
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using

machine learning

Santiago Taborda Echeverri

Undergraduate project for the degree of Telecommunications Engineer

Advisor

Magister Jaime Alberto Vergara Tejada

Universidad de Antioquia

Engineering Faculty

Telecommunications Engineering

Medellín

2024

Citation Taborda Echeverri [1]

Reference

IEEE Style (2020)

[1] S. Taborda Echeverri, “Evaluation of SQL injection (SQLi) attack detection
strategies in web applications using machine learning”, Industry Semester,
Telecommunications Engineering, Universidad de Antioquia, Medellín, 2024.

SOC Manager AizoOn Technology Consulting: Jhonny Alexander Triana Maldonado
Cyber Senior Data Scientist AizoOn Technology Consulting: Daniele Ucci
Cyber Security Specialist AizoOn Technology Consulting: Ivan Russo

Centro de Documentación de Ingeniería (CENDOI)

Institutional Repository: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.

Dean/Director: Julio César Saldarriaga Molina.

Department Director: Eduard Emiro Rodríguez Ramírez.

This work's content corresponds to the authors' right of expression. It does not compromise the institutional thought
of the Universidad de Antioquia, nor does it release its responsibility before third parties. The authors assume
responsibility for copyright and related rights.

Acknowledgments

To my mom, my hero...

3

Contents

List of Figures 6

List of Tables 8

1 Abstract 9

2 Introduction 10

3 Objectives 12

3.1 General objective . 12

3.2 Specific objectives . 12

4 Theoretical background and related work 13

5 Methodology 23

5.1 Selection of SQLi attack detection techniques 23

5.2 Database structuring . 24

5.2.1 Data Sources . 24

5.2.2 Data Preprocessing . 25

5.2.3 Data Analysis . 27

5.2.4 Data Integration . 28

5.2.5 Feature Generation . 30

5.3 Implementation and Training of Selected Techniques 31

5.3.1 Hyper-parameter Tuning . 32

5.3.2 Results gathering . 33

5.4 Performance evaluation and benchmarking of the techniques implemented 34

4

5.4.1 Performance Metrics . 34

5.4.2 Benchmark and recommendation . 36

6 Results and analysis 37

6.1 Database 1.1 and 1.2 . 37

6.1.1 Training and test set . 37

6.1.2 Validation set . 42

6.2 Database 2.1 and 2.2 . 45

6.2.1 Training and test set . 45

6.2.2 Validation set . 50

7 Conclusions 54

Bibliography 64

5

List of Figures

4.1 General mechanism of a SQL injection (SQLi) attack. 14

4.2 Types of SQL injection (SQLi) attacks. 15

4.3 Cumulative total of different categories of vulnerability detection approaches

from the year 2011 until 2020 . 17

4.4 Machine learning categories and relevant algorithms 20

5.1 Number of data points by classification type according to each data source. 25

5.2 Distribution of unique words in the attack class according to each data source. 28

5.3 Number of data points per classification type according to each resulting

database. 30

5.4 Data processing flow for training, testing, and validation sets 31

5.5 General scheme of a confusion matrix . 36

6.1 Confusion matrices obtained for each model during the training and testing

stage using database 1.1. 39

6.2 Confusion matrices obtained for each model during the training and testing

stage using database 1.2. 40

6.3 Confusion matrices obtained in the validation for each model trained using

the database 1.1. 43

6.4 Confusion matrices obtained in the validation for each model trained using

the database 1.2. 44

6.5 Confusion matrices obtained for each model during the training and testing

stage using database 2.1. 47

6.6 Confusion matrices obtained for each model during the training and testing

stage using database 2.2. 48

6

6.7 Confusion matrices obtained in the validation for each model trained using

the database 2.1. 51

6.8 Confusion matrices obtained in the validation for each model trained using

the database 2.2. 52

7

List of Tables

4.1 SQL injection detection strategies using machine learning 17

5.1 Types of SQLMap encodings available for decoding using the custom

Python implementation. 26

5.2 The 5 most common duplicated payloads present in database 1.1 29

5.3 Hyper-parameters for each algorithm . 32

6.1 Performance metrics obtained by implementing each model using database

1.1. 38

6.2 Performance metrics obtained by implementing each model using database

1.2. 38

6.3 Training and testing times for each model using databases 1.1 and 1.2 41

6.4 Performance metrics obtained in the validation for each model trained using

the database 1.1. 43

6.5 Performance metrics obtained in the validation for each model trained using

the database 1.2. 44

6.6 Performance metrics obtained by implementing each model using database

2.1. 46

6.7 Performance metrics obtained by implementing each model using database

2.2. 46

6.8 Training and testing times for each model using databases 2 y 2.2 49

6.9 Performance metrics obtained in the validation for each model trained using

the database 2.1. 51

6.10 Performance metrics obtained in the validation for each model trained using

the database 2.2. 52

8

1 Abstract

This work evaluates strategies for detecting SQL injection attacks based on artificial intel-

ligence to generate a recommendation that allows the improvement of the web application

firewall of AizoOn Technology Consulting (Mithril). To achieve this, detection techniques

known as Naïve Bayes, logistic regression, random forests, and one-class support vector

machines were selected based on their relevance and effectiveness demonstrated in the

scientific literature and the company’s expressed interests. These techniques were imple-

mented by structuring a hybrid database integrating public data from the "SQL Injection

Dataset" available on Kaggle with data processed by Mithril. This process involved data

analysis, preprocessing, and conditioning. Data integration proved useful for implement-

ing the machine learning models. Subsequently, hyperparameter tuning was performed

to improve the models’ performance, identifying the best configurations for each of them,

thus increasing detection capabilities and minimizing false positives. The evaluation and

benchmarking of the models were conducted using performance metrics such as accuracy,

precision, recall, and F1-Score. Finally, the results led to the recommendation of imple-

menting the logistic regression model in Mithril, as it achieved the best performance with

accuracy and F1-Score of 99.45%

9

2 Introduction

The constant use of the internet and computer services has led them to play an increasingly

important role in our daily lives. According to the Our World in Data report [1], in

the last three months, 4.7 billion people worldwide used the internet. These services

offer various advantages and streamline tasks for users in different sectors. Gallup (an

American analytics and advisory company) reported in November 2023 that 79% of the

U.S. workforce worked remotely or with a hybrid model [2], directly implying the use of

information technologies.

This growth brings with it some vulnerabilities to cyberattacks. Specifically, organi-

zations face cyberattacks that constantly threaten their systems, including SQL injection

(SQLi). SQLi allows attackers to insert malicious SQL code into input input fields, which

can compromise databases and extract sensitive information.

SQLi attack ranks third among the top 10 security risks in web applications, according

to the 2021 report by the Open Web Application Security Project (OWASP) [3]. This report

reveals that 94% of evaluated web applications had vulnerabilities to SQLi attacks [4].

Similarly, the Common Weakness Enumeration (CWE [5]) places SQLi at the third position

in the list of the 25 most dangerous software vulnerabilities of 2023 [6].

Machine learning has demonstrated effective performance in detecting cyber attacks,

and as a result, the interest within the scientific and industrial communities for its appli-

cation. This is evident in the study conducted by Hanif et al. (2021) [7], where 74.4% of

the 90 reviewed published articles make use of computational intelligence techniques for

cyber vulnerability detection.

Given the relevance of both the attack and the use of machine learning to detect the

attack nowadays, it is expected that companies involved in the information technology (IT)

10

https://owasp.org
https://cwe.mitre.org

field will focus on implementations aimed at mitigating SQLi attacks using computational

intelligence techniques.

AizoOn Technology Consulting is a technology consulting company based in Turin,

Italy [8]. The organization’s mission is to support its clients throughout the digital era,

offering technological expertise and cutting-edge innovation [9]. The company has two

technology divisions covering the spectrum of data acquisition and transformation, and

security and strategic and/or operational risk management. These divisions correspond

to the cybersecurity division and the innovation and digital engineering division. The

former focuses on increasing organizations’ resilience against cyber threats originating

from the digital ecosystem, while the second focuses on creating value by transforming

data into knowledge for decision-making.

Within the cybersecurity division, the Security Operations Center (SOC) acts as a Man-

aged Security Services Provider (MSSP). The SOC implements customized cybersecurity

solutions to fit each client’s specific needs, combining incident management and response,

threat hunting and intelligence, and digital forensic analysis [10].

This work focuses on the evaluation of SQLi attack detection strategies, developed

within the AizoOn SOC. It starts with a literature review to identify SQLi attack detection

techniques against web applications, focusing on those that make use of machine learn-

ing. Next, a database is structured by integrating data processed by AizoOn Technology

Consulting’s web application firewall with the publicly accessible “SQL Injection Dataset”

available on the Kaggle platform [11], subjecting the resulting data to cleaning and con-

ditioning. Subsequently, machine learning techniques are applied making use of the

processed data to detect SQLi attacks. The performance of the implemented techniques

is evaluated using established performance metrics such as accuracy, precision, recall,

and F1-Score. Finally, the results are analyzed to compare the different machine learning

techniques, identifying the one with the best performance to generate a recommendation

for its future implementation.

11

https://www.aizoongroup.com/home.aspx#intro
https://www.kaggle.com/datasets/sajid576/sql-injection-dataset/data

3 Objectives

3.1 General objective

Evaluate strategies for detecting SQL injection (SQLi) attacks based on machine learning

and provide a recommendation to enhance the security of the web application firewall of

the company AizoOn Technology Consulting.

3.2 Specific objectives

• Select techniques for detecting SQL injection attacks against web applications, partic-

ularly the object of this project, those that make use of machine learning techniques.

