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A B S T R A C T

Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy
and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed
formulation. This approach results in limitations since theoretical models are not flexible enough to incorporate
variables related to environmental or zootechnical conditions that affect production efficiency or to include
multiple objectives regarding current challenges associated with the adaptability to new environmental contexts
and the reduction of ecological footprint. Unlike analytical methods, heuristic approaches can deal with
variables from multiple sources using surrogate data-driven models of the objectives functions but commonly
require thousands of evaluations of the target function, which is unfeasible in the context of animal diet
formulation. This work proposes the use of Bayesian Optimization as an alternative solution to address the
animal diet design problem since it is intended to optimize costly-to-evaluate target functions and is able
to deal with noisy sampling, which is helpful in handling the intrinsic variability in the nutrient content of
raw materials. A multi-objective swine diet design problem is used to evaluate the suitability of Bayesian
optimization to optimize three target functions: digestible energy, lysine, and cost, and the solutions are
compared with a fractional stochastic programming approach. The analytical formulation of the problem is
not considered by the Bayesian optimization approach, but target functions are modeled through surrogate
Bayesian models, where only input and output responses are used to drive the optimization process. Results
show that a multi-objective Bayesian optimization process is able to find better solutions than previously
proposed methods, improving in 10.71%, 14.77%, and 3.79% the three objectives defined. Experiments using
batches of query samples per iteration show that the optimization process can also be accelerated by sampling
the objective functions simultaneously.
1. Introduction

The livestock industry confronts challenges due to the persistent
growth witnessed in global food demand and climate change (Van der
Poel et al., 2020). Projections indicate that the world population is
poised to expand by 34% over the next two decades, thereby engen-
dering a corresponding surge in the demand for food by approximately
70% (Sharma et al., 2020). This surge is exacerbated by the rapid pace
of urbanization, which, in turn, generates a decline in the availability
of arable land for agricultural purposes. Additionally, to maintain the
cost-effectiveness of food production, farmers must now grapple with
additional hurdles, such as preserving production efficiency, adapt-
ing their production to different environmental contexts, ensuring the
adequacy of nutrients in livestock rations, and trying to reduce the
industry’s ecological footprint (Pomar et al., 2021). All these factors
make the feed formulation an increasingly complex problem.
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Specifically regarding the adequacy of diets for pigs, several factors
must be considered to determine the efficiency with which animals
metabolize and convert nutrients. On the one hand, the characteristics
of each animal, marked by inherent variability and complexities of in-
dividual metabolic processes, acquire fundamental importance (Pomar
et al., 2021). On the other hand, due to differences in the production
of raw materials and sources of agricultural by-products, farmers have
to deal with an intrinsic variation in the nutrient content of the food
to be supplied, meaning that although the formulation is the same, the
amount of nutrients in it may differ. Such variability, in turn, changes
the quality and composition depending on the suppliers’ origin and
cultivation conditions. Added to this are other factors, such as climatic
and agronomic considerations, that challenge feed producers to balance
ingredients to obtain the minimum amounts of required nutrients to
168-1699/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
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ensure the quality of their products and to guarantee the efficiency of
the farms (Amit et al., 2017).

Since the mid-20th century, there has been a concerted effort among
farmers and livestock feed producers to optimize the feed efficiency of
animals. The goal is to ascertain the optimal combination of available
ingredients that, when blended, fulfill the minimum essential nutri-
ent requirements, resulting in economic advantages (Babić and Perić,
2011). Initially, methods involved the compilation of tables integrating
ingredient-nutrient data and ingredient prices. Numerous numerical
optimization techniques were applied to derive feed mix designs that
align with specified nutritional requirements. However, despite their
theoretical soundness, these formulations often encountered practical
constraints in real-world applications (Pratiksha et al., 2011).

An early exploration of this approach was conducted by Waugh
(1951), who employed Linear Programming (LP) to identify the most
cost-effective combination of feeds meeting the minimum requirements
for dairy cows. This pioneering work set the groundwork for subsequent
studies utilizing LP. For example, Pesti and Miller (1993) employed LP
to devise cost-effective feeds for poultry, sheep, and cattle, incorporat-
ing feed substitution techniques. LP was also utilized by Nyhodo et al.
(2014) to establish the least-cost feed mixtures, considering fluctuations
in ingredient prices for poultry formulations. Beyond cost reduction,
LP objectives and constraints have undergone extensive examination,
encompassing diet design for various breeds (Chappell, 1974), ensuring
weight gain at different animal life stages (Glen, 1980), and adapt-
ing diets to non-traditional foods such as legumes and forages. This
methodology empowers small-scale farmers to determine daily diets for
their herds based on locally available products (Sebastian et al., 2008).

Notwithstanding its impact, the application of LP to diet design for
biological systems reveals significant limitations. One major limitation
lies in LP’s exclusive focus on optimizing a single objective, which
is insufficient for capturing biological systems’ intrinsic complexity
during diet design. Another highlighted limitation relates to the con-
straints expressed solely through linear equations or inequalities. This
linear approach may lead to suboptimal solutions due to an inability
to effectively identify nutrient imbalances and interactions. This defi-
ciency can result in adverse consequences, such as unnecessary nutrient
addition leading to extra costs, undetected deficiencies causing under-
feeding, or excessive excretions in animals due to overconsumption of
nutrients (Ghosh et al., 2014). Moreover, the previously pointed out
nutrient variations in some ingredients pose an additional challenge
that, combined with inherent LP limitations, can result in significant
economic losses in the industry, as indicated in Peña et al. (2009).

To overcome these limitations, adjustments to LP have been ex-
plored, particularly focusing on constraints. An emerging alternative is
Stochastic Programming (SP), which accounts for variations in nutrient
composition in food. Studies indicate that SP enhances precision and
reliability in formulating livestock feed mixtures (D’Alfonso et al.,
1992). Besides, recent research (Patil et al., 2022) incorporates the
probability of variation in key nutrients like crude protein, calcium,
and phosphorus to minimize costs. In Peña et al. (2009), authors also
integrated digestible energy and lysine cost functions into a fractional
SP-based optimization analysis and were able to find successful formu-
lations in comparison to an LP-based method, although with a strong
manual intervention through the iterations of the optimization process,
which limits its applicability.

In addition to SP, the ability to optimize various objectives has
also been studied. The considered objectives include energy density,
weight maximization, reduction of excretions, greenhouse gas reduc-
tion, variation in nutrient reduction, conversion minimization, and pro-
ductivity maximization, among others (D’Alfonso et al., 1992; Ghosh
et al., 2014), and some of them have been addressed simultaneously.
Multi-Objective Optimization (MOO) showcases several advantages
over other approaches since considering multiple objectives may lead
to formulating economically sound, sustainable, and environmentally
2

friendly feed compositions. Furthermore, MOO can contribute to cost
reduction in formulations without compromising animal growth and
health (Uyeh et al., 2019), even though it imposes new challenges to
find feasible mathematical methods able to deal with the entire set of
problem constrictions.

Aiming to deal with an increasingly complex mathematical and
numerical problem formulation, in recent years, several works have
focused on employing heuristic techniques as an alternative to address
the intricacies associated with diet design (Innocent et al., 2023). These
algorithms explore the search space by sampling solutions, evaluating
their fitness, and biasing the search in the direction of promising
solutions (Naharro et al., 2022). The recourse to heuristics is driven by
the exigencies of handling complex dietary composition challenges and
the imperative to derive efficient solutions within a reasonable time-
frame, rendering them particularly well-suited for real-life applications.
Moreover, these heuristic methods exhibit an inherent flexibility and
adaptability that renders them amenable to diverse instances of dietary
formulation problems, thereby facilitating the efficient exploration of
the search space (Lisitsyn et al., 2023). An additional salient advan-
tage is their capacity to accommodate large-scale problems, thereby
enabling facile adaptation to the considerable variability inherent in
raw materials and nutritional variables, as well as the consideration of
non-dietary factors (Wang and Liao, 2023).

