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Abstract. Supernovae observations strongly support the presence of a cosmological constant,
but its value, which we will call apparent, is normally determined assuming that the Universe
can be accurately described by a homogeneous model. Even in the presence of a cosmolog-
ical constant we cannot exclude nevertheless the presence of a small local inhomogeneity
which could affect the apparent value of the cosmological constant. Neglecting the presence
of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological
data, leading to the distinction between an apparent and true value of the cosmological con-
stant. We establish the theoretical framework to calculate the corrections to the apparent
value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB solu-
tion. Our assumption to be at the center of a spherically symmetric inhomogeneous matter
distribution correspond to effectively calculate the monopole contribution of the large scale
inhomogeneities surrounding us, which we expect to be the dominant one, because of other
observations supporting a high level of isotropy of the Universe around us.

By performing a local Taylor expansion we analyze the number of independent degrees of
freedom which determine the local shape of the inhomogeneity, and consider the issue of cen-
tral smoothness, showing how the same correction can correspond to different inhomogeneity
profiles. Contrary to previous attempts to fit data using large void models our approach is
quite general. The correction to the apparent value of the cosmological constant is in fact
present for local inhomogeneities of any size, and should always be taken appropriately into
account both theoretically and observationally.

Keywords: supernova type Ia - standard candles, dark energy theory
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1 Introduction

High redshift luminosity distance measurements [1–6] and the WMAP measurements [7, 8] of
cosmic microwave background (CMB) interpreted in the context of standard FLRW cosmo-
logical models have strongly disfavored a matter dominated universe, and strongly supported
a dominant dark energy component, giving rise to a positive cosmological acceleration.

As an alternative to dark energy, it has been proposed [9, 10] that we may be at the
center of an inhomogeneous isotropic universe without cosmological constant described by a
Lemaitre-Tolman-Bondi (LTB) solution of Einstein’s field equations, where spatial averaging
over one expanding and one contracting region is producing a positive averaged acceleration
aD, but it has been shown how spatial averaging can give rise to averaged quantities which
are not observable [11]. Another more general approach to map luminosity distance as a
function of redshift DL(z) to LTB models has been recently proposed [12, 13], showing that
an inversion method can be applied successfully to reproduce the observed DL(z). Interesting
analysis of observational data in inhomogeneous models without dark energy and of other
theoretically related problems is given for example in [14–31]

Here in this paper we will adopt a different approach. We will consider a Universe
with a cosmological constant and some local large scale inhomogeneity modeled by a ΛLTB

solution [32]. For simplicity we will also assume that we are located at its center. In this
regard this can be considered a first attempt to model local large scale inhomogeneities in the
presence of the cosmological constant or, more in general, dark energy. Given the spherical
symmetry of the LTB solution and the assumption to be located at the center our calculation
can be interpreted as the monopole contribution of the large inhomogeneities which surround
us. Since we know from other observations such as CMB radiation that the Universe appears
to be highly isotropic, we can safely assume that the monopole contribution we calculate
should also be the dominant one, making our results even more relevant. After calculating
the null radial geodesics for a central observer we then compute the luminosity distance
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and compare it to that of ΛCDM model, finding the relation between the two different
cosmological constants appearing in the two models, where we call apparent the one in the
ΛCDM and true the one in ΛLTB. Our calculations show that the corrections to Ωapp

Λ ,
which is the value of the cosmological constant obtained from analyzing supernovae data
assuming homogeneity, can be important and should be taken into account.

2 LTB solution with a cosmological constant

The LTB solution can be written as [33–35] as

ds2 = −dt2 +
(R,r )2 dr2

1 + 2E(r)
+ R2dΩ2 , (2.1)

where R is a function of the time coordinate t and the radial coordinate r, E(r) is an arbi-
trary function of r, and R,r = ∂rR(t, r). The Einstein equations with dust and a cosmological
constant give

(

Ṙ

R

)2

=
2E(r)

R2
+

2M(r)

R3
+

Λ

3
, (2.2)

ρ(t, r) =
2M,r

R2R,r
, (2.3)

with M(r) being an arbitrary function of r, Ṙ = ∂tR(t, r) and c = 8πG = 1 is assumed
throughout the paper. Since eq. (2.2) contains partial derivatives respect to time only, its
general solution can be obtained from the FLRW equivalent solution by making every con-
stant in the latter one an arbitrary function of r.

