A Propositional Constructive Logic of Evidence

Juan C. Agudelo-Agudelo

Instituto de Matemáticas Universidad de Antioquia, Medellín, Colombia

XX SLALM - 2024

Outline

- Introduction
- Natural deduction system for LET_C
- 3 Adding λ -terms to LET_C
- Realisability interpretation for LET_C
- 5 Constructible features of LET_C

Carnielli, W. and Rodrigues, A (2019). An epistemic approach to paraconsistency: a logic of evidence and truth. *Synthese*, 196:3789–3813.

- Introduce the Basic Logic of Evidence BLE (equivalent to Nelson's paraconsistent logic N4).
- BLE is extended to the Logic of Evidence and Truth LET_J, by adding a primitive classicality operator o, which allows to recover simultaneously the explosiveness of contradictions and the excluded middle for some propositions.

Carnielli, W. and Rodrigues, A (2019). An epistemic approach to paraconsistency: a logic of evidence and truth. *Synthese*, 196:3789–3813.

- Introduce the Basic Logic of Evidence BLE (equivalent to Nelson's paraconsistent logic N4).
- BLE is extended to the Logic of Evidence and Truth LET_J, by adding a primitive classicality operator o, which allows to recover simultaneously the explosiveness of contradictions and the excluded middle for some propositions.

Rodrigues, A., Bueno-Soler, J., and Carnielli, W. (2021). Measuring evidence: a probabilistic approach to an extension of Belnap-Dunn logic. *Synthese*, 198(Suppl 22):5451–5480.

- Presents another Logic of Evidence and Truth LET_F, based on Belnap-Dunn logic, with classicality and non-classicality operators.
- Provides a probabilistic semantics for LET_F.

Rodrigues, A., Coniglio, M. E., Antunes, H., Bueno-Soler, J., and Carnielli, W. (2023). Paraconsistence, evidence and abduction. In Magnani, L., Editor, *Handbook of Abductive Cognition*, pages 313–350. Springer.

- Presents a summary of work on logics of evidence and truth.
- Presents a new Logic of Evidence and Truth LET_K and its first-order extension QLET_K, and an application of these logics to the problem of abduction.

Rodrigues, A., Coniglio, M. E., Antunes, H., Bueno-Soler, J., and Carnielli, W. (2023). Paraconsistence, evidence and abduction. In Magnani, L., Editor, *Handbook of Abductive Cognition*, pages 313–350. Springer.

- Presents a summary of work on logics of evidence and truth.
- Presents a new Logic of Evidence and Truth LET_K and its first-order extension QLET_K, and an application of these logics to the problem of abduction.

A new (Constructive) Logic of Evidence and Truth LET $_{\mathsf{C}}$ is here proposed.

- LET_C is based on N4* (an extension of N4 with \perp , \top and \prec).
- In LET_C, explosiveness of contradictions and excluded middle can be independently recovered.
- In order to explicitly formalise evidence, λ -terms are added to LET obtaining the type system LET_C.
- A realisabiliy interpretation is provided for LET_C.
- Some constructive features of LET_C are highlighted.

Natural deduction system for N4*: rules of propositional intuitionistic logic plus the following, where \sim is Nelson's constructive negation and \prec is co-implication ($B \prec A$ reads A co-implies B).

$$\frac{\sim A \qquad \sim B}{\sim (A \lor B)} \qquad \frac{\sim (A \lor B)}{\sim A} \qquad \frac{\sim (A \lor B)}{\sim B}$$

$$\frac{A \qquad \sim B}{\sim (A \to B)} \qquad \frac{\sim (A \to B)}{A} \qquad \frac{\sim (A \to B)}{\sim B}$$

$$[\sim A]$$

$$\vdots$$

$$\frac{\sim A}{\sim B} \qquad \frac{\sim A}{\sim B}$$

$$\frac{\sim A \qquad \sim (B \lor A)}{\sim B}$$

$$\frac{A}{\sim \sim A} \qquad \frac{\sim \sim A}{A}$$

In N4*, intuitionistic negation \neg is defined by $\neg A \stackrel{\text{def}}{=} A \rightarrow \bot$ and co-negation \neg is defined by $\neg A \stackrel{\text{def}}{=} \top \prec A$.

In N4*, intuitionistic negation \neg is defined by $\neg A \stackrel{\text{def}}{=} A \rightarrow \bot$ and co-negation \neg is defined by $\neg A \stackrel{\text{def}}{=} \top \prec A$.

An equivalence operator \leftrightarrow is defined in N4* as usual, but substitution by equivalent formulae is not valid.