A noteworthy heuristic approach employed in diet design is the
use of genetic algorithms (GA). In particular, GAs have been lever-
aged to optimize feed mixtures (Şahman et al., 2009), and successful
implementations have been recorded in the context of poultry and
livestock nutrition. This application has also been evaluated through
comparative analyses with conventional LP approaches, underscoring
the effectiveness of GA in addressing diet design challenges and adapt-
ing to changing parameters. Another heuristic method tested in the
context of feed formulation is particle swarm optimization, which has
also been employed in optimizing mixed feeding in cattle, sheep, and
rabbits and has shown more stability than the LP-based solutions (Altun
and Şahman, 2013).

An additional advantage of heuristic methods is their flexibility to
carry out optimization processes on complex analytic/non-analytic non-
linear problems or to combine variables from different sources through
the use of surrogate data-driven models (Naharro et al., 2022). In
the context of diet design, this would allow the algorithm to break
the limitations of classical approximations based on theoretical mod-
els of animal metabolisms and potentially include environmental and
zootechnical variables that also influence animal performance. How-
ever, building an accurate surrogate model typically requires extensive
sampling of the cost function under analysis, which is unfeasible for
animal diet design. An alternative is to use an approach that allows the
optimization process to be carried out simultaneously with the training
of the substitute model in such a way that the objective function only
has to be sampled in promising positions according to the current
model, thus reducing the number of necessary evaluations and at the
same time allowing the optimization problem to be solved. A technique
that has these characteristics is Bayesian optimization (BO) (Frazier,
2018a).

BO is a class of machine-learning-based optimization methods suit-
able for objective functions that take a long time to evaluate (Frazier,
2018a). It uses a Bayesian surrogate model that provides predictions
and uncertainty measures over the predictions to build an alternative
objective function (called acquisition function), which can be optimized
to get the next candidate for sampling the cost function. In some
sense, BO has relationships with the concept of active learning, but
instead of accurately reconstructing a target function 𝑓 , its aim is to
get the optimum value of 𝑓 , sampling as few times as possible. Another
advantage is that BO tolerates stochastic noise in function evaluations
and can deal with complex constraints, which makes it suitable for
modeling the intrinsic variability of nutrient content in the context

of feed formulation. Moreover, BO has shown flexibility in handling



Computers and Electronics in Agriculture 224 (2024) 109173G.D. Uribe-Guerra et al.

n
v
r
u

variable types, accommodating continuous and discrete variables, al-
lowing simultaneous optimization of multiple objectives, and allowing
the specification of diverse optimization constraints (Garnett, 2023).
Recently, BO has been used to address problems in complex agricultural
tasks, such as seed germination (Nikitin et al., 2019) and crop model
calibration (Moon et al., 2023). However, to the best of our knowledge,
no previous research has been conducted to analyze the adaptability of
BO to feed formulation problems.

Bearing all this in mind, this work focuses on the evaluation of
a BO approach to optimize a previously formulated multi-objective
problem of swine diet design, consisting of 17 input variables associated
with the proportion of ingredients in the formulation, 28 constraints
compromising minimum nutritional requirements or zootechnical deci-
sions, and three objectives: energy content, lysine, and cost. The results
are compared with a previously proposed solution based on fractional
SP (Peña et al., 2009). A detailed analysis of relevant hyperparameters,
such as the number of initial samples and required iterations to get
stable solutions, is carried out to establish the proposed solution’s
feasibility. Two acquisition functions were compared: the expected
Hypervolume improvement and its noisy version (Daulton et al., 2021).
The set of non-dominate solutions provided by the BO algorithm is
evaluated in terms of hypervolume, cardinality, uniformity, and spread.
Besides, a complete evaluation of the quality of the BO-based solutions
regarding those proposed in Peña et al. (2009) is also presented. While
the addressed task pertains to optimizing an analytical rendition of
the swine diet design issue, it serves as the initial stride in verifying
the suitability of BO for resolving a broader scenario where the cost
function sampling involves testing a specific diet design to nourish a
pig herd, and variables from multiple sources are combined to model
the pig performance. Thus, the analytical formulation of the problem
is not considered by the BO approach at all, but target functions are
modeled through surrogate Bayesian models, where only input and
output responses are used to drive the optimization process. The rest of
the paper is organized as follows: Section 2 presents the mathematical
formulation of the objective problem and describes in more detail the
solution proposed in Peña et al. (2009); Section 3 introduces BO, its
core components, and the Multi-objective variant; Section 4 describes
the set of experiments, the evaluation metrics and presents the results
obtained. Lastly, Section 5 provides some conclusions derived from the
results.

2. Problem statement

In Peña et al. (2009), the authors introduced a multi-objective opti-
mization problem where two key variables regarding the nutritional
content and the cost were selected as objectives. The purpose is to
maintain the minimum amount of required nutrients in diets for pigs,
guaranteeing economic sustainability. Lysine and energy were identi-
fied as integral components in ensuring the nutritional adequacy of the
diet. Lysine is an indispensable amino acid vital for food metabolism
and protein synthesis, it plays a vital role in facilitating animal growth.
Simultaneously, energy is essential for sustaining fundamental bodily
functions. The intricate interdependence of these two nutrients is high-
lighted by research indicating that an imbalanced diet with inadequate
lysine and energy content can constrain the performance of pigs (Cho
et al., 2012).

Hence, the optimization problem endeavors to identify the optimal
combination of ingredients, specifically their proportions within the
diet, with the objective of maximizing the availability of both lysine
and energy while minimizing costs. This task involves imposing ad-
ditional constraints on various nutritional prerequisites, including but
not limited to crude fiber, phosphorus, calcium, and crude protein, as
outlined in Peña et al. (2009). The set of ingredients, along with their
nutritional content and costs, was defined based on the specifications
provided by the Spanish Foundation for the Development of Animal Nu-
trition (FEDNA for its Spanish acronym) in 1999, and can be consulted
3

in Peña et al. (2009). For the sake of comparison, the same tables of
nutrient content and cost were used in this work.

Formally, the problem can be formulated as

min 𝑓𝑐 (𝐱) = 𝐜𝑇 𝐱
max 𝑓𝑙(𝐱) = 𝐥𝑇 𝐱
max 𝑓𝑒(𝐱) = 𝐞𝑇 𝐱

s.t 𝟏𝑇 𝐱 = 1

𝐛 ≤ 𝐀𝑇 𝐱 ≤ 𝐛
0 ≤ 𝐱 ≤ 𝐬

(1)

where 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑖,… , 𝑥𝑑 ] represents a solution vector containing
the proportions of each ingredient in a diet composed of 𝑑 ingredients,
𝐀 is a matrix that describes the nutrient content of each ingredient
regarding a set of 𝑎 nourishments, 𝐜 is an 𝑑-dimensional vector de-
oting the costs associated with each ingredient, 𝐥 and 𝐞 represent
ectors containing the lysine and energy content of each ingredient,
espectively. Additionally, 𝐛 and 𝐛 are vectors specifying the lower and
pper bounds for each nutrient, while 𝐬 is a vector that represents the

upper bounds for each raw material in the diet formulation process.
As previously mentioned, 𝐀, 𝐥 and 𝐜 are defined in accordance with
FEDNA tables (Peña et al., 2009). Following the original formulation by
Noblet (Noblet and Van Milgen, 2004), the model of digestible energy
𝑓𝑒 uses the equation linking the nutritional content in the diet with the
energy, which defines the vector 𝐞. The complete list of ingredients and
nutrients described in Peña et al. (2009) is included in Appendix.

