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Abstract

The luminosity distance can be used to determine the properties of large scale structure around the

observer. To this purpose we develop a new inversion method to map luminosity distance to a LTB

metric based on the use of the exact analytical solution for Einstein equations. The main advantages

of this approach are an improved numerical accuracy and stability, an exact analytical setting of the

initial conditions for the differential equations which need to be solved and the validity for any sign

of the functions determining the LTB geometry. Given the fully analytical form of the differential

equations, this method also simplifies the calculation of the red-shift expansion around the apparent

horizon point where the numerical solution becomes unstable. We test the method by inverting the

supernovae Ia luminosity distance function corresponding to the the best fit ΛCDM model. We find

that only a limited range of initial conditions is compatible with observations, or a transition from

red to blue shift can occur at relatively low redshift. Despite LTB solutions without a cosmological

constant have been shown not to be compatible with all different set of available observational data,

those studies normally fit data assuming a special functional ansatz for the inhomogeneity profile,

which often depend only on few parameters. Inversion methods on the contrary are able to fully explore

the freedom in fixing the functions which determine a LTB solution. For this reason this inversion

method could be applied to explore more exhaustively the compatibility with observations. Another

important possible application is not about LTB solutions as cosmological models, but rather as tools

to study the effects on the observations made by a generic observer located in an inhomogeneous

region of the Universe where a fully non perturbative treatment involving exact solutions of Einstein

equations is required.
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I. INTRODUCTION

When different cosmological data [1–8] are interpreted using FLRW models a dominant

dark energy must be introduced. Since the nature of dark energy is not well understood, there

has been some efforts to look for alternative explanations based on relaxing the hypothesis

of large scale homogeneity. It is well known that inhomogeneous matter dominated models

can fit some of the available observations [9–30], and different methods have been developed

to solve the inversion problem (IP) to map a given observed luminosity distance function

DL(z) to the corresponding inhomogeneous metric. In this paper we will study the case of

a radially inhomogeneous spherically symmetric metric pressureless solution, described by a

Lemaitre-Tolman-Bondi (LTB) solution, assuming a central location of the observer. This is

an open violation of the Copernican principle, but since this is more a philosophical principle

than a fully observationally established fact, it is worth investigation this type of cosmological

model. Previous solutions to the inversion problems [10, 31] were based on the solution of

the radial light cone geodesics using a different system of coordinates, but they all required

a numerical integration of the background Einstein’s equations, while in this paper we derive

a fully analytical method for the solution of the IP, based on the use of the exact analytical

solution. The use of galaxy number counts [26] has also been proposed to distinguish between

inhomogeneous models and ΛCDM using both both analytical and numerical approaches [12,

20, 31].

There has also been a considerable interest on the effects of large scale inhomogeneities in

presence of dark energy [32–36]. More recently there has been some evidence that LTB solutions

cannot provide a fully consistent cosmological model compatible with all available observations

[37, 38]. These studies are nevertheless based on fitting experimental data with some particular

functional ansatz for the functions defining the model, and as such they do not explore the full

space of all possible inhomogeneity profiles. The numerical inversion approach adopted in the

present paper is on the contrary able to explore the full range of all the possible LTB solutions

and initial conditions.

Since the inversion equations are numerically unstable around the redshift corresponding to

the maximum of the angular diameter distance, a local Taylor expansion is necessary around

that point, for which our fully analytical version of differential equations is particularly suitable.

Our approach provides a local Taylor expansion of the solution at any point, and the numerical

solution of the differential equations is more stable since we don’t need to integrate numerically
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the background equations. The use of the analytical solution allows also to set exactly the

necessary initial conditions, while in previous attempts [10] it was necessary to derive some

approximate consistency condition. As a result we can get a more accurate solution of the

IP, and we are also able to explore the full class of LTB models with an arbitrary value of

the central curvature in a self-consistent way. We apply this method to invert the theoretical

luminosity distance function corresponding to the best find ΛCDM parameters and find that

only a certain range of central of initial conditions is allowed, since for other models a transition

from red to blue shift occurs, making these models incompatible with the observed luminosity

distance. We also show that the value of the Hubble parameter at the last scattering surface

is independent of the central value of the curvature, and differ by about 20% from the best fit

ΛCDM value as constrained by CMB observations. This confirms the necessity to introduce a

bang function to fit CMB data with LTB models, but contrary to previous numerical inversion

studies it shows it independently of the central value of the functions defining the LTB model,

by exploring the full class of possible initial conditions.