In N4*, intuitionistic negation \neg is defined by $\neg A \stackrel{\text{def}}{=} A \rightarrow \bot$ and co-negation \neg is defined by $\neg A \stackrel{\text{def}}{=} \top \prec A$.

An equivalence operator \leftrightarrow is defined in N4* as usual, but substitution by equivalent formulae is not valid.

A strong equivalence operator \Leftrightarrow is defined by $A \Leftrightarrow B \stackrel{\text{def}}{=} (A \leftrightarrow B) \land (\sim A \leftrightarrow \sim B)$, and substitution by strongly equivalent formulae is valid.

Theorem 2.1

- $\bullet \vdash \neg (A \land \sim A) \leftrightarrow (A \lor \sim A) \text{ (but } \not\vdash \neg (A \land \sim A) \Leftrightarrow (A \lor \sim A)).$

Theorem 2.1

- $\bullet \vdash \neg (A \land \sim A) \leftrightarrow (A \lor \sim A) \text{ (but } \not\vdash \neg (A \land \sim A) \Leftrightarrow (A \lor \sim A)).$

Definition 2.2

The logic LET_C is the result of adding to N4 * the following defined connectives.

$$\circ A \stackrel{\text{def}}{=} \neg (A \land \sim A),$$

•
$$A \stackrel{\text{def}}{=} \vdash (A \lor \sim A)$$
 (equivalently, • $A \stackrel{\text{def}}{=} \sim \circ A$),

$$\star A \stackrel{\text{def}}{=} \neg (A \lor \sim A)$$
 (equivalently, $\star A \stackrel{\text{def}}{=} \sim \not\approx A$).

A BHK-style interpretation for LET_C is defined by the following clauses.

- Evidence for accepting $A \wedge B$ is a pair (e_1, e_2) where e_1 is evidence for accepting A and e_2 is evidence for accepting B.
- Evidence for accepting $A \lor B$ is a pair (e_1, e_2) where $e_1 = 0$ and e_2 is evidence for accepting A, or $e_1 = 1$ and e_2 is evidence for accepting B.
- Evidence for accepting $A \to B$ is a method that converts evidence for accepting A into evidence for accepting B.
- Evidence for accepting $B \prec A$ is a pair (e_1, e_2) where e_1 is evidence for rejecting A and e_2 is evidence for accepting B.
- Evidence for accepting $\sim A$ is evidence for rejecting A.
- ullet There is no evidence for accepting $oldsymbol{\perp}$.
- ullet \varnothing is evidence for accepting \top .

- Evidence for rejecting $A \wedge B$ is a pair (e_1, e_2) where $e_1 = 0$ and e_2 is evidence for rejecting A, or $e_1 = 1$ and e_2 is evidence for rejecting B.
- Evidence for rejecting $A \lor B$ is a pair (e_1, e_2) where e_1 is evidence for rejecting A and e_2 is evidence for rejecting B.
- Evidence for rejecting $A \to B$ is a pair (e_1, e_2) where e_1 is evidence for accepting A and e_2 is evidence for rejecting B.
- Evidence for rejecting $B \prec A$ is a method that converts evidence for rejecting A into evidence for rejecting B.
- Evidence for rejecting $\sim A$ is evidence for accepting A.
- \varnothing is evidence for rejecting \bot .
- ullet There is no evidence for rejecting \top .

The Type system LET $_{C}^{\lambda}$ is defined by the following rules:

$$\frac{r:A \qquad s:B}{(r,s):A \land B}$$

$$\frac{t:A}{\text{in}_1(t):A \lor B} \qquad \frac{t:B}{\text{in}_2(t):A \lor B}$$

$$[x:A]$$

$$\vdots$$

$$\frac{t:B}{\lambda x.t:A \to B}$$

$$\frac{r:\sim A \qquad s:B}{\langle r,s \rangle:B \prec A}$$

$$\frac{t: \bot}{\mathcal{E}(t): A}$$

$$\frac{t: A \land B}{\pi_1(t): A} \frac{t: A \land B}{\pi_2(t): B}$$

$$[x: A] \quad [y: B]$$

$$\vdots \quad \vdots$$

$$t: A \lor B \quad r: C \quad s: C$$

$$\text{case } t \text{ of } [x] r \text{ or } [y] s: C$$

$$\frac{r: A \to B}{\text{ap}(r, s): B}$$

$$\frac{t: B \prec A}{\pi_1^*(t): \sim A} \frac{t: B \prec A}{\pi_2^*(t): B}$$

$$\begin{array}{c} t: \sim A \\ \hline \operatorname{in}_1(t): \sim (A \wedge B) \end{array} \qquad \begin{array}{c} t: \sim B \\ \hline \operatorname{in}_2(t): \sim (A \wedge B) \end{array}$$

