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Abstract
In this paper, Delannoy numbers are interpreted as dimensions
of suitable representations of some equipped posets induced by
compositions of integer numbers.

1. Introduction

Delannoy numbers were introduced by Henri-Auguste Delannoy (1833-
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1915). He investigated the different moves on a chessboard and observed that
such numbers arise by investigating the queen movement la marche de la
Reine [6, 8, 9].

For integer numbers i and j, Delannoy numbers satisfy the recurrence

relation:
di, j)=d@i-1, j)+d@, j-1)+d@i-1,j-1), (1)
d(,0)=0,d(i, j)=0ifi<0 and j < 0.
The central Delannoy numbers
d(i, i) =11, 3,13, 63, 321, 1683, 8989, ...}
appear as the sequence A001850 in the OEIS.

According to Sulanke, very few combinatorial elements are known
counted by these numbers. Actually, he describes in [8] 29 configurations

which are counted by central Delannoy numbers.

On the other hand, we also recall that equipped posets were introduced
and classified by Zabarilo and Zavadskij and their students [10-13]. Actually,
the last Zavadskij’s published work was devoted to a generalization of the

theory of representation of this kind of posets [13].

The theory of representation of equipped posets arises as a generalization
of the classical theory of representation of posets introduced and developed
by Nazarova and Roiter and their students in Kiev [7]. Nowadays, we know
that according to Bautista and Dorado, the theory of classification of such
posets can be considered as a particular case of the theory of representation

of the so called algebraically equipped posets [3].

In this paper, we interpret Delannoy numbers as dimensions of

representations of some suitable equipped posets.

This paper is organized as follows: in Section 2, we define equipped
posets. Section 3 describes an open problem in the theory of partitions posed

by Andrews. In Section 4, we give a solution to the Andrews’s problem
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regarding integer compositions, while Section 5 deals with the category of
lattice representations. Finally, in Section 6, a categorification of Delannoy
numbers is described by using dimensions of some lattice representations of

equipped posets.
2. Equipped Posets

A poset (P, <) is called equipped if all the order relations between its
points x < y are separated into strong (denoted x < y) and weak (denoted

x = y) in such a way that
x<ydzorx<dy<zimplies x J z, 2)

i.e., a composition of a strong relation with any other relation is strong
[5, 10-13].
We let x < y denote an arbitrary relation in an equipped poset (P, <).

The order < on an equipped poset P gives rise to the relations < and <«

of strict inequality: x < y (respectively, x < y) in P if and only if x < y

(respectively, x < y) and x # y.

A point x € P is called strong (weak) if x < x (respectively, x < x).

These points are denoted o (respectively, ®) in diagrams. We also denote
P° < P (respectively, P® = P) the subset of strong points (respectively,

weak points) of P. If P = &, then the equipment is trivial and the poset
P is ordinary.

The diagram of an equipped poset (P, <) may be obtained via its Hasse
diagram (with strong (o) and weak points (®)). In this case, a new line is
added to the line connecting two points x, y € P with x < y if and only if

such a relation cannot be deduced from any other relations in P. The

following figure is an example of this type of diagram:
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strong point
b

strong relations

weak point

a' =4, a =la,ct}+X+Y

Figure 1

If P is an equipped poset, then a chain C ={c; e P|1<i<n,c;_; <¢
if i >2} < P is a weak chain if and only if ¢;_; < ¢; for each i > 2. If

c < ¢,, then we say that C is a completely weak chain.

The category of representations of an equipped poset over a pair of fields
(F, G) (where G is a quadratic extension of F) is defined as a system of the

form

U=UyU,|lxe?), 3)

where U, is a finite dimensional F-space and for each x € P, U, is a

G-subspace of the complexification U, of U, such that
x<y=U,cU >
x < y=Rel, =F(Uy)cU,.
The sum of two representations U, V' € rep P is given by the formula:
UV =Uy®Vy; U, @V, |x €P).