Peña and her coworkers proposed to address the former optimiza-
tion formulation as a Multi-Objective Fractional Problem (MFP) (Peña
et al., 2009), which focuses on the development of economically viable
animal diets, mitigating nutrient variability within the raw materials.
MFP incorporates considerations of both ratio costs and the probabil-
ities associated with meeting the animal’s nutrient requirements. The
probability of attaining the desired lysine content in a food ratio can
be defined as 𝑃 (𝑓𝑙(𝐱) ≥ 𝛾𝑙), with 𝛾𝑙 representing the lysine requirement
in the feed. Similarly, the probability of achieving the desired energy
content is 𝑃 (𝑓𝑒(𝐱) ≥ 𝛾𝑒), where 𝛾𝑒 denotes the minimum energy
requirement.

For solving the MFP, unlike a standard SP approach, the authors
proposed an interactive approach involving a decision-maker who ar-
ticulates preferences without requiring prior knowledge of the mini-
mum probabilities to satisfy the nutritional requirements. This method,
called Interactive Multi-Objective Goal Programming (IMGP), is de-
tailed in Spronk and Spronk (1981).

In the IMGP approach, the three objectives are initially optimized
independently, establishing optimal and least favorable values for each.
These values set the range for defining objective goals in subsequent
iterations. The decision-maker then selects an objective for improve-
ment, and the objectives are optimized again, considering constraints
from the initial problem and new ones based on the defined limits.
The decision-maker assesses whether improvements in the selected
objective justify potential modifications in others; adjustments are
made accordingly. Constraints evolve in each iteration, progressively
narrowing the set of feasible solutions until the lower and upper
limits of objectives converge, signifying an efficient solution where no
alternative improves one objective without worsening another.

3. Methods

This section presents all the methods and techniques used to per-
form the optimization of the swine diet formulation problem presented
in the previous section using BO. Fig. 1 shows a schematic of the
proposed methodology to help the reader identify each component and

how it is used throughout the whole process.
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Fig. 1. General scheme of the proposed methodology.
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3.1. Bayesian optimization

BO is a machine learning-based optimization method specifically
designed for scenarios in which the objective function 𝑓 (𝐱) is contin-
uous, expensive to evaluate, lacks an analytic formulation, and where
access to first and second-order derivatives of 𝑓 is not feasible (Frazier,
2018b). BO consists of two main components: a Bayesian surrogate
model for modeling the objective function and an acquisition function
(AF) for deciding where to sample next. The general idea behind BO
algorithms is to use the posterior distribution of the Bayesian model
to explore the search space  ⊂ R𝑑 and select input values 𝐱 that will
most probably maximize the target function 𝑓 in the objective space  .

Generally, in BO, the surrogates models are based on Gaussian
Processes (GPs) because they are flexible in terms of kernel design
and their ability to provide a principled and tractable quantification of
uncertainty (Williams and Rasmussen, 2006). To start the process, an
initial set of observations 𝑓 = {

(

𝐱1, 𝑦1
)

,
(

𝐱2, 𝑦2
)

,… ,
(

𝐱𝑛, 𝑦𝑛
)

}, which
are assumed to be corrupted with additive Gaussian noise, 𝑦𝑖 = 𝑓 (𝐱𝑖)+𝜀,
𝜀 ∼  (0, 𝜎2) must be available. The initial set is used to train the
surrogate GP model. Then, the AF determines what areas in the search
space are worth exploiting and what areas are worth exploring based on
the GP’s current posterior distribution over 𝑓 . Accordingly, areas where
𝑓 (𝐱) is optimal or unexplored areas with the potential to improve the
current best solution get a high AF value. By optimizing AF, a next point
𝐱𝑛+1 is identified, and once sampled from the target function 𝑓 (𝐱𝑛+1), it
can be added to the history of observations 𝑓 = 𝑓 ∪ (𝐱𝑛+1, 𝑦𝑛+1).
The posterior distribution is updated each time a new data point is
observed, and the whole process is repeated until the optimization
budget is exhausted.

3.1.1. Gaussian processes
A GP is a collection of random variables, which, for some finite

subsets, have a joint Gaussian distribution (Williams and Rasmussen,
2006). Therefore, a GP represents a distribution over functions 𝑓 (⋅) ∼
(𝜇(⋅), 𝑘(⋅, ⋅)), parametrized for the mean 𝜇(⋅) and the kernel 𝑘(⋅, ⋅),
which is defined for each pair of points 𝐱, 𝐱′ ∈ 𝐑𝑑 and represents the
covariance between them. Thus:

𝜇(𝐱) = E [𝑓 (𝐱)]
𝑘(𝐱, 𝐱′) = E

[

(𝑓 (𝐱) − 𝜇(𝐱))(𝑓 (𝐱′) − 𝜇(𝐱′))
]

Typically, the hyperparameters of the kernel function are adjusted by
maximizing the marginal likelihood over the training set, although
full Bayesian approaches are also possible (Lalchand and Rasmussen,
4

2020). v
Given a set of input samples 𝑋 = {𝐱1,… , 𝐱𝑛} and their correspond-
ing noisy output values 𝑌 = {𝑦1,… , 𝑦𝑛}; the posterior probability of a
ew point 𝐱̂, can be estimated from the joint Gaussian distribution:

𝑌
𝑦̂

]

= 
([

𝜇(𝑋)
𝜇(𝐱̂)

]

,
[

𝑘(𝑋,𝑋) + 𝜎2𝐼 𝑘(𝑋, 𝐱̂)
𝑘(𝐱̂, 𝑋) 𝑘(𝐱̂, 𝐱̂)

])

Then the posterior distribution of 𝑓 (⋅) at the point 𝐱̂, which is
enoted 𝑓 (𝐱̂) = 𝑝(𝑦|𝐱̂, 𝑋, 𝑌 ), can be estimated using the standard
onditioning rules for Gaussian random variables, resulting in 𝑓 (𝐱̂) ∼
(

𝜇𝑓 (𝐱̂), 𝜎𝑓 (𝐱̂)
)

, where

𝑓 (𝐱̂) = 𝜇(𝐱̂) + 𝑘(𝐱̂, 𝑋)
[

𝑘(𝑋,𝑋) + 𝜎2𝐼
]−1 (𝑌 − 𝜇(𝑋))

𝜎𝑓 (𝐱̂) = 𝑘(𝐱̂, 𝐱̂) − 𝑘(𝐱̂, 𝑋)
[

𝑘(𝑋,𝑋) + 𝜎2𝐼
]−1 𝑘(𝑋, 𝐱̂)

more complete treatment of GPs can be found in Williams and
asmussen (2006). In the context of this work, the effect of the initial
et’s size 𝑛, which corresponds to previously known diet formulations,
ill be studied during the experimental phase.

.1.2. Acquisition functions
The second component to consider in BO is the selection of the AF.

hese functions utilize the posterior mean and variance at each point
n the function to calculate a value that indicates the desirability of
ampling at that position in the next iteration. An effective acquisition
unction should strike a balance between exploration and exploitation.

