavored. In our analysis, we always impose that
BR(µ→ eγ), computed from equation (2.9), be below the experimental limit.

Another important bound that must be taken into account is the dark matter constraint
— the requirement that the predicted relic density agrees with the observed dark matter
density. In this model there are two viable dark matter candidates, the lightest neutral scalar
and the lightest singlet fermion, and the predicted relic density depends on how they were
produced in the early Universe. While most previous works have assumed the usual freeze-
out scenario, we want to examine the possibility that N1 does not reach thermal equilibrium
in the early Universe and is instead produced via freeze-in.

3 Out of equilibrium conditions

The basic requirement of the FIMP (or freeze-in) mechanism is that the dark matter particle
does not reach thermal equilibrium in the early Universe. In the scotogenic model, only
the fermions, which are gauge singlets, can play the role of FIMPs. Equilibrium can be
prevented if their Yukawa interactions are sufficiently suppressed. In this section we analyze
the different processes that can produce singlets and obtain the conditions necessary for them
not to reach equilibrium. In particular we show that only one of them, denoted by N1, can
play the role of a FIMP.

Because the singlet fermions have Yukawa interactions of the form Nk LH2, they can
be produced via the two-body decay of the odd scalars. The decay rate for the production of
N1 is approximately given by Γ(H2 → N1 L) = MH2 y

2
1/(8π) — see equations (4.4) and (4.5)

below. Then, the out of equilibrium condition for this decay reads

Γ(H2 → N1 L) . H(T ∼MH2) , (3.1)

which for MH2 ∼ 100 GeV implies

y1 . 10−8. (3.2)

If y1 were larger than this value, N1 would be produced abundantly enough to reach thermal
equilibrium. This small value of the Yukawa coupling implies that, as already anticipated
in the previous section, N1 gives a negligible contribution to neutrino masses — see equa-
tion (2.8). The heavier singlets, N2,3, can be produced either via scalar decays (H2 → N2,3 L)
or, if they are heavier than the scalars, via the inverse decay H2+L→ N2,3, both of which are
in equilibrium for y2,3 & 10−8. Since the bound from neutrino masses requires y2,3 & 10−6,
we can conclude that N2 and N3 necessarily reach thermal equilibrium in the early Universe.
This model, therefore, admits only one FIMP: N1.

N1 can also be produced via the decay of the heavier singlets or via 2→ 2 scatterings of
SM leptons or odd scalars. All these processes are however subdominant and do not modify
the equilibrium condition obtained above.

Contrary to our findings, it was stated in [17] that all three singlets could be out of
equilibrium while explaining neutrino masses. The reason for this erroneous conclusion is that
they failed to recognize the importance of the scalar decays as a production process for the
singlets. Instead, they assumed that singlets were pair-produced via the annihilation of two
leptons or two odd scalars. Since the rates of these processes depend on the neutrino Yukawa
couplings to the fourth power (rather than the second), the out of equilibrium condition gives

– 5 –
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the wrong (and weaker) bound yi . 10−4, which is consistent with the limit from neutrino
masses. From our discussion, it should be clear though that the decays of the odd scalars (or
the inverse decays mentioned above) cannot be neglected as they are the dominant production
process for the singlets. Once these decays are taken into account it follows that only one
singlet can be out of equilibrium.

Summarizing, the bound from neutrino masses implies that in this minimal setup (with
three singlet fermions) only one FIMP is allowed. We will next show that this FIMP can
easily account for the observed dark matter density via freeze-in.

4 FIMP dark matter

In this section we analyze the case where the dark matter candidate — that is the lightest
odd particle — is the singlet that does not reach thermal equilibrium in the early Universe,
which we denote by N1. That is, we consider the spectrum M1 < M2,3, mH0 , mA0 , mH± .
The N1 relic density, ΩN1 h

2, will therefore have two contributions: one from the freeze-in
mechanism and another one from the late decay of the next-to-lightest odd particle, which
we call the superWIMP contribution [24]. We have therefore

ΩDM h2 ≡ ΩN1 h
2 = Ωfreeze−in h2 + ΩsuperWIMP h2. (4.1)

Since these two contributions are entirely independent — they become relevant at different
temperatures and do not depend on the same parameters — we will study them separately.