A representation U is indecomposable if U =U; @ U, implies that

U =0o0rU,=0.
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Matrix problem
Each equipped poset P naturally defines a matrix problem of mixed type
over the pair (F, G). Consider a rectangular matrix M separated into vertical
stripes M, x € P, with M, being over F (over G) if the point x is strong
(weak):

x>y
® ® O O

M=|G|G|F|F|

Such partitioned matrices M are called matrix representations of P over

(F, G). Their admissible transformations are as follows:

(a) F-elementary row transformations of the whole matrix M.

(b) F-elementary (G-elementary) column transformations of a stripe M,

if the point x is strong (weak).

(c) In the case of a weak relation x < y, additions of columns of the

stripe M. to the columns of the stripe M ,, with coefficients in G.

(d) In the case of a strong relation x < y, additions are independent both
in real and imaginary parts of columns of the stripe M, to real and
imaginary parts (in any combinations) of columns of the stripe M, with

coefficients in F' (assuming that, for y strong, there are no additions to the

zero imaginary part of M ).

Two representations are said to be equivalent or isomorphic if they can
be turned into each other with the help of the admissible transformations.
The corresponding matrix problem of mixed type over the pair (F, G)
consists of classifying the indecomposable in the natural sense matrices M,
up to equivalence.

The main problem regarding equipped posets consists of giving a
complete description of indecomposable representations and irreducible
morphisms of the category of representations of a given equipped poset P.



1682 A. Moreno Cafiadas, I. D. M. Gaviria and H. Giraldo
Examples of indecomposable representations

Here, we describe some examples of indecomposable representations

in the category rep P, where P is an equipped poset. Henceforth, we let
R (C) denote the set of real numbers (complex numbers).

If P is an equipped poset and 4 < P, then P(A4)= P(min A) =
(F=R;P |xe?P), Pb,=G=C if xe A" and P, =0 otherwise. In

particular, P(&) = (F; 0, ..., 0).

If a,b e P®, then T(a) and T(a, b) denote indecomposable objects

with matrix representation of the following form:

a
T(a)=,aeiP®, T(a, b) =
®

b
(1) , with a < b.
b

R — R~ —|

a

We note that, in the sense of Caldero et al., there is a bijective

correspondence between denominators of cluster variables of type A4,

(linearly oriented) and indecomposable representations of a completely

weak chain C = {c; < -+ < ¢,_1}. Actually, the number of indecomposable

representations of C is the nth triangular number [4].
The dimension vector is a sequence of nonnegative integers

dim U = (dg; dy |x € P),

where d, = dimg U,/ Y U,

y<x
3. Integer Partitions

A partition A of a positive integer n is a nonincreasing sequence of
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positive integers Ay = Ay = --- 2 A,, such that

n
n= Zki.
i=1

A composition is a partition for which the order of its parts matters [1].
{I,1,1}, {2,1} and {3} are the three partitions of 3 whereas {l, 1, 1},
{2, 1}, {1, 2} and {3} are the four compositions of 3.

Regarding partitions and compositions, there are numerous open
problems. For instance, in 1987, Andrews proposed the following problems

[2]:
(1) For what sets of positive integers S and T is P(S, n) = P(T, n — a)

for n > a with a fixed?

(2) For each pair S and T which answer question (1), can a bijection be
found between the partitions of # into the elements of S and the partitions of
n — a into the elements of 77

For a =1, some identities introduced by Gessel and Stanton imply the

solutions:
S ={n|n odd or n = 14, +6, £8, 10 mod 32},
T ={n|nodd or n = £2, +8, +12, +14 mod 32}, 4

S ={n|n

+1, +4, +£5, +6, £7, 19, £10, £11, £13, £15, +16, 19},
T ={n|n = 41, £3, £4, £5, +9, +10, +11, +14, +15, +16, £17, £19}  (5)
all of them mod 40.
The problem is still open, if we consider integer compositions.

