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Abstract 

A categorification in the sense of Ringel and Fahr is given to the 
sequences A016116 and A000034 in the OEIS by using τ-orbits in the 
Auslander-Reiten quiver of some Dynkin algebras. 
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1. Introduction 

This paper deals with the categorification of integer sequences which is a 
recent line of investigation introduced by Ringel and Fahr. According to 
them, a categorification of an integer sequence means to consider instead of 
numbers in the sequence invariants of suitable objects in a given category. 
These procedures allowed them to obtain a categorification of Fibonacci 
numbers by using, in particular, the structure of the Auslander-Reiten quiver 
of the 3-Kronecker quiver [9, 10]. 

We also recall that categorifications of generalized non-crossing 
partitions (in the sense of Kreweras) of a given finite set have been studied 
by Hubery, Krause, Ingalls, Ringel and Thomas amongst others 
mathematicians [13]. It is worth noting that Catalan numbers can be 
interpreted as the number of cluster variables of a Dynkin algebra of type 

,nA  and also as ( )nAa  or ( ),nAt  i.e., the number of antichains or support-

tilting modules in ,mod nA  respectively. Besides, categorifications of 

different integer sequences have been obtained by Cañadas et al. by using the 
number of indecomposable representations of some suitable posets, tiled 
orders and Kronecker modules in [4-7, 17]. 

In order to obtain categorifications of the sequences A016116 and 
A000034 in the OEIS, we count integer partitions induced by τ-orbits in the 
Auslander-Reiten quiver of some algebras of Dynkin type. 

This paper is organized as follows: In Section 2, we recall a 
combinatorial definition of the Auslander-Reiten quiver of a Dynkin algebra, 
the definition of τ-orbit and Coxeter number is introduced in this section as 
well. In Section 3, we count τ-orbit partitions of type ,nA  an algorithm to 

compute length of τ-orbit partitions of type nA  is also introduced in this 

section by using tiled orders. In Section 4, we count τ-orbit partitions of type 
.nD  In Section 5, we count τ-orbit partitions of type ,6E  7E  and .8E  

Finally, in Section 6, we give some examples of τ-orbit partitions. 



Some Integer Partitions Induced by Orbits of Dynkin Type 2747 

2. Preliminaries 

2.1. The Auslander-Reiten quiver of a Dynkin algebra and the Coxeter 
number 

In this section, we recall ideas of Riedtmann [16] and Oh [19, 20] to give 
a combinatorial characterization of the Auslander-Reiten quiver of algebras 
of Dynkin type. 

If Δ is a Dynkin diagram of finite representation type, then a function 
Z→Δξ 0:  such that 1−ξ=ξ ij  for any edge 1: Δ∈→α ji  is called a 

height function. Note that, two arbitrary height functions differ by a constant. 

The set ( ){ }ZZZ 2:, 0 ∈ξ−×Δ∈=Δ ippi  is associated to Δ, where 

{ }n...,,2,10 =Δ  in such a way that ΔZ  can be seen as a quiver with edges 

of the form ( ) ( )1,, +→ pjpi  and ( ) ( )1,, +→ qiqj  for any pair of 

connected vertices ., 0Δ∈ji  ΔZ  is called the quiver of repetition of Δ. 

Note that ΔZ  does not depend on the orientation of the quiver Δ. It is well-

known that the quiver ΔZ  itself has an isomorphism with the AR-quiver of 

( )QDb C  [12]. According to Oh [19], the injective module ( )iI  is located at 

the vertex ( )ii ξ,  of .ΔZ  

We denote by ΔiS  the quiver obtained from Δ by reversing the 

orientation of each arrow that ends at i or starts at i. A reduced expression 

liii SSSw "21=  of an element 0Ww ∈  is called adapted to Δ if ki  is source 

of Δ
− 121 iii SSS k "  for all ,1 lk ≤≤  where 0W  is the group of Weyl 

associated to Δ. 

We denote { }0: Δ∈α=Π iin  the set of simple roots and ( )−+ ΦΦΦ nnn ,  

the set of (positive, negative) roots. 
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Let .:ˆ Z×Φ=Φ +
nn  For ,0Δ∈i  we define 

( )
∑
∈

α=γ
iBj

ji  and  
( )

∑
∈

α=θ
iCj

ji ,  

where ( ) ( )( )iCiB  is the set of vertices 0Qj ∈  such that there exists a path 

from j to i (from i to j). 