The general analytical solution for a FLRW model with dust and cosmological constant
was obtained by Edwards [36] in terms of elliptic functions. By an appropriate choice of
variables and coordinates, we may extend it to the LTB case thanks to the spherical symmetry
of both LTB and FLRW models, and to the fact that dust follows geodesics without being
affected by adjacent regions. An anaytical solution can be found by introducing a new
coordinate η = η(t, r) and a variable a by

(

∂η

∂t

)

r

=
r

R
≡

1

a
, (2.4)

and new functions by

ρ0(r) ≡
6M(r)

r3
, k(r) ≡ −

2E(r)

r2
. (2.5)

Then eq. (2.2) becomes

(

∂a

∂η

)2

= −k(r)a2 +
ρ0(r)

3
a +

Λ

3
a4 , (2.6)

where a is now regarded as a function of η and r, a = a(η, r). It should be noted that
the coordinate η, which is a generalization of the conformal time in a homogeneous FLRW
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universe, has been only implicitly defined by eq. (2.4). The actual relation between t and η

can be obtained by integration once a(η, r) is known:

t(η, r) =

∫ η

0

a(x, r)dx + tb(r) , (2.7)

which can be computed analytically, and involve elliptic integrals of the third kind [37].
The function tB(r) plays the role of constant of integration, and is an arbitrary func-

tion of r, sometime called bang function, since by construction at time t = tb(r) we have
a(tb(r), r) = 0, and correspond to the fact that the big bang initial singularity can happen
at different times at different positions from the center in a LTB space. In the rest of this
paper we will assume homogeneous bang, i.e. we will set

tb(r) = 0. (2.8)

Inspired by the construction of the solution for the FLRW case get:

a(η, r) =
ρ0(r)

3φ
( η

2
; g2(r), g3(r)

)

+ k(r)
, (2.9)

where φ(x; g2, g3) is the Weierstrass elliptic function satisfying the differential equation

(

dφ

dx

)2

= 4φ3 − g2φ − g3 , (2.10)

and

α = ρ0(r) , g2 =
4

3
k(r)2 , g3 =

4

27

(

2k(r)3 − Λρ0(r)
2
)

. (2.11)

In this paper we will choose the so called FLRW gauge, i.e. the coordinate system in which
ρ0(r) is constant.

3 Geodesic equations and luminosity distance

We adopt the same method developed in [38] to solve the null geodesic equation written in
terms of the coordinates (η, r). Instead of integrating differential equations numerically, we
perform a local expansion of the solution around z = 0 corresponding to the point (t0, 0), or
equivalently (η0, 0), where t0 = t(η0, 0). The change of variables from (t, r) to (η, r) permits us
to have r.h.s. of all equations in a fully analytical form, in contrast to previous considerations
of this problem which require a numerical calculation of R(t, r) from the Einstein equa-
tion (2.2). Thus, this formulation is particularly suitable for derivation of analytical results.

The luminosity distance for a central observer in the LTB space-time as a function of
the redshift z is expressed as

DL(z) = (1 + z)2R (t(z), r(z)) = (1 + z)2r(z)a (η(z), r(z)) , (3.1)

where
(

t(z), r(z)
)

or
(

(η(z), r(z)
)

is the solution of the radial geodesic equation as a function

of z. The past-directed radial null geodesics is given by

dt

dr
= −

R,r(t, r)
√

1 + 2E(r)
. (3.2)

– 3 –
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In terms of z, eq. (3.2) takes the form [39]:

dr

dz
=

√

1 + 2E(r(z))

(1 + z)Ṙ,r[r(z), t(z)]
,

dt

dz
= −

R,r[r(z), t(z)]

(1 + z)Ṙ,r[r(z), t(z)]
. (3.3)

The inconvenience of using the (t, r) coordinates is that there is no exact analytical solution
for R(t, r). So the r.h.s. of eqs. (3.3) cannot be evaluated analytically, but we are required
to find a numerical solution for R first [40], and then to integrate numerically the differential
equations, which is quite an inconvenient and cumbersome procedure, and cannot be used
to derive anaytical results.