There are several AF proposed in the literature, among the most
sed are the upper confidence bound (UCB) (Srinivas et al., 2010),
he Probability of improvement (PI) (Kushner, 1964), and the Ex-
ected Improvement (EI) (Močkus, 1975). UCB balances exploitation
nd exploration through the simple sum of the mean and variance
f the posterior distribution, while PI selects the next query sample
uch that it maximizes the probability of obtaining an objective value
reater than the current optimum. The way most used AF is EI, which
ot only considers the probability of improvement but the amount
f improvement and evaluates 𝑓 at the point that, in expectation,
mproves upon 𝑓 the most. Formally, EI estimates:

EI(𝐱) = (𝜇𝑓 (𝐱) − 𝑦∗)𝛷(𝐳) + 𝜎𝑓 (𝐱)𝜙(𝐳)

here 𝑦∗ is the incumbent, 𝜙(⋅) is the probability density function, 𝛷(⋅)

s the cumulative distribution function, 𝐳 =
𝜇𝑓 (𝐱) − 𝑦∗ − 𝜉

𝜎𝑓 (𝐱)
, and 𝜉 is a

onstant that balances exploration and exploitation.
The standard BO formulation provides a single new query point

or every iteration; however, several approaches extending BO to pro-
ide multiple candidate solutions have been proposed to speed up
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the process. In the case of EI, the most extended approach estimates
the improvement over the joint probability distribution of 𝑞 points
and selects the set of points that maximize the multi-points expected
improvement (Ginsbourger et al., 2010). This variant is called parallel
EI (𝑞-EI).

3.2. Multi-objective Bayesian optimization

Using EI, BO can be straightforwardly extended to vector-valued
functions by defining and improving a performance metric over sets,
which can be used to guide the search process across multiple objec-
tives. However, this increases the problem’s difficulty because there are
many directions in which the objectives can be improved (Shu et al.,
2020). As in any multi-objective approach, the ultimate goal of Multi-
objective BO (MOBO) is to identify a collection of points that describes
the best trade-offs among 𝑚 different conflicting objectives, which is
typically called the Pareto set 𝑋𝑝 = {𝐱1, 𝐱2,… , 𝐱𝑡}, 𝐱𝑖 ∈  , along
with its corresponding Pareto front (), which is the set of solutions
 = {𝐲1, 𝐲2,… , 𝐲𝑡} in the objective space, for 𝐲𝑗 = [𝑦𝑗1, 𝑦𝑗2,… , 𝑦𝑗𝑚]𝑇 =
𝐟 (𝐱𝑗 ) + 𝜺, such that ∄ 𝐲𝑙|𝐲𝑙 ≻ 𝐲𝑗 , 𝑙 ≠ 𝑗, ∀𝐲𝑙 ∈  ⊂ R𝑚 (Galuzio
et al., 2020). The symbol ≻ represents dominance and, for the previous
definition, would imply that objective values of 𝐲𝑙 are no worse than
those of 𝐲𝑗 , and objective values of 𝐲𝑙 are strictly better than at least
one of those of 𝐲𝑗 . In MOBO,  is approximated by a set 𝑃 of all the
non-dominated solutions in 𝑓 .

For the sake of simplicity, in this work, every objective function is
modeled by independent GP priors. Each vector of solutions 𝐲𝑖 corre-
sponds to the noisy sampling of each of the three objective functions
𝐲𝑖 = [𝑦𝑒(𝐱𝑖), 𝑦𝑙(𝐱𝑖), 𝑦𝑐 (𝐱𝑖)], where 𝑦𝑒(𝐱𝑖) = 𝑓𝑒(𝐱𝑖) + 𝜀𝑒 and similarly for 𝑦𝑙
and 𝑦𝑐 .

3.2.1. Acquisition functions for MOBO
The most used AF in MOBO aims to estimate the expected improve-

ment of the area under  given by a new point 𝐱 and its corresponding
posterior distribution, which is estimated based on the hypervolume
(HV) indicator. HV was introduced in Zitzler and Thiele (1999) and
stands as one of the fundamental unary indicators for assessing the
quality of a Pareto front approximation set. Notably, this indicator
possesses a distinct advantage because it does not necessitate prior
knowledge of the Pareto front. Maximizing the HV can yield a Pareto
front approximation set that is both highly qualified and diverse (Yang
et al., 2019a). The function of the HV indicator is to measure the size of
the subspace dominated by  , which is bounded below by a reference
point 𝐫 and defined as

𝐻𝑉 () = 𝜆𝑚
(

∪𝐲∈
[

𝐫, 𝐲
])

where 𝜆𝑚 is the Lebesgue measure of a 𝑚-dimensional subspace
bounded by

[

𝐫, 𝐲
]

. As suggested in Yang et al. (2019a), the reference
point can be selected so that it is dominated by all the elements in a
Pareto front approximation set.

Accordingly, given an approximation of the Pareto front 𝑃 , the im-
provement in HV due to the incorporation of a new vector of solutions
𝐲 is given by 𝐻𝑉 𝐼 (𝐲, 𝑃 ) = 𝐻𝑉 (𝑃 ∪ 𝐲) − 𝐻𝑉 (𝑃 ). Therefore, the Ex-
pected hypervolume improvement (EHVI) extends the concept of EI to
Multi-objective optimization settings by looking for the solution 𝐲 that
expands the volume of the subspace dominated by 𝑃 the most (Yang
et al., 2019a). Formally, EHVI is given by (Emmerich, 2005):

𝛼EHVI(𝜇, 𝜎, 𝑃 , 𝑟) = ∫R𝑚
𝐻𝑉 𝐼 (𝐲, 𝑃 ) 𝜁𝜇,𝜎 (𝐲) 𝑑𝐲 (2)

where 𝜁𝜇,𝜎 (⋅) is a multivariate independent normal distribution with
the mean values 𝜇 ∈ R𝑚 and the standard deviations 𝜎 ∈ R𝑚

+.
EHVI is the most widely used AF in MOBO due to its advantages
of high convergence and success in providing solutions close to the
5

real Pareto front (Li and Yao, 2019). Moreover, similar to the single
solution EI, EHVI supports parallel candidate generation (𝑞EHVI) and
gradient-based acquisition optimization (Daulton et al., 2021).

Still, the standard EHVI suffers from some limitations, including
the assumption that observations are noise-free and the exponential
scaling of its batch variant, 𝑞EHVI, which precludes large-batch opti-
mization (Daulton et al., 2021). When there are noisy observations,
there is a variant of EHVI called Noisy expected Hypervolume improve-
ment (NEHVI), which integrates over the uncertainty in the function
values at the observed points and can also be extended to parallel
settings (𝑞NEHVI) (Daulton et al., 2021). The estimation of Eq. (2)
requires solving multiple multi-variate integrals, and even though there
are several exact and approximate proposals in the literature, due to
their complexity for large 𝑚, the most widely extended approach is
to use numerical methods based on Monte Carlo (Yang et al., 2019b).
Therefore, both 𝑞EHVI and 𝑞NEHVI are required to set up the number
of Monte Carlo (MC) samples to estimate the AF correctly during its
optimization process.

3.3. Optimality evaluation

According to Li and Yao (2019), an effective representation of
the Pareto front is one that elucidates key properties of the prob-
lem, including its shape, dimensionality, scale, inflection points, and
the interplay between objectives. This enables the decision-maker to
gain a more comprehensive understanding of the problem. There-
fore, the quality of a solution set is generally evaluated based on a
sound representation of the Pareto front, assessed through four key
aspects: convergence, indicating the proximity of the solution set to the
Pareto front; spread, reflecting the coverage of the solution set; unifor-
mity, gauging the evenness of the set’s distribution; and cardinality,
indicating the number of elements in the solution set.

While the HV indicator is linked to the cardinality and spread
of the solution set, as sets with more non-dominated elements can
inherently cover a larger space, the HV indicator alone does not ensure
the uniform distribution of the solution set. Therefore, in conjunction
with HV, the assessment of the Pareto front approximation provided by
MOBO will incorporate spread and uniformity indicators in addition
to the cardinality value. The specific definitions of these metrics are
presented below.