• Structure a database containing both public datasets and data generated from the

web application firewall of the company AizoOn Technology Consulting.

• Implement and train each of the previously chosen SQL injection attack detection

techniques that use machine learning.

• Evaluate and compare the implemented techniques based on defined performance

metrics and generate a recommendation according to the results obtained for its

implementation in the web application firewall of the company AizoOn Technology

Consulting.

12

4 Theoretical background and related work

Structured Query Language (SQL) is one of the most common standard languages for

creating, interacting, and maintaining relational databases and comparable systems. User

interaction (insert, delete, and update) can be performed by querying the data using the

data manipulation component of the SQL language. In contrast, the administrator can

perform maintenance and access control using the data control component of the SQL

language [12].

Most web applications use databases managed by database management systems

(DBMSs) that employ or are capable of understanding SQL queries, such as MySQL,

PostgreSQL, or Oracle [13]. However, the existence of web applications that make use

of non-relational databases called NoSQL (Not Only SQL) [14] should be recognized.

NoSQL databases are suitable for scenarios where it is essential to handle large amounts

of data like the Internet, multimedia, and social media applications, these databases do

not employ the principles of relational database management systems (RDBMSs) [15].

SQL injection (SQLi) is an attack that consists of the insertion (injection) of malicious

code into SQL queries from the client application inputs. According to the Open Web Ap-

plication Security Project (OWASP [3]), the SQL commands are injected into data-plane

input to affect the execution of predefined SQL commands, impacting confidentiality, au-

thentication, authorization, and data integrity [16]. A successful SQL injection attack can

have serious consequences, such as unauthorized reading and exposure of sensitive data,

which in web applications can be user names, passwords, and even personal informa-

tion [17], modification of database data (insert, delete, or update), execution of actions as

administrator and in some cases issue commands to the operating system [18].

13

https://owasp.org

Incorrect validation, in other words, the lack of removal or quoting of SQL syntax

in controlled user input, allows a SQL query to be interpreted as SQL code [19], which

contributes to incorporating SQL injection attack vulnerabilities and leading to the success

of the attack. This vulnerability is most likely to be found in PHP (Hypertext Preprocessor)

and ASP (Active Server Pages) applications [17]; however, any site or product package

with a minimal user database is susceptible to attack attempt of this type [20].

The Figure 4.1 shows the general flow of an SQL injection attack. When the user input

does not have the appropriate validation, as mentioned above, attackers can inject packets

containing SQL commands to be interpreted in the database as SQL code through POST

and GET requests [21], reaching the target of the attack.

Attacker Web server SQL Database

Malicious SQL payload Payload inserted as SQL code

Payload moved to
the SQL server

SQL code executed

SQL answer

Successful SQLi attack
(payload target reached)

Figure 4.1: General mechanism of a SQL injection (SQLi) attack.

Proper knowledge of the general behavior of a SQL injection attack is essential for

preventing the attack. It can be classified based on different factors from the literature,

and generally speaking, an SQLi attack is mainly classified into the categories shown in

the Figure 4.2 [22].

In-band SQLi: This SQL injection attack is the most common and easiest to carry out.

The attacker uses the same communication channel to send the attack and receive the

answer.

• Error-based SQLi: Based on error messages issued by the target database server,

attackers use invalid inputs in queries through the user interface to intentionally

14

SQL injection
attack types

In-Band
(Classic) Out-of-Band

Error-based Union-based

Inferential
(Blind)

Boolean-based
(Content-based) Time-based

Figure 4.2: Types of SQL injection (SQLi) attacks.

cause the database to generate errors. The error messages can reveal information

about the target system, including details such as its structure, version, and oper-

ating system, or even return complete query results [23], sometimes attackers can

manipulate an entire database by applying this type of attack [24].

• Union-based SQLi: The UNION operator of the SQL language allows combining the

result of two or more queries into a single result set, eliminating duplicates. Attackers

exploit this operator to combine a malicious query with an original query, usually

SELECT statements returned as part of the HTTP response. Allowing unauthorized

access to column values from other tables that should not be accessed [19].

Out-of-Band SQLi: In this case, the database cannot respond directly to the web

server when an attacker is trying to retrieve information sending queries. However, it is

possible to take advantage of features enabled on the target site, such as HTTP, DNS, or

FTP (commonly supported by popular SQL servers) [25], forcing the database to transmit

the responses to a remote endpoint controlled by the attacker.

Inferential SQLi: It is characterized by no visible response on the web page to queries

(also known as Blind SQLi) [17], even when no SQL query results are returned, an attacker

can probe the server and observe its behavior to obtain information [25]. It requires the

attacker to generate queries to the database and interpret the responses obtained, usually

taking advantage of generic errors such as “Syntax Error” [24]. This type of SQL injection

15

attack is slower to exploit due to the lack of direct information about the web page.

• Boolean-based SQLi: Attackers manipulate SQL queries to force the web applica-

tion to return a TRUE or FALSE (response from the web application, not from the

database) [26]. The methodology consists of injecting a fake payload and examining

the response, then performing an analysis with a true payload [17]. The vulnerability

will depend on divergent behavior in the responses to different payloads; attackers

could exploit this variation to deduce sensitive data.

• Time-based SQLi: In this strategy, time delays are conveniently incorporated into

the injected SQL code in order to measure and control the response times of the

application to indirectly deduce information about the database or extract sensitive

data [26]. The attackers exploit the SLEEP query, which allows them to “pause” the

database for a defined amount of time. The response time will allow the attacker to

determine whether the query result is TRUE or FALSE.

SQLi attack prevention minimizes the attack surface by avoiding possible dynamic

SQL statements and generates errors by default from the database [25]. This is possible

by considering appropriate security measures from the development stage, such as ex-

haustive code cleaning, appropriate validation of user input, and restriction of automatic

database responses to errors.

The ability to apply prevention activities may be limited in practical situations, mak-

ing it necessary to detect SQLi attacks by implementing additional actions during system

execution to protect the system’s operational continuity and security. Traditional method-

ologies are based on predefined rules, such as filters and regular expressions, including

black-box and white-box testing, pattern matching, sequence comparison, and other mea-

sures.

Traditional methodologies are widely used; however, they face scalability issues and

may not effectively detect certain complex SQLi attack patterns [25]. Machine learning

techniques, on the other hand, are emerging as practical tools for SQL injection detection

in several types of applications such as enterprise systems, cloud-based systems, and

websites [26], becoming a promising alternative due to their ability to detect behaviors

that may bypass traditional detection methods.

16

In the Figure 4.3 it can be evidenced that in general terms, the use of computational

intelligence techniques has significantly surpassed, until 2020 according to the study

conducted by Hanif et al, the utilization of traditional approaches in the detection of

vulnerabilities [7].

Figure 4.3: Cumulative total of different categories of vulnerability detection approaches
from the year 2011 until 2020 [7].

The effectiveness of the use of machine learning techniques (algorithms) depends on

several factors, such as the problem to be solved, the data pre-processing for training, and

the origin of the data itself. Table 4.1 presents various studies related to the research topic

addressed in this work.

Year Title Detection method Dataset

2023

SQL injection attack de-

tection in network flow

data [27]

Logistic Regression

(LR), LSVC, Percep-

tron+SGD, Random

forest (RF), K-nearest

neighbors (KNN)

Two Netflow V5

datasets public and

available, collected

using DOROTHEA tool

Continued on the next page

17

2022

SQL Injection Attack

Detection by Machine

Learning Classifier [28]

Logistic Regression

(LR), AdaBoost, Naïve

Bayes (NB), XGBoost,

Random Forest

Kaggle SQL injection

data set

2022

Deep Neural Network-

Based SQL Injection De-

tection Method [29]

Deep Neural Network
Kaggle SQL Injection

Dataset

2022

Multi-Phase Algorith-

mic Framework to

Prevent SQL Injection

Attacks using Improved

Machine learning and

Deep learning to En-

hance Database security

in Real-time [30]

Convolutional Neural

Network (CNN) and

Naïve Bayes (NB)

Private dataset cre-

ated using differ-

ent databases such

as MySQL, Oracle,

MS.SQL and Postgres

2021

SQL Injection Detection

Using Machine Learn-

ing Techniques [31]

Logistic Regression

(LR), Gradient boosting

(GB), Decision tree (DT),

Random forest (RF),

Support vector ma-

chines (SVM), Neural

networks (NN)

Kaggle SQL injection

data set and All-Attacks

dataset that use libingec-

tion

2021

SQL Injection Attack

Detection and Preven-

tion Techniques Using

Deep Learning [32]

Convolutional Neural

Network (CNN) and a

Multilayer Perceptron

(MLP)

Private dataset with

records from internet

request

Continued on the next page

18

2020

Machine Learning based

Intrusion Detection Sys-

tem for Web-Based At-

tacks [33]

J48 (decision tree), One

rule (OneR), Naïve

Bayes (NB)

Cleaned and labeled

CSIC HTTP 2010 dataset

2019

LSTM-Based SQL Injec-

tion Detection Method

for Intelligent Trans-

portation System [34]

Long short-term mem-

ory based (LSTM-based)

and comparing with

Support vector machine

(SVM), K-nearest neigh-

bors (KNN), Decision

Tree, Naïve Bayes (NB),

Random forest (RF),

Convolutional neural

network (CNN), Re-

current neural network

(RNN) and Multilayer

perceptron (MLP)

Private dataset, made

for the proposed work

and collected from

different sources such

as Github, exploit-db,

among others

2019

Predicting Web Vulnera-

bilities in Web Applica-

tions Based on Machine

Learning [35]

Random forest, J48 (de-

cision tree), Naïve Bayes

(NB)

PHP Security vulnera-

bility dataset

2018

Web Application At-

tacks Detection Using

Machine Learning Tech-

niques [36]

Support vector machine

(SVM), K-nearest neigh-

bors (KNN), Random

forest

PKDD 2007 challenge

dataset, CSIC2010

dataset, and private

dataset called DRUPAL

based on the public

website of the Uni-

versidad Católica de

Uruguay.

