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1. Introduction

This paper deals with the categorification of integer sequences which is a
recent line of investigation introduced by Ringel and Fahr. According to
them, a categorification of an integer sequence means to consider instead of
numbers in the sequence invariants of suitable objects in a given category.
These procedures allowed them to obtain a categorification of Fibonacci
numbers by using, in particular, the structure of the Auslander-Reiten quiver
of the 3-Kronecker quiver [9, 10].

We also recall that categorifications of generalized non-crossing
partitions (in the sense of Kreweras) of a given finite set have been studied
by Hubery, Krause, Ingalls, Ringel and Thomas amongst others
mathematicians [13]. It is worth noting that Catalan numbers can be
interpreted as the number of cluster variables of a Dynkin algebra of type
A, and also as a(A,) or t(A,), i.e., the number of antichains or support-
tilting modules in mod A,, respectively. Besides, categorifications of
different integer sequences have been obtained by Cafadas et al. by using the

number of indecomposable representations of some suitable posets, tiled
orders and Kronecker modules in [4-7, 17].

In order to obtain categorifications of the sequences A016116 and
A000034 in the OEIS, we count integer partitions induced by t-orbits in the
Auslander-Reiten quiver of some algebras of Dynkin type.

This paper is organized as follows: In Section 2, we recall a
combinatorial definition of the Auslander-Reiten quiver of a Dynkin algebra,
the definition of t-orbit and Coxeter number is introduced in this section as
well. In Section 3, we count t-orbit partitions of type A,, an algorithm to
compute length of t-orbit partitions of type A, is also introduced in this
section by using tiled orders. In Section 4, we count t-orbit partitions of type

D,. In Section 5, we count t-orbit partitions of type Eq4, E; and Eg.

Finally, in Section 6, we give some examples of t-orbit partitions.
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2. Preliminaries

2.1. The Auslander-Reiten quiver of a Dynkin algebra and the Coxeter
number

In this section, we recall ideas of Riedtmann [16] and Oh [19, 20] to give
a combinatorial characterization of the Auslander-Reiten quiver of algebras
of Dynkin type.

If A is a Dynkin diagram of finite representation type, then a function
§:Ag —> Z such that £ = &; —1 for any edge a: 1 — j € Aj is called a

height function. Note that, two arbitrary height functions differ by a constant.

The set ZA ={(i, p) € Ag xZ : p—&; € 2Z} is associated to A, where
Ay ={L, 2, ..., n} in such a way that ZA can be seen as a quiver with edges
of the form (i, p) > (j, p+1) and (j,q) > (i, g+1) for any pair of
connected vertices i, j € Ag. ZA is called the quiver of repetition of A.
Note that ZA does not depend on the orientation of the quiver A. It is well-
known that the quiver ZA itself has an isomorphism with the AR-quiver of

Db((CQ) [12]. According to Oh [19], the injective module 1(i) is located at
the vertex (i, ;) of ZA.

We denote by S;A the quiver obtained from A by reversing the

orientation of each arrow that ends at i or starts at i. A reduced expression
W = §; Sj, -+ Sj of an element w € W is called adapted to A if iy is source

of S -+ Sj,SjA for all 1< k <1, where W, is the group of Weyl

k-1’
associated to A.

We denote TT, = {aj :i € Ay} the set of simple roots and @, (P}, P;,)

the set of (positive, negative) roots.
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Let @, .= O} x Z. For i € Ay, we define
Yi = Z ocj and 9i= Z OLJ',
jeB(i) jeC(i)
where B(i)(C(i)) is the set of vertices j € Qq such that there exists a path
from j to i (from i to j).

By Gabriel’s theorem, the map [M | — dim[M ] gives a bijection from the
set Ind A of indecomposable modules over the path algebra kA (A is of finite

representation type) to ®;. Then IndA = {M(B): B € @, and dim(M (B))
=B}

Following Hernandez and Leclere [15], the bijection ¢ : ZQ — Ci)n
defined by M(B)[m] — (B, m) is described combinatorially as follows:

(D) o, &) = (vi, 0).
(2) For B € @}, with ¢(i, p) = (B, m) we have:
() If ©(B) € @, weset ¢(i, p—2) = (<(B), m).
(b) If ©(B) € @, weset (i, p—2) = (=1(B), m-1).
(©If T !(B) € @, we set §(i, p+2) = (z"(8), m).
@) If () e Dy, weset ¢(i, p+2) = (-t '(B), m+1).