The method we developed does not need to be applied to LTB metrics as cosmological models

describing the local universe around us, but could be applied to study the effects of large scale

inhomogeneities for a generic observer located inside some region of the Universe corresponding

to a local oversensitivity or underdensity which cannot be modeled simply perturbation of a

FLRW metric.

II. LEMAITRE-TOLMAN-BONDI (LTB) SOLUTION

Lemaitre-Tolman-Bondi solution can be written as [39–41]

ds2 = −dt2 +
(R,r )

2 dr2

1 + 2E
+R2dΩ2 , (1)

where R is a function of the time coordinate t and the radial coordinate r, R = R(t, r), E is

an arbitrary function of r, E = E(r) and R,r = ∂R/∂r.

Einstein’s equations give
(

Ṙ

R

)2

=
2E(r)

R2
+

2M(r)

R3
, (2)

ρ(t, r) =
2M,r
R2R,r

, (3)

with M = M(r) being an arbitrary function of r and the dot denoting the partial derivative

with respect to t, Ṙ = ∂R(t, r)/∂t. The solution of Eq. (2) can be expressed parametrically in
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terms of a time variable η =
∫ t dt′/R(t′, r) as

R̃(η, r) =
M(r)

−2E(r)

[

1− cos
(

√

−2E(r)η
)]

, (4)

t(η, r) =
M(r)

−2E(r)



η − 1
√

−2E(r)
sin

(

√

−2E(r)η
)



+ tb(r) , (5)

where R̃ has been introduced to make clear the distinction between the two functions R(t, r)

and R̃(η, r) which are trivially related by

R(t, r) = R̃(η(t, r), r) , (6)

and tb(r) is another arbitrary function of r, called the bang function, which corresponds to the

fact that big-bang/crunches can happen at different times. This inhomogeneity of the location

of the singularities is one of the origins of the possible causal separation [9] between the central

observer and the spatially averaged region for models with positive aD.

We introduce the variables

a(t, r) =
R(t, r)

r
, k(r) = −2E(r)

r2
, ρ0(r) =

6M(r)

r3
, (7)

so that the Einstein equations (2) and (3) are written in a form similar to those for FLRW

models,

ds2 = −dt2 + a2
[

(

1 +
a,r r

a

)2 dr2

1− k(r)r2
+ r2dΩ2

2

]

, (8)

(

ȧ

a

)2

= −k(r)

a2
+

ρ0(r)

3a3
, (9)

ρ(t, r) =
(ρ0r

3),r
3a2r2(ar),r

. (10)

The solution of Eqs. (4) and (5) can now be written as

ã(η̃, r) =
ρ0(r)

6k(r)

[

1− cos
(

√

k(r) η̃
)]

, (11)

t(η̃, r) =
ρ0(r)

6k(r)



η̃ − 1
√

k(r)
sin

(

√

k(r) η̃
)



+ tb(r) , (12)

where η̃ ≡ η r =
∫ t dt′/a(t′, r) .

In the rest of paper we will use this last set of equations and drop the tilde to make the

notation simpler. Furthermore, without loss of generality, we may set the function ρ0(r) to be

a constant, ρ0(r) = ρ0 = constant.
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III. GEODESIC EQUATIONS

The luminosity distance for an observer at the center of a LTB space as a function of the

redshift is given by

DL(z) = (1 + z)2R (t(z), r(z)) = (1 + z)2r(z)a (η(z), r(z)) , (13)

where
(

t(z), r(z)
)

or
(

(η(z), r(z)
)

is the solution of the radial null geodesic equations. The

past-directed radial null geodesic is given by

dT (r)

dr
= f(T (r), r) , f(t, r) =

−R,r(t, r)
√

1 + 2E(r)
, (14)

where T (r) is the time coordinate along the geodesic as a function of the the coordinate r.