By Gabriel’s theorem, the map [ ] [ ]MM dim→  gives a bijection from the 

set ΔInd  of indecomposable modules over the path algebra kΔ (Δ is of finite 

representation type) to .+Φn  Then { ( ) +Φ∈ββ=Δ nM :Ind  and ( )( )βMdim  

}.β=  

Following Hernandez and Leclere [15], the bijection nQ Φ→φ ˆ: Z  

defined by ( )[ ] ( )mmM ,ββ 6  is described combinatorially as follows: 

(1) ( ) ( ).0,, iii γ=ξφ  

(2) For +Φ∈β n  with ( ) ( )mpi ,, β=φ  we have: 

(a) If ( ) ,+Φ∈βτ n  we set ( ) ( )( ).,2, mpi βτ=−φ  

(b) If ( ) ,−Φ∈βτ n  we set ( ) ( )( ).1,2, −βτ−=−φ mpi  

(c) If ( ) ,1 +− Φ∈βτ n  we set ( ) ( ( ) ).,2, 1 mpi βτ=+φ −  

(d) If ( ) ,1 −− Φ∈βτ n  we set ( ) ( ( ) ).1,2, 1 +βτ−=+φ − mpi  

The Auslander-Reiten quiver (AR quiver) ΔΓ  is the full subquiver of 

ΔZ  whose set of vertices is ( { }).01 ×Φφ +−
n  Here the vertex ( )0,1 βφ−  

corresponds to the indecomposable module ( )βM  in Ind Q and the arrow 

( ) ( )0,0, 11 β′φ→βφ −−  is associated to an irreducible morphism from ( )βM  

to ( ).β′M  In particular, the injective envelope ( )iI  of iS  corresponds to the 
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vertex ( )0,1
iγφ−  and the projective cover ( )iP  of iS  is associated to the 

vertex ( ).0,*
1

iθφ−  

It is well known that 

( ),∗
∗ γτ=θ

i
m

i i  where { ( ) }+Φ∈γτ≥= ni
k

i km :0max  (1) 

and 00: Δ→Δ∗  is the involution induced by 0w  (the unique longest 

element in )0W  given by ∗α−=α
iiw0  [2]. 

For +Φ∈β n  with ( ) ,+Φ∈βτ n  we set ( ) ( )( ).: βτ=βτ MM  In the AR quiver 

,ΔΓ  this map τ is called the Auslander-Reiten translation (AR translation). 

The dimension vector is an additive function on ΔΓ  with respect to the map 

τ; that is, for each vertex ΔΓ∈X  such that ( )0,1 βφ= −X  and ( ) ,+Φ∈βτ n  

∑
−∈

=τ+
XZ

ZXX .dimdimdim  

Here −X  is the set of vertices ΔΓ∈Z  such that there exists an arrow from Z 

to X. It is also well-known that for ( ) −+ Φ∈βτΦ∈β nn ,  if and only if iθ=β  

for some .0Δ∈i  

The following description is one of the characterizations of ΔΓ  inside 

:ΔZ  

( { }) ( ){ }.2:,01
iiin pmpi ξ≤≤−ξΔ∈=×Φφ +− Z  

In [11], Gabriel introduced the Nakayama permutation ϑ of ΔZ  which 

is defined as follows: 

 ( ) ( ),2,, −+=ϑ ∗
nhpipi  (2) 

where nh  is the Coxeter number associated to Δ. 
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We also recall that the well known Nakayama functor is related to the 
Nakayama permutation by the formula 

 ( )( ) ( ).iIiP =V  (3) 

Note that, the formula (3) allows to conclude that ( ( )( )) =φϑ − 0,dim1 iP  

( )( ),0,dim1 iI−φ  therefore ( ( ( ) )) ( ) ( )iii
m

ii ξ=γφ=γτφϑ −−
∗

∗ ,0,0, 11  as a 

consequence of formula (1). Since ( ) ,+Φ∈γτ ∗
∗

ni
m

i  we obtain 

( ) ( ) ( ).22,2,, −+−ξ=−ξϑ=ξ ∗∗∗∗
∗∗

niiiii hmimii  

That is 

 .22 −+−ξ=ξ ∗∗ niii hm  (4) 

This formula allows us to know ∗i
m  by using the involution ∗ associated to 

the Dynkin diagram and a suitable height function. 