The Auslander-Reiten quiver (AR quiver) I'y is the full subquiver of
ZA whose set of vertices is ¢~ (@] x {0}). Here the vertex ¢ (B, 0)

corresponds to the indecomposable module M(B) in Ind Q and the arrow

o~'(B, 0) > ¢~'(B', 0) is associated to an irreducible morphism from M (B)

to M(B'). In particular, the injective envelope (i) of S; corresponds to the
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vertex d)_l(yi, 0) and the projective cover P(i) of S; is associated to the
vertex ¢ '(0j«, 0).

It is well known that
M. 4
B =1 ! (yi* ), where m; = max{k >0 : rk(yi) SXoM (1)

and *:Ay — Ay is the involution induced by w, (the unique longest

element in W) given by wyaj = — Ol [2].

For B € @ with ©(B) € @}, we set tM (B) := M (z(B)). In the AR quiver
I'y, this map t is called the Auslander-Reiten translation (AR translation).

The dimension vector is an additive function on I'y with respect to the map

7; that is, for each vertex X e I'y such that X = ¢~'(B, 0) and 1(B) € D,

dim X +dimeX =} dimZ.
ZeX™

Here X is the set of vertices Z € I'y such that there exists an arrow from Z

to X. It is also well-known that for B € @}, ©(B) € ®, if and only if B =

for some i € A.

The following description is one of the characterizations of I'y inside
ZA:

0@ x{0}) = {(i, p) € ZA : & —2m; < p < &}

In [11], Gabriel introduced the Nakayama permutation 9 of ZA which

1s defined as follows:

9, p) = (", p+hy —2), )

where h,, is the Coxeter number associated to A.
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We also recall that the well known Nakayama functor is related to the

Nakayama permutation by the formula
7(P(i)) = 1(i). ©)

Note that, the formula (3) allows to conclude that (¢~ (dimP(i), 0)) =
M.« .

¢! (diml (i), 0), therefore 8(9™'(x " (v;4), 0)) = ' (v, 0) = (i, &) as a
m. .

consequence of formula (1). Since © ! (yi*) e @}, we obtain

(i, &) = 8(i", & —2m.) = (i", & - 2m., + hy - 2).
That is
& = &i* - 2mi* +h, — 2. @)
This formula allows us to know M. by using the involution * associated to
the Dynkin diagram and a suitable height function.
If P(i) is the projective cover of the simple representation Sj in the
category rep A, then the set (; = {M e IndQ : rk P(i) = M for some k € Z}

is called the t-orbit of P(i). According to Schiffler [18], each t-orbit in an

AR quiver of Dynkin type contains exactly one projective representation and

one injective representation.

It is well known that the injective envelope 1(i*) of the simple

representation Si* belongs to (. Formulas (1) and (4) allow us to obtain the
cardinality of the t-orbit (; as follows:

|(fi|=mi*+1. (5)
2.2. Partitions induced by orbits

A partition A of a positive integer n is a finite nonincreasing sequence of

t
positive integers A; > Ay --- > &y such that n = )" A;.
i=1
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We recall that according to Dlab and Ringel [8], the possible values for
the global dimension of the endomorphism ring of a generator-cogenerator
depend on the maximal length of the t-orbits. Let us stress that the maximal
length d of the t-orbits depends not only on the Dynkin type of the diagram
A, but on the given orientation. In fact, the following (optimal) bounds
d'<d < d" for the length of t-orbits are well known (for the simply laced

cases):