Applying the definition of red-shift it is possible to obtain [42]:

dη

dz
=

∂rt(η, r)− F (η, r)

(1 + z)∂ηF (η, r)
= p(η, r) , (15)

dr

dz
= − a(η, r)

(1 + z)∂ηF (η, r)
= q(η, r) . (16)

where we have used

f(t(η, r), r) = F (η, r) , (17)

ḟ(t(η, r), r) =
1

a
∂ηF (η, r) , (18)

R,r(t, r) = ∂rR(t(η, r), r) + ∂ηR(t(η, r), r)∂rη , (19)

F (η, r) = − 1
√

1− k(r)r2
[∂r(a(η, r)r) + ∂η(a(η, r)r)∂rη]

= − 1
√

1− k(r)r2

[

∂r(a(η, r)r)− ∂η(a(η, r)r)a(η, r)
−1∂rt

]

. (20)

The functions p, q, F have an explicit analytical form which can be obtained from a(η, r) and

t(η, r). Using this approach the coefficients of equations (15) and (16) are fully analytical, which

is a significant improvement over previous methods which required a numerical integration of

the Einstein’s equations to obtain the function R(t, r). This version of the geodesics equations

is suitable for both numerical and analytical applications, in particular will be useful to obtain

a red-shift expansion of the inversion equations around the apparent horizon point.

IV. INITIAL CONDITIONS

Before deriving the set of differential equations for the solution of the inversion problem it

is important to analyze how many independent initial conditions we need to fix. Our final goal
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will be to set and solve a set of differential equations in red-shift space starting from the center,

where by definition z = 0. Given our choice of coordinates the model will be fully determined

by the functions k(z), r(z), η(z), corresponding to three initial conditions

r(0) = 0

η(0) = η0

k(0) = k0 . (21)

The system of differential equation we will derive only involves derivatives of order one respect

to the red-shift, so these initial conditions will be enough. Given the assumption of the central

location of the observer we have r0 = 0, while the observed value of the Hubble parameter

H0 corresponds to another constraint among the central values k0, η0, so only one of them is

independent. After defining the Hubble rate as

HLTB =
∂ta(t, r)

a(t, r)
=

∂ηa(η, r)

a(η, r)2
(22)

we need to impose the two following conditions

a(η0, 0) = a0 , (23)

HLTB(η0, 0) = H0, (24)

where a0 is, as expected, an arbitrary parameter, η0 is the value of the generalized conformal

time coordinate η corresponding to the central observer today, and H0 is the observed value of

the Hubble parameter.

After re-writing the solution in terms of the following more convenient dimensionless quan-

tities [18]

a(T, r) =
a0Ω

0
M sin2

(

1
2
T
√

K(r)
)

K(r)
, (25)

t(T, r) = H−1
0

Ω0
M

2K(r)



T − 1
√

K(r)
sin

(

√

K(r)T
)



+ tb(r) , (26)

k(r) = (a0H0)K(r) , (27)

η = T (a0H0)
−1 , (28)

ρ0 = 3Ω0
ma

3
0H

2
0 . (29)

we can solve eq.(23,24) for Ω0
M and T0 to finally get the initial conditions and the exact solution

in this form

a(T, r) =
a0(K0 + 1) sin2

(

1
2
T
√

K(r)
)

K(r)
, (30)

7



t(T, r) = H−1
0

1 +K0

2K(r)



T − 1
√

K(r)
sin

(

√

K(r)T
)



+ tb(r) , (31)

K0 = K(0) , (32)

T0 =
arctan (2

√
K0)√

K0

(33)

Ω0
m = K0 + 1 . (34)

Since we have three unknown {Ω0
M , T0, K0} and two constraints given by eq.(23,24) , one

of them can always remain free, and the other two can be expressed in terms of it. In this

paper we have chosen K0 to be the free parameter, but we could equivalently chose another

one. The above form of the solution is particularly useful to explore the full class of LTB

models since K0 is a free parameter which determines through equation (33) the central value

of the generalized dimensionless conformal time variable T0. H0 is also a free parameter which

can be set according to observations and fixes the scale for the definition of the dimensionless

quantities K(r), T,Ω0
m. This means that we can arbitrarily fix K0 and H0 as long as we impose

the correct initial condition given by eq.(33-34).