4.1 The freeze-in contribution

Let us discuss first the freeze-in contribution to N1 production. Since N1 has a direct coupling
to leptons and to odd scalars, its production will be dominated by the decays of the scalars
(H0, A0, H±) while they are in equilibrium with the thermal bath. The N1 yield, YN1(T ) =
nN1(T )/s(T ), is computed by solving the following Boltzmann equation [2]

s T
dYN1

dT
= −γN1(T )

H(T )
, (4.2)

where s is the entropy density of the Universe, H(T ) is the expansion rate of the Universe
at a given temperature and γN1(T ) is the thermal averaged FIMP production rate. We have
that

γN1(T ) =
∑
X

gX m
2
X T

2π2
K1 (mX/T ) Γ (X → N1 `) , (4.3)

where X = H0, A0, H± and ` is a SM lepton. In this equation, K1(x) is the Bessel function
of the second kind, and gX is the number of internal degrees of freedom of particle X. Specif-
ically, gH0,A0,H+,H− = 1. The decay rates that enter into this expression are calculated as

Γ
(
H0/A0 → N1 να

)
=
mH0/A0 |Y ν

α1|
2

32π

(
1− M2

1

m2
H0/A0

)2

≈
mH0/A0 |Y ν

α1|
2

32π
, (4.4)

Γ
(
H+ → N1 `α

)
=
mH+ |Y ν

α1|
2

16π

(
1− M2

1

m2
H+

)2

≈ mH+ |Y ν
α1|

2

16π
. (4.5)

where the approximations are valid unless there is a strong mass degeneracy between N1 and
one of the scalars.

– 6 –



J
C
A
P
0
7
(
2
0
1
4
)
0
1
5

It is easy to verify that the decays of the heavier singlet fermions, N2,3 → N1
¯̀`, give

a negligible contribution to dark matter production. In fact, the corresponding decay rate is
given by

Γ(N2,3 → N1 `α `β) =
M5

2,3

6144π3m4
S

(∣∣Y ν
β1

∣∣2 ∣∣Y ν
α2,3

∣∣2 + |Y ν
α1|

2
∣∣Y ν
β2,3

∣∣2) , (4.6)

which is always much smaller than (4.4) and (4.5). Other negligible processes are the pro-
duction of dark matter via scatterings of two Z2-odd particles or two SM particles. Both are
always subdominant because the corresponding cross-sections are proportional to the fourth
power of the Yukawa couplings. Thus, the N1 abundance, YN1 , is solely determined by the
Yukawa couplings (Y ν

α1) and by the spectrum of odd scalar particles: mH0 , mA0 , mH± . As
we will see, for our purposes it is often a good approximation to consider all odd scalars to
be degenerate, in which case we denote their common mass by mS .

From equations (4.2)–(4.5), taking into account that s(T ) = 2π2gsT
3/45, H(T ) =

1.66
√
gρT

2/MPl and K1(x) ∼ 1/x for x� 1, we have at high temperatures T > mS :

dYN1

dT
≈ − 5× 103 GeV3

( mS

1 TeV

)2 ( y1
10−8

)2
T−4 . (4.7)

Therefore, on the one hand we have that at T > mS the yield always scales as the square of
the scalar masses and of the N1 Yukawa couplings. On the other hand, at T . mS the scalar
particle abundance becomes Boltzmann suppressed and the production of dark matter is no
longer efficient. As a result we have

YN1 (T . mS) ≈ 10−4
(

1 TeV

mS

) ( y1
10−8

)2
. (4.8)

We have studied quantitatively the freeze-in production of dark matter in this scenario
by solving numerically the Boltzmann equation (4.2) with the initial condition YN1 = 0
for T � mS . Figure 1 shows the predicted dark matter abundance as a function of the
temperature for different values of y1. The upper line corresponds to y1 = 10−8 and the
lower one to y1 = 10−12. In this figure the common scalar mass, mS , was set to 400 GeV.
As stated before, the other parameters of the model are irrelevant. Notice, from the figure,
that the abundance has the typical freeze-in behavior: it increases steadily until the so-
called freeze-in temperature is reached, remaining constant afterward. Since the freeze-in
temperature is determined by the mass of the decaying particle, it is the same for all the
lines, as observed in the figure. Finally, the abundance is seen to depend quadratically on
y1, as expected from equations (4.4), (4.5) and (4.8).