Dynkintype | Ay Doy Doy EBg By By

d’ [31 2m-2 2m-1 6 9 15
d” n 2m -1 2m -1 8 9 15

In this paper, we use the length of the t-orbits in the Auslander-Reiten
quiver of algebras of Dynkin type to define suitable integer partitions. For
the sake of clarity, we use an example to introduce these partitions whose

parts are given by the cardinality of corresponding t-orbits:
Let us consider the following orientation of A = As:
12345
Note that the Auslander-Reiten quiver I'y has the following shape [18]:

O @]

VAN

VAVAN
A\
AVAN

l—h:

NN
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In this case, a partition A, = (4, 3, 3, 3, 2) is associated to the integer
number 15. Note that each part in A, is given by the cardinality of a t-orbit

ordered in the natural way.
We let P.(L) denote the size of the following set:
P.(A) =|{Ap : where L, is a t-orbit partition}|.
The main aim of this paper is to find out formulas for P (A), where A is
an oriented Dynkin diagram.

3. t-orbit Partitions

3.1. Cardinality of t-orbits of type A,

In this section, we introduce a map which can help us to calculate the

cardinality of a T-orbit in an easy way.

Definition 1. Let A be a quiver of type A, whose vertices and edges are

) o a2 Gn-2 On-1 ]
numbering as follows: 1—2——---——n—-1——n. An arrow o € A is

o 0
called a right arrow (left arrow) if i —i+1 (i + 1—>i). Henceforth, we call
vector Vg = ZEZI ace, € Z" an orientation vector. In this case, a; = 0,

k-1 1 if aj is a right arrow;
ag =) . V(o) for kK > 2 and v(aj) =
K Z':l () () {0 if o is a left arrow.

We recall that for any fixed n for a Dynkin diagram A = A, there exists

an associated involution [2],
*:Ag — Ag suchthat i > i =n—(i—1) (6)
induced by W, (the unique longest element in W) given by Wyo,; = —OLs.

Theorem 2. Let A be a quiver of type A, such that Ag = {1, ..., n} with

orientation vector of the form vg = 22:1 ayex. Then



Some Integer Partitions Induced by Orbits of Dynkin Type = 2753

(i

=ai*—ai+i.

Proof. For i fixed, let &; be such that &; = a; — aio P where Voop =
ZE:I alt()pek and Q%. It is easy to see that the function & : Qp = Z with

(i) = &; is a height function. According to the formula (4), we have that
a. —a —2m, +hy —2=2a} —a
i
since for any n, the Coxeter number of A, is hy =n+1=1i+i". Thus,

a. - a =aP —ai°p+2mi* —(i+i")+2
|

since
ai(lp —aP +i=i"—(a. - &),
we obtain
& —aj +i=m, +1=|6G]
and with this identity, we are done. O

3.2. Applications to tiled orders

A field T is said to be of discrete norm or discrete valuation if it is

endowed with a surjective map
v:T = Z U {w},
which satisfies the following conditions:
(1) v(x) = o if and only if x = 0,
(2) v(xy) = v(x) + v(y),
(3) v(x + y) = min{v(x), v(y)}.
We let O denote, the normalization ring of the field T, such that

0O ={xeT|v(x)=0}.
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An element © e @ such that v(r) =1 is a prime element of Q. For each
x € O, we have that x € O if and only if X = ex™, for some m > 0 and
g € 0. Moreover, X € T if and only if X = en™ for some m e Z and

*
eecO.

Ring O is such that O > 10, where nQ is the unique maximal ideal,
therefore ideals of @ generate a chain of the form

051058205510 > -

A tiled order or semimaximal ring A is a subring of the matrix algebra

T™" with the form

[0) ™M2Q ... gMnQ
i i 210 o) NS 1T0)
A= enlo="" . . o
i, j=1 . . . .
g 2o ... (o)

A consists of all matrices whose entries ij belong to n" YO, in this case the
jj e T™" are unit matrices such that eijen = djkeir B =1 if j=Kk,

djk = 0 otherwise). Numbers Aj are integers which satisfy the following
conditions:

(1) Ajj =0, for each i,

() hii + A = Ly foralli, j, k.
ij jk ik

An order A is said to be Morita reduced or reduced if it satisfies the
additional condition:

Aij +1ji >0, foreach i = j.