Table 4.1: SQL injection detection strategies using machine learning

19

Machine learning algorithms can be categorized into supervised and unsupervised

learning, as shown in the Figure 4.4.

Machine Learning

Unsupervised LearningSupervised Learning

Classification Regression

Naïve Bayes Decision Tree

Discriminant
Analysis

Support Vector
Machine

Linear Regression

Ensemble Methods

Nearest Neighbor

Neural Networks

Gaussian process
regression

Neural Network

Clustering

Hierarchical

Hidden Markov
Model

Gaussian Markov
Model

K-Means
K-Medoids
Fuzzy C-Means

Figure 4.4: Machine learning categories and relevant algorithms [24] [37].

Supervised learning is a machine learning technique that creates a function from

labeled training data capable of assigning to a specific input an output obtained from

the learning process [38] [39]. Supervised learning can be oriented to regression, which

usually consists of fitting the data with a numerical value (usually decimal type) as the

function’s output. On the other hand, classification consists of separating the data with a

class label as the function’s output. Although the class label is numerical in most cases, it

represents a distinction [40].

20

Unlike supervised learning, unsupervised learning is a machine learning technique

that analyzes unlabeled data sets. In the learning process, there are no input examples

with known labels [38]. A classic example is clustering, a technique used to identify

groups within certain data [39]. This type of learning is widely used to extract features,

identify significant trends and structures, identify groupings, and facilitate exploratory

data analysis [40].

From the literature review presented in Table 4.1, it is clear that there is interest in using

supervised algorithms for detecting SQL injection attacks. However, it should be noted

that some studies implement solutions combining both supervised and unsupervised

learning [41].

Naïve Bayes: is a computational intelligence technique based on probability. It is

derived from Bayes’ theorem and is distinguished by assuming that all features of a data

set are independent of each other [42]. Although real-world data features are often related,

this assumption allows for reduced computational complexity [43], enabling the model to

efficiently calculate the probability that a given data point belongs to a specific class based

on the observed features, and then select the class with the highest probability [44] [45].

There are three main variants of the Naïve Bayes model:

• Gaussian Naïve Bayes: has demonstrated good performance with data that follows

a Gaussian distribution, specifically continuous numerical data [46].

• Multinomial Naïve Bayes: is often used in problems involving discrete data and is

commonly implemented with text data for natural language processing tasks [46].

• Bernoulli Naïve Bayes: designed for data that follows a Bernoulli distribution,

where each variable has binary data [47].

Logistic Regression: is a technique used to solve binary classification problems by

predicting the probability that a given data point belongs to one of two categories [48]. It

differs from linear regression in that it applies a logistic function to constrain the output

to a value between 0 and 1 [49]. The main advantage of this technique lies in its ability

to be used for both classification and probability estimation. Although it is usually

21

employed for binary classification, it can also be extended to multi-class classification

through techniques such as multinomial logistic regression [50].

Random Forest Classifier: consists of a combination of tree-type classifiers, where

each classifier is generated using a unique random vector independently sampled from

the input data. When classifying a new input, each tree casts a unit vote for a class, and

the most popular class among all the trees determines the final classification [51].

One-Class Support Vector Machines (OCSVM): initially proposed by Müller and

colleagues [52], its main objective is to construct a hyperplane that contains the data from

the majority class (referred to as target data) and excludes data from the remaining class

(considered as outliers) [53]. In other words, it aims to identify instances that significantly

deviate from the norm.

22

5 Methodology

5.1 Selection of SQLi attack detection techniques

The literature review focused on SQLi attack detection techniques using machine learning

techniques was developed in chapter 4, and the state of the art shown in Table 4.1 was

obtained. From this state-of-the-art, the following computational intelligence techniques

were selected:

• Naïve Bayes

– Gaussian Naïve Bayes (GaussianNB)

– Multinomial Naïve Bayes (MultinomialNB)

• Logistic Regression

In the work conducted by Roy, P. et al [28], five SQLi attack detection models were

implemented and evaluated, with Naïve Bayes emerging as the most successful, achiev-

ing an accuracy of 98.33%. Meanwhile, Ashlam, A. et al [30] presented a multi-phase

algorithmic framework designed to detect and prevent SQL injections (SQLi) in real-time,

including controlled laboratory experiments and real-world deployments in a university

computer network and a commercial bank, where Naïve Bayes achieved an accuracy of

95%.

The logistic regression model for classification has also been implemented in various

works present in the state of the art. Specifically, the work conducted by Crespo-Martínez,

I. S. et al [27] shows the training and testing of five different models based on supervised

learning, achieving a detection rate higher than 97% with a false alarm rate lower than

23

0.07% for the logistic regression-based model. Similarly, Hosam, E. et al [31] evaluated

six different machine learning models and concluded that the logistic regression is the

most effective for generalizing unseen data during the model training process, with an

accuracy of 87.3%.

In addition to the previously mentioned techniques, the company requested the inclu-

sion of the following within the selected group:

• Random Forest

• One-Class Support Vector Machines (OCSVM)

5.2 Database structuring

The objective was to use a public database to structure a database including certain data

from the web application firewall of AizoOn Technology Consulting (commercially known

as Mithril).

5.2.1 Data Sources

Mithril Data: The data provided by the company from Mithril consists exclusively of

SQLi attack payloads without network traffic information. AizoOn has various clients for

whom it provides Mithril management and monitoring services as a product. The data

was extracted from an implementation for a client that conducts periodic specific SQLi

tests by its offensive security team, corresponding to January 2024.

Public Database: Considering the nature of Mithril’s data and aiming to integrate

it into a public database, the “SQL Injection Dataset” publicly available on the Kaggle

platform [11] was selected. This dataset includes payloads considered acceptable in

normal user behavior as well as SQLi payloads and has been used in various works

present in the state of the art (Table 4.1).

The Figure 5.1 shows the number of data points classified by type, for both Mithril and

Kaggle data.

24

https://www.kaggle.com/datasets/sajid576/sql-injection-dataset/data

SQLi No SQLi
Classification type

0

2500

5000

7500

10000

12500

15000

17500

20000
Am

ou
nt

 o
f d

at
a

18573

11382

19537 Data
Mithril
Kaggle

Figure 5.1: Number of data points by classification type according to each data source.

5.2.2 Data Preprocessing

From the literature ([29], [32], [34]), the following procedures have been shown to be

relevant for obtaining good results when using data containing SQLi payloads:

• Replace all URLs with the text ’http://u’.

• Replace email addresses with the generic text ’user@email’.

• Decode content as necessary.

• Remove characters that are not in the ASCII set or are not printable.

• Replace all numbers with the digit "0".

• Convert all characters to lowercase.

• Add spaces before and after special characters.

These procedures were implemented using Python. SQLMap is a free and open-

source tool developed under a GNU license by Bernardo Damele Assumpcao Guimaraes

and Miroslav Stampar [54]. This tool has been recommended by OWASP for performing

25

SQL injection tests on websites [55] [56]. SQLMap has a series of encoding types and in

the Table 5.1 it is possible to evidence the types of encoding against which the Python

implementation can decode.

Tamper Scripts Original String Encoded String

apostrophemask 1 AND ‘1’=’1
1 AND %EF%BC%871%EF%BC%87 =

%EF%BC%871

apostrophenullencode 1 AND ‘1’=’1 1 AND %00 %271 %00%27 =%00%271

appendnullbyte 1 AND 1=1 1 AND 1=1%00

base64encode 1’ AND SLEEP(5)# MScgQU5EIFNMRUVQKDUpIw==

bluecoat
SELECT id FROM

users WHERE id = 1

SELECT %09id FROM %09users

WHERE %09 id LIKE 1

chardoubleencode
SELECT FIELD

FROM TABLE

%2553%2545%254C%2545%2543

%2554%2520%2546%2549%2545

%254C%2544%2520%2546%2552

%254F%254D%2520%2554%2541

%2542%254C%2545

charencode
SELECT FIELD

FROM TABLE

%53%45%4C%45%43%54

%46%49%45%4C%44

%46%52%4F%4D

%54%41%42%4C%45

charunicodeencode
SELECT FIELD

FROM TABLE

%u0053%u0045%u004C%u0045

%u0043%u0054

%u0020%u0046%u0049%u0045

%u004C%u0044

%u0046%u0052%u004F%u004D

%u0054%u0041%u0042%u004C

%u0045

Continued on the next page

26

overlongutf8

SELECT FIELD

FROM TABLE

WHERE 2>1

SELECT%C0%A0FIELD%C0%A0

FROM%C0%A0TABLE%C0%A0

WHERE%C0%A02%C0%BE1

percentage
SELECT FIELD

FROM TABLE

%S%E%L%E%C%T %F%I%E%L%D

%F%R%O%M %T%A%B%L%E

symboliclogical 1 AND ‘1’=’1 1 %26%26 ‘1’=’1

unmagicquotes 1’ AND 1=1 1%bf%27AND 1=1

Table 5.1: Types of SQLMap encodings available for decoding using the custom Python

implementation.