The dependence of YN1 on mS is illustrated in figure 2, which displays the dark matter
abundance as a function of the temperature for different values of mS . In this figure y1 was
set equal to 10−10. One can clearly see that the freeze-in temperature increases with mS , with
the result that the asymptotic value of YN1 decreases with mS . In fact, at low temperatures
YN1 is about ten times smaller for mS = 2 TeV than for mS = 200 GeV. Notice from figures 1
and 2 that equation (4.8) is actually a very good approximation for the final yield obtained
through the freeze-in mechanism.

In the previous two figures we have assumed a common mass, mS , for all the odd
scalars. In general, however, there will be a mass splitting between the three different states.
To demonstrate that such mass splitting does not significantly affect our results, we show

– 7 –
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T (GeV)

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Y
N

1
(T

)

y1 =10−8

y1 =10−9

y1 =10−10

y1 =10−11

y1 =10−12

Figure 1. The dark matter yield due to the freeze-in process as a function of the temperature for dif-
ferent values of the FIMP Yukawa coupling y1. These results were obtained by solving the Boltzmann
equation, (4.2), for mS = 400 GeV. Notice that all other parameters (Mi, y2,3) are irrelevant.

in figure 3 the dark matter abundance as a function of the temperature for different mass
splittings. Notice that the variation in the final abundance due to the different kind of spectra
is indeed very small. It is, therefore, a very good approximation to compute the dark matter
abundance assuming that all odd scalars have the same mass mS .

The relic density of dark matter, ΩN1h
2, is related to the asymptotic value of YN1 at

low temperatures by

ΩN1 h
2 = 2.744× 108

M1

GeV
YN1(T0) , (4.9)

where T0 = 2.752 K is the present day CMB temperature. It is this quantity that should
be compared with the observed dark matter density as measured by WMAP [46] and
PLANCK [47]. For dark matter production via the freeze-in mechanism, the N1 relic abun-
dance can be estimated as

ΩN1 h
2 ≈ 0.3

(
M1

0.1 GeV

)(
1 TeV

mS

)( y1
10−10

)2
, (4.10)

where we used equations (4.8) and (4.9). Notice that this expression has the expected de-
pendence on mS , y1 and M1.

Figure 4 displays the N1 relic density as a function of M1 for mS = 400 GeV and
different values of y1. For M1 we considered a minimum value of 1 keV as indicated by phase
space density analysis [48, 49] and by the requirement of cold or warm dark matter. The
maximum value was taken to be 100 GeV in agreement with the idea that all odd particles
live at or below the TeV scale. The horizontal band shows the region that is compatible with
current observations. Notice that as we increase the mass a smaller value of y1 is needed to
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Figure 2. The dark matter yield due to the freeze-in process as a function of the temperature for
different values of the common scalar mass, mS . In this figure, the FIMP Yukawa coupling y1 was
set to 10−10. As before, all other parameters (Mi, y2,3) are irrelevant. Notice that the freeze-in
temperature depends on mS .

be consistent with the data. Hence, whereas a keV particle requires y1 ∼ 10−8 a 100 GeV
particle requires y1 ∼ 10−12.

The viable parameter space for freeze-in dark matter in the scotogenic model is shown in
figure 5. It displays, in the plane (M1,y1), the regions that are consistent with the observed
dark matter density for different values of mS . The freeze-in mechanism is thus able to
explain the dark matter over a wide range of masses, from the keV to the TeV scale. Notice
that at a given dark matter mass, the heavier mS the larger y1. This figure is one of our
main results, as it indicates the regions in the parameter space of the scotogenic model where
the observed dark matter density can be accounted for entirely via freeze-in.

If N1 is very light, M1 ∼ 1 − 10 keV, the resulting dark matter is warm rather than
cold, with important implications for structure formation in the early Universe. Without
freeze-in it is not possible to obtain warm dark matter in the scotogenic model because N1

would thermalize and later decouple while relativistic, yielding a relic density about three
orders of magnitude larger than observed. To make such scenario compatible with current
observations would require either entropy dilution, e.g. via the decay of some other particle,
after N1 production [50] or a non-thermal production mechanism within a low reheating
temperature scenario [50], both entailing significant departures from the model. Freeze-in
provides instead a natural and simple way of obtaining warm dark matter in the scotogenic
model.

If, in addition to freeze-in, other mechanisms contribute to dark matter production, the
lines in figure 5 provide an upper bound on the coupling y1 at a given value of M1 and mS .
As mentioned at the beginning of this section, in the scotogenic model the relic density of N1
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Figure 3. The dark matter yield due to the freeze-in process as a function of the temperature for
different mass splittings among the odd scalars. In this figure y1 = 10−10 and mA0 = 400 GeV. As
before, all other parameters (Mi, y2,3) are irrelevant.

receives also a superWIMP contribution from the decays of the next-to-lightest odd particle
after it has frozen out. Let us now turn our attention to that contribution.

