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Abstract

We extend the problem of obtaining an estimator for the finite population
mean parameter incorporating complete auxiliary information through calibration
estimation in survey sampling but considering a functional data framework.
The functional calibration sampling weights of the estimator are obtained by
matching the calibration estimation problem with the maximum entropy on
the mean principle. In particular, the calibration estimation is viewed as an
infinite dimensional linear inverse problem following the structure of the maximum
entropy on the mean approach. We give a precise theoretical setting and estimate
the functional calibration weights assuming, as prior measures, the centered
Gaussian and compound Poisson random measures. Additionally, through a
simple simulation study, we show that our functional calibration estimator
improves its accuracy compared with the Horvitz-Thompson estimator.

Key words: Auxiliary information; Functional calibration weights; Functional
data; Infinite dimensional linear inverse problems; Survey sampling.

1 Introduction

In survey sampling, the well-known calibration estimation method proposed by Deville
and Särndal [7] allows to construct an estimate for the finite population total or mean
of a survey variable by incorporating complete auxiliary information on the study
population in order to improve its efficiency. The main idea of the calibration method
consists in modifying the standard sampling design weights di of the unbiased Horvitz-
Thompson estimator Horvitz and Thompson [17] by new weights wi close enough to
di’s according to some distance function D(w, d), while satisfying a linear calibration
equation in which the auxiliary information is taken into account. The estimator based
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on these new calibration weights is asymptotically design unbiased and consistent with
a variance smaller than the Horvitz-Thompson one.

The idea of calibration has been extended to estimate other finite population
parameters, such as finite population variances, distribution functions and quantiles.
See, for instance, Rao et al. [26], Kovaĉević [18], Théberge [31], Singh [30], Wu and
Sitter [35], Wu [34], Harms and Duchesne [15], Rueda et al. [27], Särndal [28], and
references therein. Recent developments have also been conducted toward, for example,
the approach of (parametric and non-parametric) non-linear relationships between the
survey variable and the set of auxiliary variables for the underlying assisting model, and
a broad classes of conceivable calibration constraints functions (Breidt and Opsomer
[1], Wu and Sitter [35], Wu [34], Montanari and Ranalli [21]).

One interesting extension emerges when both the survey and auxiliary variables
are considered as infinite dimensional objects such as random functions. This
generalization relies on the fact that, due to improvements in data collection
technologies, large and complex databases are being registered frequently at very fine
time scales, regarded these as functional datasets. This kind of data are collected in
many scientific fields as molecular biology, astronomy, marketing, finance, economics,
among many other. A depth overview on functional data analysis can be found in
Ramsay and Silverman [24], Ramsay and Silverman [25] and Horváth and Kokoszka
[16]. Functional versions of the Horvitz-Thompson estimator have been proposed
recently by Cardot and Josserand [2] and Cardot et al. [3] for the cases of error free
and noisy functional data, respectively.

The purpose of the present paper is to extend the problem of obtaining calibration
sampling weights using functional data. This is conducted through the generalization
of the work by Gamboa et al. [11], where the calibration estimation problem, which
is considered as a linear inverse problem following Théberge [31], is matched with
the maximum entropy on the mean approach under a finite dimensional setting. The
maximum entropy on the mean principle applied to our goal focuses on reconstructing
an unique posterior measure ν∗ that maximizes the entropy S(ν ‖ υ) between a feasible
finite measure ν relative to a given prior measure υ subject to a linear constraint.
Finally, the functional calibration sampling weights are defined as the mathematical
expectation with respect to ν∗ of a random variable with mean equal to the standard
sampling design weights di. In this paper, we reconstruct ν∗ adopting the random
measure approach by Gzyl and Velásquez [14] under an infinite dimensional context.

The maximum entropy method on the mean was introduced by Navaza [22, 23] to
solve an inverse problem in crystallography, and has been further investigated, from
a mathematical point of view, by Gamboa [9], Dacunha-Castelle and Gamboa [6] and
Gamboa and Gassiat [10]. Complementary references on the approach are Mohammad-
Djafari [20], Maréchal [19], Gzyl [13], Gzyl and Velásquez [14] and Golan and Gzyl
[12]. Maximum entropy solutions, as an alternative to the Tikhonov’s regularization of
ill-conditioned inverse problems, provide a very simple and natural way to incorporate
constraints on the support and the range of the solution Gamboa and Gassiat [10],
and its usefulness has been proven, e.g., in crystallography, seismic tomography and
image reconstruction.
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The paper is organized as follows. Sect. 2, presents the calibration estimation
framework for the functional finite population mean. In Sect. 3, the connection between
calibration and maximum entropy on the mean approaches is established, and the
functional calibration sampling weights are obtained assuming two prior measures. In
Sect. 4, the respective approximations of the functional maximum entropy on the mean
estimators are derived. The performance of the estimator is studied through a simple
simulation study in Sect. 5. Some concluding remarks are given in Sect. 6. Finally,
the technical proofs of the technical results are gathered in the Appendix.