3.3.1. Cardinality indicator
Given the set of observations 𝑓 at an iteration 𝑘, Cardinality (𝐶𝑓

)
is derived from the number of elements within the approximate Pareto
front set 𝑃 containing the 𝑡 non-dominated solutions in 𝑓 .

3.3.2. Spread indicator
The spread indicator measures the spatial coverage encapsulated

by the approximation of the solution set. A set exhibiting significant
dispersion should encompass solutions across every segment of 𝑃 ,
striving to encompass each region comprehensively. In this study, we
specifically focus on the Maximum Spread (MS) (Zitzler and Thiele,
1999), a widely used dispersion indicator that measures the range of
a set of solutions considering the maximum range of each objective.
MS is defined as

MS(𝑃 ) =

√

√

√

√

𝑚
∑

𝑗=1
max
𝐲,𝐲′∈𝑃

(𝑦𝑗 − 𝑦′𝑗 )2

The higher the MS is, the better 𝑃 covers the Pareto front.
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3.3.3. Uniformity indicator
Numerous indicators capable of measuring the variation in distances

between elements of the solution set are available in the literature, as
documented in Li and Yao (2019). Given its prevalence and recognition,
in this study, the Spacing Schott indicator (SS) is used as a uniformity
metric for evaluation purposes. SS is given by:

SS(𝑃 ) =

√

√

√

√
1

𝑡 − 1

𝑡
∑

𝑖=1

(

𝑑 − 𝑑1(𝐲𝑖, 𝑃∕𝐲𝑖 )
)2

here 𝑃∕𝐲𝑖 is a set containing all the non-dominated solutions in 𝑃 ,
ut 𝐲𝑖; 𝑑 is the mean of all 𝑑1(𝐲𝑖, 𝑃∕𝐲𝑖 ) for 𝑖 = [1, 2,… 𝑡] and 𝑑1(𝐲𝑖, 𝑃∕𝐲𝑖 )

is estimated as the 𝐿1 norm distance of 𝐲𝑖 to set 𝑃∕𝐲𝑖 , given by:

𝑑1(𝐲𝑖, 𝑃∕𝐲𝑖 ) = min
𝐲𝑢∈𝑃∕𝐲𝑖

𝑚
∑

𝑗=1
|𝑦𝑖𝑗 − 𝑦𝑢𝑗 |

In other words, 𝑑1(𝐲𝑖, 𝑃∕𝐲𝑖 ) is the 𝐿1 distance between 𝐲𝑖 and the
closest vector of solutions in 𝑃∕𝐲𝑖 . The lower the value of SS, the
better the uniformity. A SS value of zero indicates that all members
of the solution set are spaced equidistantly based on the Manhattan
distance (Li and Yao, 2019). In the literature, this indicator is widely
used in conjunction with MS to describe the diversity quality of the set
𝑃 .

4. Experiments and results

4.1. Experimental setup

The experiments are organized into three phases: (I) hyperparam-
eter selection, (II) assessment of the solution’s quality of MOBO in
comparison to the best solution found in Peña et al. (2009), which
is used as a benchmark, and (III) evaluation of the effects of the
batch configuration of MOBO to speed up the optimization process.
During the whole experimental phase, the results obtained using 𝑞EHVI
and 𝑞NEHVI are evaluated in parallel to determine which AF pro-
vides the best results. For all the experiments, the GP models used
an isotropic Matérn kernel, whose hyperparameters are estimated by
maximizing the log-likelihood with respect to the data. Matérn kernel is
a generalization of the exponentiated quadratic that adds an additional
parameter controlling the smoothness of the resulting function, and it
is preferred for high dimensional problems (Williams and Rasmussen,
2006).

The configuration of the whole optimization process involves the
selection of three main hyperparameters: the number of MC samples
to estimate the EHVI, the number of samples 𝑛 used to train the initial
GP and start the optimization process, and the number of iterations re-
quired for the model to converge. Therefore, during phase I, the number
of MC samples is evaluated in the set {32, 64, 128, 256, 512, 1024, 2048}
in order to identify the minimum value of samples required to get
stable estimations of the AFs. The grid search for selecting the number
of initial samples is defined as {𝑛 = 10𝑣, 1 ≤ 𝑣 ≤ 12}. These samples
are drawn randomly from the feasible space, ensuring each adheres
to all problem constraints. This analysis aims to discern how varying
levels of initial information impact the optimization process. Lastly,
the number of iterations is evaluated in the range [10, 50] with in-
crements of 10. This is a critical hyperparameter since it is directly
proportional to the objective function, a factor that should ideally
be minimized in a nonsimulated context. The assessment of all the
hyperparameters is centered on their influence on the HV, which is the
primary metric optimized by the AFs used. Given the stochastic nature
of the proposed method, each experiment is repeated 30 times for every
hyperparameter value, utilizing different seeds. This approach allows
for statistical analysis of the results, thereby facilitating the assessment
of the stability of the optimization process.

In the case of MC samples, the primary objective is to establish the
minimum sample quantity required for a consistent estimation of the
6

AF, irrespective of its initialization. t
Once the minimum values for the critical hyperparameters are set,
the phase II focuses on evaluating the quality of the Pareto front
approximation provided by MOBO. The evaluation is performed in
terms of metrics previously defined, namely HV, MS, SS, and 𝐶𝑓

, with
particular emphasis on their dependency on the number of iterations.
The exploration/exploitation tradeoff of the MOBO process is also
evaluated by estimating the Euclidean distance between consecutive
solutions across all the iterations. This comparison is performed in the
solution space (ingredients), after converting the diet formulation to its
equivalent in nutrient content and in the objective space.

Considering that the methodology delineated in Peña et al. (2009)
results in a singular solution (MFP) rather than a Pareto front approxi-
mation, which necessitates manual intervention from a decision-maker,
the evaluation of MOBO solutions concerning MFP centers on determin-
ing the percentage of solutions within the Pareto set approximation that
surpasses the objective values achieved by MFP.

To make the comparison between solutions coming from MOBO
with respect to that of the MFP method, each objective was evaluated
independently using the metric

𝑑𝑦𝑗 =
𝑦𝑗 − MFP𝑗

𝑚𝑎𝑥𝑗 − 𝑚𝑖𝑛𝑗
with 𝑗 ∈ {1, 2,…𝑚} (3)

where 𝑦𝑗 and MFP𝑗 are the values obtained for 𝑗th objective by a
MOBO and MFP solutions, respectively. Besides, 𝑚𝑎𝑥𝑗 and 𝑚𝑖𝑛𝑗 are
the maximum and minimum values observed during simulations for
the objective 𝑗. In other words, the difference between the two objec-
tive values is normalized with respect to the observed range of that
objective in feasible solutions.

Lastly, phase III involves appraising the Pareto front approximation
for values of 𝑞 > 1. The purpose, in this case, is to gauge the extent
o which a parallel BO strategy can expedite the optimization process
n the context of diet design without compromising the quality of
he solutions. In this set of experiments, the number of times the
bjective function is sampled remains constant while the number of
terations is adjusted accordingly. As emphasized earlier, sampling
bjective functions is a pivotal factor constraining the applicability of
he MOBO approach in nonsimulated contexts. The maximum number
f samplings to the objective functions is fixed according to the results
btained for 𝑞 = 1 in the previous phase regarding the number of
terations required for the algorithm to converge.