$$\frac{r : \sim A \qquad s : \sim B}{(r, s) : \sim (A \lor B)}$$

$$\frac{r : A \qquad s : \sim B}{\langle r, s \rangle : \sim (A \to B)}$$

$$[x : \sim A]$$

$$t : \sim B$$

$$\lambda x.t : \sim (B \prec A)$$

$$\frac{t:A}{\mathsf{id}(t):\sim\sim A}$$

$$\frac{t : \sim \top}{\mathcal{E}(t) : A}$$

$$[x : \sim A] \qquad [y : \sim B]$$

$$\vdots \qquad \vdots$$

$$t : \sim (A \land B) \qquad r : C \qquad s : C$$

$$\text{case } t \text{ of } [x]r \text{ or } [y]s : C$$

$$\frac{t : \sim (A \lor B)}{\pi_1(t) : \sim A} \qquad \frac{t : \sim (A \lor B)}{\pi_2(t) : \sim B}$$

$$\frac{t:\sim(A\to B)}{\pi_1^*(t):A} \qquad \frac{t:\sim(A\to B)}{\pi_2^*(t):\sim B}$$

$$\frac{r : \sim (B \prec A) \qquad s : \sim A}{\mathsf{ap}(r, s) : \sim B}$$

The β -reduction relation on λ -terms is the less compatible relation satisfying:

$$\begin{aligned} \operatorname{ap}(\lambda x.r,s) \to_{\beta} r[x:=s] \\ \pi_1((r,s)) \to_{\beta} r \\ \pi_2((r,s)) \to_{\beta} s \\ \pi_1^*(\langle r,s\rangle) \to_{\beta} r \\ \pi_2^*(\langle r,s\rangle) \to_{\beta} s \\ \operatorname{case in}_1(t) \text{ of } [x]r \text{ or } [y]s \to_{\beta} r[x:=t] \\ \operatorname{case in}_2(t) \text{ of } [x]r \text{ or } [y]s \to_{\beta} s[y:=t] \\ \operatorname{id}(\operatorname{id}^{-1}(t)) \to_{\beta} t \\ \operatorname{id}^{-1}(\operatorname{id}(t)) \to_{\beta} t \end{aligned}$$

Theorem 3.1

 $B_1, \ldots, B_n \vdash A \text{ in } \mathsf{LET}_\mathsf{C} \text{ iff there is } t \in \Lambda \text{ such that }$

 $x_1: B_1, \ldots, x_n: B_n \vdash t: A \text{ in } \mathsf{LET}^\lambda_\mathsf{C}.$

Theorem 3.1

 $B_1, \ldots, B_n \vdash A$ in LET_C iff there is $t \in \Lambda$ such that $x_1 : B_1, \ldots, x_n : B_n \vdash t : A$ in LET_C.

Lemma 3.2 (Free Variables Lemma)

- **1** If $\Gamma \vdash t : A$, then $FV(t) \subseteq Dom(\Gamma)$.
- **2** If $\Gamma \vdash t : A$, then $\Gamma \upharpoonright FV(t) \vdash t : A$.

Theorem 3.1

 $B_1, \ldots, B_n \vdash A$ in LET_C iff there is $t \in \Lambda$ such that $x_1 : B_1, \ldots, x_n : B_n \vdash t : A$ in LET_C.

Lemma 3.2 (Free Variables Lemma)

- **1** If $\Gamma \vdash t : A$, then $FV(t) \subseteq Dom(\Gamma)$.
- **2** If $\Gamma \vdash t : A$, then $\Gamma \upharpoonright FV(t) \vdash t : A$.

Lemma 3.3 (Uniqueness of Types)

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : B$, then $\vdash A \Leftrightarrow B$.

Lemma 3.4 (Subject Reduction)

If $\Gamma \vdash t : A$ and $t \rightarrow \beta s$, then $\Gamma \vdash s : A$.

Lemma 3.4 (Subject Reduction)

If $\Gamma \vdash t : A$ and $t \rightarrow \beta s$, then $\Gamma \vdash s : A$.

Definition 3.5

A term $t \in \Lambda$ is legal if there is a context Γ and a formula A such that $\Gamma \vdash t : A$.

Lemma 3.4 (Subject Reduction)

If $\Gamma \vdash t : A$ and $t \rightarrow \beta s$, then $\Gamma \vdash s : A$.

Definition 3.5

A term $t \in \Lambda$ is legal if there is a context Γ and a formula A such that $\Gamma \vdash t : A$.

Theorem 3.6 (Normalization Theorem)

Every legal term is strongly normalising.