It can be shown [38] that in the coordinates (η, r) eqs. (3.3) take the form:

dη

dz
= −

∂rt(η, r) + F (η, r)

(1 + z)∂ηF (η, r)
≡ p(η, r) , (3.4)

dr

dz
=

a(η, r)

(1 + z)∂ηF (η, r)
≡ q(η, r) , (3.5)

where

F (η, r) ≡
R,r

√

1 + 2E(r)
=

1
√

1 − k(r)r2

[

∂r(a(η, r)r) − a−1∂η(a(η, r)r) ∂rt(η, r)
]

. (3.6)

It is important to observe that the functions p, q, F have explicit analytical forms, making it
particularly useful do derive anaytical results.

4 Number of independent parameters and Taylor expansion accuracy

In order to find the relation between the apparent and true value of the cosmological constant
we need in to match the terms in the red-shift expansion:

DΛCDM
i = DΛLTB

i , (4.1)

Before proceeding in deriving this relation we need to understand clearly how many indepen-
dent parameters we can solve for at different order in the Taylor expansion for DL(z). After
defining the expansion of the function k(r) in terms of the dimensionless function K(r):

k(r) = (a0H0)
2K(r) = K0 + K1r + K2r

2 + · · · (4.2)

we have

DΛLTB
1 =

1

HΛLTB
0

, (4.3)

DΛLTB
i = fi(ΩΛ,K0,K1, . . . ,Ki−1), (4.4)

which implies that if we want to match the coefficient Di up to order n, we will have a total
of n + 2 independent parameters to solve for:

{HΛ
0 ,ΩΛ,K0,Ki, . . . ,Ki−1}. (4.5)
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The matching conditions will imply a constraint over the n + 2 independent parameters, but
this will not be enough completely determine them, since two of them will always be free.
For a matter of computational convenience we will choose K0,K1 as free parameters and
express all the other in terms of them. For example from:

DΛCDM
2 = DΛLTB

2 , (4.6)

we can get
Ωapp

Λ (ΩΛ,K0,K1), (4.7)

from
DΛCDM

3 = DΛLTB
3 , (4.8)

we can get
K2(Ω

app
Λ ,K0,K1), (4.9)

and in general from
DΛCDM

i = DΛLTB
i , (4.10)

we can get
Ki−1(Ω

app
Λ ,K0,K1). (4.11)

Since our purpose is to find the corrections to the apparent value of the cosmological constant,
the second order term D2 is enough. Higher order terms in the redshift expansion will provide
K2,K3, . . . Ki−1 as functions of {Ωapp

Λ ,K0,K1}, but will not change the analytical relation
between Ωapp

Λ and ΩΛ which can be derived from eq. (4.6). For this reason we will only need
the expansion up to second order for the luminosity distance. The fact that we have more free
parameters than constraints implies that the same correction to the apparent value of the cos-
mological constant can correspond to an infinite number of different inhomogeneity profiles.

The corrections we calculate are accurate within the limits of validity of the Taylor ex-
pansion DΛCDM

Taylor . It turns out that in the flat case we consider the error is quite large already
at a redshift of about 0.2 as shown in the figure. This implies that the corrections should also
be valid only within this low redshift range, since even if we are exactly matching the coeffi-
cients, the Taylor expansion of the ΛCDM best fit formula itself is not very accurate. This
could be overcome by implementing other types of expansions or numerical methods, such
as Padé for example, with better convergence behavior, but we’ll leave this to a future work.