In such a case, projective modules are pairwise non-isomorphic, that is, in the
decomposition of A =P, @ P, ®---® B, via projective modules (i.e., the
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rows of A) all indecomposable projective summands are pairwise not

isomorphic, i.e., B % P, if i # j.

In this paper, we assume that tiled orders are reduced.

We denote A = (Ajj); j_; . note that A c TP =Q=A®gT,
where Q is the rational hull of A, Rad Q = 0 and A has a unique right simple
T-module (up to isomorphism) denoted Sg = (T, T, .., T) = i eT, {g 1<

i=1
i < n} is the standard basis such that eje jk = Ojjex- We assume the notation
S_ =(T,T,... T)" for left modules.

The main problem in this case consists of describing all finitely
generated torsionless A-modules which are called admissible modules.

A A-admissible right module (not null) is said to be irreducible if it is a
submodule of the unique simple module (up to isomorphism). For instance,
any indecomposable projective module B is irreducible. Thus,

P = (zM10, n'i20, ..., ntin0)
is a finitely generated irreducible A-module without O -torsion.
Any irreducible right A-module A has the form
A = ("0, 120, ..., 1*10),
where o + kij 2 0j, o € Z, 1 <1i<n. If Ais a left module, then we have
7\‘ij + O 2 0.
Henceforth, we denote a right (left) module A in the form A =
(o1, 0ty vy 0ty) (09, 0o,y oo an)t, respectively).

Note that, A~ A’ if and only if o = aj + k, for some k € Z and any
1<i<n
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The following result characterizes isomorphic orders via matrix problems
(3, 14]:

Theorem 3. Two orders A and A" are isomorphic if the corresponding
exponent matrices Aj; and Aj; can be turned into each other with the help of

the following admissible t-transformations:

(1) To add an integer n to each entry of a given row i and simultaneously
subtract n to each entry of the column i.

(2) To transpose simultaneously rows i and j and columns i and j.

Let ¢ be a discrete valuation ring with prime element . Then we define

n
the reduced tiled order A = Zhw A, where Ay is the matrix ring
k=1

whose adjacency matrix is

A = (A) = [ko* I(j

Theorems 2 and 3 define the following algorithm to calculate the

cardinality of t-orbits of type A, :
Algorithm 1. Given a diagram of type A,

Input: n: = number of vertices V: = an orientation vector of the form
[“r, “I”, “r”, -, “r”, “I”] of length n — 1, where symbols “I” or “r” in the ith
coordinate denotes, respectively, the orientation ((1, 0) or (-1, 0)) of the

corresponding edge o;.

Output: Cardinality of the t-orbits: | () | foreach k =1, 2, ..., n.

Step 1: Find out the vector orientation Vg = ZE:] age, € Z".
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Step 2: The admissible transformation a . — 8, on row and column one

k*
is applied to the matrix Ay to obtain an isomorphic tiled order A} = (Mlj ).

Step 3: Define | ( | = A% and | e | = A%, foreach k = 1,2, ..., (g—l

Remark 4. If Q and Q' are isomorphic quivers, then so are the
corresponding partitions. Note that the reciprocal statement is in general not
true. As an example, let Q and Q' be the oriented quivers Q =1 — 2 «
3—>4and Q=1->2->3«4 vg=(0,0,1,1) and er=(0,0,0,1)
where according to the algorithm the corresponding isomorphic tiled orders

have the following forms (taking into account admissible transformations on

vectors Vg and Vo)

0 1
A = ,
.
[0 2
2703 o)

0
3

2

0
, 0 2 ) 0 2
A1~A1=3 0 and A2~A2=3 0

0 3
and A, ~ A5 = ,

Ay~ A} =
1 1[ 5 0

Thus quivers Q and Q' have associated the same partition Lg = Ag =

(3, 3, 2, 2) of 10. However, Q and Q' are not isomorphic.
3.3. Counting t-orbit partitions of type A,