5.2.3 Data Analysis

As mentioned, the data comes from two different sources. To integrate this data, an

analysis was performed by taking the data considered as SQLi payloads from the Kaggle

database and comparing them in terms of the number of different words per sample

with the data from Mithril. In Figure 5.2, the distribution in terms of different words

is represented by a frequency histogram. When comparing the histogram for both data

sources, it is noted that, although the tendency is not the same, it maintains some similarity.

A hypothesis test was conducted to determine the feasibility of data integration and

verify the similarity evidenced by the frequency histogram in Figure 5.2, considering the

count of different words per sample.

Statistical hypothesis tests evaluate whether a data sample is typical or atypical com-

pared to a certain data set based on a formulated hypothesis (null hypothesis) [57]. This

involves calculating a test statistic for the data sample and comparing it to the formulated

hypothesis, with the resulting value known as the p-value. A low p-value (usually less

than 5%) suggests that the sample is atypical, leading to the rejection of the null hypothesis,

while a high p-value leads to acceptance [57].

Given that the amount of data in both sets is greater than 30, a hypothesis test known as

the Z-Test for two means was implemented using the Python "statsmodels" module [58].

The following hypotheses were proposed:

27

0 5 10 15 20 25 30 35
Amount of unique words

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

eq
ue

nc
y

Data
Mithril
Kaggle

Figure 5.2: Distribution of unique words in the attack class according to each data source.

• Null hypothesis (H0): there is no difference between the Kaggle and Mithril data.

• Alternative hypothesis (H1): there is a difference between the Kaggle and Mithril

data.

The Z-Test conducted for the two data sets, taking the number of distinct words per

sample, resulted in a p-value of 1.832710135153467 · 10−47. Since the obtained p-value was

less than 0.05 (corresponding to 5%), the null hypothesis was rejected, indicating that the

data actually differed considering the number of distinct words per sample. This led to

the conclusion that data integration for these two sources was not feasible.

5.2.4 Data Integration

Despite the fact stated in subsection 5.2.3 regarding the similarity of the data sources

and their feasibility for integration, it was decided to integrate the data to respond to the

interest in structuring a database that includes data from Mithril.

Upon integrating the data, the resulting database (database 1.1) showed an imbalance

in the amount of data per class (SQLi and Non-SQLi), as evidenced in Figure 5.3a. It was

28

noted that database 1.1 contained duplicate data; the top 5 duplicated payloads are shown

in Table 5.2. It was then decided to remove the duplicate data, and the distribution of the

resulting database (database 2.1) can be seen in Figure 5.3c.

Payload
Number of

duplicates

0 972

0 union all select 0 , (@ @ version) - - 771

user @ email 770

0 . 0 e + 0 646

’) or ‘ 0 ‘ = ‘ 0 ‘ ; - - - 576

Table 5.2: The 5 most common duplicated payloads present in database 1.1

Data balancing is a practice that leads to better results when using the data to build

machine learning models [59]. It was decided to employ data balancing using the Python

library "imblearn" [60].

Specifically, "Random Over Sampler" was applied to database 1.1, the distribution of

the resulting database (database 1.2) can be seen in Figure 5.3b, and "Random Under

Sampler" was applied to database 2.1, the distribution of the resulting database (database

2.2) can be seen in Figure 5.3d.

This resulted in four distinct instances of data integration, representing the four fu-

ture scenarios on which the selected machine learning techniques will be implemented

(training and testing). For validation, data from a different implementation of Mithril

than the one used previously in subsection 5.2.4 was taken, exclusively SQLi payloads

corresponding to March 2024.

29

SQLi No SQLi
Classification type

0

5000

10000

15000

20000

25000

30000
Am

ou
nt

 o
f d

at
a

29955

19537

(a) Data obtained after integration (Database
1.1).

SQLi No SQLi
Classification type

0

5000

10000

15000

20000

25000

30000

Am
ou

nt
 o

f d
at

a

29955 29955

(b) Database 1.1 after data balancing (Database
1.2).

SQLi No SQLi
Classification type

0

2000

4000

6000

8000

10000

12000

14000

16000

Am
ou

nt
 o

f d
at

a

10055

16217

(c) Data obtained after removing duplicates in
database 1.1 (Database 2.1).

SQLi No SQLi
Classification type

0

2000

4000

6000

8000

10000

Am
ou

nt
 o

f d
at

a

10055 10055

(d) Database 2.1 after data balancing (Database
2.2).

Figure 5.3: Number of data points per classification type according to each resulting
database.

5.2.5 Feature Generation

Natural Language Processing (NLP) is a field within artificial intelligence aimed at emulat-

ing human understanding of textual data [61]. In the machine learning field, particularly

in text analysis, the challenge is to transform textual data into numerical feature vectors.

To address this challenge, various techniques have emerged using artificial intelligence

(which have proven to be effective [62], [63], [64]), such as the model known as "Bag of

Words," where the frequency of word occurrences in a text is used to generate a numerical

feature vector for subsequent analysis and processing [61].

After the data preprocessing exposed in the subsection 5.2.2, "Bag of Words" was

applied using the "Scikit-learn" library in Python [65], to the four different instances of the

database.

The Figure 5.4 shows what was described above during the section 5.2.

30

Preprocessing

E-mail
substitution

Content
decoding

Non-ASCII
character

elimination

Numeric digit
substitution

Uppercase to
lowercase

URL
substitution

Blank space
aggregation

Database creation

Mithril Data Kaggle Data

Validation

Mithril Data

Processing

Bag of Words

Data integration

Data
balancing

Duplicate
elimination

Machine intelligence techniques

Gaussian NB
Multinomial

NB
Logistic

regression

Random
forest OCSVM

Answer

(SQLi)

 (No-SQLi)
Flow applied in the data
preprocessing

Flow applied to the validation
dataset

Flow applied to the obtained
dataset

Flow applied individually to the
dataset

 Processes for both sets

 Validation set

 Training-test set

Figure 5.4: Data processing flow for training, testing, and validation sets

5.3 Implementation and Training of Selected Techniques

The implementation of the selected machine learning techniques was carried out using

Python as the programming language. This implementation was done using the following

specific modules of the "Scikit-learn" library [65] for each technique:

• “GaussianNB” de “sklearn.naive_bayes”: Used to implement the Gaussian Naïve

Bayes classifier.

• “MultinomialNB” de “sklearn.naive_bayes”: Used to implement the Multinomial

Naïve Bayes classifier.

• “LogisticRegression” de “sklearn.linear_model”: Used to implement Logistic Re-

gression as a binary classifier.

31

• “RandomForestClassifier” de “sklearn.ensemble”: Used to implement the Random

Forest classifier.

• “OneClassSVM” de “sklearn.svm”: Used to implement Support Vector Machine

(SVM) with the approach of performing classification from a single dataset.

5.3.1 Hyper-parameter Tuning

Hyper-parameter tuning is the process of selecting the parameters that an artificial intel-

ligence algorithm requires before training with the data. These parameters significantly

affect the model’s performance [66]. The goal of tuning is to find the parameter configura-

tion that produces the best results in terms of algorithm performance and effectiveness [66].

Hyper-parameter tuning was carried out based on the literature review, where the

selection of the parameters for each of the implementations was made given the effective-

ness demonstrated according to the studies present in the state of the art exposed in the

Table 4.1. The parameter configuration for each algorithm is listed in the Table 5.3

Algorithm Hyper-parameters

GaussianNB (priors=None, var_smoothing=1e-09)

MultinomialNB
(alpha=0.1, force_alpha=True,

fit_prior=True)

LogisticRegression

(penalty=’l2’, dual=False, tol=0.0001,

C=1.0, fit_intercept=True,

intercept_scaling=1, class_weight=None,

random_state=None, solver=’lbfgs’,

max_iter=100, multi_class=’auto’, verbose=0,

warm_start=False, n_jobs=None,

l1_ratio=None)

Continued on the next page

32

RandomForestClassifier

(n_estimators=23, criterion=’gini’,

max_depth=18, min_samples_split=2,

min_samples_leaf=1,

min_weight_fraction_leaf=0.0,

max_features=’sqrt’, max_leaf_nodes=None,

min_impurity_decrease=0.0, bootstrap=True,

oob_score=False, n_jobs=-1,

random_state=None, verbose=0,

warm_start=False, class_weight=None,

ccp_alpha=0.0, max_samples=None,

monotonic_cst=None)

OneClassSVM

(kernel=’rbf’, degree=3, gamma=’scale’,

coef0=0.0, tol=0.001, nu=0.01,

shrinking=True, cache_size=200,

verbose=False, max_iter=-1)

Table 5.3: Hyper-parameters for each algorithm

5.3.2 Results gathering

Once the hyper-parameters for each implemented model were determined, the results of

each implementation were compiled in order to calculate performance metrics. It should

be noted that there were 4 different scenarios given the four different instances of the

database. All models were executed on a laptop with an Intel(R) Core(TM) i7-1255U

twelfth-generation processor with 16 GB of RAM. The obtained results are presented in

detail in chapter 6.

33

5.4 Performance evaluation and benchmarking of the tech-

niques implemented

5.4.1 Performance Metrics

When discussing performance metrics for computational intelligence models, it’s im-

portant to define the basic components that help determine these metrics and provide

information on the accuracy, precision, recall, and overall effectiveness of the model, con-

sidering that in anomaly classification problems, there are negative (normal) and positive

(anomalous) classes [67].

True Positives (TP): number of positive data correctly classified.

False Positives (FP): number of negative data correctly classified.

True Negatives (TN): number of positive data incorrectly classified.

False Negatives (FN): number of positive data incorrectly classified.