As expected a0 does not appear in observable quantities such as the cosmic time t(η, r), and

it can be fixed to 1. It can be easily checked that the above solution is by construction in

agreement with any given value of H0

HLTB
0 =

∂ta(t0, 0)

a(t0, 0)
=

∂ηa(η0, 0)

a(η0, 0)2
= (a0H0)

∂Ta(T0, 0)

a(T0, 0)2
= H0 , (35)

and for any K0 we can now determine the corresponding initial condition T0 = T (z = 0). In

this way we can self-consistently determine all the necessary initial conditions and we are left

with the freedom to fix K0 arbitrarily. As we will see later only some values of K0 are consistent

with observations. Our general approach to determine the initial conditions will allow us to

explore the full class of LTB models, while in previous studies the value of K0 has been fixed

[10], and the initial conditions were based on some approximate consistency relation.

V. INVERSION METHOD DIFFERENTIAL EQUATIONS

In the previous section we have seen that it is possible to derive a fully analytical set of

radial null geodesics equations. Our goal now is to use these equations to obtain a new set

of differential equations to map an observed DL(z) to a LTB model. In principle we need are

three independent functions to fully specify a LTB solution, M(r), k(r), tb(r), but because of the
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FIG. 1: The conformal time T (z) and the radial coordinate r(z) are plotted as a function of redshift

for K0=-0.9376. The thick line correspond to the part after the apparent horizon.
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FIG. 2: The curvature function K(z) and the relative percentual ∆(z) = 100DΛCDM (z)−DLTB(z)
DΛCDM (z)

error

between the luminosity distance DΛCDM(z) used as input and DLTB
L (z) obtained by substituting the

numerical solution of the differential equations for the inversion method are plotted as functions of

redshift for K0=-0.9376. The thick lines correspond to the part after the apparent horizon.

freedom in fixing the radial coordinate only two of them are really independent. As explained

in the previous sections we adopt the coordinates system in which M(r) ∝ r3, so that only

k(r), tb(r) are left to be determined. In this paper we will consider the case in which tb(r) = 0,

since we are inverting only one observable, the luminosity distance DL(z), and the inversion
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FIG. 3: The ratio between the Hubble parameter HLTB(z) and HΛCDM (z) is plotted as function of

the redshift for K0=-0.9376. The thick lines correspond to the part after the apparent horizon.
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FIG. 4: The energy density profile ρ(r,t0)
ρ(r→0,t0)

is plotted as function of the comoving radius for K0=-

0.9376. The thick lines correspond to the part after the apparent horizon.

method will be enough to fully determine the remaining function k(z), and then k(r). We will

leave to a future work the case in which an additional redshift dependent observable is included,

which will then require to also develop an inversion method for tb(r). In the coordinates we

have chosen a LTB solution is determined uniquely by the function k(r), so we will have a

total of three independent functions to solve for η(z), r(z), k(z). Since we have already two

differential equation for the geodesics, we need an extra differential equation.
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FIG. 5: The curvature K(z) and the the comoving radial coordinate r(z) are plotted as a function

of the redshift. The black dashed line corresponds to K0 = −0.91 and the black line corresponds to

K0 = −0.9376. As it can be seen for K0 = −0.91 there is critical redshift after which r is decreasing,

corresponding to a transition from red to blue shift. This implies that this choice of the initial

conditions is not compatible with the observed expansion of the Universe.