4. An Advancement to the Andrews’s Problem

In this section, we define ordered compositions whose structure allows
giving an advancement to the problem posed by Andrews.
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Let (D, <) be a partially ordered set of integer compositions

{xl, X2, X3, x4} such that
(1) x; 20,1<i<4,
(2) at least two of its elements are positive,

(3) xp = x4, and the difference x3 — x; > 0.

Besides {x|, x5, x3, x4} < {x], x5, x3, x4} if and only if x| < xq,

x5 < x3, X, < x5 and x4 < xj.
It is clear that if D, denotes the set of compositions of type D of a fixed
integer n > 2, then:

D= D,

n>2

Theorem 1. The poset of compositions D, of type D of a fixed integer

n

n>2 isasumof{2

J chains.

Proof. The set of minimal points of D, consists of all compositions

{3, 2w} suchthat y = = 0.+ 2 = Thus, v e {12, 31 O

As an example, we note that {2, 0, 4, 0} < {1, 1,3,1} <{0,2,2,2} isa
chain of compositions of type D of 6. In the following figure, we show

examples of compositions of type D,, we let D, (ky) denote the set of all

compositions {x;, x,, x3, x4} with fixed difference x3 — x; = k.
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Dy=D, / Dy = Dy /

R K

Figure 2

RECAN

Regarding the number of antichains in D,, we have the following result:

Theorem 2. The number D,z of two-point antichains contained in D,, is

n+l [ﬂ_

given by the formula:

1
hij(t; = 2t ),

j=0
where
0, ifi=n+1land j=0,
hy = {n—i+2, ifj:[ﬂ—bo,
1, otherwise,

D,% = {2, 10, 29, 66, 129, 228, 374, ...}
do not appear in the OEIS.

The structure of posets D, allows us to give the following result

regarding the Andrews’s problems:

Corollary 3. Let C(n, D) be the number of compositions of type D of
the positive integer n. Then C(2n + 1, D) = C(2n, D) for any n > 1.



1686 A. Moreno Cafiadas, I. D. M. Gaviria and H. Giraldo
Proof. Since for each 1<i< L%J, there are i+ 1 compositions

{x, v, z, y} of type D with x + y =i,

C(2n+1,®)=tL 1J1—1=C(2n,®). O
2

5. The Category of Lattice Representations

In this section, we associate to each composition {xj, x5, x3, x4} of type
D a pair of points (x7, x,) and (x3, x4) in the usual lattice N2,
A weak lattice path L € D from {x, 0, y, 0} to {0, x, kg, x} containing

all the points in D, (k) is defined in such a way that two adjacent vertices

have the form:
X, v,z, yhix—-Ly+Lz-1 y+1}

Thus, for each vertex, there are two directions to get the next vertex, that
is, £, (-1, 0), (0, 1) or (0, 1), (=1, 0). Henceforth, we let L, (ky) denote the
set of all weak lattice paths linking out all the points in D, (k).

A segment pyp; inasubset Uy < N Zisa two-point set whose elements

have the form:

Po = (x0, ¥o) and p; = (x1, yo), Xo < ¥

!

. Z0Z, —_— _

A weak lattice path Wﬁ from a segment z,z; to asegment zyz; is
k“k

a path of the form:

{(xk, yk)’ (xk +1, yk)a

(Xp + &x > Vi + gy,k)’ (X +t+ 8y g1, Vi + €y k=1)s e

(xk +k, Yk T Sx,O)a (xk +1+k, Vit 8y,O)}’
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where €, ¢ =1 ifandonlyif e, ¢ =0 or e, ( =0=2¢,,, if and only if

&y,s =L

The following figure shows an example of a weak lattice path:

Figure 3

Strong lattice paths belong to one of the following classes:

(i) Lattice paths Sﬁg = {(x0, o), (x5 ¥1)s oos (g, i)} from pgy =

X9, Yo) to pr = (xz, v ), where for a given point (x;, y;) it holds that
0> )0 k k> Vk i i

either x; = x;_yand y; =y, +lorx; =x;_;+1and y; = y;_;.