2 Calibration estimation for the functional finite popula-

tion mean

Let UN = {1, . . . , N} be a finite survey population from which a realized sample a
is drawn with fixed-size sampling design pN (a) = P(A = a). Here a ∈ A, where
A is the collection of all subsets A of UN that contains all possible samples of nN

different elements randomly drawn from UN according to a given sampling selection
scheme, and P a probability measure on A. The first order inclusion probabilities,
πiN = P(i ∈ a) =

∑
a∈A(i) pN (a), where A(i) represents the set of samples that

contain the ith element, are assumed to be strictly positive for all i ∈ UN . See Särndal
et al. [29] and Fuller [8] for details about survey sampling.

Associated with the ith element in UN there exists an unique functional random
variable Yi(t) with values in the space of all continuous real-valued functions defined on
[0, T ] with T < +∞, C([0, T ]). However, only the sample functional data, Yi(t), i ∈ a
are observed. Additionally, an auxiliary q-dimensional functional vector is available
for each i ∈ UN , Xi(t) = (Xi1(t), . . . ,Xiq(t))

⊤ ∈ C
(
[0, T ]q

)
with q ≥ 1. The known

functional finite population mean is denoted by µX(t) = N−1
∑

i∈UN
Xi(t).

The main goal is to obtain a design consistent estimator for the unknown
functional finite population mean, µY (t) = N−1

∑
i∈UN

Yi(t), based on the calibration
method. The idea consists in modify the basic sampling design weights, di =
π−1
i , of the unbiased functional Horvitz-Thompson estimator defined by µ̂HT

Y (t) =
N−1

∑
i∈a diYi(t), for new more efficient weights wi > 0 incorporating the auxiliary

information. These weights must to be sufficiently close to di’s according to some
dissimilarity distance function Da(w, d) on R

n
+, and satisfying the set of calibration

constraints
N−1

∑

i∈a

wiXi(t) = µX(t).

The functional estimator for µY (t) based on the calibration weights is expressed
by the linear weighted estimator µ̂Y (t) = N−1

∑
i∈a wiYi(t). Different calibration

estimators can be obtained depending on the chosen distance function Deville and
Särndal [7]. However, it is well known that, in the finite dimensional setting, all of
calibration estimators are asymptotically equivalent to the one obtained through the
use of the popular chi-square distance function Da(w, d) =

∑
i∈a(wi−di)

2/2diqi, where
qi is an individual given positive weight uncorrelated with di.
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Assuming a point-wise multiple linear regression model Ramsay and Silverman
[25], Yi(t) = Xi(t)

⊤β(t) + εi(t), where εi(t) is the ith zero-mean measurement
functional error independent of Xi(t) with variance structure given by a diagonal
matrix with elements 1/qi unrelated to di, then the estimator for µY (t) from the
restricted minimization problem can be expressed as

µ̂Y (t) = µ̂HT
Y (t) +

{
µX(t)− µ̂HT

X (t)
}⊤

β̂(t),

where µ̂HT
X (t) =

∑
i∈a diXi(t) denotes the Horvitz-Thompson estimator for the

functional vector X(t), and β̂(t) =
{∑

i∈a diqiXi(t)X i(t)
⊤
}−1∑

i∈a diqiXi(t)Yi(t)
is the weighted estimator of the functional coefficient vector β(t), whose uniqueness
relies on the existence of the inverse of the matrix

∑
i∈a diqiXi(t)X i(t)

⊤ for all t.

The calibration weights can be generalized allowing functional calibration weights
wi(t) which can be obtained from the minimization of the generalized chi-square
distance D∗

a(w, d), expressed below, subject to the functional calibration restriction

N−1
∑

i∈a

wi(t)X i(t) = µX(t). (1)

The existence of functional calibration weights is stated in the next theorem, which
is a straightforward generalization of the finite dimensional results of Deville and
Särndal [7].

Theorem 1. Assume the existence of a functional vector w(t) = (w1(t), . . . , wn(t))
⊤

such that (1) holds, and the inverse of the matrix
∑

i∈a diqi (t)Xi(t)X i(t)
⊤. Then, for

a fixed t ∈ [0, T ], ŵ(t) minimizes over C([0, T ]n) the generalized chi-square distance

D∗
a(w, d) =

∑

i∈a

(
wi(t)− di

)2

2diqi(t)

subject to (1), where the functional calibration weight ŵi(t) for all i ∈ a is given by

ŵi(t) = di


1 + qi(t)

{
µX(t)− µ̂HT

X (t)
}⊤
{
∑

i∈a

diqi(t)X i(t)X i(t)
⊤

}−1

Xi(t)


 .

Note that, for this generalized setting, the functional calibration estimator for µY (t)
is expressed by

µ̂Y (t) = N−1
∑

i∈a

ŵi(t)Yi(t) = µ̂HT
Y (t) +

{
µX(t)− µ̂HT

X (t)
}⊤

β̂(t),

where

β̂(t) =

{
∑

i∈a

diqi(t)X i(t)Xi(t)
⊤

}−1∑

i∈a

diqi(t)Xi(t)Yi(t),

provided the inverse of the matrix
∑

i∈a diqi(t)X i(t)X i(t)
⊤ exists for all t.
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3 Maximum entropy on the mean for survey sampling

Let (X̃ ,F) be an arbitrary measurable space over which we want to search for an
σ-finite positive measure µ. The maximum entropy on the mean principle provides
an efficient way of getting an estimator for some linear functional µ

Ỹ
(t) =

∫
X̃ Ỹ (t)dµ

satisfying a known q-vector of functionals
∫
X̃ X̃(t)dµ = µX(t), where Ỹ (t) : X̃ →

C([0, T ]) and X̃(t) : X̃ → C([0, T ]q).