This can be obtained by differentiating respect to the redshift the luminosity distance DL(z)

d

dz

(

Dobs
L (z)

(1 + z)2

)

=
∂(ra(η, r))

∂η

dη

dz
+

∂(ra(η, r))

∂r

dr

dz
= s(z) (36)

where Dobs
L (z) is the observed luminosity distance. In our case we will use the best fit ΛCDM

function. Now we have the set of equations we were looking for

dη

dz
= p(η(z), r(z)) = p(z) , (37)

dr

dz
= q(η(z), r(z)) = q(z) , (38)

d

dz

(

Dobs
L (z)

(1 + z)2

)

= s(z) . (39)

Since we will solve our differential equations respect to the the variable z, we need to transform

the partial derivatives respect to η and r in eq.(15,16) according to the chain rule:

∂h(η, r)

∂r

∣

∣

∣

∣

(η=η(z),r=r(z))
=

∂h(η(z), r(z))

dz

dz

dr
, (40)

∂h(η, r)

∂η

∣

∣

∣

∣

(η=η(z),r=r(z))
=

∂h(η(z), r(z))

dz

dz

dη
. (41)

where h(η, r) is a generic function in the coordinates (η, r). After this substitution the equations

contain only functions of the red-shift z, and derivatives respect to z. The differential equations
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FIG. 6: F (T (z), r(z)) and ∂F (T (z),r(z))
∂T are plotted as functions of the red shift. Since F (η, r) ∝

∂rR(t(z), r(z)) never crosses zero, no shell crossing singularity appears along the past light cone.

The point where ∂F (T (z),r(z))
∂T crosses zero corresponds to the transition from local expansion to local

contraction, i.e from red to blue shift. The dashed line corresponds to K0 = −0.91 and the solid line

corresponds to K0 = −0.9376.

obtained in this form need to be further manipulated in order to re-write them in a canonical

form in which the derivatives appear all on one side, since after the application of the chain

rule to eq.(15,16) derivative terms like dr(z)
dz

, dη(z)
dz

, dk(z)
dz

are also on the right-hand side. We can

now use eq.(41-41) in eq.(37-39) and after a rather complicated algebraic manipulation we get

:

2t2
√

K(z)((6 + 4t2)r(z) + (3 + t2)
√

1−K(z)r(z)2T (z))K ′(Z)− 12t3
√

1−K(z)r(z)2K ′(Z) +

−8t3(1 + z)K(z)2r′(z)T ′[z]− 2tK(z)r(z)K ′(z)(3(1 + t2)T (z) + (3 + 5t2)(1 + z)T ′(z)) +

+K(z)3/2(−8t4r′(z) + 3(1 + t2)2(1 + z)r(z)T (z)K ′(z)T ′(z)) = 0 (42)

r′(z)(2t(3 + 5t2)(1 + z)r(z)K ′(z)−
√

K(z)(8t4
√

1−K(z)r(z)2 +

+3(1 + t2)2(1 + z)r(z)T (z)K(z)) + 8t3(1 + z)K(z)r′(z)) = 0 (43)

2K(z)((1 +K0)t
2r′(z)− (1 + t2)K(z)H0

d

dz

(

Dobs
L (z)

(1 + z)2

)

) +

−(1 +K0)t r(z)((2t−
√

K(z)T (z))K(z)− 2K(z)3/2T ′(z)) = 0 (44)

In the above expressions we have expressed all the trigonometric functions in terms of the
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equivalent expressions in terms of tan(X) according to

t = tan(X) , (45)

X =
1

2

√

K(z)T (z) . (46)

This is achieved by using a series of Mathetica simplifying routines developed for this purpose.

We have also used the dimensionless version of the solution in terms of K(z), T (z) derived in

the previous section.

As it can be seen the above three equations are not linear in the derivative terms, but the

second one only involves {r′(z), K ′(z)}, while the other two involve all the three functions

{r′(z), K ′(z), T ′(z)}. This suggests that we can first solve for r′(z) in terms of only K ′(z) from

the equation (43):

r′(z) =
1

8t3(1 + z)K(z)

[

8t4
√

K(z)
√

1−K(z)r(z)2 − 6tr(z)K ′(z)− 10t3r(z)K ′(z)− 6t z r(z)K ′(z)

−10t3 z r(z)K ′(z) + 3
√

K(z)r(z)T (z)K ′(z) + 6t2
√

K(z)r(z)T (z)K ′(z) +

+3t4
√

K(z)r(z)T (z)K ′(z) + 3z
√

K(z)r(z)T (z)K ′(z) + 6t2z
√

K(z)r(z)T (z)K ′(z) +

+3t4 z
√

K(z)r(z)T (z)K ′(z)
]