5 Central behavior

A function of the radial coordinate f(r) is smooth at the center r = 0 only if all its odd
derivatives vanish there. This can be shown easily by looking at the partial derivatives of
even order of this type for example:

∂2n
x ∂2n

y ∂2n
z f(

√

x2 + y2 + z2) , (5.1)

where {x, y, z} are the cartesian coordinates related to r by r2 = x2 + y2 + z2. Quantities of
the type above diverge at the center if ∂2m+1

r f(r) 6= 0 for 2m + 1 < 2n. If for example the
first derivative f ′(0) is not zero, then the laplacian will diverge. This implies that including
linear terms expansions for k(r) and tb(r) we are considering models which are not smooth
at the center. The general central smoothness conditions are:

k2m+1 = 0, (5.2)

– 5 –
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Figure 1. The percentual error ∆ = 100
D

ΛCDM
−D

ΛCDM

Taylor

DΛCDM for a third order expansion is plotted as a
function of the redshift. As it can be seen the error is already quite large at redshift 0.1. Higher order
expansion does not improve the convergence.

t2m+1
b = 0 , (5.3)

2m + 1 < i , (5.4)

which must be satisfied for all the relevant odd powers coefficients of the central Taylor
expansion. In our case this implies that if we only want to consider centrally smooth inho-
mogeneities then we need to set to zero all the odd derivatives of K(r)

K2m+1 = 0 (5.5)

The consequence of this smoothness conditions is that the exact matching of the Taylor
expansion is possible only up to order five when we have five constraints equations

DΛCDM
i = DΛLTB

i , 1 ≤ i ≤ 5 , (5.6)

and five free parameters

HΛLTB
0 ,ΩΛ,K0,K2,K4 (5.7)

implying there is a unique solution. Going to higher order there will be more equations than
free parameters making the inversion problem impossible. This means that the effects of a
different value of the cosmological constant cannot be mimicked by a smooth inhomogeneity,
as far as the exact matching of the Taylor expansion is concerned. From a data analysis point
of view this limitation could be easily circumvented, since these considerations are based on
matching the Taylor expansion of the best ΛCDM fit, which is quite different from fitting
the actual data. Also it turns out that the Taylor expansion DΛCDM

Taylor (z) is more accurate at
second order than at any other order as shown in the figure, implying that exact matching
beyond second order is practically irrelevant from a data fitting point of view. Under these
considerations the inversion problem can be considered still effectively undetermined since
by matching up to second order we have two equations and three parameters:

HΛLTB
0 ,ΩΛ,K0 (5.8)

For completeness of the analysis we mention that after counting the number of independent
parameters we can easily conclude that the inversion problem remain undetermined for the
third order, and has a unique solution for the fourth and fifth order as shown above.

– 6 –
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6 Calculating the luminosity distance

In order to obtain the redshift expansion of the luminosity distance we need to use the
following:

k(r) = (a0H0)
2K(r) = K0 + K1r + K2r

2 + · · · (6.1)

t(η, r) = b0(η) + b1(η)r + b2(η)r2 + · · · (6.2)

It should be noted that linear terms will in fact lead to central divergences of the laplacian in
spherical coordinates, which correspond to a central spike of the energy distribution [29, 30],
but an appropriate local averaging of the solution can easily heal this behavior, and we in-
clude them here because they give the leading order contribution. Since we are interested in
the effects due to the inhomogeneities we will neglect k0 in the rest of the calculation because
this corresponds to the homogeneous component of the curvature function k(r).

