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Abstract 

In this paper, Delannoy numbers are interpreted as dimensions             
of suitable representations of some equipped posets induced by 
compositions of integer numbers. 

1. Introduction 

Delannoy numbers were introduced by Henri-Auguste Delannoy (1833-
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1915). He investigated the different moves on a chessboard and observed that 
such numbers arise by investigating the queen movement la marche de la 
Reine [6, 8, 9]. 

For integer numbers i and j, Delannoy numbers satisfy the recurrence 
relation: 

( ) ( ) ( ) ( ),1,11,,1, −−+−+−= jidjidjidjid  (1) 

( ) ( ) 0,,00,0 == jidd  if 0<i  and .0<j  

The central Delannoy numbers 

( ) { }...,8989,1683,321,63,13,3,1, =iid  

appear as the sequence A001850 in the OEIS. 

According to Sulanke, very few combinatorial elements are known 
counted by these numbers. Actually, he describes in [8] 29 configurations 
which are counted by central Delannoy numbers. 

On the other hand, we also recall that equipped posets were introduced 
and classified by Zabarilo and Zavadskij and their students [10-13]. Actually, 
the last Zavadskij’s published work was devoted to a generalization of the 
theory of representation of this kind of posets [13]. 

The theory of representation of equipped posets arises as a generalization 
of the classical theory of representation of posets introduced and developed 
by Nazarova and Roiter and their students in Kiev [7]. Nowadays, we know 
that according to Bautista and Dorado, the theory of classification of such 
posets can be considered as a particular case of the theory of representation 
of the so called algebraically equipped posets [3]. 

In this paper, we interpret Delannoy numbers as dimensions of 
representations of some suitable equipped posets. 

This paper is organized as follows: in Section 2, we define equipped 
posets. Section 3 describes an open problem in the theory of partitions posed 
by Andrews. In Section 4, we give a solution to the Andrews’s problem 
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regarding integer compositions, while Section 5 deals with the category of 
lattice representations. Finally, in Section 6, a categorification of Delannoy 
numbers is described by using dimensions of some lattice representations of 
equipped posets. 

2. Equipped Posets 

A poset ( )≤,P  is called equipped if all the order relations between its 

points yx ≤  are separated into strong ( )yx 	denoted  and weak (denoted  

)yx U  in such a way that 

zyx 	≤  or zyx ≤	  implies ,zx 	  (2) 

i.e., a composition of a strong relation with any other relation is strong                
[5, 10-13]. 

We let yx ≤  denote an arbitrary relation in an equipped poset ( )., ≤P  

The order ≤  on an equipped poset P  gives rise to the relations ≺  and �       
of strict inequality: yx ≺  ( )yx �ly,respective  in P  if and only if yx U  

( )yx 	ly,respective  and .yx ≠  

A point P∈x  is called strong (weak) if xx 	  ( ).,lyrespective xx U  

These points are denoted D  ( )⊗,lyrespective  in diagrams. We also denote 

PP ⊆D  ( )PP ⊆⊗,lyrespective  the subset of strong points (respectively, 

weak points) of .P  If ,∅=⊗P  then the equipment is trivial and the poset 

P  is ordinary. 

The diagram of an equipped poset ( )≤,P  may be obtained via its Hasse 

diagram (with  strong ( )D  and weak points ( )).⊗  In this case, a new line is 

added to the line connecting two points P∈yx,  with yx �  if and only if 

such a relation cannot be deduced from any other relations in .P  The 
following figure is an example of this type of diagram: 
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{ } YXcaaAa ++== +,; p�  

Figure 1 

If P  is an equipped poset, then a chain { iii ccnicC <≤≤|∈= −1,1P  

} P⊆≥ 2if i  is a weak chain if and only if ii cc ≺1−  for each .2≥i  If 

,1 ncc ≺  then we say that C is a completely weak chain. 

The category of representations of an equipped poset over a pair of fields 
( )GF ,  (where G is a quadratic extension of F) is defined as a system of the 

form 

( ),;0 P∈|= xUUU x  (3) 

where 0U  is a finite dimensional F-space and for each ,P∈x  xU  is a             

G-subspace of the complexification j0U  of 0U  such that 

,yx UUyx ⊂⇒≤  

k ( )0 .x yx y ReU F U U⇒ = ⊂	  

The sum of two representations Prep, ∈VU  is given by the formula: 

( ).;00 P∈|⊕⊕=⊕ xVUVUVU xx  

A representation U is indecomposable if 21~ UUU ⊕−  implies that 

01 =U  or .02 =U  
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Matrix problem 

Each equipped poset P  naturally defines a matrix problem of mixed type 
over the pair ( )., GF  Consider a rectangular matrix M separated into vertical 

stripes ,, P∈xM x  with xM  being over F (over G) if the point x is strong 

(weak): 

FFGG

yx

M
○○⊗⊗

→

=
 

Such partitioned matrices M are called matrix representations of P  over 
( )., GF  Their admissible transformations are as follows: 

(a) F-elementary row transformations of the whole matrix M. 