(ii) Lattice paths SII;]S ={(xks Vi )s (Xk—1> Yk—1)s -+ (x05 ¥o)} from
P = (Xg> yi) to pg = (xg, ¥), where for a given point (x;, y;) it holds
that either x; =x; +1l and y; =y; yorx; =x; jand y; =y; - L

(iii) Products (P) (Q), where P is a lattice path of type (I) and Q is a
lattice path of type (II).

The following is an example of a product of strong lattice paths:

I

Figure 4
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Regarding the number of weak lattice paths, we have the following

result:

Theorem 4. For ky =1 fixed, the number of weak lattice paths from
{x, 0, x + kg, 0} to {0, x, kg, x} containing all the points in D, (ky) equals
2%,

Proof. For each y, 0 < y < x, the ways to connect two adjacent vertices
oy zyh r=Ly+Lz=-Ly+1}} are {x, y,z, yh{x-1y,z-1 y},
x-Ly+Lz-Ly+1}} and {{x, y,z, y}, {x, y+ 1, z, y+ 1}, {x -1, y+1,
z —1, y + 1}}. And the sequences of points in this case consist of the points

{x,0, kg + x, 0}, {x =L I, kg + x — 1, 1}, ..., {0, x, kg, x}}. O

Lattice path products

Products of lattice paths (strong or weak) are defined as follows:

A weak product P,, in the sublattice U, < N? is defined in such a way

202
ZpZk

that if z;zj is a segment, S;’(‘) and S;’(‘) are strong lattice paths and W

is a weak lattice path, then

’ Z Z' ’ r
P, = (S7, §%k )y 2020 _ (g% 70 gk pyZ0)),
Po’ PO zpzp PO Zk PO Zk

In such a case, we write z;z; < P,,.

A strong product P, is defined in such a way that

P, = (S7*, @)W 2020 = (8?0 by or
Po ZpZ) Po 2k Zk

P, = (@, 7, @yw 2020 _ (o g7kt
po ZpZy Zk Po  Zk

If z = (xg, y9), then P, ; denote the set of all the products passing by

the segment (xg, yg), (xo + &, ¥o).
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The derivative 3(P) of a given product P is defined as follows:

— {(SPkP0 K 20 g%k 20
8(Ry) = {(S3Ew 20, w2y | J{0wZ0, szhwzoy,

8(R) = (kw20 w2y w2, @)}, ©)

Figure 5 shows the examples of these kinds of products.

Weak Product

Strong Product

Figure 5

Given the fixed points (xg, ¥o), (xo +m, yy) € N2, m>1, a lattice

representation U of an equipped poset P is a system of the form:
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U=UyU,|xe?),

where U, is an m xn order sublattice of N2, where (xq, yo) is the

minimum of U,. Foreach x € P, U, is a system of the form:

u, pu u u
(D5 Py 4o Py gy o ijﬁkj),

where DY < U, is an m x n, order sublattice of D, containing all the
products P):llakl’ P;{z,kz’ - P;lj,kj from (x;, ;) to (x; + k;, y;) with x, =

xg+r,r,k>20,r+k <m.
Dy ¢ Dy if x < y (D covers Dy and A, < A, if y e x").

Moreover, x is a weak point if and only if the products in U, up to the

radical U Uy are all weak. Also,

YEXa
D,cD,if x<y,
UcU,ifx =y,
3(P¢) c Py if x D y. (7
For z € P,

A ={teN|(x, 1), (¥, ) < Plpgy - U Uy

WEZ,
Remark 5. P{ = JP¥ , is the set of products associated to a given
SRR
J

point x in a lattice representation U of a poset P.

The presentation & with U, = & is the only lattice representation with

no associated products in repg, P.
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A morphism ¢ :U — V' between two lattice representations is an

order lattice homomorphism ¢ : Uy — ¥, such that o(U,) < V, for each

x el

A morphism ¢ : U — V is an isomorphism if and only if ¢ : Uy = V),
is an isomorphism such that for each x € P the restriction ¢, = ¢|,:

U, — V, is an isomorphism as well.