Following the same approach given in [32] , we can find a local Taylor expansion in
red-shift for the geodesics equations, and then calculate the luminosity distance:

DΛLTB
L (z) = (1+z)2r(z)aΛLTB(η(z), r(z))=DΛLTB

1 z+DΛLTB
2 z2+DΛLTB

3 z3+ .. (6.3)

DΛLTB
1 =

1

H0
,

DΛLTB
2 =

1

36H0(Ωtrue
Λ − 1)

[

54B1(Ω
true
Λ − 1)2 + 18B′

1(Ω
true
Λ − 1) − 18h0,r(Ω

true
Λ )2

+30h0,rΩ
true
Λ −12h0,r+6K1Ω

true
Λ −10K1+27(Ωtrue

Λ )2−18Ωtrue
Λ −9

]

, (6.4)

where we have introduced the dimensionless quantities K0,K1, B1, B
′
1, h0,r according to

H0 =

(

∂t, a(t, r)

a(t, r)

)2
∣

∣

∣

∣

∣

t=t0,r=0

=

(

∂ηa(η, r)

a(η, r)2

)2
∣

∣

∣

∣

∣

η=η0,r=0

, (6.5)

B1(η) = b1(η)a−1
0 , (6.6)

B1 = b1(η0)a
−1
0 , (6.7)

B′
1 =

∂B1(η)

∂η

∣

∣

∣

∣

∣

η=η0

(a0H0)
−2, (6.8)

h0,r =
1

a0H0

∂ra(η, r)

a(η, r)

∣

∣

∣

∣

∣

η=η0,r=0

, (6.9)

t0 = t(η0, 0), (6.10)

and used the Einstein equation at the center (η = η0, r = 0)

1 = Ωk(0) + ΩM + ΩΛ = −K0 + ΩM + ΩΛ, (6.11)

Ωk(r) = −
k(r)

H2
0a2

0

, (6.12)

ΩM =
ρ0

3H2
0a3

0

, (6.13)

ΩΛ =
Λ

3H2
0

. (6.14)
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Because of our coordinate choice ΩM is independent of r, and all the radial dependence goes
into Ωk(r). Note that apart from the central curvature term K0, the inhomogeneity of the
LTB space is expressed in h0,r, which encodes the radial dependence of the scale factor.
Details of these rather cumbersome calculations are provided in a separate companion paper,
but it should be emphasized that in order to put the formula for the luminosity distance in
this form it is necessary to manipulate appropriately the elliptic functions and then re-express
everything in terms of physically meaningful quantities such as H0.

7 Calculating DL(z) for ΛCDM models

The metric of a ΛCDM model is the FLRW metric, a special case of LTB solution, where:

ρ0(r) ∝ const, (7.1)

k(r) = 0, (7.2)

tb(r) = 0, (7.3)

a(t, r) = a(t). (7.4)

We will calculate independently the expansion of the luminosity distance and the redshift
spherical shell mass for the case of a flat ΛCDM , to clearly show the meaning of our notation,
and in particular the distinction between Ωapp

Λ and Ωtrue
Λ . We can also use these formulas to

check the results derive before, since in absence of inhomogeneities they should coincide.

One of the Einstein equation can be expressed as:

HΛCDM(z) = H0

√

(1 − Ωapp
Λ )

(a0

a

)3

+ Ωapp
Λ = H0

√

(1 − Ωapp
Λ )(1 + z)3 + Ωapp

Λ . (7.5)

We can then calculate the luminosity distance using the following relation, which is only valid
assuming flatness:

DΛCDM
L (z) = (1 + z)

∫ z

0

dz′

HΛCDM (z′)
= DΛCDM

1 z + DΛCDM
2 z2 + DΛCDM

3 z3 + ... (7.6)

From which we can get:

DΛCDM
1 =

1

H0
, (7.7)

DΛCDM
2 =

3Ωapp
Λ + 1

4H0

. (7.8)

We can check the consistency between these formulae and the ones derived in the case of
LTB by setting:

K1 = B1 = B′
1 = K0 = h0,r = 0 , (7.9)

which corresponds to the case in which Ωapp
Λ = Ωtrue

Λ .