(b) F-elementary (G-elementary) column transformations of a stripe xM  

if the point x is strong (weak). 

(c) In the case of a weak relation ,yx ≺  additions of columns of the 

stripe xM  to the columns of the stripe yM  with coefficients in G. 

(d) In the case of a strong relation ,yx �  additions are independent both 

in real and imaginary parts of columns of the stripe xM  to real and 

imaginary parts (in any combinations) of columns of the stripe yM  with 

coefficients in F (assuming that, for y strong, there are no additions to the 
zero imaginary part of .)yM  

Two representations are said to be equivalent or isomorphic if they can 
be turned into each other with the help of the admissible transformations.          
The corresponding matrix problem of mixed type over the pair ( )GF ,  

consists of classifying the indecomposable in the natural sense matrices M, 
up to equivalence. 

The main problem regarding equipped posets consists of giving a 
complete description of indecomposable representations and irreducible 
morphisms of the category of representations of a given equipped poset .P  
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Examples of indecomposable representations 

Here, we describe some examples of indecomposable representations       
in the category ,rep P  where P  is an equipped poset. Henceforth, we let 

( )CR  denote the set of real numbers (complex numbers). 

If P  is an equipped poset and ,P⊂A  then ( ) ( ) == APAP min  

( ),; P∈|= xPF xR  C== GPx  if ∨∈ Ax  and 0=xP  otherwise. In 

particular, ( ) ( ).0...,,0;FP =∅  

If ,, ⊗∈ Pba  then ( )aT  and ( )baT ,  denote indecomposable objects 

with matrix representation of the following form: 

( ) ( ) ,1
01,,,1

a

b
i

ba

baTai

a
aT

⊗
|
⊗

=∈

⊗

= ⊗P  with .ba ≺  

We note that, in the sense of Caldero et al., there is a bijective 
correspondence between denominators of cluster variables of type nA  

(linearly oriented) and indecomposable representations of a completely       
weak chain { }.11 −= nccC ≺"≺  Actually, the number of indecomposable 

representations of C is the nth triangular number [4]. 

The dimension vector is a sequence of nonnegative integers 

( ),;dim 0 P∈|= xddU x  

where ∑
<

=
xy

yxGx UUd .dim  

3. Integer Partitions 

A partition λ of a positive integer n is a nonincreasing sequence of 
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positive integers nλ≥≥λ≥λ "21  such that 

∑
=

λ=
n

i
in

1
.  

A composition is a partition for which the order of its parts matters [1]. 

{ },1,1,1  { }1,2  and { }3  are the three partitions of 3 whereas { },1,1,1  

{ } { }2,1,1,2  and { }3  are the four compositions of 3. 

Regarding partitions and compositions, there are numerous open 
problems. For instance, in 1987, Andrews proposed the following problems 
[2]: 

(1) For what sets of positive integers S and T is ( ) ( )anTPnSP −= ,,  

for an ≥  with a fixed? 

(2) For each pair S and T which answer question (1), can a bijection be 
found between the partitions of n into the elements of S and the partitions of 

an −  into the elements of T? 

For ,1=a  some identities introduced by Gessel and Stanton imply the 
solutions: 

{ },32mod10,8,6,4orodd ±±±±≡|= nnnS  

{ },32mod14,12,8,2orodd ±±±±≡|= nnnT  (4) 

{ },19,16,15,13,11,10,9,7,6,5,4,1 ±±±±±±±±±±±≡|= nnS  

{ }19,17,16,15,14,11,10,9,5,4,3,1 ±±±±±±±±±±±±≡|= nnT  (5) 

all of them mod 40. 

The problem is still open, if we consider integer compositions. 