.2. Results

Fig. 2 shows the effect of the number of MC samples in the esti-
ation of HV during one iteration of the BO process applied to the
roblem defined by Eq. (1). We present results for the two AF described
n Section 3.2.1, 𝑞EHVI and 𝑞NEHVI, both for 𝑞 = 1. From Fig. 2, it
s possible to observe that the HV estimation provided by 𝑞NEHVI is

more sensitive to the number of MC samples than 𝑞EHVI. 𝑞NEHVI is
also computationally more expensive than 𝑞EHVI, with estimation time
increasing exponentially with respect to the number of MC samples.
For 256 MC samples, 𝑞NEHVI consumes 10x more time than 𝑞EHVI,
nd this value increases to more than 30x for 2048 samples. According
o the results, for the problem addressed in this work, HV estimation
or 𝑞EHVI stabilizes for MC samples greater than 64, while 𝑞NEHVI
equires 256 MC samples to achieve a similar behavior. For the sake
f comparison, all the following experiments will use 256 MC samples
or both AFs.

Fig. 3 shows HV evolution during the MOBO process for 10 (column
), 50 (column B), and 90 (column C) initial samples and during
0 iterations. As pointed out before, every experiment was run 30
imes using a different set of initial samples drawn randomly but
uaranteeing that all of them satisfied the set of problem restrictions;
hus, plots in the last row show summary statistics of the performance
isplayed during the experiment. From Fig. 3, it is possible to observe

hat, almost in all repetitions during the first ten iterations, the MOBO
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Fig. 2. Effect of the number of MC samples in the estimation of HV. Graphs in column (A) show the HV values (above) and the time taken to estimate it (below) when 𝑞EHVI
is used. Graphs in column (B) show the HV value and consumed time, in the same order, for 𝑞NEHVI.
process is able to improve the Pareto Front approximation strongly and
stabilizes after 30. However, such stabilization happens before as the
number of initial samples increases. In general terms, there is an inverse
relationship between the number of initial samples and the number of
iterations required to get high values of HV, and that behavior is more
evident for 𝑞NEHVI, which means that, as expected, 𝑞NEHVI favors
exploration more than 𝑞EHVI. For an initial set with 90 samples, results
in Fig. 3 show that is less likely for the MOBO process to get stuck in
regions where the solution set does not change, as for 10 and 50.

Interestingly, there is also a direct relationship between the number
of initial samples with which the optimization process is started and
the final value of HV achieved. According to the results, for an initial
sample of size 10, even though the MOBO process is able to improve the
Pareto Front approximation substantially, the algorithm converges to a
local optimum of the HV. However, as the number of initial samples
increases, the effect of a poor initial sample set can be compensated by
a large number of iterations. This trend is confirmed in the bar diagrams
of Fig. 4, where the dependency of final HV on the number of initial
samples is analyzed in more detail. From Figs. 3 and 4, it is also possible
to observe that, on average, 𝑞NEHVI achieves solution sets with better
HV than those selected by 𝑞EHVI, which can be explained due to better
exploration traits of the first one.

The variability of the Pareto front HV during multiple repetitions
and for different initial samples can be observed in Fig. 5. The boxplots
show the inter-quartile ranges of HV values obtained for both AFs
during 50 iterations. Concerning the number of initial samples, it is
noteworthy that boxplots representing runs with fewer than 50 initial
samples exhibit larger dispersion. Conversely, boxplots with initial
samples equal to or greater than 50 showcase narrower boxes, and their
medians align consistently. This suggests that the HV distribution tends
to converge toward similar values, which allows us to consider 50 as a
feasible lower bound for the number of initial samples, although larger
values are always desirable because that would imply more informed
surrogate models and better uncertainty estimations that, in turn, will
promote better choices of exploratory regions in the search space.

Regarding the differences between the two AFs evaluated, except for
the experiment with ten initial samples, on average, 𝑞NEHVI achieved
higher HV values than 𝑞EHVI. Furthermore, the distribution of HV
values for 𝑞NEHVI shows less dispersion and greater concentration
around the median value than those obtained with 𝑞EHVI. As pointed
7

out before, 𝑞NEHVI promotes exploration more than 𝑞EHVI, which
means that the higher computational cost is rewarded in achieving
better local optima.

According to the previous results, to evaluate the quality of the
Pareto front approximation and compare the solutions with that pro-
posed in Peña et al. (2009), the number of initial samples was set to
50. Even though better results can be obtained for larger values, this is
the minimum value from which MOBO shows stabler results regarding
HV convergence, so it was defined as a minimum requirement to move
forward and analyze the quality of the solutions in the Pareto front
approximation. In this sense, Fig. 6 shows the evolution of the four
quality indicators defined in Section 3.3 across 50 iterations of a MOBO
process that uses 𝑞NEHVI and 50 initial samples. Fig. 6(A) shows HV
vs. 𝐶𝑓

, while Fig. 6(B) shows MS vs. SS. It is possible to observe
that the 𝐶𝑓

grows monotonically throughout the entire experiment,
even though the HV value practically stops growing after 30 iterations.
Similar to HV, MS and SS practically stop improving and stabilize after
40 iterations. These results suggest that the ability to obtain more
solutions across all iterations enhances the diversity of non-dominated
solutions, but after the first 20 iterations, such diversity does not result
in a significant improvement of the quality indicators. Nevertheless, the
SS indicator shows an enhancement in the uniform distribution along
the approximation of the Pareto front, enabling a more balanced rep-
resentation of the objective space. Besides, it is important to highlight
that from a decision-maker standpoint, the more elements the solution
set has, the more possible solutions can be analyzed by the expert to
choose the best solution to be implemented.

The evolution of the quality metrics in Fig. 5 also suggests that
the MOBO process mainly explores during the first 20 iterations and
then focuses on the exploitation around the best-known solution. To
confirm this observation, Fig. 7 shows the Euclidian difference between
consecutive solutions throughout the optimization process. Since the
solution to a diet design problem can be described in three differ-
ent spaces: input (ingredients), restrictions (nutrients), and outputs
(objectives), the figure shows the same analysis carried out in each
of these three spaces. According to the results, the most pronounced
exploration ends after the first ten iterations, but fluctuations in stan-
dard deviations suggest the presence of moments of greater and lesser
variability in the exploration across all the iterations. It could indicate

that the MOBO process predominantly explores a relatively confined
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Fig. 3. Progression of HV over iterations in multiple repetitions of the MOBO process. In Column (A), HV values are depicted when employing ten initial samples for both 𝑞EHVI
(upper row) and 𝑞NEHVI (middle row) AFs. Column (B) displays HV evolution with 50 initial samples for both AFs, while Column (C) presents HV evolution with 90 initial
samples for both AFs. The lower row provides the average HV and standard deviation of the runs corresponding to each AF in the respective column.
region within the broader search space due to the effectiveness of the
optimization method in quickly identifying a promising region of the
search space and focusing its efforts there. In contrast, the observation
is different regarding the spaces of nutrients and ingredients. These
spaces are relatively narrow, and the optimization process appears to
explore a more comprehensive range within these spaces. This could
be attributed to the restricted nature of these domains, where a smaller
region is explored due to their inherent constraints.

These observations are supported by the distance values shown in
Fig. 5, which suggest that the region covered by the exploration process
is larger in the objective space than in the ingredients and nutrients
spaces. Especially considering that for this work’s particular case, the
objective space has dimension 3, while ingredients and nutrients have
dimensions 17 and 10, respectively. Interestingly, it is also possible
to observe that small changes in the objective space result in bigger
changes in the ingredients and nutrient spaces since variability in those
spaces is more evident across all the iterations.