(47)

and then substitute in equations(42,44) to get:

K ′(z) = − 1

1 + z
t(12t2(1 + z)

√

1−K(z)r(z)2K(z)− 2t(1 + z)
√

K(z)(9(1 + t2)r(z) +

+(3 + t2)
√

1−K(z)r(z)2T (z))K(z) +K(z)(8t4
√

1−K(z)r(z)2 +

+3(3 + 4t2 + t4)(1 + z)r(z)T (z)K(z)) + 8t3(1 + z)K(z)3/2
√

1−K(z)r(z)2T ′(z)) (48)

T ′(z) =
1

4t(1 + z)
(−6(1 +K0)t(1 + 3t2)(1 + z)r(z)K(z) + (1 +K0)

√

K(z)(8t4
√

1−K(z)r(z)2 +

+(3 + 10t2 + 3t4)(1 + z)r(z)T (z)K(z)) − 8t(1 + t2)(1 + z)K(z)2H0
d

dz

(

Dobs
L (z)

(1 + z)2

)

+

8(1 +K0)t
2(1 + z)K(z)3/2r(z)T ′(z)) (49)

These two equations now only involve K ′(z), T ′(z) in a linear form, so they can be solved

directly, and then the result for K ′(z) can be substituted in the equation for r′(z). After some

rather cumbersome algebraic manipulations we finally get:

dT (z)

dz
=

2
√

K(z)

3t(1 +K0)r(z)
×
[

H0
d

dz

(

Dobs
L (z)

(1 + z)2

)

+
H0

d
dz

(

Dobs

L
(z)

(1+z)2

)

(1 + 3t2)
√

K(z)r(z)

2
(
√

K(z)r(z)− t
√

1−K(z)r(z)2
) −

(1 +K0)t
3
√

1−K(z)r(z)2

(1 + t2) (1 + z)K(z)3/2

]

, (50)
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dr(z)

dz
= −

√

1−K(z)r(z)2

3 t (t2X − 3t+ 3X)
×
[H0

d
dz

(

Dobs

L
(z)

(1+z)2

)

K(z)
(

t (3 + 5t2)− 3 (1 + t2)
2
X
)

(1 +K0)
(

−
√

K(z)r(z) + t
√

1−K(z)r(z)2
)

+
2 t2 (2t3 − 3t2X + 3t− 3X)

(1 + t2) (1 + z)
√

K(z)

]

, (51)

dK(z)

dz
=

4t2
√

K(z)
√

1−K(z)r(z)2

3(1 +K0) (1 + t2) (1 + z)r(z) (t2X − 3t+ 3X)
×









H0
d
dz

(

Dobs

L
(z)

(1+z)2

)

(1 + t2) (1 + z)K(z)3/2

−
√

K(z)r(z) + t
√

1−K(z)r(z)2
− (1 +K0)t

2









. (52)

where

t = tan(X) , (53)

X =
1

2

√

K(z)T (z) . (54)

and we have used the dimensionless version of the solution in terms of K(z), T (z) derived in

the previous section. The main advantage of these equations is that they are fully analytical,

while other versions require a numerical integration of the Einstein’s equations. In this form

the central value both H0 and K0 can fixed arbitrarily, and the remaining initial condition for

T (z) are fixed according to eq.(33). This makes them suitable both for numerical and analytical

applications. In particular they can be used to expand locally the solutions around the apparent

horizon corresponding to the maximum of DA(z) =
DL(z)
(1+z)2

. We will report in the appendix the

relations which can be used to obtain such an expansion.