Whether a natural / P-realises or N-realises a formula of N4* is defined by:

$$I$$
 P-realises \top . (1P)

/ N-realises
$$\perp$$
 . (1N)

I P-realises
$$A \wedge B$$
 iff $I = P(m, n)$, m P-realises A and n P-realises B. (2P)

$$I$$
 N-realises $A \wedge B$ iff $I = P(m, n)$, $m = 0$ and n N-realises A ,
or $m > 0$ and n N-realises B . (2N)

I P-realises
$$A \lor B$$
 iff $I = P(m, n)$, $m = 0$ and n P-realises A ,
or $m > 0$ and n P-realises B . (3P)

- (3N)I N-realises $A \lor B$ iff I = P(m, n), m N-realises A and n N-realises B.
- (4P) I P-realises $A \to B$ iff, for every m that P-realises A, $\varphi_I(m)$ P-realises B.
- I N-realises $A \to B$ iff I = P(m, n), m P-realises A and n N-realises B. (4N)
- I P-realises $B \prec A$ iff I = P(m, n), m N-realises A and n P-realises B.
- I N-realises $B \prec A$ iff, for every m that N-realises A, $\varphi_I(m)$ N-realises B. (5N) / P-realises $\sim A$ iff / N-realises A.
 - / N-realises $\sim A$ iff / P-realises A.

(5P)

Theorem 4.1

If $B_1, \ldots, B_n \vdash A$, there is a recursive function $h : \mathbb{N}^n \to \mathbb{N}$ such that, if I_1, \ldots, I_n P-realise B_1, \ldots, B_n , respectively, then $h(I_1, \ldots, I_n)$ P-realises A.

Theorem 4.1

If $B_1, \ldots, B_n \vdash A$, there is a recursive function $h : \mathbb{N}^n \to \mathbb{N}$ such that, if I_1, \ldots, I_n P-realises B_1, \ldots, B_n , respectively, then $h(I_1, \ldots, I_n)$ P-realises A.

Corollary 4.2

If $B_1, \ldots, B_n \vdash A$ and it is supposed that I_1, \ldots, I_n P-realise B_1, \ldots, B_n , respectively, then there is I that P-realises A (particularly, if $\vdash A$, then there is I that P-realises A).

Theorem 4.1

If $B_1, \ldots, B_n \vdash A$, there is a recursive function $h : \mathbb{N}^n \to \mathbb{N}$ such that, if I_1, \ldots, I_n P-realises B_1, \ldots, B_n , respectively, then $h(I_1, \ldots, I_n)$ P-realises A.

Corollary 4.2

If $B_1, ..., B_n \vdash A$ and it is supposed that $I_1, ..., I_n$ P-realise $B_1, ..., B_n$, respectively, then there is I that P-realises A (particularly, if $\vdash A$, then there is I that P-realises A).

Theorem 4.3

The following formulas do not have P-realisers:

- \bullet \perp and $\sim \top$.
- 2 $p \lor \sim p$, for a propositional variable p.

Some constructive features of LET_C are the following:

• Satisfies the disjunction property (i.e. if $\vdash A \lor B$, then $\vdash A$ or $\vdash B$).

- Satisfies the disjunction property (i.e. if $\vdash A \lor B$, then $\vdash A$ or $\vdash B$).
- Satisfies the (negation of) conjunction property (i.e. if $\vdash \sim (A \land B)$, then $\vdash \sim A$ or $\vdash \sim B$).

- Satisfies the disjunction property (i.e. if $\vdash A \lor B$, then $\vdash A$ or $\vdash B$).
- Satisfies the (negation of) conjunction property (i.e. if $\vdash \sim (A \land B)$, then $\vdash \sim A$ or $\vdash \sim B$).
- Has a BHK-style interpretation (where constructions are evidence).

- Satisfies the disjunction property (i.e. if $\vdash A \lor B$, then $\vdash A$ or $\vdash B$).
- Satisfies the (negation of) conjunction property (i.e. if $\vdash \sim (A \land B)$, then $\vdash \sim A$ or $\vdash \sim B$).
- Has a BHK-style interpretation (where constructions are evidence).
- Evidence has an algorithmic interpretation by means of λ -calculus terms.

- Satisfies the disjunction property (i.e. if $\vdash A \lor B$, then $\vdash A$ or $\vdash B$).
- Satisfies the (negation of) conjunction property (i.e. if $\vdash \sim (A \land B)$, then $\vdash \sim A$ or $\vdash \sim B$).
- Has a BHK-style interpretation (where constructions are evidence).
- Evidence has an algorithmic interpretation by means of λ -calculus terms.
- Has a realisability interpretation.

Thank you for your attention!