If ( )iP  is the projective cover of the simple representation iS  in the 

category rep Δ, then the set { ( ) }Z∈=τ∈= kMiPQM k
i somefor:IndO  

is called the τ-orbit of ( ).iP  According to Schiffler [18], each τ-orbit in an 

AR quiver of Dynkin type contains exactly one projective representation and 
one injective representation. 

It is well known that the injective envelope ( )∗iI  of the simple 

representation ∗i
S  belongs to .iO  Formulas (1) and (4) allow us to obtain the 

cardinality of the τ-orbit iO  as follows: 

 .1+= ∗ii mO  (5) 

2.2. Partitions induced by orbits 

A partition λ of a positive integer n is a finite nonincreasing sequence of 

positive integers tλ≥λ≥λ "21  such that ∑
=
λ=

t

i
in

1
.  



Some Integer Partitions Induced by Orbits of Dynkin Type 2751 

We recall that according to Dlab and Ringel [8], the possible values for 
the global dimension of the endomorphism ring of a generator-cogenerator 
depend on the maximal length of the τ-orbits. Let us stress that the maximal 
length d of the τ-orbits depends not only on the Dynkin type of the diagram 
Δ, but on the given orientation. In fact, the following (optimal) bounds 

ddd ′′≤≤′  for the length of τ-orbits are well known (for the simply laced 
cases): 

15981212

159612222

typeDynkin 876212

−−′′

−−⎥⎥
⎤

⎢⎢
⎡′

−

mmnd

mmnd

EEEDDA mmn

 

In this paper, we use the length of the τ-orbits in the Auslander-Reiten 
quiver of algebras of Dynkin type to define suitable integer partitions. For 
the sake of clarity, we use an example to introduce these partitions whose 
parts are given by the cardinality of corresponding τ-orbits: 

Let us consider the following orientation of :5A=Δ  

.54321 ←→←←  

Note that the Auslander-Reiten quiver ΔΓ  has the following shape [18]: 
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In this case, a partition ( )2,3,3,3,4=λΔ  is associated to the integer 

number 15. Note that each part in Δλ  is given by the cardinality of a τ-orbit 

ordered in the natural way. 

We let ( )LPτ  denote the size of the following set: 

( ) { } .partitionorbit-aiswhere: τλλ=Δ ΔΔτP  

The main aim of this paper is to find out formulas for ( ),ΔτP  where Δ is 

an oriented Dynkin diagram. 

3. τ-orbit Partitions 

3.1. Cardinality of τ-orbits of type nA  

In this section, we introduce a map which can help us to calculate the 
cardinality of a τ-orbit in an easy way. 

Definition 1. Let Δ be a quiver of type nA  whose vertices and edges are 

numbering as follows: .___1______2___1
1221

nn
nn −− αααα

−"  An arrow 1Δ∈αi  is 

called a right arrow (left arrow) if ( ).11 iiii
ii αα

→++→  Henceforth, we call 

vector ∑ = ∈= n
k

n
kkQ eav 1 Z  an orientation vector. In this case, ,01 =a  

( )∑ −
= α= 1

1
k
i ik va  for 2≥k  and ( )

⎩
⎨
⎧

α
α

=α
arrow.leftaisif0

arrow;rightaisif1

i

i
iv  

We recall that for any fixed n for a Dynkin diagram ,nA=Δ  there exists 

an associated involution [2], 

 00: Δ→Δ∗  such that ( )1−−=∗ inii 6  (6) 

induced by 0w  (the unique longest element in )0W  given by .0 ∗α−=α
iiw  

Theorem 2. Let Δ be a quiver of type nA  such that { }n...,,10 =Δ  with 

orientation vector of the form ∑ == n
k kkQ eav 1 .  Then 
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.iaa iii +−= ∗O  

Proof. For i fixed, let iξ  be such that ,op
iii aa −=ξ  where =opQ

v  

∑ =
n
k k

op
k ea1  and .opQ  It is easy to see that the function Z→ξ 0: Q  with 

( ) ii ξ=ξ  is a height function. According to the formula (4), we have that 

ap
i

ap
iniii

aahmaa −=−+−− ∗∗∗ 22  

since for any n, the Coxeter number of nA  is .1 ∗+=+= iinhn  Thus, 

( ) 22 ++−+−=− ∗
∗∗∗ iimaaaa

i
op
i

op
iii

 

since 

( ),ii
op
i

op
i

aaiiaa −−=+− ∗∗
∗  

we obtain 

iiii
miaa O=+=+− ∗∗ 1  

and with this identity, we are done. ~ 

3.2. Applications to tiled orders 

A field T is said to be of discrete norm or discrete valuation if it is 
endowed with a surjective map 