Specifically for the problem addressed in this work, the negative class corresponds to

non-attack instances, and the positive class corresponds to SQLi attack instances. Now,

the selection of performance metrics was based on those widely accepted in the literature

from the state of the art presented in Table 4.1. The chosen metrics for comparing the

implemented techniques are described below.

Accuracy: is the percentage of instances in which the model made a correct classifica-

tion. It measures the overall effectiveness of a model in correctly classifying both positive

and negative classes and is calculated using Equation 5.1 [68].

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Balanced Accuracy: metric used to evaluate the performance of a classification model,

especially when using imbalanced datasets. It is defined as the arithmetic mean of sensi-

34

tivity (recall) and the true negative rate, calculated according to Equation 5.2 [69]. When

calculated on balanced datasets, it becomes the accuracy described above.

Balanced_Accuracy =
1
2
·

(TP
TP + FN

+
TN

TN + TP

)
(5.2)

Precision: is the proportion of positive instances correctly classified out of the total

positive classifications. It indicates the accuracy of positive classifications made by the

model, calculated using Equation 5.3 [67].

Precision =
TP

TP + FP
(5.3)

Recall: is the proportion of positive instances correctly classified out of the total true

positives. Also known as the true positive rate, it uses Equation 5.4 [67].

Recall =
TP

TP + FN
(5.4)

F1-Score: also known as F-measure, it establishes the balance between the precision

and recall of a classifier, and it is one of the most commonly used performance metrics

in classification problems [70]. It is calculated using a harmonic mean between precision

and recall as shown in Equation 5.5.

F1Score = 2 ×

(
TP

TP+FP

)
·

(
TP

TP+FN

)(
TP

TP+FP

)
+
(

TP
TP+FN

) (5.5)

Confusion Matrix: a tool that allows visualizing the performance of a computational

intelligence classification model, showing correct and incorrect predictions compared to

actual classifications [71].

Each column of the matrix represents the number of predictions for each class made by

the model, and each row corresponds to instances belonging to the actual classification.

35

The structure of a confusion matrix is illustrated in Figure 5.5.

confusion_matrix.pdf

Figure 5.5: General scheme of a confusion matrix [71].

Both the specific results of calculating each metric and additional analyses are detailed

in chapter 6, following the standard formulas for each metric defined above. However,

it’s important to note that the validation set was not composed of data from the two target

classes, and due to this limitation, the performance evaluation of each model on this set

is performed exclusively using the recall metric.

5.4.2 Benchmark and recommendation

According to the evaluation performed on the different computational intelligence models

for SQLi attack detection, the Logistic Regression model emerged as the most effective,

achieving a precision of 99.45% and an F1-score of 99.45% using the database 1.2. In com-

parison, the Multinomial Naïve Bayes model also showed good results with a precision

of 98.65% and an F1-score of 98.64%. The OCSVM model presented the worst perfor-

mance, with a precision of 50.69% and an F1-score of 66.79%, indicating a high rate of

false negatives and registering long times in terms of the training and testing stages.

As mentioned earlier, specific results for each scenario are detailed in chapter 6.

36

6 Results and analysis

6.1 Database 1.1 and 1.2

6.1.1 Training and test set

To analyze the performance of the different implemented models using the database 1.1,

the confusion matrices obtained during the training and testing stages are presented in

Figure 6.1, along with the performance metrics in Table 6.1. The Logistic Regression model

outperformed the other models with an accuracy of 0.9941 (99.41%) and an F1 Score of

0.9952 (99.52%). The Multinomial Naïve Bayes model also achieved good results with

an accuracy of 0.9366 (93.66%) and an F1 Score of 0.9496 (94.96%), while the Gaussian

Naïve Bayes model and the Random Forest model showed intermediate performances.

On the other hand, the One-Class SVM (OCSVM) model had the worst performance with

an accuracy of 0.6055 (60.55%) and an F1 Score of 0.7519 (75.19%).

Similarly, Figure 6.2 presents the confusion matrices and Table 6.2 presents the perfor-

mance metrics obtained when using the database 1.2. Again, Logistic Regression stood

out with an accuracy of 0.9945 (99.45%) and an F1 Score of 0.9945 (99.45%), and the Multi-

nomial Naïve Bayes model also achieved good results with an accuracy of 0.9865 (98.65%)

and an F1 Score of 0.9864 (98.64%). In this dataset, the Random Forest model showed

better performance compared to the implementation using the database 1.1, reaching an

accuracy of 0.9135 (91.35%) and an F1 Score of 0.9062 (90.62%).

37

Model Accuracy
Balanced

Accuracy
Precision Recall F1 Score

Gaussian Naïve

Bayes
0.8649 0.8262 0.8195 0.9993 0.9005

Multinomial

Naïve Bayes
0.9366 0.9247 0.9231 0.9777 0.9496

Logistic

Regression
0.9941 0.9942 0.9965 0.9939 0.9952

Random Forest 0.8109 0.7582 0.7665 0.9936 0.8654

One-Class SVM 0.6055 0.4984 0.6111 0.9771 0.7519

Table 6.1: Performance metrics obtained by implementing each model using database 1.1.

Model Accuracy
Balanced

Accuracy
Precision Recall F1 Score

Gaussian Naïve

Bayes
0.8764 0.8761 0.8025 0.9995 0.8902

Multinomial

Naïve Bayes
0.9865 0.9865 0.9974 0.9755 0.9864

Logistic

Regression
0.9945 0.9945 0.996 0.993 0.9945

Random Forest 0.9135 0.9137 0.9923 0.8339 0.9062

One-Class SVM 0.5069 0.5056 0.5042 0.9888 0.6679

Table 6.2: Performance metrics obtained by implementing each model using database 1.2.

38

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2509 1333

4 6053

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

3349 493

135 5922

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

3821 21

37 6020

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2009 1833

39 6018

(d) Random Forest

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

76 3766

139 5918

(e) One-Class SVM

Figure 6.1: Confusion matrices obtained for each model during the training and testing
stage using database 1.1.

39

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

4497 1478

3 6004

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

5960 15

147 5860

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

5951 24

42 5965

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

5936 39

998 5009

(d) Random Forest

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

134 5841

67 5940

(e) One-Class SVM

Figure 6.2: Confusion matrices obtained for each model during the training and testing
stage using database 1.2.

40

These results were achieved with different training and testing times for each model,

as shown in Table 6.3. In the training process, it was observed that the Random Forest

model stood out for its efficiency with 3.4472 seconds in database 1.1 and 8.7517 seconds in

database 1.2. On the other hand, the One-Class SVM model had the longest training times,

specifically 504.9279 seconds in the database 1.1 and 381.0886 seconds in the database 1.2.

Regarding the testing phase, a similar tendency was observed, where the Random

Forest model stood out again for its speed, with a time of 0.3624 seconds when using the

database 1.1 and 1.6974 seconds in the database 1.2, while the One-Class SVM algorithm

was the slowest in both databases, with a time of 107.2197 seconds in the database 1.1 and

268.3849 seconds in the database 1.2.

Model

Database 1.1 Database 1.2

Training

Time
Testing Time

Training

Time
Testing Time

Gaussian Naïve Bayes 15.6946 2.7145 24.4493 4.7831

Multinomial Naïve

Bayes
3.5644 1.2913 8.8071 3.0579

Logistic Regression 20.4303 1.2570 33.0457 3.0664

Random Forest 3.4472 0.3624 8.7517 1.6974

One-Class SVM 504.9279 107.2197 381.0886 268.3849

Table 6.3: Training and testing times for each model using databases 1.1 and 1.2

41

6.1.2 Validation set

The results shown in Table 6.4 correspond to the Recall values obtained for each model

when using the database 1.1 as the source for training and testing. It can be observed that

the Logistic Regression model presented the highest Recall value with 0.9895 (98.95%),

followed by Random Forest with 0.9131 (91.31%). This indicates that both models are

highly effective in identifying true positives. On the other hand, Gaussian Naïve Bayes

showed the lowest performance with a Recall of 0.9895 (98.95%), suggesting a higher

number of false negatives compared to the other models. The confusion matrices in

Figure 6.3 corroborate these results, showing that Logistic Regression and Random Forest

have a high number of true positives and a low number of false negatives, while Gaussian

Naïve Bayes has a higher proportion of false negatives.

The performance metrics obtained during the validation of each model trained us-

ing database 1.2 are presented in Table 6.5. Again, Logistic Regression achieved the

best performance with a Recall of 0.9895 (98.95), while the Gaussian Naïve Bayes model

maintained a Recall of 0.7255 (0.7255). Notably, the Random Forest model experienced a

decrease in its Recall value, with a value equal to 0.8354 (83.54). The confusion matrices

shown in Figure 6.4 support the above, showing that Logistic Regression remains effective

in minimizing false negatives, while Random Forest shows an increase in false negatives

when using database 1.2, which aligns with the decrease in its Recall observed in Table 6.5.

42

Model Recall

Gaussian Naïve Bayes 0.7255

Multinomial Naïve Bayes 0.84

Logistic Regression 0.9895

Random Forest 0.9131

Table 6.4: Performance metrics obtained in the validation for each model trained using

the database 1.1.

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

417 1102

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

243 1276

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

16 1503

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

132 1387

(d) Random Forest

Figure 6.3: Confusion matrices obtained in the validation for each model trained using
the database 1.1.

43

Model Recall

Gaussian Naïve Bayes 0.7255

Multinomial Naïve Bayes 0.84

Logistic Regression 0.9895

Random Forest 0.8354

Table 6.5: Performance metrics obtained in the validation for each model trained using

the database 1.2.

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

417 1102

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

243 1276

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

16 1503

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

250 1269

(d) Random Forest

Figure 6.4: Confusion matrices obtained in the validation for each model trained using
the database 1.2.