A natural unbiased and consistent estimator of µ
Ỹ
(t) is the empirical functional

mean µ̂
Ỹ
(t) =

∫
χ
Ỹ (t)dµn = n−1

∑
i∈a Ỹi(t), where µn = n−1

∑
i∈a δTi

is the
corresponding empirical distribution with T1, . . . , Tn an observed random sample from
µ. Despite properties of this estimator, it may not have the smallest variance in this
kind of framework. Therefore, incorporating prior functional auxiliary information the
variance of an asymptotically unbiased functional estimator can be reduced applying
the maximum entropy on the mean principle.

The philosophy of the principle consists in to enhance µ̂
Ỹ
(t) considering the

maximum entropy on the mean functional estimator

µ̂MEM

Ỹ
(t) =

∫

χ

Ỹ (t)dµ̂MEM
n = n−1

∑

i∈a

p̂i(t)Ỹi(t), for all t ∈ [0, T ] ,

where µ̂MEM
n = n−1

∑
i∈a p̂i(t)δTi

is a weighted version of the empirical distribution
µn, with p̂(t) = (p̂1(t), . . . , p̂n(t))

⊤ given by the expectation of the independent n-
dimensional stochastic process P (t) = (P1(t), . . . , Pn(t))

⊤ drawn from a posterior finite
distribution ν∗, p̂(t) = Eν∗ [P (t)] for all t ∈ [0, T ], where ν∗ must to be close to a prior
distribution υ, which transmits the information that µ̂MEM

n must to be sufficiently
close to µn.

Therefore, the maximum entropy on the mean principle focuses on reconstructing
the posterior measure ν∗ that maximizes the entropy, over the convex set of all
probability measures, S(ν ‖ υ) = −D(ν ‖ υ) subject to the linear functional constraint
holds in mean,

Eν∗

[
n−1

∑

i∈a

Pi(t)X̃ i(t)

]
= µX(t), ∀t ∈ [0, T ] .

We recall that D(ν ‖ υ) is the I-divergence or relative divergence or Kullbach-
Leibler information divergence between a feasible finite measure ν with respect to a
given prior measure υ (see, for instance, Csiszár [4]) defined by

D(ν ‖ υ) =

{∫
Ω log

(
dν
dυ

)
dν − ν(Ω) + 1 if ν ≪ υ

+∞ otherwise.

To establish the connection between calibration and maximum entropy on the
mean approaches the following notation is adopted Ỹi(t) = N−1ndiYi(t), X̃i(t) =
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N−1ndiXi(t) and pi(t) = πiwi(t), such that the functional Horvitz-Thompson
estimator of µY (t) and the functional calibration constrain (1) can be, respectively,
expressed as

µ̂HT
Y (t) = N−1

∑

i∈a

diYi(t) = n−1
∑

i∈a

Ỹi(t)

and
n−1

∑

i∈a

pi(t)X̃i(t) = N−1
∑

i∈a

wi(t)Xi(t) = µX(t), ∀t ∈ [0, T ] .

Hence, the functional calibration estimation problem follows the structure of the
maximum entropy on the mean principle, where the corresponding estimator is defined
by

µ̂MEM
Y (t) = n−1

∑

i∈a

p̂i(t)Ỹi(t) = N−1
∑

i∈a

ŵi(t)Yi(t).

The functional calibration weighting vector p̂(t) with coordinates p̂i(t) = πiŵi(t)
for i ∈ a, is the expectation of the n-dimensional stochastic process P (t) with
coordinates Pi(t) = πiWi(t), drawn from ν∗,

p̂(t) = Eν∗
[
P (t)

]
, ∀t ∈ [0, T ] ,

where the posterior measure ν∗ = ⊗i∈aν
∗
i (by the independence of Pi’s) maximizes the

entropy S(· ‖ υ) subject to the calibration constraint is fulfilled in mean,

Eν∗

[
n−1

∑

i∈a

Pi(t)X̃ i(t)

]
= Eν∗

[
N−1

∑

i∈a

Wi(t)X i(t)

]
= µX(t), ∀t ∈ [0, T ] .

Note that as pi(t) = πiwi(t) and ŵi(t) must to be sufficiently close to di, then the
p̂i(t) must be close enough to 1 for each i ∈ a.