We note that the length of a t-orbit defined in a natural way partitions
n(n +1)
2

the number t, = of indecomposable representations of an algebra

of Dynkin type A, into n parts. Since for fixed n, each indecomposable

projective module in the Auslander-Reiten quiver of such algebra has solely
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one t-orbit. In this case, such partitions A; are defined in such a way that
Li =] (o(i) |, where o is a permutation satisfying the condition

| (o) [ 2+ 2 [ (5 |-

Proposition 5. An integer partition A = (A, ..., A,) of an integer n is a

t-orbit of type A, if and only if it satisfies the following conditions:
(a) Aj + xi* = hy, for each integer 1 <i <n,
(b) 0 < Aj —Ajy <1 foreachinteger 1 <i<n-1.

Proof. Suppose that A, = (A{, ..., A,y) is the t-orbit partition induced by
the quiver A of type A,, without loss of generality, we can suppose that
Aj =|( | for each integer 1 <i < n. We suppose that Vg = er(]:l ay ey is

the orientation vector associated to the quiver then Theorem 2 allows us to
establish that

hitha =[G |+ (/’i‘*|=(ai*—ai+i)+(ai—ai*+i*)=i+i*=hn.
Further,
ki_xiﬂzl(fi|_|(fi+1|:(ai*_ai+i)_(a(i+1)*_ai+1+i+1)

= (ai; —aj)+(@a. —a. )-1L
Thus, a;,; —a; <1 and as —as | < 1, therefore Aj — Aj; < 1. Since A; 2
Aijt1, it follows that A 5 satisfies the conditions (a) and (b).
Now suppose that A = (Aq, ..., L) satisfies (a) and (b), let a,, be such

that a, = n —A,, we define a;_; = a; — | for each integer [g—l <i<n and
aj = & — V. for each integer 1 < i< lrg-‘ —1 with uj =i - Aj. Given the

vector V = ZE:I ayey, we define a quiver Q with orientation vector Vg = V.
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We set Qy ={l, .., n} and Q; = {0y, ..., ap_1}, Where a; is an arrow
with vertices i and i+ 1 oriented according to the identities aj,; —a; =0
(aj+; — @ =1). By construction, it is easy to see that Vg = V. Finally, we

see that the partition induced by the quiver Q is Ag = A. Moreover, for any

integer 1 < i < (g—‘ — 1, we have

|/f'i|=ai*—ai+i=ui*+1:i*—7»i*+i=hn—7»i*=7»i

and with this identity, we are done. O

If P,(A,) is the number of t-orbit partitions of type A, of the triangular

number t,, then we have the following result.

Theorem 6. P.(A,) = 2{%}1.

Proof. Firstly, let us to consider the case n odd, that is, n = 2k — 1 for

some k > 1. We proceed by induction on k. If k = 2, then it is easy to see
that there are two t-orbit partitions which are A = (3, 2, 1) and A" =(2, 2, 2)
i
2

1
of type A, since 2{ —‘ =2kl = 2, the theorem holds in this case. Now

we suppose that the assertion is true for any s <k and j such that
2s—1=j <2k -1, we will see that the theorem is true for N =n+2 =

2k +1)—-1.

It is clear that a t-orbit partition A = (Aq, X9, ...y Ans Angis Anga) of the

triangular number ty arises from the t-orbit partition A= (A —1, ...,

Ay =1, Anyy = 1) of t,.

On the other hand, if A" = (A, A5, ..., Ay) is an integer partition of t,

and A is an integer partition of ty such that A=A/, then

A=A, M +L ., Ay +1,A000)
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via condition (b), 0 <A; —A] +1<1 therefore Ay =A] +2 or Ay =A] +1.
If A; = A{ + 2, then condition (a) implies A; + An,o =N+ 3, then Ao = Ap,.
Thus

A= +2,A +1 ., Ay +1,45). (7)

On the other hand, if A = A] +1, then via condition (a), we obtain

M+ Api2 = A1 + 1+ Anyo =0+ 3 therefore A,y =n—(A] —1)+1=7\,i*
+1=2A, +1, then

A=A +L A +1L, A5 +1, ., Ay +1, AL +1). (8)

Thus, each integer partition of t,, gives place to two partitions of t,,,, that

ﬂ—l—l {ﬂ]_l
is, Pr(Aniz)=2P(n) = 2(2[2 )= 2Ky =20k DT Z ol 21 gince
the proof for the case n even follows in a similar way, we are done. O

2}4
Remark 7. The integer sequence (2{2 )1 is encoded as A016116 in

the On-line Encyclopedia of Integer Sequences [22].