44

6.2 Database 2.1 and 2.2

6.2.1 Training and test set

To analyze the performance of the different models implemented using database 2.1,

the confusion matrices obtained during the training and testing stage are presented in

Figure 6.5, as well as the performance metrics in Table 6.6. The Logistic Regression model

outperformed the other models with an accuracy of 0.988 (98.8%) and an F1 Score of

0.9846 (98.46%). The Multinomial Naïve Bayes model also achieved good results with

an accuracy of 0.9814 (98.14%) and an F1 Score of 0.9756 (97.56%), while the Gaussian

Naïve Bayes model and the Random Forest model showed intermediate performances.

On the other hand, the One-Class SVM (OCSVM) model had the worst performance with

an accuracy of 0.3966 (39.66%) and an F1 Score of 0.5512 (55.12%).

Furthermore, Figure 6.6 presents the confusion matrices, and Table 6.7 the performance

metrics obtained when using database 2.2. Again, Logistic Regression stood out with an

accuracy of 0.9876 (98.76%) and an F1 Score of 0.9872 (98.72%), while the Multinomial

Naive Bayes model also obtained good results with an accuracy of 0.9784 (97.84%) and an

F1 Score of 0.9776 (97.76%). In this dataset, the Random Forest model showed improved

performance compared to the implementation using database 2.1, reaching an accuracy

of 0.9162 (91.62%) and an F1 Score of 0.9086 (90.86%).

45

Model Accuracy
Balanced

Accuracy
Precision Recall F1 Score

Gaussian Naïve

Bayes
0.8657 0.8893 0.745 0.9981 0.8532

Multinomial

Naïve Bayes
0.9814 0.9766 0.9975 0.9547 0.9756

Logistic

Regression
0.988 0.9868 0.9882 0.981 0.9846

Random Forest 0.8422 0.7983 1.0 0.5966 0.7473

One-Class SVM 0.3966 0.4951 0.3886 0.9474 0.5512

Table 6.6: Performance metrics obtained by implementing each model using database 2.1.

Model Accuracy
Balanced

Accuracy
Precision Recall F1 Score

Gaussian Naïve

Bayes
0.8836 0.8862 0.8082 0.999 0.8935

Multinomial

Naïve Bayes
0.9784 0.9781 0.9891 0.9664 0.9776

Logistic

Regression
0.9876 0.9875 0.9923 0.9822 0.9872

Random Forest 0.9162 0.9148 0.9733 0.852 0.9086

One-Class SVM 0.4853 0.4955 0.4865 0.9507 0.6436

Table 6.7: Performance metrics obtained by implementing each model using database 2.2.

46

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2498 702

4 2051

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

3195 5

93 1962

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

3176 24

39 2016

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

3200 0

829 1226

(d) Random Forest

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

137 3063

108 1947

(e) One-Class SVM

Figure 6.5: Confusion matrices obtained for each model during the training and testing
stage using database 2.1.

47

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

1590 466

2 1964

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2035 21

66 1900

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2041 15

35 1931

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

2010 46

291 1675

(d) Random Forest

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

83 1973

97 1869

(e) One-Class SVM

Figure 6.6: Confusion matrices obtained for each model during the training and testing
stage using database 2.2.

48

These results were achieved with different training and testing times for each model, as

can be observed in Table 6.8. During the training phase, the Random Forest model was the

fastest in both databases, with a time of 1.5125 seconds in database 2.1 and 1.7408 seconds

in database 2.2. On the other hand, the One-Class SVM algorithm had the longest training

times, specifically 138.7639 seconds in database 2.1 and 99.6006 seconds in database 2.2.

The times also varied according to each model in the testing phase. The Random

Forest model was again the fastest in both databases, with a time of 0.2042 seconds in

database 2.1 and 0.3699 seconds in database 2.2. Meanwhile, the One-Class SVM model

was the slowest in both databases, with a time equal to 57.9170 seconds in database 2.1

and 205.3404 seconds in database 2.2.

Model

Database 1.1 Database 1.2

Training

Time
Testing Time

Training

Time
Testing Time

Gaussian Naïve Bayes 6.8385 1.2266 6.4089 1.2645

Multinomial Naïve

Bayes
1.7315 1.0022 2.6571 0.6294

Logistic Regression 12.2442 0.6946 6.8998 0.6761

Random Forest 1.5125 0.2042 1.7408 0.3699

One-Class SVM 138.7639 57.9170 99.6006 205.3404

Table 6.8: Training and testing times for each model using databases 2 y 2.2

49

6.2.2 Validation set

The results shown in Table 6.9 correspond to the Recall values obtained for each model

when using database 2.1 as the source for training and testing. It can be observed that

the Logistic Regression model presented the highest Recall value with 0.9737 (97.37%),

followed by Random Forest with 0.8354 (83.54%). This indicates that both models are

highly effective in identifying true positives. On the other hand, Gaussian Naïve Bayes

showed the lowest performance with a Recall of 0.7268 (72.68%), suggesting a higher

number of false negatives compared to the other models. The confusion matrices in

Figure 6.7 corroborate these results, showing that Logistic Regression has a high number

of true positives and a low number of false negatives, while Gaussian Naïve Bayes has

the highest proportion of false negatives.

The performance metrics obtained during the validation of each model trained using

database 2.2 are presented in Table 6.10. Again, Logistic Regression achieved the best

performance with a Recall of 0.9895 (98.95%), while the Gaussian Naïve Bayes model

maintained a Recall of 0.7268 (72.68%). Notably, the Random Forest model experienced

a slight increase in its Recall value, with a value equal to 0.8492 (84.92%). The confusion

matrices shown in Figure 6.4 support the above, showing that Logistic Regression remains

effective in minimizing false negatives when using database 1.2.

50

Model Recall

Gaussian Naïve Bayes 0.7268

Multinomial Naïve Bayes 0.84

Logistic Regression 0.9737

Random Forest 0.8354

Table 6.9: Performance metrics obtained in the validation for each model trained using

the database 2.1.

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

415 1104

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

243 1276

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

40 1479

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

250 1269

(d) Random Forest

Figure 6.7: Confusion matrices obtained in the validation for each model trained using
the database 2.1.

51

Model Recall

Gaussian Naïve Bayes 0.7268

Multinomial Naïve Bayes 0.84

Logistic Regression 0.9895

Random Forest 0.8492

Table 6.10: Performance metrics obtained in the validation for each model trained using

the database 2.2.

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

415 1104

(a) Gaussian Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

243 1276

(b) Multinomial Naïve Bayes

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

16 1503

(c) Logistic Regression

No SQLi SQLi
Predicted Label

No
 S

QL
i

SQ
Li

Tr
ue

 L
ab

el

0 0

229 1290

(d) Random Forest

Figure 6.8: Confusion matrices obtained in the validation for each model trained using
the database 2.2.

52

It should be noted that it was decided to exclude the OCSVM model from the validation

stage for all the implemented instances. As could be evidenced, due to the nature and

specific characteristics of the datasets, the detection task is more effectively addressed with

the other machine learning models. Although the OCSVM approach is interesting, it may

not fit well with the characteristics of the data used and it is recognized that addressing

the model from the data corresponding to attacks becomes complicated. Additionally,

the reported times indicated that the computational cost in terms of training and testing

of the OCSVM model is significantly higher compared to the other models, without a

proportional increase in performance.

53

7 Conclusions

The main objective of this work was to evaluate strategies for detecting SQL injection

(SQLi) attacks based on computational intelligence, with the aim of providing a recom-

mendation to enhance the security of AizoOn Technology Consulting’s web application

firewall. Below are the conclusions derived from achieving the specific objectives outlined:

Selection of SQLi Detection Techniques

Various SQLi detection techniques based on computational intelligence were identified

and selected, such as Naïve Bayes, logistic regression, random forests, and One-Class

Support Vector Machines (OCSVM). The selection was based on both the relevance and

effectiveness demonstrated by each technique in the scientific literature and the interests

expressed by AizoOn Technology Consulting.

Database Structuring

A database was structured by combining public data from the “SQL Injection Dataset”

publicly available on the Kaggle platform with specific data generated by AizoOn Tech-

nology Consulting’s web application firewall, known as Mithril. Preprocessing and con-

ditioning of the data were essential to ensure the quality and relevance of the information

used in the detection models. It has been evidenced in the literature that data preprocess-

ing is crucial to achieve a feature set that enables the construction of models with good

performance.

It is important to note that from the statistical analysis conducted during the work, it

was evident that the integration of the data should not have been performed. However,

54

https://www.kaggle.com/datasets/sajid576/sql-injection-dataset/data

this integration proved to be useful in the implementation of the machine learning models.

This leads to the conclusion that given the nature of the data, the analysis in terms of the

number of distinct words per sample does not fully determine the feasibility of integrating

the two different data sources used.

Implementation and Training of Selected Techniques

The selected machine learning techniques were implemented and trained using the re-

sulting integrated dataset. Hyperparameter tuning improved the models’ performance

and allowed the identification of the best configurations for each one, increasing detection

capability and attempting to minimize false positives.

Evaluation and Comparison of Implemented Techniques

The techniques were evaluated and compared using performance metrics such as accuracy,

precision, recall, and F1-Score. The results showed that the logistic regression model

presented the best performance in all implemented scenarios, specifically achieving a

precision of 99.45% and an F1-Score of 99.45% using the database with data balancing

applied using the "Random Over Sampler" technique.