{ },: ∞→ν ∪ZT  

which satisfies the following conditions: 

(1) ( ) ∞=ν x  if and only if ,0=x  

(2) ( ) ( ) ( ),yxxy ν+ν=ν  

(3) ( ) ( ) ( ){ }.,min yxyx νν≥+ν  

We let O  denote, the normalization ring of the field T, such that 

( ){ }.0≥ν|∈= xTxO  
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An element O∈π  such that ( ) 1=πν  is a prime element of .O  For each 

,O∈x  we have that O∈x  if and only if ,mx επ=  for some 0≥m  and 

.∗∈ε O  Moreover, Tx ∈  if and only if mx επ=  for some Z∈m  and 

.∗∈ε O  

Ring O  is such that ,OO π⊃  where Oπ  is the unique maximal ideal, 
therefore ideals of O  generate a chain of the form 

.2 "" ⊃π⊃⊃π⊃π⊃ OOOO m  

A tiled order or semimaximal ring Λ is a subring of the matrix algebra 
nnT ×  with the form 

.
1,

21

221

112

∑
=

λλ

λλ

λλ

λ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ππ

ππ
ππ

=π=Λ
n

ji
ij

nn

n

n

ije

OOO

OOO
OOO

O

"
####

"
"

 

Λ consists of all matrices whose entries ij belong to ,Oijλ
π  in this case the 

nn
ij Te ×∈  are unit matrices such that ,if,1( kjeee jkiljkklij ==δδ=  

0=δ jk  otherwise). Numbers ijλ  are integers which satisfy the following 

conditions: 

(1) ,0=λii  for each i, 

(2) ikjkij λ≥λ+λ  for all i, j, k. 

An order Λ is said to be Morita reduced or reduced if it satisfies the 
additional condition: 

,0>λ+λ jiij  for each .ji ≠  

In such a case, projective modules are pairwise non-isomorphic, that is, in the 
decomposition of nPPP ⊕⊕⊕=Λ "21  via projective modules (i.e., the 
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rows of Λ) all indecomposable projective summands are pairwise not 
isomorphic, i.e., ji PP /  if .ji ≠  

In this paper, we assume that tiled orders are reduced. 

We denote ( ) ,1, njiij …=λ=Λ  note that ,TQT nn
O⊗Λ==⊂Λ ×  

where Q is the rational hull of Λ, 0Rad =Q  and Λ has a unique right simple 

T-module (up to isomorphism) denoted ( ) ∑
=

==
n

i
iR TeTTTS

1
,...,,,  { ≤|1ie  

}ni ≤  is the standard basis such that .kijjki eee δ=  We assume the notation 

( )tL TTTS ...,,,=  for left modules. 

The main problem in this case consists of describing all finitely 
generated torsionless Λ-modules which are called admissible modules. 

A Λ-admissible right module (not null) is said to be irreducible if it is a 
submodule of the unique simple module (up to isomorphism). For instance, 
any indecomposable projective module iP  is irreducible. Thus, 

( )OOO iniiiP λλλ πππ= ...,,, 21  

is a finitely generated irreducible Λ-module without O -torsion. 

Any irreducible right Λ-module A has the form 

( ),...,,, 21 OOO nA ααα πππ=  

where ,jiji α≥λ+α  ,Z∈αi  .1 ni ≤≤  If A is a left module, then we have 

.ijij α≥α+λ  

Henceforth, we denote a right (left) module A in the form =A  

( ) (( ) ).lyrespective,...,,,...,,, 2121
t

nn αααααα  

Note that, AA ′  if and only if ,kii +α′=α  for some Z∈k  and any 

.1 ni ≤≤  
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The following result characterizes isomorphic orders via matrix problems 
[3, 14]: 

Theorem 3. Two orders Λ and Λ′  are isomorphic if the corresponding 
exponent matrices ijλ  and ijλ′  can be turned into each other with the help of 

the following admissible t-transformations: 

(1) To add an integer n to each entry of a given row i and simultaneously 
subtract n to each entry of the column i. 

(2) To transpose simultaneously rows i and j and columns i and j. 