4. t-orbits Partitions of Type D,

For the rest of this section, a Dynkin diagram D,, with n vertices has the
following numbering:
n—1

1 2 3 S n—2 forn >4

n

According to Oh, the Coxeter number h, is 2n—2 whereas the
involution * induced by wy € W, is given by i* =i for 1 <i < n—2. Note

that (n—1)" =n—1,n" =n if nis even, whereas (n—1)" =n, n* =n -1
ifnis odd [2, 20].
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Theorem 8. If n is even, then the t-orbit partition of D, -type is A =
(n—1,n-1, .., n-1). Whereas, if n is odd, then the z-orbit partitions of

Dy, -type are either
A=(n-Ln-1,.,n=1) or A=(n,n-1..,n-1,n-2).
Proof. Suppose that n is an even number, since &; = o = 2M. + hn
—2 and i* =i, we have that 2mi* = h, — 2, that is, m; = n — 2. Therefore,

=n —1. According to this fact, we see that to each quiver D,, with n

(i

even, there is an associated partition A = (n—1, n =1, ..., n —1) which does
not depend on orientation. On the other hand, if n is odd, then we have that if
i#n,n-1, then i* =i, thus m; =n -2, thatis [|=n—1 for 1<
<n-2. It remains to compute |(,_;| and | ¢, | Since n* =n-1 and
(=1 =n, & =& —2My_ +hy —2 and §n_y = &, —2my + by — 2.
Definition of height function allows us to conclude that |&,_; — &, | =2 or
0. Indeed, if an_p,:N-=2—>n-1 and o, :N-2—>n or if ap_,:
N—-2«<n-1 and ap_1:N—=2<«n, then &, =&, -1 and &, =
Cn2 -1l or &5 =&y 5 -1 and &, 5 =&y — 1. Therefore, &y =&y,
moreover, if ap_,:N-2—>n-1and ap_;:NnN—>n-2 or if o,_s:
N—-2«<n-1and ap_j:nN«<n-2, then E, —Er_1 =2 or &y — &g
= -2.

Now, if |&q_1 — &n | = 0, then since &, = En_; —2Mp_; + (2n—2) -2
and &,_1 =&, -2my +(2n-2)—2, we conclude that my = my_; = n -2,

thatis, | (h_1 | =| (| = n —1 thus the t-orbit partition induced is

A=(n-1,.,n-1).

Finally, if |&,_; — &, | =2, then we take into account that &, = &,_; —
2m,_; +(2n—-2)-2 and &,_; = &, —2m, +(2n —2) — 2 to observe that
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E&n1 —&n =2 or =2 thus my =n—-1 and my_; =n-3 or my=n-3

and my_; =n—1, thatis, [(,_;|=n and |(4|=n=2 or [(_1|=n-2

and | (, | = n therefore the t-orbit partition induced has the form
A=(,n-1,.,n-1n-2).

We are done. O

If we let P.(D,) denote the number of t-orbit partitions of type

Dn(n-1), then we have the following result.

Corollary 9. P.(Dy) =1 + Npoq2-

Remark 10. The integer sequence P (D) is encoded as A000034 in the
OEIS [23].

5. t-orbit Partitions of Type E4, E; and Eg

In this section, we define the following numbering for Dynkin diagrams

of type Eg4, E7, and Eg.

