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Abstract
Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no 
effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin  D3 (VitD3) has strong antiviral activity in 
dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated 
the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory 
response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene 
expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that 
VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor 
(VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) 
genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, 
except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby 
preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine 
the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control 
of viral replication and inflammatory responses during monocyte infection.

Introduction

Zika virus (ZIKV) infection is a public health issue of world-
wide concern [1]. ZIKV is an arbovirus belonging to family 
Flaviviridae, genus Orthoflavivirus [2]. It is a blood-borne 
pathogen that is transmitted through the bite of infected mos-
quitoes of the genus Aedes, but it can also be transmitted 
through human-to-human contact via sexual contact, blood 
transfusion, or vertical transmission from pregnant moth-
ers to fetuses [3–5]. While the initial documentation of the 
virus traces back to the early 1950s, the emergence of the 
virus in the Americas, specifically in Brazil and Colombia 

[6, 7], was a turning point in ZIKV research because the 
virus was found to be associated with severe complications, 
including microcephaly and teratogenesis in newborns, as 
well as Guillain-Barré syndrome and Alice in Wonderland 
syndrome in adults [8–10].

Infection with ZIKV, the causal agent of Zika fever 
(ZIKF), leads to a temporary febrile illness that affects 
around 20% of individuals who contract the virus [11]. Dur-
ing the acute phase of ZIKV infection, patients have ele-
vated serum levels of pro- and anti-inflammatory cytokines, 
including tumor necrosis factor alpha (TNFα), interleukin 
(IL) 1β (IL1β), IL2, IL4, IL6, IL9, IL10, IL13, and IL17. 
These cytokines have been linked to the severity of the dis-
ease [12–14].

Monocytes, which are phagocytic cells of the innate 
immune system, have a significant impact on the control 
and immunopathogenesis of viral infections. It has been sug-
gested that monocytes can be a double-edged sword in viral 
infections, acting as initiators of the initial wave of inflam-
matory response but also as vessels for viral spread [15], 
acting as “Trojan horses” [16]. This phenomenon has been 
reported previously for ZIKV [17] and Visna virus [18]. Fur-
thermore, circulating monocytes have been identified as the 
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primary target cells of ZIKV infection in pediatric patients, 
as well as in vitro and ex vivo [17, 19].

Although ZIKV represents a significant global public 
health concern, there is currently a lack of effective treat-
ments or vaccines to combat the spread of ZIKV [20, 21]. 
Thus, it is necessary to explore new alternative approaches 
to control the progression of ZIKV infection. One poten-
tial strategy is the use of antiviral molecules that also have 
immunomodulatory properties, such as 1,25-dihydroxyvi-
tamin D3 (1,25(OH)2D3; VitD3), also known as calcitriol. 
It is the active form of vitamin D, which has been shown to 
possess immunomodulatory and antiviral properties against 
viral infections in humans (Reviewed in: [22]). For instance, 
the susceptibility of monocyte-derived dendritic cells 
(MDDCs) and monocyte-derived macrophages (MDMs) to 
DENV infection in vitro was reduced when healthy volun-
teers were given a supplement of 4000 international units of 
calcitriol per day [23–25]. Moreover, decreased production 
of pro-inflammatory cytokines and increased IL10 secre-
tion were observed. Similar results have been reported in 
infections by influenza A virus [26], respiratory syncytial 
virus (RSV) [27], human immunodeficiency virus 1 (HIV-1) 
[28–30], and SARS-CoV-2 [31, 32]. Furthermore, vitamin D 
deficiency leads to altered immune function that can impact 
the response to viral infections. For example, a connection 
has been established between vitamin D deficiency and 
the severity of COVID-19 disease [33]. Mirza et al. [2022] 
reported that dengue fever patients coinfected with Helico-
bacter pylori who had insufficient vitamin D levels were 
much more susceptible to infection by all four dengue virus 
(DENV) serotypes [34], as well as infection by HIV-1 [35, 
36].