After the characterization of the optimization process and its cor-
responding evolution of the Pareto front approximation, an important
outcome is that MOBO was able to automatically find a better solution
to the diet design problem than that of the MFP method proposed
in Peña et al. (2009). Table 1 shows the objective values obtained
by the best solutions found by MOBO and MFP. As it is possible to
observe, MOBO was able to find three non-dominated solutions that,
in turn, dominate the solution provided by MFP. The corresponding
formulation in terms of ingredients and nutrient content of each of the
solutions found by MOBO can be consulted in Appendix.
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Table 1
Objective values of the best solution found by MFP and the three best non-dominated
solutions found by the MOBO process.

Method Cost Lysine Energy

MFP (Peña et al., 2009) 151.4 1.02 14.31

MOBO
150.35 1.15 14.35
150.58 1.11 14.36
150.53 1.06 14.51

It is important to note that MOBO identified some of the best
solutions within the initial ten iterations of the optimization process,
indicating its ability to swiftly pinpoint a promising region in the search
space and concentrate efforts on exploitation. For a more systematic
comparison of solutions within the Pareto front approximation gener-
ated by MOBO, Table 2 illustrates how these solutions compare to the
MFP solution from Peña et al. (2009). The comparison is conducted
across various iterations to assess whether an increase in iterations
leads to, on average, a greater number of superior solutions. To achieve
this, the percentage of non-dominated solutions outperforming MFP is
calculated, considering simultaneously one, two, or three objectives.
Consequently, Table 2 presents the percentage of non-dominated so-
lutions for each objective: cost (C), Lysine (L), energy (E), pairs of
objectives: Cost-Lysine (CL), Cost-Energy (CE), Lysine-Energy (LE), and
finally, all three objectives combined, Cost-Lysine-Energy (CLE).

From Table 2, it is possible to observe that, after ten iterations, 93%
of the solutions in the Pareto front approximation are non-dominated
regarding that of the MFP method. Interestingly, after that same num-
ber of iterations, more than 66% of solutions outperform the Lysine
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Fig. 4. Average HV values for MOBO using 10, 20, 30, 40, 50 iterations and 10, 30, 50, 70, 90, 110 initial samples. Figure (A) shows results for 𝑞EHVI and Figure (B) for 𝑞NEHVI.
Fig. 5. Boxplot of HV obtained for different amounts of initial samples during 50
iterations. Figure shows results for the two AFs evaluated.

Table 2
Percentages of MOBO solutions improving 0, 1, 2, or 3 objectives with respect to MFP
(Peña et al., 2009).

MOBO MFP

𝑘 HV 𝐶𝑓
∅ (%) C (%) L (%) E (%) CL (%) CE (%) LE (%) CLE (%)

10 457.34 21.3 0.7 29.2 74.4 31.2 5.1 18.7 11.9 0.2
20 461.56 28.4 0.6 36.6 68.4 37.2 7.3 19.8 16.0 0.4
30 465.28 34.6 0.5 41.4 67.1 38.9 11.2 19.9 17.3 0.4
40 466.14 40.2 0.5 44.0 67.4 38.5 14.2 19.3 17.2 0.4
50 466.93 44.7 0.4 45.4 67.7 38.0 16.0 18.9 16.5 0.4
9

value achieved by the MFP solution. Besides, applying set theory, it is
easy to estimate that after 20 iterations, on average, the percentage of
solutions achieving better values in two out of three objectives exceeds
40% (CL+CE+LE-2CLE). In other words, the MOBO process can quickly
provide an important percentage of solutions that achieve a strong
trade-off between at least two objectives.

Based on Eq. (3), Table 3 shows the amount of improvement, per
objective, achieved by those solutions outperforming that of the MFP
method. Once again, only solutions in the Pareto front approximation
are considered for this analysis. The results are shown in terms of per-
centage since the metric 𝑑𝑦 is normalized with respect to the observed
dynamic range of each objective. The analysis is performed for the same
objective combinations presented in Table 2 and across 50 iterations.
Positive values in Table 3 indicate that MOBO solutions achieve, on
average, an improvement regarding the MFP solution. Negative values,
instead, represent the cases where MFP achieved better results. Thus,
as the MOBO solutions are split into non-disjoint subsets depending on
whether they overcome one or several objectives regarding MFP, from
Table 3, it is possible to observe the gains and losses of each particular
combination of objectives and iterations. e.g., if only the MOBO so-
lutions that overcome MFP for Lysine and Energy are considered, it is
possible to observe that for 20 iterations, the gain in Lysine and Energy
achieve 21.16% and 31.02%, respectively, while the loss in Cost is of
10.21%, which is considerably less than the benefit obtained summing
up the other two objectives.

From Tables 2 and 3, it is possible to observe to what extent the
quality of the Pareto front approximation improves as the number
of iterations increases. The gain of the solutions outperforming all
the objectives (CLE) is more concentrated on the Energy for the first
ten interactions than for 20, where a better balance among the three
objectives is achieved. Interestingly, if the set of solutions improving
Energy is considered, the other two objectives are also improved. That
behavior is consistent across all the iterations. Considering MOBO solu-
tions where two out of the three objectives are improved in comparison
to MFP, CE, and LE present gains that compensate for the loss in the
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Fig. 6. Figure (A) shows the evolution of HV vs. 𝐶𝑓
across iterations. Figure (B) shows the MS vs. SS across iterations. Solid lines correspond to mean values and shadow regions

to the standard deviation. All the experiments used 50 initial samples and 𝑞NEHVI as AF.
Fig. 7. Figure (A) shows the average distances between consecutive solutions in the ingredient vector space. Figure (B) shows the average distances between consecutive solutions
estimated in the nutrient vector space, and plot (C) shows the average distances between consecutive solutions in the objective space. The distances are estimated across 50
iterations for all figures and for the two AFs evaluated previously.
Table 3
Average percentage of improvement of MOBO solutions in comparison to MFP (Peña et al., 2009).

Objective 10 20 30 40 50

Cost (%) Lys (%) Ene (%) Cost (%) Lys (%) Ene (%) Cost (%) Lys (%) Ene (%) Cost (%) Lys (%) Ene (%) Cost (%) Lys (%) Ene (%)

C 17.75 −5.01 −0.63 17.00 −4.45 −4.87 15.53 −2.28 −8.28 14.07 0.00 −11.2 13.15 1.30 −12.61
L −22.4 37.93 −11.92 −18.67 35.12 −7.59 −15.77 32.91 −7.16 −13.81 31.73 −8.59 −12.74 31.31 −10.44
E 3.30 3.98 21.56 2.91 3.88 24.79 2.72 3.44 26.12 2.53 2.95 26.85 2.71 2.42 26.20
CL 5.44 21.89 −36.87 5.65 21.34 −36.83 6.14 20.77 −37.96 5.34 21.63 −38.77 4.88 22.23 −39.11
CE 17.20 −10.46 18.25 15.26 −10.18 18.59 14.07 −10.13 18.82 13.36 −10.19 18.96 12.85 −10.24 19.07
LE −15.45 24.99 26.01 −10.21 21.16 31.02 −8.93 20.07 33.05 −8.57 19.45 34.50 −8.27 19.56 33.37
CLE 3.58 6.06 25.97 3.65 13.13 12.55 3.79 14.77 10.71 3.79 14.77 10.71 3.79 14.77 10.71
third objective (in case all objectives are considered equally important),
while CL shows a relevant percentage drop in Energy.

Lastly, Fig. 8 and Table 4 show the quality indicators obtained for
𝑞 = 2 and 𝑞 = 3, in comparison to the sequential MOBO process
(𝑞 = 1). In order to make the comparison fair, the analysis focuses on
the evolution of the HV under the condition of an equal number of new
query samples. Since for 𝑞 = 2, the MOBO process obtains two new
samples from the objective functions instead of only one, it requires
25 iterations to get the same number of new samples in the solution
set as when 𝑞 = 1 is used. Take into account that the increment in the
number of parallel samples comes at the cost of sampling the objective
functions twice per iteration. A similar analysis can be made for 𝑞 = 3
to conclude that, in this case, 17 iterations are required to achieve 50
new query samples.