3.1 Reconstruction of the measure ν
∗

For simplicity and without loss generality we assume that T = 1. The posterior
distribution ν∗ can be reconstructed adopting the random measure approach for infinite
dimensional inverse problems explained in detail by Gzyl and Velásquez [14]. To do
this, we express the calibration constraint (1) as an infinite dimensional linear inverse
problem writing wi(t) as

wi(t) =

∫ 1

0
K(s, t)̟i (s) ds+ di for each i ∈ a,

where K(s, t) is a known continuous, real-valued and bounded kernel function and
̟i = Eν [Wi (s)], where W is a stochastic process.
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Hence, the infinite dimensional inverse problem, which takes the form of a Fredholm
integral equation of the first kind, is

Eν [KW] = Eν

{
∑

i∈a

[∫ 1

0
K(s, t)Wi (s) ds+ di

]
Xi(t)

}

=

∫ 1

0

∑

i∈a

K(s, t)X i(t)̟i (s) ds+
∑

i∈a

diXi(t)

= NµX(t), t ∈ [0, 1] .

(2)

To obtain the functions ̟∗
i (s) that solve the integral equation Eν [KW] = NµX(t),

the random measure approach adopted considers ̟i (s) as a density of a measure
̟i (s) ds, i ∈ a. Under this setting, we define the random measure Wi (a, b] =
Wi(b) − Wi(a) for (a, b] ⊂ [0, 1] such that dEν {Wi (0, s]} = ̟i(s)ds for each i ∈ a.
The next theorem ensures the existence of the posterior distribution ν∗ to obtain the
functions ̟∗

i (s) depending on the assumed prior distribution υ.

Theorem 2. Let υ be a prior positive probability measure, λ = λ(t) a measure in the

class of continuous measures on [0, 1]q, M (C [0, 1]q), and V = {ν ≪ υ : Zυ(λ) < +∞}
a nonempty open class, where Zυ(λ) = Eυ [exp {〈λ,KW〉}], with

〈λ,KW〉 =

∫ 1

0
λ⊤(dt)

(∫ 1

0

∑

i∈a

K(s, t)Xi(t)dWi(s) +
∑

i∈a

diXi(t)

)
. (3)

Then there exists an unique probability measure

ν∗ = argmax
ν∈V

S(ν ‖ υ),

subject to Eν [KW] = NµX(t), which is achieved at

dν∗/dυ = Z−1
υ (λ∗) exp {〈λ∗,KW〉} ,

where λ∗(t) minimizes the functional

Hυ(λ) = logZυ(λ)− 〈λ, NµX〉.

Based on the Theorem 2, we will carry out the reconstruction of ν, assuming the
centered Gaussian and compound Poisson random measures as prior measures, in order
to estimate the respective functional calibration weights ŵi(t), i ∈ a. The estimates
are given by the following two Lemmas.

Lemma 1. Let υ be a centered stationary Gaussian measure on
(
C([0, 1]),B(C([0, 1]))

)
,

and λ = λ(t) ∈ M (C [0, 1]q). Then, ŵi(t) =
∫ 1
0 K(s, t)̟∗(s)ds + di i ∈ a, where

̟∗(s) =
∑

i′∈a

∫ 1

0
K(s, t′)X⊤

i′ (t
′)λ∗(dt′).

7



Lemma 2. Let Wi(s) =
∑N(s)

k=1 ξik be a compound Poisson process, where N(s) is a

homogeneous Poisson process on [0, 1] with intensity parameter γ > 0, and ξik, k ≥ 1
are independent and identically distributed real-valued random variables for each i ∈ a
with distribution u on R satisfying u({0}) = 0, and independent of N(s). Then,

ŵi(t) =
∫ 1
0 K(s, t)̟∗(s)ds+ di i ∈ a, where

̟∗
i (s) =

∫

R

ξi exp

{
∑

i∈a

∫ 1

0
K(s, t)ξiX

⊤
i (t)λ

∗(dt)

}
u (dξi) .

4 Approximation of the maximum entropy on the mean

functional estimator

To approximate the functional calibration weights and the functional maximum
entropy on the mean estimator for the finite population mean of Y (t) with the
assumed prior measure, an Euler discretization scheme is used. Consider a partition of
(s, t) ∈ [0, 1]2 in J and L equidistant fixed points, (j − 1)/J < sj ≤ j/J , j = 1, . . . , J ,
(l− 1)/L < tl ≤ l/L, l = 1, . . . , L, respectively. For the corresponding prior measures,
the approximations for functions Zυ(λ), Hυ(λ) and λ∗(t) are based on the respective
results found in the Appendix.

4.1 Centered Gaussian measure

For a prior centered Gaussian random measure, the approximations of the linear
moment calibration constraint (2) and the inner product 〈λ,KW〉 are, respectively,
given by

Eν




J∑

j=1

∑

i∈a

K(sj, tl)∆Wi(sj)Xi(tl) +
∑

i∈a

diXi(tl)


 = NµX(tl)

and

1

L

L∑

l=1

λ⊤(tl)
J∑

j=1

∑

i∈a

K(sj, tl)∆Wi(sj)X i(tl) +
1

L

L∑

l=1

λ⊤(tl)
∑

i∈a

diXi(tl)

=
1

L

J∑

j=1

∑

i∈a

L∑

l=1

K(sj, tl)∆Wi(sj)λ
⊤(tl)X i(tl) +

1

L

∑

i∈a

di

L∑

l=1

λ⊤(tl)X i(tl),

where ∆Wi(sj) = Wi(sj)−Wi(sj−1) is the discrete version of dWi(s) for i ∈ a.