The biologically active form of vitamin D can be syn-
thesized from the skin as pre-vitamin D3 in response to 
UV radiation by converting 7-dehydrocholesterol or can 
be obtained through the absorption of dietary components 
such as ergocalciferol (vitamin  D2). Both forms require two 
hydroxylation steps for activation. The initial hydroxylation 
occurs in the liver, catalyzed by mitochondrial and microso-
mal vitamin D 25-hydroxylase or the enzymes CYP2R1 and 
CYP27A1, resulting in the formation of calcidiol or 25(OH)
D [37]. Calcidiol, which remains in the bloodstream for an 
extended period, is used as a marker to assess serum vitamin 
D levels (reviewed in [38]). Subsequently, calcidiol under-
goes hydroxylation in the kidney through the enzymatic 
activity of 1-alpha-hydroxylase (CYP27B1), resulting in the 
production of vitamin D3 [39], which binds the vitamin D 
receptor (VDR) in the cell membrane, which is responsible 
for the biological activity of vitamin D. VDR is expressed 
in different types of cells, including T cells, monocytes, 
and macrophages. The vitamin D-VDR complex is trans-
located to the nucleus, where it interacts with the nuclear 
retinoic acid X receptor (RXR) to form a heterodimer that 

functions as a transcription factor for vitamin D response 
elements (VDREs) on target genes. Finally, the CYP24A1 
enzyme inactivates calcitriol and calcidiol through succes-
sive hydroxylation reactions. VDR, in turn, regulates the 
expression of primary VitD3 target genes such as cathelici-
din antimicrobial peptide (CAMP) and CYP24A, which are 
involved in VitD3 catabolism [40].

Human monocytes were among the first immune cells 
shown to express VDR [41], making them targets of VitD3 
and enhancing their antimicrobial properties [42, 43]. Other 
studies showed an increase in CAMP gene transcription in 
monocytes stimulated with VitD3, resulting in higher pro-
duction of the active form of the antimicrobial peptide LL-37 
[44]. The increase in LL-37 has been shown to enhance 
monocyte function and suggests that LL-37 improves its 
activity against viral infections. Previously, we reported the 
induction of a pro-inflammatory and antiviral response in 
ZIKV-infected monocytes [45], although the immunomodu-
latory and antiviral role of VitD3 treatment in ZIKV-infected 
monocytes has not been reported. Here, we assess the impact 
of VitD3 treatment on ZIKV replication, the expression of 
genes encoding TLRs, pro-inflammatory and antiviral fac-
tors, and the VitD3 pathway in ZIKV-infected monocytes.

Materials and methods

Ethics statement

As reported previously [45, 46], the individual enrollment 
and sample collection protocols were authorized by the 
Committee of Bioethics Research at Sede de Investigación 
Universitaria, Universidad de Antioquia (Medellín, Colom-
bia). Prior to participation, all individuals provided informed 
consent by signing a form, and the study was conducted in 
accordance with the principles outlined in the Declaration 
of Helsinki. This study involved the participation of three 
to four healthy donors.

Cells lines, ZIKV stock production, and virus 
titration

Ae. albopictus-derived C6/36-HT cells (ATCC) were grown 
in Leibovitz’s L-15 medium (L-15; Sigma-Aldrich) supple-
mented with 5% heat-inactivated fetal bovine serum (FBS; 
Gibco, Thermo Fisher Scientific, Massachusetts, USA) and 
1% antibiotic-antimycotic solution (Corning, New York, 
USA) and incubated at 34°C in cell culture flasks at a density 
of 1 ×  105-1 ×  106 cells/mL. ZIKV Colombia strain (Gen-
Bank no. MH179341.1) isolated from mosquitoes (kindly 
provided by Professor Blanco P. Universidad de Sucre, 
Colombia) was obtained by growth in C6/36-HT cells as 
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reported previously [45]. Virus culture supernatants were 
stored at -80°C and titrated by plaque assay on BHK-21 cells 
(clone 15, ATCC) as described previously [45]. Briefly, 5 
×  104 BHK-21 cells per well were seeded in 48-well dishes 
in Dulbecco’s modified Eagle medium (DMEM; Sigma-
Aldrich, St. Louis, USA) supplemented with 2% FBS, 0.3% 
(v/v)  NaHCO3, and 1% (v/v) antibiotic-antimycotic solution, 
and incubated at 37°C and 5%  CO2 for 24 hours. The cells 
were then infected with serial dilutions of culture super-
natants for 90 minutes, after which plaque assay medium 
(2% FBS, 1% HEPES [Sigma-Aldrich], 3% (v/v) sodium 
carboxymethyl cellulose [Sigma-Aldrich], and 2X DMEM 
medium [DMEM powder, Sigma-Aldrich]) was added. 
BHK-21 cells were incubated at 37°C and 5%  CO2 for 4 
days. Then, lysis plaques were stained using a crystal violet 
solution (2% crystal violet, 1.5% formaldehyde). The virus 
titer was determined to be 1.1 ×  107 PFU/mL.