VI. APPARENT HORIZON, H(z) AND CMB

As it can be easily seen the differential equations we need to solve become unstable around

a critical vale of the redshift zc, where the angular diameter distance

DΛCDM
A (z) =

1

(1 + z)2
DΛCDM

L (z) (55)

which we use as input for our differential equations reaches its maximum. This is only an

apparent horizon, due to the fact that we are the using red-shift as the variable of the differential

equations, not to a real singularity of the space-time. In order to overcame this critical point

we follow these steps :

14



• Choose a point zc− ǫ1 before the apparent horizon where the numerical inversion method

is still sufficiently accurate and stable, and taking advantage of the fully analytical system

of differential equations, Taylor expand T (z), r(z), K(z).

• Extrapolate the obtained Taylor expansions to a point after zc + ǫ2 after the apparent

horizon, sufficiently far to avoid the numerical instability and minimize the relative error

between the extrapolated DLTB
Taylor(z) and DObs

L (z).

• Use the extrapolated values at zc + ǫ2 as the initial conditions for the numerical solution

of the system of differential equations after the apparent horizon.

This method is quite effective, as it can be seen in the plot of the relative error in Fig.(2), and

allows to obtain a very accurate solution up to very high redshift. We can get significantly more

accurate results than previous ones [10], even after the critical point, since the fully analytical

expression of the equations we use allows to obtain a very accurate Taylor expansion near the

critical point.

VII. APPLICATION : BLUE TO RED-SHIFT TRANSITION AND H0(zLSS)

As it can be seen in the figures the inversion procedure is quite accurate, since we can keep

the relative error between the solution of the inversion problem and Dobs
L (z) quite low, much

better than in [10]. This is due to fact that the initial conditions we are setting are exact while

in previous studies they were only approximate. Compared to [31] this method is more accurate

because we expand in red-shift space the actual geodesics equation around the critical point.

We can now apply the inversion method we have derived. We find that only certain values

of K0 allow to solve the differential equations up to high red-shift. For sufficiently large K0 we

find in fact that the geodesics equations became unstable because we approach a point along

the light cone where

dz

dr
= 0 (56)

i.e. there is a turning point from red-shift to blue-shift. This implies that these models are

inconsistent with observations. As it can be seen from the geodesics equations this can happen

when:

∂ηF (η, r) = 0 , (57)
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which in the (t, r) coordinates is equivalent to

Ṙ′(t, r) = 0 . (58)

As shown in fig. (6) this is exactly what occurs for certain values of K0, where we can also see

that this is not a shell-crossing singularity, since F (η, r) never crosses zero before that point.

We can easily interpret this result using our intuition about the Friedman like equation in

which the Einstein’s equations can be written for the LTB solution. The curvature term has

to be negative in order to mimic the effects of a cosmological constant, and if the central value

is not sufficiently large than there can be some critical point where the matter gravitational

attraction will dominate and cause a contraction.

Another important observable to fit is the CMB spectrum. Since the CMB physics is de-

termined by HLTB(zLSS) it would be interesting to explore the possibility that an appropriate

choice of K0 could also give a good agreement between HLTB(zLSS) and HΛCDM(zLSS) . The

numerical solution of the inversion problem shows that HLTB(zLSS) is not affected significantly

by K0 and that a mismatch of the order of the 20% cannot be avoided, independently of the

value of K0. This implies than even taking into account the freedom on the choice of K0 we

cannot find any model such that

DLTB
L (z) = DΛCDM

L , (59)

HLTB(zLSS) = HΛCDM(zLSS) . (60)

We deduce that none of these models should be able fit both DL(z) and the CMB spectrum,

and it would be necessary the introduction of an extra functional degree of freedom, the bang

function tb(r), to achieve that goal. Since we have explored all the possible set of initial

conditions for K(z), it should be noted that our conclusion is more general than previous ones

based on particular choice of K0.

The reason is that the K(z) solution is asymptotically constant (zero in our case since we

mimic a flat FLRWmodel) because at sufficiently high redshift, where the cosmological constant

is subdominant, the homogenous FLRW Universe has to be recovered. This implies that the

low redshift disagreement between HLTB and HFLRW remain the same at high redshift, and in

general they don’t intersect, as long as we keep solving the inversion problem for DL(z) at any

red-shift.
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VIII. CONCLUSIONS

We have developed a new fully analytical inversion method to map the observed luminosity

distance to a LTB model. This method has the advantage of not requiring any numerical

integration of the Einstein’s equations, and is particularly suitable to obtain a Taylor expansion

of the solution around the numerical instability point corresponding to the apparent horizon.