Recommendations for Implementation

Based on the findings detailed in this work, it is recommended to implement the logistic

regression model in AizoOn Technology Consulting’s web application firewall. This

model not only demonstrated the highest precision in detecting SQL injection attacks,

reaching a value of 99.45% but also showed an F1-Score of 99.45%, which is a metric of

great importance in classification problems.

55

detection of SQLi attacks with the aim of
strengthening the security of the web application
firewall of AizoOn Technology Consulting. A
database was structured by combining public
sources and specific data processed by the
company's firewall, and the evaluation of the
models included performance metrics to
generate specific recommendations for their
future implementation.

SQL injection (SQLi) is one of the most critical
vulnerabilities in web applications. It allows
attackers to manipulate and execute malicious
SQL queries through user input, compromising
the integrity, confidentiality, and availability of the
data stored in the database. This work evaluates
various computational intelligence techniques,
such as Naïve Bayes, logistic regression,
random forests, and one-class support vector
machines (OCSVM), for the

Data Collection: Combination of data from the
public SQL injection dataset available on Kaggle
and data processed by AizoOn Technology
Consulting's web application firewall (Mithril)

Data Preprocessing: Data cleaning included
the removal of duplicates and balancing the
dataset using oversampling and random
undersampling techniques.

Methodology

Evaluation of SQL injection (SQLi) attack detection
strategies in web applications using machine
learning
INTERN: Santiago Taborda Echeverri

ADVISORS: Jaime Alberto Vergara Tejada, Jhonny Alexander Triana Maldonado

DEGREE: Ingeniería de Telecomunicaciones

Internship Semester: 2023-2

Department of Electronics and Telecommunications Engineering

AUTHOR'S CONTACT INFORMATION: santiago.tabordae@udea.edu.co+57 3108983553 https://www.linkedin.com/in/santiago-taborda-e

Conclusions

Various SQLi attack detection techniques
based on machine learning were identified
and selected, such as Naïve Bayes, logistic
regression, random forests, and one-class
support vector machines (OCSVM).

During the evaluation stage, the Logistic
Regression model stood out as the most
effective, achieving an accuracy and
F1-score of 99.45% with the database when
data balancing was implemented using the
"Random Over Sampler" technique. In
contrast, the OCSVM model showed the
worst performance, with an accuracy of
50.69% and an F1-score of 66.79%.

The findings recommend the use of the
Logistic Regression model to enhance the
security of AizoOn's web application firewalls
against SQL injection attacks.

A database was successfully structured by
combining public data from the "SQL
Injection Dataset" on Kaggle with specific
data processed by AizoOn Technology
Consulting's web application firewall

Abstract Objectives

Evaluate SQL injection attack
detection strategies based on
machine learning to strengthen the
security of the web application
firewall at AizoOn Technology
Consulting.

Select SQLi detection techniques based
on machine learning

Structure a database by combining
public sources and specific data
processed by AizoOn Technology
Consulting's web application firewall

Implement and train the selected
techniques.

Evaluate and compare the implemented
techniques using performance metrics
to recommend the best option.

Model Selection: Various machine learning
models were evaluated, including Naïve Bayes,
Logistic Regression, Random Forest, and
One-Class SVM.

Implementation: Python libraries such as
statsmodels and imblearn were used for
hypothesis testing and data balancing,
respectively.

Bibliography

[1] International Telecommunication Union (via World Bank), Gapminder, UN, HYDE,

and Gapminder (Systema Globalis) – processed by Our World in Data. Number

of internet users. https://ourworldindata.org/grapher/number-of-internet-users. Ac-

cessed: 2024.

[2] Gallup. Indicators. hybrid work. work locations for u.s. employees with remote-

capable jobs. https://www.gallup.com/401384/indicator-hybrid-work.aspx. Ac-

cessed: 2024.

[3] The Open Worldwide Application Security Project (OWASP). Owasp foundation.

https://owasp.org, 2001. Accessed: 2024.

[4] The Open Worldwide Application Security Project (OWASP). Owasp top ten. https:

//owasp.org/www-project-top-ten/, 2021. Accessed: 2024.

[5] Common Weakness Enumeration (CWE). Cwe community-developed. https://cwe.

mitre.org/about/index.html, 2006. Accessed: 2024.

[6] Common Weakness Enumeration (CWE). 2023 cwe top 25 most dangerous software

weaknesses. https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html, 2023.

Accessed: 2024.

[7] Hazim Hanif, Mohd Hairul Nizam Md Nasir, Mohd Faizal Ab Razak, Ahmad Fir-

daus, and Nor Badrul Anuar. The rise of software vulnerability: Taxonomy of soft-

ware vulnerabilities detection and machine learning approaches. Journal of Network

and Computer Applications, 179:103009, 2021.

[8] AizoOn Technology Consulting. Aizoon. https://www.aizoongroup.com/home.

aspx#intro. Accessed: 2024.

57

https://ourworldindata.org/grapher/number-of-internet-users
https://www.gallup.com/401384/indicator-hybrid-work.aspx
https://owasp.org
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://www.aizoongroup.com/home.aspx#intro
https://www.aizoongroup.com/home.aspx#intro

[9] AizoOn Technology Consulting. About us. https://www.aizoongroup.com/aboutus.

aspx#intro. Accessed: 2024.

[10] AizoOn Technology Consulting. Technology units - cyber security. https://www.

aizoongroup.com/cyber_security.aspx#intro. Accessed: 2024.

[11] Abu Syeed Sajid Ahmed. Sql injection dataset, 2024.

[12] Catherine M. Ricardo. Structured query language. In Hossein Bidgoli, editor, Ency-

clopedia of Information Systems, pages 279–297. Elsevier, New York, 2003.

[13] Mario Heiderich, Eduardo Alberto Vela Nava, Gareth Heyes, and David Lindsay.

Chapter 7 - sql. In Mario Heiderich, Eduardo Alberto Vela Nava, Gareth Heyes, and

David Lindsay, editors, Web Application Obfuscation, pages 177–197. Syngress, Boston,

2011.

[14] Cornelia Gyorödi, Robert Gyorödi, and Roxana Sotoc. A comparative study of rela-

tional and non-relational database models in a web-based application. International

Journal of Advanced Computer Science and Applications, 6(11):78–83, 2015.

[15] Cornelia Győrödi, Robert Győrödi, George Pecherle, and Andrada Olah. A compar-

ative study: Mongodb vs. mysql. In 2015 13th International Conference on Engineering

of Modern Electric Systems (EMES), pages 1–6, 2015.

[16] OWASP Foundation. kingthorin. Sql injection. https://owasp.org/www-community/

attacks/SQL_Injection#. Accessed: 2024.

[17] Aditya Rai, MD. Mazharul Islam Miraz, Deshbandhu Das, Harpreet Kaur, and Swati.

Sql injection: Classification and prevention. In 2021 2nd International Conference on

Intelligent Engineering and Management (ICIEM), pages 367–372, 2021.

[18] Malik Qasaimeh Mohammed Nasereddin, Ashaar ALKhamaiseh and Raad Al-

Qassas. A systematic review of detection and prevention techniques of sql injection

attacks. Information Security Journal: A Global Perspective, 32(4):252–265, 2023.

[19] Ines Jemal, Omar Cheikhrouhou, Habib Hamam, and Adel Mahfoudhi. Sql injection

attack detection and prevention techniques using machine learning. International

Journal of Applied Engineering Research, 15(6):569–580, 2020.

58

https://www.aizoongroup.com/aboutus.aspx#intro
https://www.aizoongroup.com/aboutus.aspx#intro
https://www.aizoongroup.com/cyber_security.aspx#intro
https://www.aizoongroup.com/cyber_security.aspx#intro
https://owasp.org/www-community/attacks/SQL_Injection#
https://owasp.org/www-community/attacks/SQL_Injection#

[20] Common Weakness Enumeration (CWE) content team. Plover. Cwe-89: Improper

neutralization of special elements used in an sql command (’sql injection’). https:

//cwe.mitre.org/data/definitions/89.html, 2006. Accessed: 2024.

[21] Fahad M Alotaibi and Vassilios G Vassilakis. Toward an sdn-based web application

firewall: Defending against sql injection attacks. Future Internet, 15(5):170, 2023.

[22] Amirmohammad Sadeghian, Mazdak Zamani, and Suhaimi Ibrahim. Sql injection is

still alive: A study on sql injection signature evasion techniques. In 2013 International

Conference on Informatics and Creative Multimedia, pages 265–268, 2013.

[23] Igor Tasevski and Kire Jakimoski. Overview of sql injection defense mechanisms. In

2020 28th Telecommunications Forum (TELFOR), pages 1–4, 2020.

[24] Zain Marashdeh, Khaled Suwais, and Mohammad Alia. A survey on sql injection

attack: Detection and challenges. In 2021 International Conference on Information

Technology (ICIT), pages 957–962, 2021.

[25] Balazs Pejo and Nikolett Kapui. Sqli detection with ml: A data-source perspective,

2023.

[26] Raed Abdullah Abobakr Busaeed, Wan Isni Sofiah Wan Din, Quadri Waseem, and

Azlee Bin Zabidi. Taxonomy of sql injection: Ml trends & open challenges. In

2023 IEEE 8th International Conference On Software Engineering and Computer Systems

(ICSECS), pages 382–387, 2023.

[27] Ignacio Samuel Crespo-Martínez, Adrián Campazas-Vega, Ángel Manuel Guerrero-

Higueras, Virginia Riego-DelCastillo, Claudia Álvarez Aparicio, and Camino

Fernández-Llamas. Sql injection attack detection in network flow data. Comput-

ers & Security, 127:103093, 2023.