Culture of primary human monocytes 
and treatment with vitamin D3

Human peripheral blood mononuclear cells (PBMCs) were 
obtained from blood samples of healthy donors. The PBMCs 
were mixed with 2% (v/v) EDTA and isolated using a den-
sity gradient with Lymphoprep (STEMCELL Technologies 
Inc., Vancouver, Canada) through centrifugation at 850 × 
g for 21 min as described previously [47]. Platelets were 
depleted by washing three times with phosphate-buffered 
saline (PBS; Sigma-Aldrich) at 250 × g for 10 min, and 
the percentage of CD14-positive cells was determined by 
flow cytometry. To obtain monocytes, 24-well plastic plates 
were scratched with a 1000-μL pipette tip, seeded with 5 
×  105 CD14-positive cells per well, allowed to adhere for 
2 h in RPMI-1640 medium (Sigma-Aldrich) supplemented 
with 0.5% autologous serum, 0.3%  NaCO3, and 4 mM L-glu-
tamine, and cultured at 37°C and 5%  CO2. Non-adherent 
cells were removed by washing twice with PBS, and mono-
cytes were cultured in RPMI-1640 medium supplemented 
with 10% FBS, 0.3%  NaHCO3, 4 mM L-glutamine, and 
1% antibiotic-antimycotic solution (complete medium), as 
described previously [45]. Human monocytes were cultured 
in the absence (Mon) or presence (VitD3-Mon) of 1 nM 
VitD3 (Sigma Aldrich, USA) and incubated at 37°C/5%  CO2 
overnight.

In vitro infection of monocytes

Monocytes were divided into two groups, one of which 
was cultured in presence of VitD3 (VitD3-Mon), and the 
other without VitD3 (Mon). After 12 hours of culture, both 
groups were infected with ZIKV at a multiplicity of infection 

(MOI) of 5 (ZIKV-Mon and ZIKV-VitD3-Mon, respec-
tively) in serum-free RPMI-1640. Samples were incubated 
at 37°C for 1.5 h. Then, the cells were washed with PBS to 
remove the unbound virus, and fresh complete medium with 
or without VitD3 was added. Both Mon and VitD3-Mon 
were included as uninfected controls. Cells were incubated 
at 37°C/5%  CO2, and culture supernatants and cell lysates 
were collected at 6, 12, 24, 48, and 72 hours postinfection 
(hpi) and stored at -80°C.

Plaque assay

Culture supernatants of ZIKV-infected monocytes with or 
without VitD3 treatment were titrated by plaque assay on 
BHK-21 cells (clone 15, ATCC) as described above.

Real‑time PCR for TLRs, VDR, CYP24A1, 
and CAMP

Total RNA was extracted using a tQuick-RNA Miniprep 
Kit (Zymo Research, USA), following the manufacturer´s 
instructions. The RNA concentration was determined using 
a NanoDrop 1000 spectrophotometer (Thermo Scientific, 
Wilmington, DE). cDNA synthesis was performed using a 
RevertAid Minus First Strand cDNA Synthesis Kit (Thermo 
Scientific, NH, USA), following the manufacturer´s instruc-
tions. The levels of TLR7, TLR8, VDR, CYP24A1, CAMP, 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
mRNA in monocytes were determined by RT-qPCR, using 
previously reported gene-specific primers [48, 49]. Bio-Rad 
CFX Manager was used to determine the cycle threshold 
(Ct) for each sample, using a regression fit in the linear 
phase of the PCR amplification curve. RT-qPCR was car-
ried out using the SYBR-Green system (Invitrogen, Ore-
gon, USA), and the ΔΔCt method was used to determine 
the fold change (FC) [45, 49]. The relative quantification 
(FC) of each mRNA was normalized to the internal control 
GAPDH, and the uninfected Mon (control). |Log2 FC| > 
0.6 was used as the threshold for a significant difference in 
gene expression.