– 8 –
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8 Relation between apparent and true value of the cosmological constant

So far we have calculated the first two terms of the redshift expansion of the luminosity
distance for ΛLTB and ΛCDM model. Since we now that the latter provides a good fitting
for supernovae observations, we can now look for the ΛLTB models which give the same
theoretical prediction. From the above relations we can derive:

HΛLTB
0 = HΛCDM

0 , (8.1)

Ωapp
Λ =

1

27(Ωtrue
Λ − 1)

[

54B1(Ω
true
Λ )2 − 108B1Ω

true
Λ + 54B1 + 18B′

1Ω
true
Λ − 18B′

1

−18h0,r(Ω
true
Λ )2 + 30h0,rΩ

true
Λ − 12h0,r + 6K1Ω

true
Λ − 10K1

+27Ωtrue
Λ (Ωtrue

Λ − 1)

]

, (8.2)

Ωtrue
Λ = −

1

6(6B1 − 2h0,r + 3)

[(

(36B1 − 6B′
1 − 10h0,r − 2K1 + 9Ωapp

Λ + 9)2 +

−4(6B1 − 2h0,r + 3)(54B1 − 18B′
1 − 12h0,r − 10K1 + 27Ωapp

Λ )

)1/2

− 36B1

+6B′
1 + 10h0,r + 2K1 − 9(Ωapp

Λ − 1)

]

. (8.3)

We can also expand the above exact relations assuming that all the inhomogeneities, can be
treated perturbatively respect to the ΛCDM , i.e. {K1, B1, B

′
1} ∝ ǫ, where ǫ stands for a

small deviation from FLRW solution:

Ωtrue
Λ = Ωapp

Λ −
2

27(Ωapp
Λ − 1)

(27B1(Ω
app
Λ − 1)2 + 9B′

1(Ω
app
Λ − 1) − 9h0,r(Ω

app
Λ )

2
+ 15h0,rΩ

app
Λ

−6h0,r + 3K1Ω
app
Λ − 5K1) + O(ǫ2) . (8.4)

As expected all these relations reduce to

Ωtrue
Λ = Ωapp

Λ , (8.5)

in the limit in which there is no inhomogeneity, i.e. when K1 = B1 = B′
1 = h0,r = 0.

9 Conclusions

We have derived for the first time the correction due to local large scale inhomogeneities
to the value of the apparent cosmological constant inferred from low redshift supernovae
observations. This analytical calculation shows how the presence of a local inhomogeneity
can affect the estimation of the value of cosmological parameters, such as ΩΛ. This effects
should be properly taken into account both theoretically and observationally. By performing
a local Taylor expansion we analyzed the number of independent degrees of freedom which
determine the local shape of the inhomogeneity, and consider the issue of central smoothness,
showing how the same correction can correspond to different inhomogeneity profiles. We will
address in a future work the estimation of the magnitude of this effect based on experimental
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bounds which can be set on the size and shape of a local inhomogeneity and the fitting of
actual supernovae data. It is important to underline here that we do not need a large void
as normally assumed in previous studies of LTB models in a cosmological context. Even a
small inhomogeneity could in fact be important.

In the future it will also be interesting to extend the same analysis to other observables
such as barionic acoustic oscillations (BAO) or the cosmic microwave background radiation
(CMBR), and we will report about this in separate papers. Another direction in which
the present work could be extended is modeling the local inhomogeneity in a more general
way, for example considering not spherically symmetric solutions. From this point of view
our calculation could be considered the monopole contribution to the general effect due to
a local large scale inhomogeneity of arbitrary shape. Given the high level of isotropy of
the Universe shown by other observations such as the CMB radiation, we can expect the
monopole contribution we calculated to be the dominant one.

While this should be considered only as the first step towards a full inclusion of the
effects of large scale inhomogeneities in the interpretation of cosmological observations, it is
important to emphasize that we have introduced a general definition of the concept of appar-
ent and true value of cosmological parameters, and shown the general theoretical approach
to calculate the corrections to the apparent values obtained under the standard assumption
of homogeneity.
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