[28] Prince Roy, Rajneesh Kumar, and Pooja Rani. Sql injection attack detection by machine

learning classifier. In 2022 International Conference on Applied Artificial Intelligence and

Computing (ICAAIC), pages 394–400, 2022.

59

https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html

[29] Wei Zhang, Yueqin Li, Xiaofeng Li, Minggang Shao, Yajie Mi, Hongli Zhang, Guoqing

Zhi, et al. Deep neural network-based sql injection detection method. Security and

Communication Networks, 2022, 2022.

[30] Ahmed Abadulla Ashlam, Atta Badii, and Frederic Stahl. Multi-phase algorithmic

framework to prevent sql injection attacks using improved machine learning and

deep learning to enhance database security in real-time. In 2022 15th International

Conference on Security of Information and Networks (SIN), pages 01–04, 2022.

[31] Eman Hosam, Hagar Hosny, Walaa Ashraf, and Ahmed S. Kaseb. Sql injection

detection using machine learning techniques. In 2021 8th International Conference on

Soft Computing & Machine Intelligence (ISCMI), pages 15–20, 2021.

[32] Ding Chen, Qiseng Yan, Chunwang Wu, and Jun Zhao. Sql injection attack detection

and prevention techniques using deep learning. Journal of Physics: Conference Series,

1757(1):012055, jan 2021.

[33] Sushant Sharma, Pavol Zavarsky, and Sergey Butakov. Machine learning based

intrusion detection system for web-based attacks. In 2020 IEEE 6th Intl Conference on

Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance

and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security

(IDS), pages 227–230, 2020.

[34] Qi Li, Fang Wang, Junfeng Wang, and Weishi Li. Lstm-based sql injection detection

method for intelligent transportation system. IEEE Transactions on Vehicular Technol-

ogy, 68(5):4182–4191, 2019.

[35] Muhammad Noman Khalid, Humera Farooq, Muhammad Iqbal, Muhammad Talha

Alam, and Kamran Rasheed. Predicting web vulnerabilities in web applications

based on machine learning. In Imran Sarwar Bajwa, Fairouz Kamareddine, and Anna

Costa, editors, Intelligent Technologies and Applications, pages 473–484, Singapore, 2019.

Springer Singapore.

[36] Gustavo Betarte, Álvaro Pardo, and Rodrigo Martínez. Web application attacks de-

tection using machine learning techniques. In 2018 17th IEEE International Conference

on Machine Learning and Applications (ICMLA), pages 1065–1072, 2018.

60

[37] Andrew R Webb, Keith D Copsey, and Gavin Cawley. Statistical pattern recognition,

volume 2. Wiley Online Library, 2011.

[38] Yagang Zhang. New advances in machine learning. BoD–Books on Demand, 2010.

[39] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and techniques.

Morgan kaufmann, 2022.

[40] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research

directions. SN computer science, 2(3):160, 2021.

[41] Maha Alghawazi, Daniyal Alghazzawi, and Suaad Alarifi. Detection of sql injection

attack using machine learning techniques: A systematic literature review. Journal of

Cybersecurity and Privacy, 2(4):764–777, 2022.

[42] Gangadhar Shobha and Shanta Rangaswamy. Chapter 8 - machine learning. In

Venkat N. Gudivada and C.R. Rao, editors, Computational Analysis and Understanding

of Natural Languages: Principles, Methods and Applications, volume 38 of Handbook of

Statistics, pages 197–228. Elsevier, 2018.

[43] Daniel M. Rice. Chapter 4 - causal reasoning. In Daniel M. Rice, editor, Calculus of

Thought, pages 95–123. Academic Press, 2014.

[44] Trevor J Hastie. Generalized additive models. In Statistical models in S, pages 249–307.

Routledge, 2017.

[45] Kalidas Yeturu. Chapter 3 - machine learning algorithms, applications, and practices

in data science. In Arni S.R. Srinivasa Rao and C.R. Rao, editors, Principles and Methods

for Data Science, volume 43 of Handbook of Statistics, pages 81–206. Elsevier, 2020.

[46] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive

bayes text classification. In AAAI-98 workshop on learning for text categorization, volume

752, pages 41–48. Madison, WI, 1998.

[47] Harry Zhang. The optimality of naive bayes. Aa, 1(2):3, 2004.

[48] Thomas W. Edgar and David O. Manz. Chapter 4 - exploratory study. In Thomas W.

Edgar and David O. Manz, editors, Research Methods for Cyber Security, pages 95–130.

Syngress, 2017.

61

[49] R.O. Sinnott, H. Duan, and Y. Sun. Chapter 15 - a case study in big data analytics: Ex-

ploring twitter sentiment analysis and the weather. In Rajkumar Buyya, Rodrigo N.

Calheiros, and Amir Vahid Dastjerdi, editors, Big Data, pages 357–388. Morgan Kauf-

mann, 2016.

[50] Aleksandra Bartosik and Hannes Whittingham. Chapter 7 - evaluating safety and

toxicity. In Stephanie Kay Ashenden, editor, The Era of Artificial Intelligence, Machine

Learning, and Data Science in the Pharmaceutical Industry, pages 119–137. Academic

Press, 2021.

[51] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[52] Klaus-Robert Müller, Sebastian Mika, Koji Tsuda, and Koji Schölkopf. An intro-

duction to kernel-based learning algorithms. In Handbook of neural network signal

processing, pages 4–1. CRC Press, 2018.

[53] Fa Zhu, Jian Yang, Cong Gao, Sheng Xu, Ning Ye, and Tongming Yin. A weighted

one-class support vector machine. Neurocomputing, 189:1–10, 2016.

[54] Bernardo Damele Assumpcao Guimaraes and Miroslav Stampar. Sqlmap project.

https://www.aizoongroup.com/home.aspx#intro, 2006-2024. Accessed: 2024.

[55] The Open Worldwide Application Security Project (OWASP). Wstg - latest. testing

for sql injection. https://owasp.org/www-project-web-security-testing-guide/latest/

4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_

SQL_Injection, frequently change. Accessed: 2024.

[56] The Open Worldwide Application Security Project (OWASP). Automated audit us-

ing sqlmap. https://wiki.owasp.org/index.php/Automated_Audit_using_SQLMap,

2013. Accessed: 2024.

[57] Frank Emmert-Streib and Matthias Dehmer. Understanding statistical hypothesis

testing: The logic of statistical inference. Machine Learning and Knowledge Extraction,

1(3):945–961, 2019.

[58] Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical mod-

eling with python. In 9th Python in Science Conference, 2010.

62

https://www.aizoongroup.com/home.aspx#intro
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://wiki.owasp.org/index.php/Automated_Audit_using_SQLMap

[59] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A study

of the behavior of several methods for balancing machine learning training data.

SIGKDD Explor. Newsl., 6(1):20–29, jun 2004.

[60] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn:

A python toolbox to tackle the curse of imbalanced datasets in machine learning.

Journal of Machine Learning Research, 18(17):1–5, 2017.

[61] Mohammad Taher Pilehvar and Jose Camacho-Collados. Embeddings in natural lan-

guage processing: Theory and advances in vector representations of meaning. Morgan &

Claypool Publishers, 2020.

[62] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-

tinuous space word representations. In Proceedings of the 2013 conference of the north

american chapter of the association for computational linguistics: Human language technolo-

gies, pages 746–751, 2013.

[63] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[64] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and JeffDean. Distributed

representations of words and phrases and their compositionality. Advances in neural

information processing systems, 26, 2013.

[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[66] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng.

Hyperparameter optimization for machine learning models based on bayesian opti-

mizationb. Journal of Electronic Science and Technology, 17(1):26–40, 2019.

[67] Shigeo Abe. Support vector machines for pattern classification, volume 2. Springer, 2005.

[68] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

63

[69] Digna R Velez, Bill C White, Alison A Motsinger, William S Bush, Marylyn D Ritchie,

Scott M Williams, and Jason H Moore. A balanced accuracy function for epistasis

modeling in imbalanced datasets using multifactor dimensionality reduction. Genetic

Epidemiology: the Official Publication of the International Genetic Epidemiology Society,

31(4):306–315, 2007.

[70] Ajay Kulkarni, Deri Chong, and Feras A. Batarseh. 5 - foundations of data imbalance

and solutions for a data democracy. In Feras A. Batarseh and Ruixin Yang, editors,

Data Democracy, pages 83–106. Academic Press, 2020.

[71] Ashish Tiwari. Chapter 2 - supervised learning: From theory to applications. In Rajiv

Pandey, Sunil Kumar Khatri, Neeraj kumar Singh, and Parul Verma, editors, Artificial

Intelligence and Machine Learning for EDGE Computing, pages 23–32. Academic Press,

2022.

64

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Abstract
	2 Introduction
	3 Objectives
	3.1 General objective
	3.2 Specific objectives

	4 Theoretical background and related work
	5 Methodology
	5.1 Selection of SQLi attack detection techniques
	5.2 Database structuring
	5.2.1 Data Sources
	5.2.2 Data Preprocessing
	5.2.3 Data Analysis
	5.2.4 Data Integration
	5.2.5 Feature Generation

	5.3 Implementation and Training of Selected Techniques
	5.3.1 Hyper-parameter Tuning
	5.3.2 Results gathering

	5.4 Performance evaluation and benchmarking of the techniques implemented
	5.4.1 Performance Metrics
	5.4.2 Benchmark and recommendation

	6 Results and analysis
	6.1 Database 1.1 and 1.2
	6.1.1 Training and test set
	6.1.2 Validation set

	6.2 Database 2.1 and 2.2
	6.2.1 Training and test set
	6.2.2 Validation set

	7 Conclusions
	Bibliography