Quantification of cytokines and chemokines

The ELISA MAX Deluxe Set Human (BD Biosciences, San 
Jose, CA, USA) was used for quantification of TNFα, IL1β, 
IL6, IL10, CCL2, CCL5, and CXCL8/IL8 in cell culture 
supernatants, following the manufacturer´s instructions. The 
detection limit was 0.5-10 pg/mL.
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Statistical analysis

GraphPad Prism 8.0.1 (GraphPad Software Inc., San Diego, 
CA, USA) was used for statistical analysis. The Shapiro-
Wilks test was performed to assess the normality of the data. 
The specific statistical tests employed in the analysis are 
indicated in the figure legends. Data are represented as the 
mean ± SEM. Significant results were defined as follows: *, 
p < 0.05; **, p < 0.01; ***, p < 0.001.

Results

Lack of effect of VitD3 on ZIKV replication in human 
monocytes

We reported recently that ZIKV replicates in human mono-
cytes [45], and in this study, we examined the potential of 
VitD3 to control ZIKV replication. As shown in Figure 1, 
we found that VitD3 treatment with 1.0 nM does not have 
a significant influence on ZIKV replication, as assessed by 
estimating the production of infectious virus particles by 
plaque assay at different time points (6 to 72 hpi). Similar 
results were obtained in a separate experiment using 0.1, 1.0, 
and 10 nM VitD3 (Supplementary Fig. S1A). We therefore 
used 1.0 nM VitD3 in subsequent experiments.

Downregulation of VitD3 signaling pathway 
genes in ZIKV‑infected monocytes

The effect of ZIKV infection on the VitD3 system of mono-
cytes was investigated by determining the relative levels of 
expression of VDR, CYP24A1, and CAMP mRNA by RT-
qPCR. As illustrated in Figure 2A, VDR expression was not 
affected by VitD3 treatment, but a decreased level of tran-
scription was observed at 12 and 48 hpi in ZIKV-infected 
cells, both with and without VitD3 treatment. At a concen-
tration of 1 nM, VitD3 significantly upregulated the expres-
sion of CYP24A1 and CAMP at both 12 and 48 hours after 
treatment. However, in infected cells, significantly lower lev-
els of CYP24A1 and CAMP expression were observed at 12 

Fig. 1  Effect of VitD3 treatment on ZIKV growth kinetic in mono-
cytes. Primary human monocytes treated (VitD3-Mon) or not treated 
(Mon) with VitD3 were infected with ZIKV. Cell culture supernatants 
were harvested at the indicated time points, and infectious virus par-
ticles were quantitated as plaque-forming units/mL (PFU/mL). Data 
are represented as the mean ± SEM (n = 4). A repeated measures 
ANOVA test was performed. Significant results were defined as p < 
0.05 (*)

Fig. 2  mRNA expression of VDR, CYP24A1, and CAMP dur-
ing ZIKV replication in VitD3-treated (VitD3-Mon) and untreated 
monocytes. VitD3-Mon and Mon were infected with ZIKV (ZIKV-
VitD3-Mon and ZIKV-Mon, respectively) and harvested at the indi-
cated time points. mRNA expression of VDR (A), CYP24A1 (B), and 
CAMP (C) in ZIKV-Mon and ZIKV-VitD3-Mon was analyzed by 
RT-qPCR. The ΔΔCt (threshold) method was used to determine the 

fold change (FC). The relative quantification (FC) of each mRNA was 
normalized to the housekeeping gene GAPDH, and uninfected mono-
cytes (control). A  log2 FC of 0.6 and −0.6 was used as the threshold 
for up- and downregulation of gene expression, respectively (dotted 
lines). A two-way repeated measures ANOVA test was performed (n 
= 3). ***, p = 0.001; ** p = 0.01; * p = 0.05; ns, not significant
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and 48 hpi with or without VitD3 treatment when compared 
to uninfected VitD3-treated cells (Fig. 2B and C). However, 
the inhibitory effect of ZIKV infection on CYP24A1 expres-
sion was less pronounced in the presence of VitD3 at both 
12 hpi (p = 0.0005 and 0.0058, respectively) and 48 hpi (p 
= 0.001 and 0.0023, respectively) (Fig. 2B). Likewise, the 
inhibitory effect of ZIKV infection on CAMP expression 
was less pronounced in the presence of VitD3 at 12 hpi (p 
= 0.001 and 0.0178 respectively) (Fig. 2C), but the levels 
of CAMP were similar at 48 hpi (p = 0.0021 and 0.0057, 
respectively). The results show that ZIKV infection sup-
presses the expression of VDR, CYP24A1, and CAMP in 
monocytes, suggesting an alteration of the VitD3 signaling 
pathway.