Let O  be a discrete valuation ring with prime element π. Then we define 

the reduced tiled order ∑ ⎥⎥
⎤

⎢⎢
⎡

=
= 2

1
,

n

k
kAA  where kA  is the matrix ring 

⎥
⎦

⎤
⎢
⎣

⎡

π

π
∗

OO

OO
k

k
 

whose adjacency matrix is 

( ) .
0

0
⎥⎦
⎤

⎢⎣
⎡=λ=Λ ∗k

kk
ijk  

Theorems 2 and 3 define the following algorithm to calculate the 
cardinality of τ-orbits of type :nA  

Algorithm 1. Given a diagram of type nA  

Input: n: = number of vertices v: = an orientation vector of the form 
[“r”, “l”, “r”, ···, “r”, “l”] of length ,1−n  where symbols “l” or “r” in the ith 

coordinate denotes, respectively, the orientation ( ) ( )( )0,1or0,1 −  of the 

corresponding edge .iα  

Output: Cardinality of the τ-orbits: kO  for each ....,,2,1 nk =  

Step 1: Find out the vector orientation ∑ = ∈= n
k

n
kkQ eav 1 .Z  



Some Integer Partitions Induced by Orbits of Dynkin Type 2757 

Step 2: The admissible transformation kk
aa −∗  on row and column one 

is applied to the matrix kΛ  to obtain an isomorphic tiled order ( ).k
ijk λ′=Λ′  

Step 3: Define k
k 12λ′=O  and k

k 21λ′=∗O  for each .2...,,2,1 ⎥⎥
⎤

⎢⎢
⎡= nk  

Remark 4. If Q and Q′  are isomorphic quivers, then so are the 

corresponding partitions. Note that the reciprocal statement is in general not 
true. As an example, let Q and Q′  be the oriented quivers ←→= 21:Q  

43 →  and .4321: ←→→=′Q  ( )1,1,0,0=Qv  and ( )1,0,0,0=′Qv  

where according to the algorithm the corresponding isomorphic tiled orders 
have the following forms (taking into account admissible transformations on 
vectors Qv  and :)Qv ′  

,
04
10

1 ⎥⎦
⎤

⎢⎣
⎡=Λ  

,
03
20

2 ⎥⎦
⎤

⎢⎣
⎡=Λ  

⎥⎦
⎤

⎢⎣
⎡=Λ′Λ

03
20

~ 11    and   ,
02
30

~ 22 ⎥⎦
⎤

⎢⎣
⎡=Λ′Λ  

⎥⎦
⎤

⎢⎣
⎡=Λ ′′Λ

03
20

~ 11    and   .
03
20

~ 22 ⎥⎦
⎤

⎢⎣
⎡=Λ ′′Λ  

Thus quivers Q and Q′  have associated the same partition =λ=λ ′QQ  

( )2,2,3,3  of 10. However, Q and Q′  are not isomorphic. 

3.3. Counting τ-orbit partitions of type nA  

We note that the length of a τ-orbit defined in a natural way partitions 

the number ( )
2

1+= nntn  of indecomposable representations of an algebra 

of Dynkin type nA  into n parts. Since for fixed n, each indecomposable 

projective module in the Auslander-Reiten quiver of such algebra has solely 
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one τ-orbit. In this case, such partitions iλ  are defined in such a way that 

( ) ,ii σ=λ O  where σ is a permutation satisfying the condition 

( ) ( ) .1 nσσ ≥≥ OO "  

Proposition 5. An integer partition ( )nλλ=λ ...,,1  of an integer n is a 

τ-orbit of type nA  if and only if it satisfies the following conditions: 

(a) nii h=λ+λ ∗  for each integer ,1 ni ≤≤  

(b) 10 1 ≤λ−λ≤ +ii  for each integer .11 −≤≤ ni  

Proof. Suppose that ( )nλλ=λΔ ...,,1  is the τ-orbit partition induced by 

the quiver Δ of type ,nA  without loss of generality, we can suppose that 

ii O=λ  for each integer .1 ni ≤≤  We suppose that ∑ == n
k kkQ eav 1  is 

the orientation vector associated to the quiver then Theorem 2 allows us to 
establish that 

( ) ( ) .niiiiiiii hiiiaaiaa =+=+−++−=+=λ+λ ∗∗
∗∗∗∗ OO  

Further, 

( ) ( ( ) )11111 ++−−+−=−=λ−λ ++++ ∗∗ iaaiaa iiiiiiii OO  

( ) ( ) .1
11 −−+−=
−+ ∗∗ iiii aaaa  

Thus, 11 ≤−+ ii aa  and ,1
1
≤−

−∗∗ ii
aa  therefore .11 ≤λ−λ +ii  Since ≥λi  

,1+λi  it follows that Δλ  satisfies the conditions (a) and (b). 