4. An Advancement to the Andrews’s Problem 

In this section, we define ordered compositions whose structure allows 
giving an advancement to the problem posed by Andrews. 
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Let ( )	,D  be a partially ordered set of integer compositions 

{ }4321 ,,, xxxx  such that 

(1) ,41,0 ≤≤≥ ixi  

(2) at least two of its elements are positive, 

(3) ,42 xx =  and the difference .013 ≥− xx  

Besides { } { }43214321 ,,,,,, xxxxxxxx ′′′′	  if and only if ,11 xx ≤′  

2233 , xxxx ′≤≤′  and .44 xx ′≤  

It is clear that if nD  denotes the set of compositions of type D  of a fixed 

integer ,2≥n  then: 

∪
2

.
≥

=
n

nDD  

Theorem 1. The poset of compositions nD  of type D  of a fixed integer 

2≥n  is a sum of 





2
n  chains. 

Proof. The set of minimal points of nD  consists of all compositions 

{ }wzyx ,,,  such that .,0 nzxwy =+==  Thus, .2...,,2,1










∈ nx  ~ 

As an example, we note that { } { } { }2,2,2,01,3,1,10,4,0,2 		  is a 

chain of compositions of type D  of 6. In the following figure, we show 
examples of compositions of type ,nD  we let ( )0knD  denote the set of all 

compositions { }4321 ,,, xxxx  with fixed difference .013 kxx =−  
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Figure 2 

Regarding the number of antichains in ,nD  we have the following result: 

Theorem 2. The number 2
nD  of two-point antichains contained in nD  is 

given by the formula: 

( )∑ ∑
+

=

−





=
−

1

2

12

0
,2

n

i

i

j
jiij tth  

where 









>−



=+−

=+=

=

,,1

,012,2

,01,0

otherwise

ijifin

jandniif

hij  

{ }...,374,228,129,66,29,10,22 =nD  

do not appear in the OEIS. 

The structure of posets nD  allows us to give the following result 

regarding the Andrews’s problems: 

Corollary 3. Let ( )D,nC  be the number of compositions of type D  of 

the positive integer n. Then ( ) ( )DD ,2,12 nCnC =+  for any .1≥n  
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Proof. Since for each ,21 



≤≤ ni  there are 1+i  compositions 

{ }yzyx ,,,  of type D  with ,iyx =+  

( ) ( ).,21,12
12

1 DD nCtnC
n

=−=+
+



 +

 ~ 

5. The Category of Lattice Representations 

In this section, we associate to each composition { }4321 ,,, xxxx  of type 

D  a pair of points ( )21, xx  and ( )43, xx  in the usual lattice .2N  

A weak lattice path DL∈  from { }0,,0, yx  to { }xkx ,,,0 0  containing 

all the points in ( )0knD  is defined in such a way that two adjacent vertices 

have the form: 

{ } { }.1,1,1,1,,,, +−+− yzyxyzyx  

Thus, for each vertex, there are two directions to get the next vertex, that 
is, ( ) ( )1,0,0,1, −L  or ( ) ( ).0,1,1,0 −  Henceforth, we let ( )0knL  denote the 

set of all weak lattice paths linking out all the points in ( ).0knD  

A segment 10 pp  in a subset 2
0 N⊂U  is a two-point set whose elements 

have the form: 

( )000 , yxp =  and ( ) .,, 10011 xxyxp <=  

A weak lattice path 
kk zz

zzW ′
′00  from a segment kk zz ′  to a segment 00zz ′  is 

a path of the form: 

{( ) ( ),,,, kkkk ytxyx +  

( ) ( ) ...,,,,, 1,1,,, −− ε+ε++ε+ε+ kykkxkkykkxk ytxyx  

( ) ( )},,,, 0,0, ykkxkk yktxykx ε+++ε++  
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where 1, =ε sx  if and only if 0, =ε sy  or ksxsx ,, 0 +ε==ε  if and only if 

.1, −=ε sy  

The following figure shows an example of a weak lattice path: 

 

Figure 3 

Strong lattice paths belong to one of the following classes: 

  (i) Lattice paths ( ) ( ) ( ){ }kk
p
p yxyxyxS k ,...,,,,, 11000

=  from =0p  

( )00, yx  to ( ),, kkk yxp =  where for a given point ( )ii yx ,  it holds that 

either 1−= ii xx  and 11 += −ii yy  or 11 += −ii xx  and .1−= ii yy  

 (ii) Lattice paths ( ) ( ) ( ){ }0011 ,...,,,,,0 yxyxyxS kkkk
p
pk −−=  from 

( )kkk yxp ,=  to ( ),, 000 yxp =  where for a given point ( )jj yx ,  it holds 

that either 1+= jj xx  and 1−= ij yy  or 1−= jj xx  and .1−= jj yy  

(iii) Products ( ) ( ),QP  where P is a lattice path of type (I) and Q is a 

lattice path of type (II). 