The accuracy of the solution we obtain significantly improves previous methods, because we

are able to fix exactly initial conditions and the Taylor expansion in red-shift is very precise,

allowing to overcame the apparent horizon keeping the relative error low.

We have tested this inversion method to investigate the importance of the choice of the

initial central value K0 for the curvature function defining the LTB model. We found that only

a certain range of values is consistent with the observed cosmic red-shift, since higher values

of K0 lead to a transition from red to blue shift. We have also checked that the high redshift

value of HLTB is not affected significantly by K0, and that all the acceptable models, i.e. the

ones without blue to red-shift transition, have a disagreement of the order of 20% respect to

HΛCDM(zLSS). Since we have explored all the possible set of initial conditions for K(z), it

should be noted that our conclusion is more general than previous ones based on a particular

choice of K0 or ansatz for some of the functions defining the LTB model. In the future it will

be interesting to extend this method to the case of a not vanishing bang function tb(r) in order

to solve the inversion problem also for the Hubble parameter as a function for the red-shift.

The method we developed does not need to be applied to LTB metrics as cosmological models

describing the local universe around us, but could be applied to study the effects of large scale

inhomogeneities for a generic observer located inside some region of the Universe corresponding

to a local oversensitivity or underdensity which cannot be modeled simply perturbation of a

FLRW metric.
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Appendix A: Expansion around the apparent horizon

In this appendix we give an explicit form of the coefficients of the expansion of the geodesics

equation around the apparent horizon zc. The linear coefficients are simply given by evaluating

the right hand side of the geodesics equations at zc. Since the right hand side of the geodesics

equations is fully analytical, we can take its first derivative, and then solve for the second

derivative terms to obtain:

d2K(z)

dz2
d lnK(z)

dz

[

d ln (1−K(z)r(z)2)

2K(z)r(z)2dz
+

d lnK(z)

dz
− 1

1 + z
+

d ln (K(z)r(z)2)

dz
×

(

2X

t
+

2t(t−X)X

3t− (3 + t2)X

)

+
H0

d2

dz2

(

Dobs

L
(z)

(1+z)2

)

(1 + t2) (1 + z)K(z)

(1 +K0) t2
(

1− t
√

K(z)−1r(z)−2 − 1
)

r(z)

]

, (A1)

d2r(z)

dz2
=

d ln r(z)

dz

[

d ln (1−K(z)r(z)2)

2K(z)r(z)2dz
+

d ln r(z)

dz
− 1

1 + z
+

Xd ln (K(z)r(z)2)

3dz
×

(

3 + t2

2t
+

2t3X

3t− (3 + t2)X
+

3t4

t (3 + 2t2)− 3 (1 + t2)X

)

− H0(1 + z)

1 +K0
×

d2

dz2

(

Dobs

L
(z)

(1+z)2

)

(1 + t2)K(z)

t2
(

1− t
√

K(z)−1r(z)−2 − 1
)

r(z)

(

1 +
3t3 − 3 (1 + t2) t2X

t (3 + 2t2)− 3 (1 + t2)X

)









, (A2)

d2T (z)

dz2
=

d lnT (z)

dz

[

d ln (1−K(z)r(z)2)

2K(z)r(z)2dz
− d lnK(z)

2dz
− 1

1 + z
+

Xd ln (K(z)r(z)2)

tdz

−
H0

d2

dz2

(

Dobs

L
(z)

(1+z)2

)

(1 + t2) (1 + z)K(z)3/2

2 (1 +K0) t3
√

1−K(z)r(z)2

(

2 +
1 + 3t2

1− t
√

K(z)−1r(z)−2 − 1

)

]

.(A3)

The derivation of the these coefficients is taking into account that D′

A(zc) = 0 and involves

a series of cumbersome algebraic and trigonometric manipulations of the type used in the

derivation of the inversion equations, which have been carried out using a set of routines

written in MATHEMATICA for this specific purpose.
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