Effect of VitD3 treatment on TLR7 and TLR8 
in ZIKV‑infected monocytes

Da Silva et al. [12] reported that patients with ZIKV infec-
tion show reduced expression of TLR8. It has also been 
shown that the TLR7/8 agonist R848 restricts the replication 
of ZIKV through induction of interferon-stimulated genes 
[50]. We therefore quantified the expression of TLR7 and 
TLR8 mRNA, which play a crucial role in detecting ZIKV 
RNA in the cell [50, 51], and found no significant effect of 
ZIKV infection in the presence or absence of VitD3 on the 
expression of either TLR7 and TLR8 when compared to 
uninfected VitD3-treated monocytes (Fig. 3A and B).

Effect of VitD3 treatment 
on the inflammatory response 
in ZIKV‑infected monocytes

In ZIKV-infected monocytes (ZIKV-Mon), the production 
of IL1β, IL6, and TNFα, reached its peak at 12, 48, and 12 
hpi, respectively, compared to the control (Fig. 4A, B, and 
C). This production was sustained over time. In contrast, in 
ZIKV-infected monocytes treated with VitD3 (ZIKV-VitD3-
Mon), the production of IL1β, IL6, and TNFα reached its 
peak at 24, 48, and 24 hpi, respectively, compared to the con-
trol (Fig. 4A, B, and C). Considering that 1.0 nM VitD3 did 
not significantly decrease the production of TNFα and IL6, 
we evaluated the effect of 0.1, 1.0, and 10 nM of VitD3 to 
determine whether modulation of the inflammatory response 
is dose-dependent. No significant effect on the production 
of the two cytokines was observed, regardless of the VitD3 
concentration used (Supplementary Fig. 1B and C). This 
suggests that VitD3 may have a limited effect on the secre-
tion of pro-inflammatory cytokines during ZIKV infection in 
monocytes. Further research is needed to fully understand the 
effects of VitD3 on the immune response to ZIKV infection.

Similarly, ZIKV infection induced the production of IL10, 
with a peak at 24 hpi, in ZIKV-Mon, while in ZIKV-VD3-Mon, 
a peak was observed at 12 hpi (Fig. 4D). Although the addi-
tion of VitD3 resulted in a slight decrease in the IL10 level at 
24 hpi, no significant difference was observed when compared 
to ZIKV-Mon (Fig. 4D). Furthermore, treatment with VitD3 
had no effect on the production of the chemokines CXCL8/
IL8, CCL2, and CCL5, in ZIKV-VitD3-Mon when compared 

Fig. 3  mRNA expression of TLR7 and TLR8 during ZIKV replica-
tion in VitD3-treated (VitD3-Mon) and untreated monocytes. VitD3-
Mon and Mon were infected with ZIKV (ZIKV-VitD3-Mon and 
ZIKV-Mon, respectively) and harvested at the indicated time points. 
mRNA expression of TLR7 (A) and TLR8 (B) in ZIKV-Mon and 
ZIKV-VitD3-Mon was analyzed by RT-qPCR. The ΔΔCt (thresh-
old) method was used to determine the fold change (FC). The relative 

quantification (FC) of each mRNA was normalized to the housekeep-
ing gene GAPDH and uninfected monocytes (control). A  log2FC of 
0.6 and −0.6 was used as the threshold for up- and downregulation 
of gene expression, respectively (dotted lines).  A two-way repeated 
measures ANOVA test was performed (n = 3). ***, p = 0.001; **, p 
= 0.01; *, p = 0.05; ns, not significant
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to ZIKV-Mon (Fig. 4E, F, and G). However, both ZIKV-Mon 
and ZIKV-VitD3-Mon exhibited significantly increased IL1β, 
IL6, CXCL8/IL8, CCL2, and CCL5 production when compared 
to the control (uninfected Mon; Fig. 4). Together, these findings 
indicated that treatment of monocytes with VitD3 did not influ-
ence the inflammatory response to ZIKV infection.