Fig. 8 presents HV’s mean and standard deviations across iterations
for 30 runs. As it is possible to observe, the parallel process is able
to achieve very competitive values of HV, although the performance
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drops as 𝑞 increases. The values of 𝐶𝑓
and SS in Table 4 confirm that

behavior. In particular, 𝐶𝑓
shows that the Pareto front approximation

contains a smaller number of solutions, which has a negative impact on
SS. However, similar to 6, there is not a direct relationship between 𝐶𝑓
and MS, which means that a large number of solutions in the Pareto
front approximation does not imply a better covering of the Pareto
front. Notably, for 𝑞 > 1, MOBO was also able to find non-dominated
solutions in comparison to MFP, even during the first ten iterations,
which means that a successful acceleration would be possible.

5. Conclusions

This work evaluates the use of BO as an alternative to the diet design
in the context of animal production. A multi-objective optimization
problem including Lysine, Digestible Energy, and Cost was addressed,
aiming to compare the capacity of BO to provide competitive solu-
tions regarding stochastic programming methods able to deal with the
intrinsic variability of the nutrient content in raw materials.
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Fig. 8. Means and standard deviations of HV values for 𝑞 = 1, 2, 3.

Table 4
Quality indicators for 𝑞 = 1, 2, 3. 𝑘 corresponds to the number of iterations required to
achieve 50 candidate solutions per each 𝑞 value.

𝑞 = 1 𝑞 = 2 𝑞 = 3

Indicator 𝑘

50 25 17

HV 466.92 444.77 434.78
𝐶𝑓

44.73 34.23 35.83
MS 5.06 4.54 5.83
SS 0.27 0.34 0.42

The MOBO process implemented was able to provide better solu-
tions than that achieved by a previously proposed method (Peña et al.,
2009), overcoming it in all the three objectives analyzed. For 50 initial
samples, some solutions found by MOBO yield improvements of 10.71%
for energy, 14.77% for Lysine, and 3.79% for Costs. Better results could
even be obtained if more initial samples are considered. Moreover,
since BO is a data-driven strategy, the proposed methodology could
easily incorporate additional zootechnical and environmental variables,
which can influence the performance of animals in a real context,
while methods depending entirely on analytical formulations of the
objective functions are limited to variables strictly defined by such
formulations. This makes MOBO a more adaptable methodology to
changes in the environmental conditions of production farms or to
incorporate zootechnical decisions due to particular conditions of a
pharm, such as the number of animals in a herd. Moreover, unlike
MFP, the MOBO process is automatic and does not require the manual
intervention of a decision-maker.

Regarding the set of hyperparameters, the experiments show that
a number of 256 MC samples are enough to estimate any of the two
evaluated AFs reliably based on the improvement of HV. Moreover,
𝑞NEHVI yields consistently better results than 𝑞EHVI, mainly because
𝑞NEHVI promotes more exploration than its standard version.

For values of initial samples greater than 50, the MOBO process
started to show reduced dispersion and more stability in the HV values.
In the context of animal production, such a number of initial samples
does not represent a big challenge, considering that typical production
pharms rise dozens of swine herds simultaneously every month, and
historical data is perfectly valid to initialize surrogate GP models.

Predictably, the quality of the Pareto front approximation increases
as more interactions are considered, but remarkably, the MOBO process
was able to find better solutions than that of the MFP method during
the first ten iterations. Moreover, by analyzing the solutions where
at least two objectives overcome that of the MFP, it was found that
CE and LE provide a good balance regarding the third objective, so
a decision-maker could take them as a reference to pick one single
solution. In other words, the solutions demonstrating enhancements in
Lysine and Energy are more likely also to exhibit favorable impacts on
11
costs. Furthermore, the utilization of parallel candidate generation in
the AF (i.e., using 𝑞 > 1) enables the user to accelerate the optimization
process without significantly compromising the quality of solutions in
the Pareto front approximation.

An important drawback of the AFs based on HV is the computational
complexity of its estimation. In fact, estimating AFs for more than
three objectives is an open problem, so the incorporation of additional
objectives, such as the reduction of greenhouse gases, would require
the analysis of alternative AFs, such as the one proposed in Tu et al.
(2022). Besides, due to the observed limitations in the exploration
characteristics of the HVI-based AFs, strategies based on the partition
of the search spaces are also worth exploring (Daulton et al., 2022).
In order to implement real solutions to the swine diet design problem
based on MOBO, additional issues must be considered, such as the
incorporation of contextual (non-controllable) variables (Krause and
Ong, 2011) and dealing with data coming from different farms and
fidelity levels (Belakaria et al., 2021).

Diet design using optimization methods is a common problem that
has been addressed for different livestock (Nyhodo et al., 2014; Sebas-
tian et al., 2008; Ghosh et al., 2014). Certainly, they all face similar
restrictions in terms of the high cost of target black-box function
evaluation, guaranteeing minimum nutritional content, raw material
availability, nutritional content variability in raw materials, and the
requirement of adaptability to climate change effects such as overheat-
ing, etc. Therefore, the methodology proposed in this work could also
be applicable to other animals raised in agricultural settings.
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Table A.5
Corresponding values of ingredients (in %) for the best MFP and MOBO solutions.

Ingredients MFP MOBO

[151.4, 1.02, 14.31] [150.4, 1.15, 14.35] [150.6, 1.11, 14.36] [150.53, 1.06, 14.51]

Barley 13.53 40.00 40.00 0.00
Wheat 22.25 0.00 0.00 40.00
Corn 0.00 0.00 0.00 0.00
Alfalfa 0.00 0.00 0.00 0.00
Cassava Meal 0.00 0.00 0.00 0.00
Soybean meal 15.08 9.09 28.74 27.99
Fish meal 0.00 0.11 0.00 0.00
Gluten feed 3.74 8.00 8.00 8.00
Calcium Carbonate 0.94 1.25 3.26 4.01
Lysine 78% 0.00 0.39 0.00 0.00
Sunflower meal 0.00 3.00 0.00 0.00
Animal fat 0.00 0.00 0.00 0.00
Beet pulp 0.00 0.00 0.00 0.00
Lupin 10.00 10.00 0.00 0.00
Peas 14.06 8.15 0.00 0.00
Rye 20.00 20.00 20.00 20.00
Dicalcium 0.4 0.00 0.00 0.00
Table A.6
Nutrient content of the best MFP and MOBO solutions.

MFP MOBO

Cost (e/MT) 151.4 150.35 150.58 150.53
Lysine (%) 1.02 1.15 1.11 1.06
Energy (MJ/kg) 14.31 14.35 14.36 14.51
Crude Fibre (%) 5.09 6.00 4.51 3.79
Calcium (%) 0.60 0.60 1.38 1.66
Dry matter (%) 89.15 89.58 89.53 89.29
Crude protein (%) 19.33 18.00 20.47 20.26
Phosphorus (%) 0.48 0.43 0.45 0.44
Methionine+cystine (%) 0.6 0.58 0.68 0.68
Tryptophan (%) 0.21 0.19 0.25 0.25
Threonine (%) 0.7 0.63 0.77 0.75
Available phosphorus (%) 0.16 0.15 0.15 0.17
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ppendix. Ingredients and nutrients

Tables A.5 and A.6 list the distribution of ingredients and their
quivalent nutritional content, respectively, corresponding to the best
olutions found by MOBO and the reference solution MFP proposed
n Peña et al. (2009).
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