0

Eg
1 3 ) 6
B T .
1 3 4 3} i) 7
9
Es [ . .
1 3 4 5 i} T O 8

We recall that if h,, is the Coxeter number and W, is the unique longest

element in the Weyl group W, associated to a Dynkin diagram such that
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Wooj = —CLs, then it is possible to define an involution * on the

corresponding vertices. In cases Eg, E; and Eg we have that:

Dynkin type Eq E,; Eg
h, 12 18 30
Involution * Woo = —0lg, Wolly = —0ly, WoOl3 = —Ols, Wy =-1  wy=-1

Wo(X4 = —0ly, WOO{‘S = —0u3, WOQ’6 = —0.

Theorem 11. P,(E¢) = 5, P.(E7) = P,(Eg) = 1.

Proof. Suppose that A is a quiver of type E and § is a height function
defined on A.

When A = E; or Eg, it suffices to take into account the involution * as
the identity, therefore for any vertex i, we have &; = éi*, and thus as a
consequence of the identity (4),
2m; = 2mi* =h, - 2.
Thus, if A is a quiver of type E5, then |(;|=9,1<i <7 by (5), therefore

the t-orbit has the form A, =(9,9, 9,9, 9, 9, 9) which does not depend on

orientation.

Analogously, if A is a quiver of type Eg, then the t-orbit partition
induced has the form A, = (15, 15,15, 15,15, 15,15, 15) which does not

depend on orientation.

On the other hand, if A = Eg, then we must compute cardinalities of
t-orbits independently. Note that, if i = 2 or i = 4, then * is defined in such
a way that &; = E“‘i* therefore

2m; =2m., = hy, — 2

by (4) which implies that | (5 | = | (4 | = 6.
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Furthermore, if i = 3 or i = 5, we note that 3* = 5 and 5* = 3, moreover
|&5 —&5| =0 or 2, in the case &3 = &5, we obtain | (3| =|(5|=6 as a
consequence of formulas (4) and (5). If | &3 — &5 | = 2, then we observe that
|(s|=5and |(3]|=7 or|(5|=7 and |(3|=>5.

When i =1 ori=6 implies |& — &g | =0, 2 or 4, thus & = & implies
61 =1661= 6, & ~&| =2 implies || =5 and |65|=7 or || =7
and | (s | =5 and | & — &g | =4 implies | (4| =8 and |(4|=4 or || =4
and | (5 | = 8. Thus, A = (A, Xy, A3, Ay, A5, Ag) is such that for any 1 <
i <6, &j =] (s(i) |, Where o is the permutation which satisfies the condition
[y [ 22 oy | [G+1 G [ =hg =12, [(]€{4,5,6,7,8}, || =

|(4]|=6and|5] € {5 6,7} O
6. Appendix

6.1. List of t-orbit partitions of type A

The following are examples of t-orbit partitions of type Ay:

Dynkin t-orbit partitions
diagram
A ()
A 2,1
A (3,2,1),2,2,2)
Ay 4,3,2,1),3,3,2,2)
As (5,4,3,2,1),(4,4,3,2,2),(4,3,3,3,2),(3,3,3,3,3)
As 6,5,4,3,2,1),(5,5,4,3,2,2),(5,4,4,3,3,2),(4,4,4,3,3,3)
Ay (7,6,5,4,3,2,1),(6,6,5,4,3,2,2),(6,5,5,4,3,3,2),(6,5,4,4,4,3,2)
(5,5,5,4,3,3,3),(5,5,4,4,4,3,3),(5,4,4,4,4,4,3),(4,4,4,4,4,4,4)
Ag 8,7,6,5,4,3,2,1),(7,7,6,5,4,3,2,2),(7,6,6,5,4,3,3,2)
(7,6,5,5,4,4,3,2),(6,6,6,5,4,3,3,3),(6,6,5,5,4,4,3,3)
(6,5,5,5,4,4,4,3),(5,5,5,5,4,4,4,4)
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[1]
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[4]

[5]

(7]

(8]
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List of t-orbit partitions of type Eg

The following are the t-orbit partitions of type Eg:

® (6,6,6,06,06,06),

®(7,6,6,6,6,5),

®(7,7,6,6,5,5),

®(8,6,6,6,6,4),

*(8,7,6,6,5,4).
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