The usual meet A and join v operations on sets allow defining the sum

and intersection in repy, P as follows:
UNV =UyAVy; Uy AV |xeP),
UV =Uy®Vy;U, ®V,|xeP),
where
Uy@Vy =Uy Vv,

DY@ DY = D" v DY,

U, ®V, = (D;‘ vy P vaj. (8)

A lattice representation U is decomposable if there exist lattice
representations Uy, U,, U; # & such that U = U; @ U,.

The following are the examples of indecomposable lattice
representations:

Figure 6

If x is a weak point, then an indecomposable representation U of x has
the form:

U= (Dx; (Dx; lefk))’
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where z = (x;, y,), and
D, ={(x, y)eN2|0SxS(y,+1)k+x,,0£y£y,}.
Henceforth, we let repg, P to be the category of lattice representations

of a given equipped poset P attached to the sublattice L — N 2

The size |U| or dimension of a lattice representation U € P is a

sequence of nonnegative integers:

(dy|x € ?P),
where for each x € P, d, = |P{ - D P'|.
ZEX,

Points and relations in (D, <) are either weak or strong. We say that

a point x € D is weak if and only if its lattice representation only has
associated weak products. Moreover, a chain C < D is weak if all of its
points are weak. Further, relations between the points in D with strong

points are also strong.
Now, we consider the lattice representation

Un(kO) = (UO; Uc[- |x € gn(kO))

of the weak chain D, (ky), where the dimension d,, of the subset U, equals
the number of all weak products from (0, 0) to the weak lattice path starting

in p and finishing in py = {x(, 0, xo + k¢, 0} for some fixed xq > 0.

We note that | D, (ky) | = 2 + ko and;

Uo={(x,y)|Ost’”zk",OSyS%},

l’l—ko

D, ={(x, y)I0<x<n-10<y<i}, 0<i< 7
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Pc,-,k() = P[n—ko i ij kO. )
2 2 2

The following (Figure 7) illustrates the lattice representation of Ds(1) as
defined above:

0,2) «(1,2) (2,2) (3.2

ol ¢

1) \gn (3]0

weak R (1)

(0,0) (1.0) (2.0) (3.0)

Figure 7
6. Categorification of Delannoy Numbers

In this section, we interpret Delannoy numbers as dimensions of lattice

representations of weak chains of type D, (k).

Theorem 6. For ko > 1, the dimension vector ||U,(ky)|=(d,|p €

D, (ko)), where for p = {x, y, x + kg, v} € D,(ko);

d, =2%c(x+y, y)e(x +kg + ¥, »),

where c(x, y) = (x _; y).

Proof. For each p = {x, y, x + kg, ¥} € D,(ko), d, is the number of
weak products from (0, 0) to {xq, 0, xo + kg, 0}, where the corresponding
weak chain has as a starting vertex p. Since the number of weak lattice
paths from p to {xy, 0, xg + ky, 0} is 2* and the number of lattice
paths from (0,0) to the segment ((x, y), (x + kg, ¥)) is c(x + y, x)

~c(x + ko + y, y), we are done. O
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Corollary 7. For x, ko > 1 fixed,

X0
D(xg, ko) = Y. dp =Y 2Vc(xg—y, y)elxy + ko + . »).
peDy, (ko) y=0

Theorem 6 and Corollary 7 allow to obtain a categorification of numbers
D(xg, ky) which can be seen as Delannoy numbers d(x, y). As we
described in the introduction, such numbers are also obtained by counting the
number of lattice paths in N> from (0, 0) to (x, y) considering directions
(1, 0), (0, 1) and (1, 1). That is,

d(x, y)=d(x-1y)+d(x, y-1)+d(x -1, y-1),
d(0,0)=1. (10)

The following (Figure 8) shows some of these numbers:

1 13 85 377 1259 653 g H959
1 o 3 o h i 3653
1 9 41 20 32 it p 1289
1 1 T & 2 3TT
1 51 13 5! 85

1 3 H 7 £ > 13

1 1 1 1 1 1 1

Figure 8
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