4.2 The superWIMP contribution

In the superWIMP mechanism, the contribution to the dark matter relic density from the
late decay of the next-to-lightest odd particle (NLOP from now on) is given by

ΩsuperWIMP
N1

h2 =
M1

MNLOP
Ωfreeze−out
NLOP h2 , (4.11)

where Ωfreeze−out
NLOP h2 is the relic abundance, obtained via the usual freeze-out mechanism, of

the NLOP . In the scotogenic model, there are essentially two possibilities for the NLOP: N2

or one of the scalars. Next, we will in turn consider these two options.

4.2.1 N2 as the NLOP

If N2 is the NLOP it will decay into dark matter via the scalar-mediated three-body process
N2 → N1 ` `. The requirement that this decay happens after the N2 freeze-out (at T ∼
M2/20) implies that

Γ(N2 → N1 ` `) . H(T 'M2/20) . (4.12)

This condition yields an upper bound on the product y1 y2:

y1 y2 . 2× 10−6
( mS

1 TeV

)(1 TeV

M2

)3/2

, (4.13)
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Figure 4. The freeze-in relic density as a function of the dark matter mass for different values of the
FIMP Yukawa coupling y1. We have fixed mS = 400 GeV in this figure.
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Figure 5. The regions in the plane (M1, y1) which give a freeze-in relic density in agreement with
the observations. The lines correspond to different values of mS .
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which is always satisfied in this scenario — the out-of-equilibrium condition gives a stronger
bound. On the other hand, the lifetime of N2 should be smaller than about 1 second in order
to not affect the Big Bang Nucleosynthesis (BBN) epoch. This requirement implies a lower
bound on the product of the Yukawa couplings, namely

y1 y2 & 3× 10−12
( mS

1 TeV

)2(1 TeV

M2

)5/2

. (4.14)

At high values of the dark matter mass, this condition is very restrictive. If, for instance,
M1 ∼ 100 GeV and mS ,M2 ∼ 1 TeV, it is not possible to satisfy it as we know, from figure 5,
that y1 should be no larger than about 10−12 (to avoid dark matter overproduction) and that
y2 cannot be of order 1 due to the µ → eγ bound. For M1 ∼ 1 keV and the same values
of mS and M2, y1 should be smaller than about 10−8 and the above bound is satisfied for
y2 & 10−4. Taking y2 ∼ 10−2 as the upper limit on y2 allowed by µ→ eγ, the BBN constraint
would exclude models with y1 . 10−10 or equivalently with M1 & 100 MeV. We can also use
equation (4.14) to set a lower bound on the mass of N2. Since mS & 100 GeV, y1 . 10−8

and y2 . 10−1-10−2, we get M2 & 10 GeV. Thus, the FIMP mechanism combined with the
BBN constraint above tells us that M2 and M3 necessarily lie around the electroweak scale.

Regarding the value of Ωfreeze−out
N2

h2, previous studies have already shown that N2-N2

annihilations are not very efficient and usually require, to be consistent with the observed
dark matter density, values of the Yukawas couplings so large that they run into conflict
with the bounds from µ→ eγ. Coannihilations between N2 and the scalars significantly help
to increase the total annihilation rate, reducing the relic density and alleviating the tension
with the µ → eγ bound. This situation is illustrated in figure 6, which displays a scatter
plot of the N2 relic density versus M2. In it we have randomly varied all the parameters of
the scotogenic model over a wide range: 1 keV ≤ M1 ≤ 100 GeV, 100 GeV ≤ M2 ≤ 1 TeV,
1 TeV ≤M3 ≤ 3 TeV, M2 ≤ mHi ≤ 3 TeV, 10−12 ≤ |Y ν