The following is an example of a product of strong lattice paths: 

 

Figure 4 
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Regarding the number of weak lattice paths, we have the following 
result: 

Theorem 4. For 10 ≥k  fixed, the number of weak lattice paths from 

{ }0,,0, 0kxx +  to { }xkx ,,,0 0  containing all the points in ( )0knD  equals 

.2x  

Proof. For each y, ,0 xy ≤≤  the ways to connect two adjacent vertices 

{{ } { }}1,1,1,1,,,, +−+− yzyxyzyx  are {{ } { },,1,,1,,,, yzyxyzyx −−  

{ }}1,1,1,1 +−+− yzyx  and {{ } { } { ,1,1,1,,1,,,,, +−++ yxyzyxyzyx  

}}.1,1 +− yz  And the sequences of points in this case consist of the points 

{{ } { } { }}.,,,0...,,1,1,1,1,0,,0, 000 xkxxkxxkx −+−+  ~ 

Lattice path products 

Products of lattice paths (strong or weak) are defined as follows: 

A weak product wP  in the sublattice 2
0 N⊂U  is defined in such a way 

that if kk zz ′  is a segment, kz
pS

0
 and kz

pS ′
0

 are strong lattice paths and 
kk zz

zzW ′
′00  

is a weak lattice path, then 

( ) ( ).,, 0
0

0
000

00 z
z

z
p

z
z

z
pkk

z
p

z
pw k

k
k

kkk WSWSzz
zzWSSP ′

′
′′ =′

′
=  

In such a case, we write .wkk Pzz �′  

A strong product sP  is defined in such a way that 

( ) ( )00
00

,, 00 z
z

z
z

z
pkk

z
ps kk

kk WWSzz
zzWSP ′

′=′
′

∅=  or 

( ) ( ).,,, 0
0

0
0

00 z
z

z
p

z
zkk

z
ps k

k
k

k WSWzz
zzWSP ′

′
′=′

′
∅∅= ′  

If ( ),, 00 yxz =  then kzP ,  denote the set of all the products passing by 

the segment ( ) ( ).,,, 0000 ykxyx +  
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The derivative ( )Pδ  of a given product P is defined as follows: 

( ) {( )} {( )},,, 0
0

0
0

0
0 ∪ z

z
z
p

z
z

z
z

z
z

z
pw k

k
k

k
k

k WSWWWSP ′
′

′=δ  

( ) {( )} {( )}∪ .,, 0
0

0
0

∅=δ z
z

z
z

z
z

z
ps k

k
k

k WWWSP  (6) 

Figure 5 shows the examples of these kinds of products. 

 

 

Figure 5 

Given the fixed points ( ) ( ) ,,,, 2
0000 N∈+ ymxyx  ,1>m  a lattice 

representation U of an equipped poset P  is a system of the form: 
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( ),;0 P∈|= xUUU x  

where 0U  is an nm ×  order sublattice of ,2N  where ( )00, yx  is the 

minimum of .0U  For each ,P∈x  xU  is a system of the form: 

( ),...,,,; ,,, 2211
u

kx
u

kx
u

kx
u
x jJ

PPPD  

where 0UDu
x ⊂  is an xnm ×  order sublattice of 0D  containing all the 

products u
kx

u
kx

u
kx jJ

PPP ,,, ...,,,
2211

 from ( )tt yx ,  to ( )ttt ykx ,+  with =tx  

.,0,,0 mkrkrrx t ≤+≥+  

u
y

u
x DD ⊆  if ( ).ifandcovers +∈<≤ xyyx yx

u
x

u
y AADD  

Moreover, x is a weak point if and only if the products in xU  up to the 

radical ∪
▲xy

yU
∈

 are all weak. Also, 

yx DD ⊂  if ,yx ≤  

yx UU ⊂  if ,yx U  

( ) u
y

u
x PP ⊂δ  if .yx 	  (7) 

For ,P∈z  

{ ( ) ( ) } ∪�
▲

N
zw

wUPz UPtxtxt
z

∈
∈ −′′|∈= .,,,A  

Remark 5. ∪
j

u
kx

u
x jj

PP ,=  is the set of products associated to a given 

point x in a lattice representation U of a poset .P  

The presentation ∅  with ∅=0U  is the only lattice representation with 

no associated products in .rep PL  
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A morphism VU →ϕ :  between two lattice representations is an     

order lattice homomorphism 00: VU →ϕ  such that ( ) xx VU ⊆ϕ  for each 

.P∈x  

A morphism VU →ϕ :  is an isomorphism if and only if 00: VU →ϕ  

is an isomorphism such that for each P∈x  the restriction :xx |ϕ=ϕ  

xx VU →  is an isomorphism as well. 