Therefore, we have that Zυ(λ) is approximated at the grid (see equation (6) of the
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proof of Lemma 1 in the Appendix) by

Eυ


exp





1

L

∑

i∈a

di

L∑

l=1

λ⊤(tl)X i(tl) +
1

L

J∑

j=1

∑

i∈a

L∑

l=1

K(sj, tl)λ
⊤(tl)X i(tl)∆Wi(sj)








= exp





1

L

∑

i∈a

di

L∑

l=1

λ⊤(tl)X i(tl) +
J∑

j=1

1

2J

(
1

L

∑

i∈a

L∑

l=1

K(sj, tl)λ
⊤(tl)Xi(tl)

)2




= exp

{
1

L

∑

i∈a

di

L∑

l=1

λ⊤(tl)Xi(tl)

}
J∏

j=1

exp

{
1

2J

∑

i∈a

∑

i′∈a

hi(sj)hi′(sj)

}

= exp

{
1

L

∑

i∈a

di

L∑

l=1

λ⊤(tl)Xi(tl)

}
J∏

j=1

zi (hi(sj)) ,

where hi(sj) = L−1
∑L

l=1K(sj , tl)λ
⊤(tl)X i(tl), i ∈ a, j = 1, . . . J , and l = 1, . . . L.

Now, the finite dimensional maxentropic solution for ̟i(sj) for each i ∈ a is
approximated by (see Gzyl and Velásquez [14])

̟∗
i (sj) =

d log zi (hi(sj))

d(2J)−1hi(sj)

∣∣∣∣
hi(sj)=Kλ∗

=
∑

i′∈a

hi′(sj)

∣∣∣∣∣
hi(sj)=Kλ∗

=
1

L

L∑

l=1

∑

i′∈a

K(sj, t
′
l)λ

∗⊤(t′l)X i′(t
′
l),

(4)

where the finite dimensional version of λ∗(t′l), (l−1)/L < tl ≤ l/L, l = 1, . . . , L, is the
minimizer of Hυ(λ), whose approximation (see equation (7) of the proof of Lemma 1
in the Appendix) is

1

2

L∑

l=1

L∑

l=1

λ⊤(tl)


 1

JL2

J∑

j=1

K(sj, tl)K(sj , t
′
l)
∑

i∈a

∑

i′∈a

Xi(tl)X
⊤
i′ (t

′
l)


λ(t′l)

+
1

L

L∑

l=1

(
∑

i∈a

diX
⊤
i (tl)−Nµ⊤

X(tl)

)
λ(tl).

The first order condition (see equation(8)) associated to this minimization problem is

1

JL2

J∑

j=1

L∑

l=1

K(sj, tl)K(sj , t
′
l)
∑

i∈a

∑

i′∈a

X i(tl)X
⊤
i′ (t

′
l)λ

∗(t′l)

+
1

L

(
NµX(tl)−

∑

i∈a

diXi(tl)

)
= 0,
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whose solution λ∗(t′l) is given by

λ∗(t′l) = JL




J∑

j=1

L∑

l=1

K(sj , tl)K(sj, t
′
l)
∑

i∈a

∑

i′∈a

Xi(tl)X
⊤
i′ (t

′
l)




−1

×

(
NµX(tl)−

∑

i∈a

diXi(tl)

)
.

Finally, the approximation of the finite dimensional solution of ŵi(t) is

ŵi(tl) =
1

J

J∑

j=1

K(sj , tl)̟
∗
i (sj) + di,

where ̟∗
i (sj) es given by the equation (4).

4.2 Compound Poisson measure

Based on equations (9) and (10) of the proof of Lemma 2 in the Appendix, the
approximation of Zυ(λ) is given by

Eυ

[
exp

{
〈g(sj), dWi〉+

〈
λ,
∑

i∈a

diX i(tl)

〉}]

= exp

{〈
λ,
∑

i∈a

diXi(tl)

〉}
Eυ [exp {〈g(sj), dWi〉}]

= exp

{〈
λ,
∑

i∈a

diXi(tl)

〉}

×
J∏

j=1

exp

{
γ

J

∫

R

(
exp

{
1

L

∑

i∈a

ξi

L∑

l=1

K(sj, tl)λ
⊤(tl)Xi(tl)

}
− 1

)
u (dξi)

}

= exp

{〈
λ,
∑

i∈a

diXi(tl)

〉}
J∏

j=1

exp

{
γ

J

∫

R

(
exp

{
∑

i∈a

ξihi(sj)

}
− 1

)
u (dξi)

}

= exp

{〈
λ,
∑

i∈a

diXi(tl)

〉}
J∏

j=1

zi (hi(sj)) , i ∈ a,

where hi(sj) = L−1
∑L

l=1 K(sj, tl)λ
⊤(tl)Xi(t), i ∈ a, j = 1, . . . J , and〈

λ,
∑

i∈a diXi(tl)
〉
= L−1

∑
i∈a di

∑L
l=1 λ

⊤(tl)Xi(tl).
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The approximated maxentropic solution for ̟i(sj) for each i ∈ a is