Now suppose that ( )nλλ=λ ...,,1  satisfies (a) and (b), let na  be such 

that ,nn na λ−=  we define 11 −=− ii aa  for each integer nin ≤≤⎥⎥
⎤

⎢⎢
⎡

2  and 

∗∗ −=
iii vaa  for each integer 121 −⎥⎥

⎤
⎢⎢
⎡≤≤ ni  with .ii iu λ−=  Given the 

vector ∑ == n
k kkeav 1 ,  we define a quiver Q with orientation vector .vvQ =  
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We set { }nQ ...,,10 =  and { },...,, 111 −αα= nQ  where iα  is an arrow 

with vertices i and 1+i  oriented according to the identities 01 =−+ ii aa  

( ).11 =−+ ii aa  By construction, it is easy to see that .vvQ =  Finally, we 

see that the partition induced by the quiver Q is .λ=λQ  Moreover, for any 

integer ,121 −⎥⎥
⎤

⎢⎢
⎡≤≤ ni  we have 

iiniiiii hiiuiaa λ=λ−=+λ−=+=+−= ∗∗∗∗
∗1O  

and with this identity, we are done. ~ 

If ( )nAPτ  is the number of τ-orbit partitions of type nA  of the triangular 

number ,nt  then we have the following result. 

Theorem 6. ( ) .2
12 −⎥⎥

⎤
⎢⎢
⎡

τ =
n

nAP  

Proof. Firstly, let us to consider the case n odd, that is, 12 −= kn  for 
some .1≥k  We proceed by induction on k. If ,2=k  then it is easy to see 

that there are two τ-orbit partitions which are ( )1,2,3=λ  and ( )2,2,2=λ′  

of type ,3A  since ,222 112 == −−⎥⎥
⎤

⎢⎢
⎡

k
n

 the theorem holds in this case. Now 

we suppose that the assertion is true for any ks <  and j such that 
,1212 −≤=− kjs  we will see that the theorem is true for =+= 2nN  

( ) .112 −+k  

It is clear that a τ-orbit partition ( )2121 ,,...,,, ++ λλλλλ=λ nnn  of the 

triangular number Nt  arises from the τ-orbit partition ( ...,,12 −λ=λ  

)1,1 1 −λ−λ +nn  of .nt  

On the other hand, if ( )nλ′λ′λ′=λ′ ...,,, 21  is an integer partition of nt  

and λ is an integer partition of Nt  such that ,λ′=λ  then 

( )211 ,1...,,1, +λ+λ′+λ′λ=λ nn  
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via condition (b), 110 11 ≤+λ′−λ≤  therefore 211 +λ′=λ  or .111 +λ′=λ  

If ,211 +λ′=λ  then condition (a) implies ,321 +=λ+λ + nn  then .2 nn λ′=λ +  

Thus 

 ( ).,1...,,1,2 11 nn λ′+λ′+λ′+λ′=λ  (7) 

On the other hand, if ,111 +λ′=λ  then via condition (a), we obtain 

31 2121 +=λ++λ′=λ+λ ++ nnn  therefore ( ) ∗λ′=+−λ′−=λ + 112 11nn  

,11 +λ′=+ n  then 

 ( ).1,1...,,1,1,1 211 +λ′+λ′+λ′+λ′+λ′=λ nn  (8) 

Thus, each integer partition of nt  gives place to two partitions of ,2+nt  that 

is, ( ) ( ) ( ) ( ( ) ) ( ) .2222222
1211112

2
−⎥⎥
⎤

⎢⎢
⎡

−+−
−⎥⎥
⎤

⎢⎢
⎡

τ+τ =====
N

kk
n

n nPAP  Since 

the proof for the case n even follows in a similar way, we are done. ~ 

Remark 7. The integer sequence ( ) 1
122 ≥

−⎥⎥
⎤

⎢⎢
⎡

n

n

 is encoded as A016116 in 

the On-line Encyclopedia of Integer Sequences [22]. 