The usual meet ∧  and join ∨  operations on sets allow defining the sum 
and intersection in PLrep  as follows: 

( ),;00 P∈|∧∧= xVUVUVU xx∩  

( ),;00 P∈|⊕⊕=⊕ xVUVUVU xx  

where 

,0000 VUVU ∨=⊕  

,v
x

u
x

v
x

u
x DDDD ∨=⊕  

.; 




 ∨=⊕ ∪ v

x
u
x

v
x

u
xxx PPDDVU  (8) 

A lattice representation U is decomposable if there exist lattice 
representations ∅≠iUUU ,, 21  such that .21 UUU ⊕=  

The following are the examples of indecomposable lattice 
representations: 

 

Figure 6 

If x is a weak point, then an indecomposable representation U of x has 
the form: 

( ( )),;; ,
u

kzxx PDU D=  
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where ( ),, tt yxz =  and 

{( ) ( ) }.0,10, 2
tttx yyxkyxyxD ≤≤++≤≤|∈= N  

Henceforth, we let PLrep  to be the category of lattice representations 

of a given equipped poset P  attached to the sublattice .2N⊂L  

The size U  or dimension of a lattice representation P∈U  is a 

sequence of nonnegative integers: 

( ),P∈| xdx  

where for each ., ∑
∈

−=∈
▲xz

u
z

u
xx PPdx P  

Points and relations in ( )	,D  are either weak or strong. We say that        

a point D∈x  is weak if and only if its lattice representation only has 
associated weak products. Moreover, a chain D⊂C  is weak if all of its 
points are weak. Further, relations between the points in D  with strong 
points are also strong. 

Now, we consider the lattice representation 

( ) ( ( ))000 ; kxUUkU ncn i D∈|=  

of the weak chain ( ),0knD  where the dimension pd  of the subset pU  equals 

the number of all weak products from ( )0,0  to the weak lattice path starting 

in p and finishing in { }0,,0, 0000 kxxp +=  for some fixed .00 >x  

We note that ( ) 00 2 kkDn +=  and; 

( ) ,20,20, 00
0 






 −

≤≤
+

≤≤|=
knyknxyxU  

( ){ } ,20,0,10, 0kniiynxyxD ic
−

≤≤≤≤−≤≤|=  
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.
0

00 ,,2
, kiiknkc PP i 





 −

−=  (9) 

The following (Figure 7) illustrates the lattice representation of ( )15D  as 

defined above: 

 

Figure 7 

6. Categorification of Delannoy Numbers 

In this section, we interpret Delannoy numbers as dimensions of lattice 
representations of weak chains of type ( ).0kDn  

Theorem 6. For ,10 ≥k  the dimension vector ( ) ( ∈|= pdkU pn 0  

( )),0knD  where for { } ( );,,, 00 kykxyxp nD∈+=  

( ) ( ),,,2 0 yykxcyyxcd x
p +++=  

where ( ) ., 




 += x

yxyxc  

Proof. For each { } ( ),,,, 00 kykxyxp nD∈+=  pd  is the number of 

weak products from ( )0,0  to { },0,,0, 000 kxx +  where the corresponding 

weak chain has as a starting vertex p. Since the number of weak lattice           

paths from p to { }0,,0, 000 kxx +  is x2  and the number of lattice                 

paths from ( )0,0  to the segment ( ) ( )( )ykxyx ,,, 0+  is ( )xyxc ,+  

( ),,0 yykxc ++⋅  we are done. ~ 
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Corollary 7. For 1, 00 ≥kx  fixed, 

( ) ( ) ( )
( )
∑ ∑

∈ =
++−==

0

0

0
00000 .,,2,

kp

x

y

y
p

n

yykxcyyxcdkxD
D

 

Theorem 6 and Corollary 7 allow to obtain a categorification of numbers 
( )00, kxD  which can be seen as Delannoy numbers ( )., yxd  As we 

described in the introduction, such numbers are also obtained by counting the 

number of lattice paths in 2N  from ( )0,0  to ( )yx,  considering directions 

( ) ( )1,0,0,1  and ( ).1,1  That is, 

( ) ( ) ( ) ( ),1,11,,1, −−+−+−= yxdyxdyxdyxd  

( ) .10,0 =d  (10) 

The following (Figure 8) shows some of these numbers: 

 

Figure 8 
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