̟∗
i (sj) =

d log zi (hi(sj))

dhi(sj)

∣∣∣∣
hi(sj)=Kλ∗

=
γ

J

∫

R

ξi exp

{
∑

i∈a

ξihi(sj)

}
u (dξi)

∣∣∣∣∣
hi(sj)=Kλ∗

=
γ

J

∫

R

ξi exp

{
1

L

∑

i∈a

L∑

l=1

K(sj, tl)ξiX
⊤
i (tl)λ

∗(tl)

}
u (dξi) ,

(5)

where the finite dimensional version of λ∗(tl), is the minimizer of Hυ(λ), whose
approximation, by the equation (11) of the proof of Lemma 2 in the Appendix, is

Hυ(λ) =
γ

J

J∑

j=1

∫

R

(
exp

{
1

L

∑

i∈a

L∑

l=1

K(sj, tl)ξiX
⊤
i (tl)λ(tl)

}
− 1

)
u (dξi)

+
1

L

L∑

l=1

(
∑

i∈a

diX
⊤
i (tl)−Nµ⊤

X(tl)

)
λ(tl)

The corresponding equation for λ∗(tl) that minimizes Hυ(λ) is given by the nonlinear
system of equations (see equation (12) in the Appendix)

∑

i∈a


 1

J

J∑

j=1

K(sj, tl)

(
γL

∫

R

ξi exp

{
1

L

∑

i∈a

L∑

l=1

K(sj, tl)ξiX
⊤
i (tl)λ

∗(tl)

}
u (dξi)

)
+ di




×Xi(tl) = NµX(tl)

Finally, as in the Gaussian measure case, the finite dimensional solution of ŵi(t) is
approximated by ŵi(tl) = J−1

∑J
j=1K(sj, tl)̟

∗
i (sj) + di with ̟∗

i (sj) given by the
equation (5).

5 Simulation study

We shall illustrate through a simple simulation study the performance of results
obtained in the above section. Considering a finite population UN of size N = 1000, we
generate a functional random variable Yi(t) by the point-wise multiple linear regression
model

Yi(t) = α(t) +X i(t)
⊤β(t) + εi(t), i ∈ UN ,

where α(t) = 1.2 + 2.3 cos (2πt) + 4.2 sin (2πt), β(t) = (β1(t), β2(t))
⊤ with

β1(t) = cos (10t) and β2(t) = t sin (15t), X i(t) = (Xi1(t),Xi2(t))
⊤, and εi(t) ∼

N
(
0, σ2

ε(1 + t)
)

with σ2
ε = 0.1, and independent of Xi(t). The auxiliary functional

covariates are defined by Xi1(t) = Ui1 + f1(t) with f1(t) = 3 sin(3πt + 3), and
Xi2(t) = Ui2 + f2(t) with f2(t) = − cos(πt), where Ui1 and Ui2 are independent and,
respectively, i.i.d. uniform random variables on the intervals [−1, 1.3] and [−0.5, 0.5].

11



The design time points for t ∈ [0, 1] and s ∈ [0, 1] are tj = j/J , j = 1, . . . , J
and sl = l/L, l = 1, . . . , L, with J = 50 and L = 80 The Figures 1 and 2
show, respectively, the simulated finite population auxiliary functional covariates and
functional responses for each i ∈ UN , and the respective finite population functional
means, µX(t) = (µX1

(t), µX2
(t))⊤ and µY (t) = N−1

∑
i∈UN

Yi(t). Assuming a
uniform fixed-size sampling design we drawn a sample a ∈ UN of n = 0.12N
elements without replacement. For the kernel function we assumed a Gaussian one,

K(t, s) = exp
{
− |t− s|2 /2σ2

}
with σ2 = 0.5. The random variables ξi for the

compound Poisson case are assumed i.i.d. uniform on the interval [−1, 1], and γ = 1.
To solve the nonlinear system of equations for λ∗(tl) in the compound Poisson case,
we used the R-package BB (see Varadhan [32] and Varadhan and Gilbert [33]).

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

t

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

t

Figure 1: Population auxiliary functional variables (gray), Xi1(t) (on the left) and
Xi2(t) (on the right). Functional finite population means, µX1

(t) and µX2
(t) (solid

line)

The graphical comparisons of the estimators for a random selected repetition are
illustrated in the Figure 2. The figure shows, in general, a good performance, specially
for the estimator assuming the Gaussian measure. The principal differences with
respect to the theoretical functional finite population mean are localized on the edges,
particularly on the left edge. The Horvitz-Thompson estimator, in both cases, has
a little departure localized around the deep valley. However our estimator has not
this departure. A nice feature of the functional calibration method is that permits to
check graphically how well the estimator satisfies the calibration constraints for each
covariate, N−1

∑
i∈a ŵi(t)X i(t) = µX(t). This is illustrated in the Figure 3.