Discussion

Monocytes represent 10% of circulating leukocytes in 
humans. These immune cells, originating from the bone 
marrow, are released into the bloodstream and migrate 

to various tissues during viral infections and inflamma-
tion. Once in the tissues, they undergo differentiation into 
either macrophages or dendritic cells. Monocytes are the 
primary cellular target of ZIKV infection in humans, and 
Michlmayr et al. [19] and Foo et al. [52] found that they 
constitute about 84% of the in vitro-infected PBMCs and 
are linked to ZIKV pathogenesis. In our previous report, 
we documented an increase in the production of infec-
tious ZIKV particles in human monocytes between 24 
and 72 hpi, reaching a peak of viral replication at 48 hpi 
[45]. ZIKV infection has been shown to activate intracel-
lular TLRs such as TLR3 [5, 53, 54] and TLR7/8 [50, 51] 
and to promote a strong pro-inflammatory and antiviral 

Fig. 4  Production of cytokines and chemokines in VitD3-treated and 
untreated monocytes. VitD3-Mon and Mon were infected with ZIKV 
(ZIKV-VitD3-Mon and ZIKV-Mon, respectively) and harvested at the 
indicated time points. Uninfected monocytes were used as a control. 

The levels of IL1β (A), IL6 (B), TNFα (C), IL10 (D), CXCL8/IL8 
(E), CCL2 (F), and CCL5 (G) were determined by ELISA. Data are 
represented as the mean ± SEM. A repeated measures ANOVA test 
was performed (n = 3). ***, p = 0.001; **, p = 0.01; *, p = 0.05
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response. The ZIKV replication cycle has been exten-
sively studied using cell lines or IFNAR-/- mice [55]. The 
anti-inflammatory and antiviral effects of VitD3 are well 
documented for various virus infections [23, 56–58], but 
its ability to modulate inflammatory responses and anti-
viral activity during ZIKV infection in monocytes has not 
been investigated. In this study, we elucidated the role of 
VitD3 in ZIKV infection in primary human monocytes 
and found that treatment with VitD3 did not lead to a 
decrease in the production of infectious viral particles. 
We also investigated whether ZIKV infection of mono-
cytes decreased the expression of VitD3 signaling genes 
during virus infection. We measured the mRNA expres-
sion levels of VDR, which is essential for the biological 
activity of VitD3 [59], CYP24A1, which plays a role in 
inactivating calcitriol and calcidiol through a series of suc-
cessive hydroxylation reactions [60], and CAMP, which is 
involved in mounting an immune response against a wide 
range of pathogenic microorganisms [61]. We found that 
ZIKV infection leads to decreased VDR mRNA expres-
sion. This might explain the lack of an effect of VitD3 on 
ZIKV replication in monocytes. Our findings are consist-
ent with previous reports indicating that HIV-1 can impair 
innate immune defenses by downregulating the VDR path-
way [62, 63]. We suggest that downregulation of VDR 
expression could potentially decrease vitamin D3 signal-
ing, as has been observed in monocytes and macrophages 
infected with chikungunya virus (CHIKV) and treated with 
calcitriol [49].

The levels of CYP24A1 and CAMP mRNA were sig-
nificantly lower at 12 and 48 hpi, two critical time points of 
ZIKV infection, in ZIKV-Mon and ZIKV-VitD3-Mon when 
compared to VitD3-Mon. The observed downregulation of 
CYP24A1 during ZIKV infection may further indicate spe-
cific viral interference with VDR gene expression. Similar 
to what has been observed previously in cytomegalovirus 
infections [64], our findings might indicate not only down-
regulation of VDR gene expression during ZIKV replica-
tion but also a reduction in the responsiveness of monocytes 
to VD3 treatment as a result of inhibition of the negative 
feedback loop caused by the relative deficiency of VDR-
associated VitD3 [49]. This could provide an explanation 
for the lack of a decrease in the production of infectious 
ZIKV particles in ZIKV-VD3-Mon. Furthermore, genetic 
variations in the CYP24A1 locus have been associated with 
an increased risk of VitD3 insufficiency [65]. CYP24A1, 
a VDR target gene, plays a role in regulating the break-
down of VitD3 by converting both 25-OH-VD3 and 1α,25-
(OH)2VD3 to 24-hydroxylated products, which are then 
eliminated through established pathways [66].