α1| ≤ 10−8, 10−3 ≤ λL ≤ 1. All points
in this figure satisfy the constraints from neutrino masses, µ → eγ, and BBN. To precisely
compute the relic density we used micrOMEGAs [51], which automatically includes all the
relevant processes and takes care of possible resonant or coannihilation effects. With the goal
of isolating the effect of coannihilations, we have divided the sample into two sets according
to the mass splitting between N2 and the scalars. The mass-splitting is small for the red
points (allowing for coannihilations) and large for the blue points (excluding coannihilation
effects). The horizontal band corresponds to the observed dark matter density. Notice that
coannihilations are essential to obtain a relic density in agreement with the observations.
If mH0 > 1.5 M2 (blue points), the N2 relic density after freeze-out is always very large
— at least four orders of magnitude larger than the observed dark matter density. Thus,
compatibility with current data requires M1/M2 . 10−4, according to equation (4.11). And
since M2 is at most of order TeV, M1 necessarily lies below the GeV scale. A large hierarchy
between M1 and M2 is thus an essential condition in this scenario. If, on the contrary,
M1 < mH0 ≤ 1.5 M2 (red points), the N2 relic density can even reach values below the
observations. Consequently, no strict bounds on M1/M2 can be derived based on the relic
density.

If the dark matter density were dominated by the superWIMP contribution,
ΩsuperWIMP
N1

h2 � Ωfreeze−in
N1

h2, one would need to ensure that the dark matter is non-
relativistic at the onset of structure formation; otherwise it would behave as hot dark matter.
This condition leads to a relation between the N2 decay time and the ratio M1/M2. A de-
tailed analysis of this issue can be found in [17]. They found, in particular, that one can
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Figure 6. A scatter plot of the N2 relic density, which is the result of a conventional freeze-out,
versus M2. For this figure we have taken into account the bounds from neutrino masses, µ→ eγ, and
BBN. Notice that coannihilations with the scalars are relevant for the red points but not for the blue
ones.

obtain warm dark matter for 24 keV .M1 . 24 MeV(M2/100 GeV). In figure 6 we have also
displayed, for three different values of M1 (100 GeV, 100 MeV, 100 keV), the regions where
the superWIMP contribution accounts for the entire dark matter density. If M1 = 100 MeV,
for example, then along the dashed line the superWIMP contribution agrees with the ob-
served relic density. Models above that line are excluded (for that value of M1) as they
overproduce dark matter whereas models below that line require the freeze-in contribution
to be compatible with the data. Even though the relic density constraint is satisfied along
the dashed-dotted line for M1 = 100 GeV, that value of M1 is actually ruled out by the BBN
bound, as explained before. If M1 = 100 keV, the superWIMP contribution accounts for the
dark matter along the solid line and one obtains warm dark matter.

4.2.2 A scalar as the NLOP

If one of the scalars is the NLOP, its direct decay into N1 and SM leptons after decoupling
from the thermal bath will give an additional contribution to the dark matter abundance. The
condition that the decay takes place after the scalar freeze-out but before BBN translates into

10−13
(

1 TeV

mS

)1/2

. y1 . 10−8
( mS

1 TeV

)1/2
, (4.15)

where we have implicitly assumed that the decaying scalar and N1 are not highly degenerate.
These bounds are easily satisfied for the range of parameters relevant for freeze-in — see
figure 5. For concreteness, in the following we assume the NLOP scalar to be H0 but it must
be kept in mind that the results for the other scalars are similar.
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Figure 7. A scatter plot of the H0 relic density, which is the result of a conventional freeze-out,
versus mH0 . For this figure we have taken into account the bounds from neutrino masses, µ → eγ,
and BBN.

The relic density of H0 in this scenario is very much alike that in the inert-doublet
model. A remarkable feature of this model is that if MW < mH0 . 500 GeV the relic
density is always too small to satisfy the dark matter constraint. The reason being that the
annihilation into gauge bosons are so efficient that they deplete the dark matter abundance
well below the observed value. Only for masses above 500 GeV (or below MW ) it is possible
to satisfy the dark matter bound. Figure 7 shows a scatter plot of the H0 relic density versus
mH0 obtained after varying all the parameters of the scotogenic model (mHi ≤M2 ≤ 1 TeV,
M2 ≤ M3 ≤ 3 TeV, 100 GeV ≤ mHi ≤ 1 TeV and the others as before) and selecting those
consistent with neutrino masses, µ→ eγ, and BBN. As before, the horizontal band shows the
observed dark matter density. Notice from the figure that the relic density increases with the
mass and that, as expected, it only crosses the experimental value for masses above 500 GeV
or so. This fact has a very important implication: if mH0 < 500 GeV the superWIMP
contribution to the relic density is negligible and the entire dark matter density has to be
explained via the freeze-in mechanism. That is, in contrast to the case where N2 is the
NLOP, we can identify an important region of the parameter space, mH0 < 500 GeV, where
the freeze-in contribution is always dominant.