4. τ-orbits Partitions of Type nD  

For the rest of this section, a Dynkin diagram nD  with n vertices has the 

following numbering: 

 

According to Oh, the Coxeter number nh  is 22 −n  whereas the 

involution ∗ induced by 00 Ww ∈  is given by ii =∗  for .21 −≤≤ ni  Note 

that ( ) nnnn =−=− ∗∗ ,11  if n is even, whereas ( ) ,1 nn =− ∗  1−=∗ nn  

if n is odd [2, 20]. 
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Theorem 8. If n is even, then the τ-orbit partition of nD -type is =λ  

( ).1...,,1,1 −−− nnn  Whereas, if n is odd, then the  τ-orbit partitions of 

nD -type are either 

( )1...,,1,1 −−−=λ nnn   or  ( ).2,1...,,1, −−−=λ nnnn  

Proof. Suppose that n is an even number, since niii hm +−ξ=ξ ∗∗ 2  

2−  and ,ii =∗  we have that ,22 −=∗ ni
hm  that is, .2−= nmi  Therefore, 

.1−= niO  According to this fact, we see that to each quiver nD  with n 

even, there is an associated partition ( )1...,,1,1 −−−=λ nnn  which does 

not depend on orientation. On the other hand, if n is odd, then we have that if 

,1, −≠ nni  then ,ii =∗  thus ,2−= nmi  that is 1−= niO  for i≤1  

.2−≤ n  It remains to compute 1−nO  and .nO  Since 1−=∗ nn  and 

( ) ,1 nn =− ∗  22 11 −+−ξ=ξ −− nnnn hm  and .221 −+−ξ=ξ − nnnn hm  

Definition of height function allows us to conclude that 21 =ξ−ξ − nn  or 

0. Indeed, if 12:2 −→−α − nnn  and nnn →−α − 2:1  or if :2−αn  

12 −←− nn  and ,2:1 nnn ←−α −  then 121 −ξ=ξ −− nn  and =ξn  

12 −ξ −n  or 122 −ξ=ξ −− nn  and .12 −ξ=ξ − nn  Therefore, ,1 nn ξ=ξ −  

moreover, if 12:2 −→−α − nnn  and 2:1 −→α − nnn  or if :2−αn  

12 −←− nn  and ,2:1 −←α − nnn  then 21 =ξ−ξ −nn  or 1−ξ−ξ nn  

.2−=  

Now, if ,01 =ξ−ξ − nn  then since ( ) 2222 11 −−+−ξ=ξ −− nmnnn  

and ( ) ,22221 −−+−ξ=ξ − nmnnn  we conclude that ,21 −== − nmm nn  

that is, 11 −==− nnn OO  thus the τ-orbit partition induced is 

( ).1...,,1 −−=λ nn  

Finally, if ,21 =ξ−ξ − nn  then we take into account that −ξ=ξ −1nn  

( ) 2222 1 −−+− nmn  and ( ) 22221 −−+−ξ=ξ − nmnnn  to observe that 
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21 =ξ−ξ − nn  or –2 thus 1−= nmn  and 31 −=− nmn  or 3−= nmn  

and ,11 −=− nmn  that is, nn =−1O  and 2−= nnO  or 21 −=− nnO  

and nn =O  therefore the τ-orbit partition induced has the form 

( ).2,1...,,1, −−−=λ nnnn  

We are done. ~ 

If we let ( )nDPτ  denote the number of τ-orbit partitions of type 

( ) ,1−nnD  then we have the following result. 

Corollary 9. ( ) .1 2modnDP n +=τ  

Remark 10. The integer sequence ( )nDPτ  is encoded as A000034 in the 

OEIS [23]. 

5. τ-orbit Partitions of Type ,6E  7E  and 8E  

In this section, we define the following numbering for Dynkin diagrams 
of type ,, 76 EE  and .8E  

 

We recall that if nh  is the Coxeter number and 0w  is the unique longest 

element in the Weyl group 0W  associated to a Dynkin diagram such that 
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,0 ∗α−=α
iiw  then it is possible to define an involution ∗ on the 

corresponding vertices. In cases 76 , EE  and 8E  we have that: 

Dynkin type 6E  7E  8E  

nh  12 18 30 

Involution ∗ ,,, 530220610 α−=αα−=αα−=α www  

.,, 160350440 α−=αα−=αα−=α www  

10 −=w  10 −=w  

Theorem 11. ( ) ( ) ( ) .1,5 876 === τττ EPEPEP  

Proof. Suppose that Δ is a quiver of type E and ξ is a height function 
defined on .0Δ  

When 7E=Δ  or ,8E  it suffices to take into account the involution ∗ as 

the identity, therefore for any vertex i, we have ,∗ξ=ξ
ii  and thus as a 

consequence of the identity (4), 

.222 −== ∗ nii hmm  

Thus, if Δ is a quiver of type ,7E  then 71,9 ≤≤= iiO  by (5), therefore 

the τ-orbit has the form ( )9,9,9,9,9,9,9=λΔ  which does not depend on 

orientation. 