Virus-infected cells that exhibit low expression of 
vitamin D3 signaling genes can cause a reduction in the 
expression of CAMP, leading to a weakened innate and 

adaptive immune response. Mechanistically, several sign-
aling pathways may be involved in the inhibition of VDR 
expression following ZIKV infection, and further work is 
necessary to determine the mechanism by which ZIKV 
inhibits VitD3 signaling through decreased VDR transcrip-
tion. Other studies have indicated that certain viruses can 
inhibit VitD3 signal transduction. For instance, Yenamandra 
et al. [67] reported that VDR mRNA and protein produc-
tion were lower in EBV-transformed cells than in primary 
B cells. Moreover, Gotlieb et al. [68] reported that HBV 
infection decreases the expression of VDR mRNA. Inter-
estingly, it has been reported recently that HBV infection 
induces the expression of miR-125a, decreasing the levels 
of VDR mRNA and protein [69]. The authors concluded 
that downregulation of hepatic VDR expression by HBV/
miR-125a is negatively associated with liver inflammation 
and fibrosis in patients with chronic HBV infection. In agree-
ment with these results, we previously reported that ZIKV 
infection was able to induce the expression of miR-125a in 
macrophages [70], highlighting the role of miRNA-125a in 
the control of the VitD3 signaling pathway. We therefore 
hypothesize that ZIKV induces miRNA-125a expression, 
which, in turn, downregulates the expression of VDR. Fur-
thermore, VDR gene variations have been suggested to cor-
relate with chronic HBV infection [71]. In agreement with 
our results, Rieder et al. [64] showed a rapid, pronounced, 
and sustained downregulation of the VDR gene by CMV 
infection in mammalian cells.

VDR expression is modulated by TLRs, leading to the 
induction of CAMP mRNA expression [72]. The endoso-
mal receptors TLR7 and TLR8 are responsible for recogniz-
ing single-stranded RNA that is rich in U or GU residues. 
These receptors play a crucial role in the identification of 
viral pathogens by activating the innate immune response, 
leading to the production of type I IFN [73]. Previous reports 
have shown that VitD3 reduces TLR7 mRNA expression in 
PBMCs from patients with systemic lupus erythematosus 
[74] and also reduces TLR8 mRNA expression in mono-
cytes [75]. Although ZIKV infection downregulates TLR7 
and TLR8 mRNA expression in human monocytes [45], 
we did not observe any effect of VitD3 treatment on TLR7 
and TLR8 mRNA expression in either ZIKV-Mon or ZIKV-
VitD3-Mon when compared to VitD3-Mon. Reduced levels 
of RIG-I and TLR8 mRNA expression have been observed 
in peripheral blood from patients in the acute phase of ZIKV 
infection [12]. The authors of that study hypothesized that 
reduced expression of RIG-I and TLR8 during ZIKV infec-
tion could be an escape mechanism used by the virus to evade 
the innate immune response. Martinez Viedma and Pickett 
[76] studied the behavior of ZIKV infection in human pla-
centa (JEG-3) and human microglia (HMC3) cell lines and 
found that the TLR7/8 pathway was significantly inhibited in 
HMC3 cells, whereas it was activated in JEG-3 cells during 
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viral infection [76]. That study showed that the antiviral 
response during ZIKV infection is highly dependent on the 
type of host cell being infected. One study showed that R848, 
a synthetic agonist of TLR7/8, inhibits ZIKV replication in 
monocytes and macrophages through induction of viperin 
protein synthesis [50]. Campbell and Spector [77] reported 
that activation of human macrophages with TLR8 agonists 
upregulates the expression of CYP27B1 and the VDR, lead-
ing to the induction of CAMP and inhibiting HIV-1 replica-
tion only in presence of VitD3-sufficient medium. Thus, a 
potential explanation for the inhibition of VDR and CAMP 
mRNA expression by ZIKV infection could involve the 
expression of innate immune receptors, such as TLR7 and 
TLR8, that recognize intracellular viral RNA. Both recep-
tors are expressed in endosomes in monocytes, macrophages, 
myeloid dendritic cells, and regulatory T cells [78].