If mH0 > 500 GeV, the superWIMP contribution could be the dominant one. In that
case, since the H0 relic density is never much larger than the observed dark matter density,
a mild hierarchy between N1 and H0 is required, mH0/MN1 . 4 (see figure 7). Even for such
large values of mH0 , however, the freeze-in contribution can dominate the N1 relic density.

4.3 Implications

As we have seen, FIMP dark matter can indeed be realized in the scotogenic model. In
general, the relic density of N1 is the sum of a freeze-in contribution and a contribution
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from the decay of the NLOP. Whether one or the other dominates depends strongly on the
parameters of the model. Let us now briefly discuss the implications of this scenario.

A generic prediction of FIMP models is that the NLOP, which must decay into the
FIMP, is very long-lived [2], providing a possible way of testing these scenarios at colliders
such as the LHC. In the scotogenic model, the most interesting signal occurs when the charged
scalar is the NLOP. In that case the relic density is expected to be dominated by the freeze-in
process and, from equation (4.10), we have that

y21 = 4× 10−20
(

0.1 GeV

M1

)( mH+

1 TeV

)
. (4.16)

Now, let us suppose that this charged scalar, with a mass in the range [100 GeV, 1 TeV],
is produced at the LHC. Its decay width is given by equation (4.5). Therefore, taking into
account the value of y1 derived above we obtain

Γ(H+ → `+N1) =
1

4π
10−17 GeV

(
0.1 GeV

M1

)( mH+

1 TeV

)2
. (4.17)

Thus, the H+ decay length, l(H+), is (ignoring for the moment the Lorentz boost factor)

l(H+) = 3× 105cm

(
M1

1 GeV

)(
1 TeV

mH+

)2

, (4.18)

. 3 meters

(
1 TeV

mH+

)2

for M1 . 1 MeV. (4.19)

Including the Lorentz boost factor amounts to multiplying this upper limit by a factor from
2 to 7. Thus, for dark matter masses in the range [10 keV, 1 MeV] the decay length is below
10 meters and H+ decays inside the detector, leaving a charged lepton plus missing energy
signature that could be searched for at the LHC. If the decay happens instead outside the
detector, evidence for H+ could be found at the LHC via searches for long-lived charged
particles [52]. It is beyond the scope of the present paper, however, to determine whether
these signals can actually be used to set meaningful constraints on this scenario.

Another generic feature of FIMP dark matter is the absence of signals at direct or
indirect detection experiments — a direct consequence of the feeble interactions that are
required to prevent the dark matter from reaching thermal equilibrium in the early Universe.
These experiments provide, nonetheless, an unambigous way of falsifying this scenario: as
soon as a positive signal is confirmed in any dark matter detection experiment we would
learn that dark matter does not consist of FIMPs and more specifically that the scenario
we studied in this section is ruled out. Such signal would instead give a strong support to
the WIMP paradigm of dark matter. But if the next generation of dark matter experiments,
such as XENON1T [53], fails to find evidence of dark matter, the WIMP framework would be
in trouble and alternative scenarios that can naturally explain the absence of such evidence
would become much more appealing. In that hypothetical future the FIMP scenario could
become the standard framework to account for the dark matter. Only time will tell which of
these two possible outcomes regarding dark matter detection will actually be realized.

5 FIMP decay into dark matter

In the previous section we assumed that the singlet fermion that does not reach thermal equi-
librium in the early Universe (N1) was also the lightest particle odd under the Z2 symmetry,
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and consequently the dark matter candidate. It may well be though that N1 is not the lightest
odd particle so that the dark matter candidate is instead one of the neutral scalars or another
singlet fermion. In that case, N1 is unstable and decays into the dark matter, increasing its
relic density. Thus, N1 modifies the regions where the dark matter constraint is satisfied, al-
lowing for regions which in the usual freeze-out scenario are under-dense (Ωfreeze−outh2 < 0.1)
to become compatible with the observed dark matter density. Since the singlet (say N2) relic
density obtained via freeze-out is typically larger than the observed one, see e.g. figure 6,
an additional contribution from FIMP decay is usually not welcome as it will only help in
very specific cases. Much more interesting is the situation where one of the neutral scalars
is the dark matter candidate, for we know that over a significant region of the parameter
space its freeze-out relic density is very small — see e.g. figure 7. For definiteness, we take
H0 as the dark matter particle and assume that all the odd scalars are lighter than N1,
mH0 < mA0 ,mH± < M1. Notice that, contrary to the discussion in the previous section, the
dark matter particle in this case is a WIMP.