Analogously, if Δ is a quiver of type ,8E  then the τ-orbit partition 

induced has the form ( )15,15,15,15,15,15,15,15=λΔ  which does not 

depend on orientation. 

On the other hand, if ,6E=Δ  then we must compute cardinalities of        

τ-orbits independently. Note that, if 2=i  or ,4=i  then ∗ is defined in such 

a way that ∗ξ=ξ
ii  therefore 

222 −== ∗ nii hmm  

by (4) which implies that .642 == OO  
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Furthermore, if 3=i  or ,5=i  we note that 53 =∗  and ,35 =∗  moreover 

053 =ξ−ξ  or 2, in the case ,53 ξ=ξ  we obtain 653 == OO  as a 

consequence of formulas (4) and (5). If ,253 =ξ−ξ  then we observe that 

55 =O  and 73 =O  or 75 =O  and .53 =O  

When 1=i  or 6=i  implies 2,061 =ξ−ξ  or 4, thus 61 ξ=ξ  implies 

,661 == OO  261 =ξ−ξ  implies 51 =O  and 76 =O  or 71 =O  

and 56 =O  and 461 =ξ−ξ  implies 81 =O  and 46 =O  or 41 =O  

and .86 =O  Thus, ( )654321 ,,,,, λλλλλλ=λΔ  is such that for any ≤1  

,6≤i  ( ) ,ii σ=λ O  where σ is the permutation which satisfies the condition 

( ) ( ) ,1 nσσ ≥≥ OO "  ,12==+ ∗ nii hOO  { },8,7,6,5,41 ∈O  =2O  

64 =O  and { }.7,6,53 ∈O  ~ 

6. Appendix 

6.1. List of τ-orbit partitions of type A 

The following are examples of τ-orbit partitions of type :nA  

Dynkin 
diagram 

τ-orbit partitions 

1A  (1) 

2A  (2, 1) 

3A  (3, 2, 1), (2, 2, 2) 

4A  (4, 3, 2, 1), (3, 3, 2, 2) 

5A  (5, 4, 3, 2, 1), (4, 4, 3, 2, 2), (4, 3, 3, 3, 2), (3, 3, 3, 3, 3) 

6A  (6, 5, 4, 3, 2, 1), (5, 5, 4, 3, 2, 2), (5, 4, 4, 3, 3, 2), (4, 4, 4, 3, 3, 3) 

7A  (7, 6, 5, 4, 3, 2, 1), (6, 6, 5, 4, 3, 2, 2), (6, 5, 5, 4, 3, 3, 2), (6, 5, 4, 4, 4, 3, 2) 
(5, 5, 5, 4, 3, 3, 3), (5, 5, 4, 4, 4, 3, 3), (5, 4, 4, 4, 4, 4, 3), (4, 4, 4, 4, 4, 4, 4) 

8A  (8, 7, 6, 5, 4, 3, 2, 1), (7, 7, 6, 5, 4, 3, 2, 2), (7, 6, 6, 5, 4, 3, 3, 2) 
(7, 6, 5, 5, 4, 4, 3, 2), (6, 6, 6, 5, 4, 3, 3, 3), (6, 6, 5, 5, 4, 4, 3, 3) 
(6, 5, 5, 5, 4, 4, 4, 3), (5, 5, 5, 5, 4, 4, 4, 4) 



Some Integer Partitions Induced by Orbits of Dynkin Type 2765 

6.2. List of τ-orbit partitions of type 6E  

The following are the τ-orbit partitions of type :6E  

• (6, 6, 6, 6, 6, 6), 

• (7, 6, 6, 6, 6, 5), 

• (7, 7, 6, 6, 5, 5), 

• (8, 6, 6, 6, 6, 4), 

• (8, 7, 6, 6, 5, 4). 
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