There is growing evidence that vitamin D plays important 
roles in modulating the innate immune response to viral infec-
tion and can suppress the inflammatory response [69, 79–81]. 
We hypothesized that VitD3 would attenuate the inflammatory 
response induced by ZIKV infection of monocytes. However, 
except for TNFα, whose peak observed at 12 hpi was signifi-
cantly lowered by VitD3 treatment, our data showed that VitD3 
treatment of human monocytes infected with ZIKV did not 
significantly affect the production of pro-inflammatory factors, 
including IL1β, IL6, IL10, CXCL8/IL8, CCL2, and CCL5. Thus, 
ZIKV may downregulate the immunomodulatory effects associ-
ated with VitD3 treatment. Significantly lower levels of TNFα 
have also been found in MDMs differentiated in the presence of 
 VitD3 and infected with DENV-2, [23]. In a study by Khare et al. 
[82], it was also reported that pre-treatment with calcitriol sig-
nificantly decreases IFN-β and TNFα expression levels in A549 
cells infected with H1N1 influenza A virus. Increased levels of 
TNFα, IL6, and IL1β have been linked to the induction of fever 
and disease severity [83]. Anderson et al. [84] reported that treat-
ment with VitD3 has a significant impact on cytokine responses 
when co-stimulating PBMCs with Pneumococcus or RSV. This 
is consistent with what has been observed in severe/hemorrhagic 
infections in patients infected with DENV, another flavivirus, 
eliciting a pro-inflammatory cytokine response involving IL6 
and CXCL8/IL8 [85, 86]. Gui et al. [87] reported that VitD3 
treatment reduces IL6 production in the earlier stages of H9N2 
influenza virus infection in human lung A549 epithelial cells and 
in mice, but increases its expression in the later stage of infection.

It has been reported that chemokines play a significant 
role in protection against congenital Zika syndrome (CZS). 
For instance, higher levels of CXCL8/IL8 have been found 
in the cerebrospinal fluid of neonates without CZS who were 
born to mothers infected with ZIKV during pregnancy than 
in those born with CZS-related microcephaly [88]. CXCL8/
IL8 is a crucial participant in several inflammatory processes 
[89], whereas CCL2 and CCL5 are regulated by the infiltra-
tion of inflammatory cells [90]. Interestingly, high levels 

of CCL2/MCP-1 have been reported in patients with acute 
DENV, ZIKV, CHIKV, DENV/ZIKV, or CHIKV/ZIKV 
infections [91]. In DENV/ZIKV- or CHIKV/ZIKV-coin-
fected patients, the levels of CCL2/MCP-1 and TNFα show 
a significant inverse correlation with the ZIKV viral load. 
CCL2/MCP-1 is a potent monocyte-attracting chemokine 
that is involved in the recruitment of blood monocytes to 
sites of inflammatory responses [92]. Furthermore, higher 
levels of CCL2/MCP-1 and TNFα expression have been 
observed in ZIKV-infected mothers who gave birth to infants 
with congenital malformations of the central nervous system 
than in pregnant women whose fetuses were normal [13]. In 
patients with acute ZIKV infection, high levels of CCL5/
RANTES have been reported to be linked to specific clinical 
symptoms [93]. On the other hand, IL10 is involved in the 
reduction of inflammatory responses, antigen presentation, 
and phagocytosis [94], thus preventing tissue damage due 
to an exacerbated immune response [95]. Concentrations of 
pro-inflammatory and anti-inflammatory mediators, includ-
ing IL1β and IL10, are elevated in comparison to controls in 
newborns with ZIKV-associated microcephaly [88], as has 
been shown previously by Tappe et al. [14].

In summary, although calcitriol has been shown previously 
to downregulate the inflammatory response and promote anti-
viral activity in vitro, in this study, VitD3 treatment following 
ZIKV infection of monocytes did not have a significant effect 
on viral replication or the inflammatory response to ZIKV 
infection. These observations provide novel insights that will 
be relevant for future studies investigating the anti-inflamma-
tory and antiviral role of VitD3 during ZIKV infection and the 
effects of vitamin D metabolites on ZIKV infection/replication.

Limitations of the study

While our interpretations are supported by the results, a signifi-
cant limitation of the study is that dysregulation of the VitD3 
pathway was assessed based entirely on changes in mRNA 
expression, which may not reflect the full impact of infection 
or treatment. Further studies are needed to assess differences 
in expression at the protein level in order to clarify how ZIKV 
regulates gene expression in infected monocytes. Nevertheless, 
our findings clearly suggest that ZIKV infection of monocytes 
results in changes in the transcription of various genes, in par-
ticular, those related to the VitD3 signaling pathway.

Conclusion

In this study, vitamin D treatment of human primary mono-
cytes did not suppress ZIKV replication or affect the inflam-
matory response. However, VDR, CYP24A1, and CAMP 
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expression were downregulated in ZIKV-infected monocytes 
treated with vitamin D, suggesting that VDR is involved in 
the response to ZIKV replication.
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