The H0 relic density will receive two contributions, one from freeze-out and one from
the late decay of N1. We can then write

ΩH0 h2 = Ωfreeze−out
H0 h2 + ΩN1−decay

H0 h2 (5.1)

with

ΩN1−decay
H0 h2 =

mH0

M1
Ωfreeze−in
N1

h2. (5.2)

Let us now proceed to calculate Ωfreeze−in
N1

h2 in this case. The dominant freeze-in production
process is the inverse decay of N1, X+ `→ N1, where X denotes an odd scalar and ` is a SM
lepton. The N1 yield, YN1(T ) = nN1(T )/s(T ), is computed by solving the same Boltzmann
equation as in the previous section, equation (4.2), but with a different production rate

γN1(T ) =
∑
X

gN1 M
2
1 T

2π2
K1 (M1/T ) Γ (N1 → X `) , (5.3)

where gN1 = 2 because N1 is a Majorana fermion. The decay width for the three decay
channels of N1 into scalars are given by

Γ(N1 → H0/A0 να) =
(M2

1 −m2
H0/A0)2

64πM3
1

|Y ν
α1|

2 , (5.4)

Γ(N1 → H+ `α) =
(M2

1 −m2
H+)2

32πM3
1

|Y ν
α1|

2 . (5.5)

Hence, the total decay rate of N1 is

ΓN1 =
M1

8π
(1−m2

S/M
2
1 )2

(∑
α

|Y ν
α1|

2

)
≈ M1

8π

∑
α

|Y ν
α1|

2 , (5.6)

where the last approximation is valid unless N1 is highly degenerate with the scalars.
The abundance YN1 at certain temperature T can then be expressed as

YN1(T ) = 8.49× 1017GeVM2
1 g1 ΓN1

∫ Ti

T

K1(M1/T )

gs(T )
√
gρ(T )T 5

dT. (5.7)
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whereas the N1 relic density is

Ωfreeze−in
N1

h2 = 2.33× 1026M3
1 g1 ΓN1

∫ Ti

T0

K1(M1/T )

gs(T )
√
gρ(T )T 5

dT. (5.8)

Finally, we can approximate ΩN1−decay
H0 as

ΩN1−decay
H0 h2 ≈ 0.1

( mS

100 GeV

)(1 TeV

M1

)(
y1

2× 10−12

)2

. (5.9)

Thus, a coupling of order 10−12 is required to account for the entire dark matter density via
the decay of N1.

The above result holds provided that N1 decays after the H0 freeze-out, ΓN1 . H(T f.o.
H0 ).

Since the N1 decay rate is given by

ΓN1 ∼ 4.8× 10−22 GeV

(
M1

1 TeV

)(
y1

2× 10−12

)2

(5.10)

whereas

H(T f.o.
H0 ) = H(mS/xf.o.) ∼ 3.4× 10−17 GeV

( mS

100 GeV

)2( 20

xf.o.

)2

. (5.11)

one can see that this condition is easily satisfied. In order to not alter the predictions of
BBN, one must also ensure that ΓN1 & 1/0.3 sec−1 = 2.2 × 10−24 GeV, which is seen to be
fulfilled for the values required to obtain the correct dark matter density.

The idea then is that if Ωfreeze−out
H0 h2 < ΩDMh

2 we can always choose a value of y1 such
that the contribution from the decay of N1 compensates for the deficit and one gets a relic
density in agreement with the observations, ΩH0 = ΩDM. That is, the presence of the FIMP
allows us to enlarge the viable parameter space of the model by rescuing those regions where
freeze-out gives a too small relic density. In particular, the region mH0 . 500 GeV becomes
viable within this setup.

The resulting scenario is quite similar to that discussed in [37]. The difference being the
mechanism that allows to increase the relic density. In [37] it was the coannihilations with
the singlet fermions whereas in our case is the late decay of the FIMP.