To evaluate the performance of the maximum entropic functional calibration
estimator, µ̂MEM

Y (t), assuming the Gaussian and compound Poisson prior measures,

12
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Compound Poisson measure

t

Figure 2: Population survey functions Yi(t) (in gray), functional finite population mean
µY (t) (solid line), and the Horvitz-Thompson (dotted line) and functional maximum
entropy on the mean (dashed line) estimators
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Figure 3: Functional calibration constraint (1) for Gaussian (on the left) and compound
Poisson (on the right) measures. µX(t) (solid line), N−1

∑
i∈a ŵi(t)Xi(t) (dash)
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Table 1: Bias-variance decomposition of MSE

Functional estimator MSE Bias2 Variance

Horvitz-Thompson 0.2391 0.0005 0.2386
Maximum entropy on the mean (Gaussian) 0.2001 0.0006 0.1995
Maximum entropy on the mean (Poisson) 0.2333 0.0084 0.2249

we calculated its empirical bias–variance decomposition of the mean square errors and
compare it with the functional Horvitz-Thompson estimator µ̂HT

Y (t). The simulation
study was conducted with 100 repetitions. In Table 1 we can see that, with
respect to the Horvitz-Thompson estimator, the maximum entropic estimator has
smaller variance and mean square error for both prior measures, particularly for the
Gaussian prior. Although the Horvitz-Thompson estimator has smaller bias squared,
the differences are not significant. Also, the small value for the bias confirm the
unbiasedness of the functional maximum entropy on the mean and Horvitz-Thompson
estimators.

6 Concluding remarks

In this paper we have proposed an extension to the problem of obtaining an estimator
for the finite population mean of a survey variable incorporating complete auxiliary
information under an infinite dimensional setting. Considering that both the survey
and the set of auxiliary variables are functions, the respective functional calibration
constraint is expressed as an infinite dimensional linear inverse problem, whose solution
offers the functional survey weights of the calibration estimator. The solution of the
problem is conducted by mean the maximum entropy on the mean principle, which
is a powerful probabilistic-based regularization method to solve constrained linear
inverse problems. Here we assume a centered Gaussian and compound Poisson random
measures as prior measures to obtain the functional calibration weights. However,
other random measures can be considered also.

The simulations study results show that the proposed functional calibration
estimator improves its accuracy compared with the Horvitz-Thompson estimator. In
the simulations, both the functional survey and auxiliary variables where assumed with
amplitude variations (variation in the y-axis) only. More complex extensions allowing
both amplitude and phase (variation in the x-axis) variations are possible.

Finally, a further interesting extension of the functional calibration estimation
problem under the maximum entropy on the mean approach can be conducted following
the idea of model-calibration proposed by Wu and Sitter [35], Wu [34] and Montanari
and Ranalli [21]. This may be accomplished considering a nonparametric functional
regression Yi(t) = µ {Xi(t)}+ εi(t), i ∈ UN , t ∈

(
[0, T ] to model the relation between

the functional survey variable and the set of functional auxiliary covariates in order to
allows a more effective use of the functional auxiliary information.
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Appendix

Proof of Theorem 1. The Lagrangian function associated to the restricted minimiza-
tion problem is

La(w,λ) = D∗
a(w, d) + λ⊤(t)

(
µX(t)−N−1

∑

i∈a

wi(t)X i(t)

)
,

where λ(t) is the corresponding functional Lagrange multiplier vector. The first order
conditions are

wi(t)− di
diqi (t)

− λ(t)⊤X i(t) = 0, i ∈ a

which can be expressed as

wi(t) = di

[
1 + qi(t)λ(t)

⊤Xi(t)
]
, i ∈ a

where, its uniqueness is guaranteed by the continuous differentiability of D∗
a(w, d) with

respect to wi(t) for all i ∈ a, and by its strictly convexity.

From the functional calibration restriction (1) and by the existence assumption on
the inverse of the matrix

∑
i∈a diqi(t)Xi(t)X i(t)

⊤ for all t, the Lagrange functional
multiplier vector is determined by

λ̂(t) =

(
∑

i∈a

diqi(t)Xi(t)X i(t)
⊤

)−1 (
µX(t)− µ̂HT

X (t)
)
.

Finally, replacing λ̂(t) into the first order conditions, the calibration functional
estimator ŵi(t) of the Theorem is obtained.

Proof of Theorem 2. Csiszár [5, Theorem 3, page 775].

Proof of Lemma 1. According to Theorem 2, the maximum of the entropy S(ν ‖ υ)
over the class V = {ν ≪ υ : Zυ(λ) < ∞} subject to the linear moment calibration
constraint Eυ [KW] = NµX(t) is attained at dν∗/dυ = Z−1

υ (λ∗) exp {〈λ∗,KW〉},
where

Zυ(λ) = exp

{
Eυ [〈λ,KW〉] +

1

2
Vυ [〈λ,KW〉]

}

= exp




∑

i∈a

di

∫ 1

0
λ⊤(dt)X i(t) +

1

2

∫ 1

0

(
∑

i∈a

∫ 1

0
K(s, t)λ⊤(dt)X i(t)

)2

ds



 ,

(6)

owing to that Eυ [dWi (s)] = 0, and Vυ [dWi (s)] = ds, i ∈ a.
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Now we proceed with the problem of finding λ∗(dt) ∈ Mb (C [0, 1]q), where Mb is
the class of bounded continuous measures, such that minimizes