Since the dark matter particle H0 is a WIMP, the usual direct and indirect detection
signals are expected and one must make sure that current bounds are respected. The dark
matter phenomenology of H0 is reminiscent of that in the inert doublet model. Direct
detection, for instance, proceeds via a Higgs mediated diagram and is determined by the
coupling λL = (λ3 +λ4 +λ5)/2. Figure 8 shows a scatter plot of the spin-independent direct
detection cross section versus the dark matter mass. The figure was obtained after randomly
varying the different parameters of the model (1 TeV ≤ M1 ≤ 3 TeV, M1 ≤ M2 ≤ 3 TeV,
M2 ≤ M3 ≤ 3 TeV, 100 GeV ≤ mHi ≤ 1 TeV and the others as before) and imposing
the known experimental bounds (neutrino masses, µ → eγ, etc.). The H0 relic density is
consistent with the observed dark matter density thanks to the contribution from N1 decays.
For comparison we show the current experimental bound (solid line) [54] and the expected
sensitivity of future experiments (dashed line) [53]. Even though several models are already
excluded (those above the solid line) and many more will be probed by future experiments
(those above the dashed line), one can still find models with small values of σSI over the entire

– 17 –



J
C
A
P
0
7
(
2
0
1
4
)
0
1
5

100 200 300 400 500 600 700 800 900 1000
mH0 (GeV)

10-13

10-11

10-9

10-7

10-5

σ
S
I
(p

b
)

Figure 8. A scatter plot of the spin-independent direct detection cross section versus mH0 . The
solid line shows the current bound by the LUX experiment [54] whereas the dashed line displays the
expected sensitivity of XENON1T [53].

range of masses we explore. Direct detection bounds therefore do not restrict the range of
the dark matter mass in this scenario.

Unsurprisingly, the indirect detection bounds turn out to be more constraining. Indeed,
since Ωfreeze−out

H0 h2 � ΩDMh
2, we expect annihilation rates larger than those typically associ-

ated with WIMPs, 〈σv〉H0 � 〈σv〉thermal ∼ 3×10−26 cm−3/s. Figure 9 shows a scatter plot of
σv versus the dark matter mass. As before, the correct relic density is obtained via N1 decays
and the experimental bounds were taken into account. In blue we show the models that are
excluded by the direct detection bound on σSI — see figure 9. In red we show instead the
points that are consistent with that bound. Notice that σv can indeed be much larger than
the so-called thermal value. The solid and dashed lines show the current bounds obtained by
the Fermi-LAT collaboration, for dark matter annihilation into b quarks [55] and W gauge
bosons [56], respectively. They exclude all models with mH0 . 300 GeV. For higher values
of the dark matter mass, mH0 & 300 GeV, one can easily find models compatible with both
direct and indirect detection constraints.

In contrast to the scenario with FIMP dark matter discussed in the previous section,
this setup, where H0 is the dark matter particle and the decay of N1 contributes to its relic
density, can be probed by both direct and indirect detection experiments. And as we have
seen, the expected signals are generally significant.

6 Conclusions

We have shown that in the scotogenic model — one of the simplest extensions of the SM that
can account for neutrino masses and dark matter at the TeV scale — one (and only one) of the
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Figure 9. A scatter plot of the dark matter annihilation rate today (σv) versus mH0 . The two lines
show current bounds obtained by the Fermi-LAT collaboration for annihilation into bb̄ (solid line) and
W+W− (dashed line).

singlet fermions, N1, can be out of equilibrium in the early Universe and behave as a FIMP,
with important implications for the phenomenology of this model. This setup predicts, for
instance, that one of the light neutrinos is essentially massless. Within this framework the
dark matter candidate can be a FIMP, N1, or a WIMP, H0. In the former case, the relic
density of dark matter receives two contributions, one from freeze-in and another one from the
late decay of the next-to-lightest odd particle — the superWIMP contribution. The freeze-in
contribution was found to be dominated by the decays of the scalars and its dependence with
the different parameters of the model was examined in detail. Specifically, we determined
the regions in the plane (M1, y1) where freeze-in can account for the observed dark matter
density and found that they span a wide range of masses, from the keV to the TeV scale. The
superWIMP contribution was also discussed and shown to strongly depend on the identity
of the next-to-lightest odd particle. In the latter case, when H0 is the dark matter particle,
the relic density is not only the result of a freeze-out but receives and additional contribution
from the late decays of N1. This second contribution allows to increase the dark matter relic
density, opening up new viable regions in the parameter space of the model. Thanks to this
contribution from N1 decay, regions that within the standard scenario feature a too small
relic density, such as mH0 . 500 GeV, can become compatible with the observed dark matter
density. We demonstrated that in this case one generally expects observable signals at direct
and indirect dark matter experiments.
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