Hυ(λ) =
1

2

∫ 1

0

(
∑

i∈a

∫ 1

0
K(s, t)λ⊤(dt)X i(t)

)(
∑

i′∈a

∫ 1

0
K(s, t′)λ⊤(dt′)Xi′(t

′)

)
ds

+

∫ 1

0
λ⊤(dt)

(
∑

i∈a

diXi(t)−NµX(t)

)

=
1

2

∑

i∈a

∑

i′∈a

∫ 1

0

∫ 1

0

∫ 1

0
K(s, t)K(s, t′)λ⊤(dt)X i(t)X

⊤
i′ (t

′)λ(dt′)ds

+

∫ 1

0
λ⊤(dt)

(
∑

i∈a

diXi(t)−NµX(t)

)
.

(7)

The corresponding equation for λ∗(dt) that minimizes Hυ(λ) is given by

∑

i∈a

∑

i′∈a

∫ 1

0

∫ 1

0
K(s, t)K(s, t′)X i(t)X

⊤
i′ (t

′)λ∗(dt′)ds+
∑

i∈a

diXi(t) = NµX(t), (8)

which can be rewritten as

∑

i∈a

[∫ 1

0
K(s, t)

(
∑

i′∈a

∫ 1

0
K(s, t′)X⊤

i′ (t
′)λ∗(dt′)

)
ds+ di

]
Xi(t) = NµX(t),

obtaining, by the moment calibration constraint (2), the Lemma’s result.

Proof of Lemma 2. For each i ∈ a, define a random variable mi ((a, b]) for (a, b] ⊂
[0, 1],

mi ((a, b]) , Wi(b)−Wi(a) =

N(b)∑

k=N(a)+1

ξik.

By the Lévy-Khintchine formula for Lévy processes, the moment generating
function of the n-dimensional compound Poisson process W(s) is given by

Eυ [exp {〈α,W(s)〉}] = exp

{
sγ

∫

Rn

(
e〈α,ξk〉 − 1

)
u (dξk)

}
, α ∈ R

n,

where ξk = (ξ1k, . . . , ξnk)
⊤. This formula can be generalized for a continuous function

g(s) from [0, 1] to R and defining 〈g(s),Wi〉 =
∫ 1
0 g(s)dWi(s) for each i ∈ a, which is

approximated by
∑J

j=1 g (sj−1)mi ((sj−1, sj]), with sj = j/J , j = 1, . . . , J . Thus, by
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the independence of mi ((a, b]), we have that

Eυ [exp {〈g(s), dWi〉}] = lim
J→∞

J∏

j=1

Eυ [exp {g (sj−1)mi ((sj−1, sj])}]

= lim
J→∞

J∏

j=1

exp {Eυ [exp {g (sj−1) ξi}]}

= lim
J→∞

J∏

j=1

exp

{
γ

J

∫

R

(exp {g (sj−1) ξi} − 1) u (dξi)

}

= exp

{
γ

∫ 1

0
ds

∫

R

(exp {g (s) ξi} − 1) u (dξi)

}
, i ∈ a.

(9)

Now, by the Theorem 2, the maximum of the entropy S over the class V subject
to Eυ [KW] = NµX(t) is achieved at dν∗/dυ = Z−1

υ (λ∗) exp {〈λ∗,KW〉} with

〈λ,KW〉 =

∫ 1

0
λ⊤(dt)

∫ 1

0

∑

i∈a

K(s, t)Xi(t)dWi(s) +

∫ 1

0
λ⊤(dt)

∑

i∈a

diXi(t)

= 〈g(s),Wi〉+

〈
λ,
∑

i∈a

diXi(t)

〉
,

where g(s) =
∫ 1
0 λ⊤(dt)

∑
i∈aK(s, t)X i(t).

Therefore,

Zυ(λ) = exp

{
γ

∫ 1

0
ds

∫

R

(exp {g (s) ξi} − 1) u (dξi)

}
exp

{〈
λ,
∑

i∈a

diXi(t)

〉}

= exp

{
γ

∫ 1

0
ds

∫

R

(exp {g (s) ξi} − 1) u (dξi) +

〈
λ,
∑

i∈a

diXi(t)

〉} (10)

Finally, as in the proof of Lemma 1, the problem is concentrated to find λ∗(t) such
that minimizes

Hυ(λ) = γ

∫ 1

0
ds

∫

R

(
exp

{∫ 1

0
λ⊤(dt)

∑

i∈a

K(s, t)ξiXi(t)

}
− 1

)
u (dξi)

+

∫ 1

0
λ⊤(dt)

(
∑

i∈a

diXi(t)−NµX(t)

)
.

(11)

The corresponding equation for λ∗(dt) that minimizes Hυ(λ) is given by

∑

i∈a

[∫ 1

0
K(s, t)

(∫

R

ξi exp

{
∑

i∈a

∫ 1

0
K(s, t)ξiX

⊤
i (t)λ

∗(dt)

}
u (dξi)

)
ds+ di

]

×Xi(t) = NµX(t),

(12)

obtaining, by the moment calibration constraint (2), the Lemma’s result.
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