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1. Introduction

In the study of the properties of nucleon resonances, the production of mesons (7, 7, etc.)
by hadron-induced reactions like beams of stable baryons such as protons, deuterons, and
alpha-particles is an important tool that has been extensively used. The other type of
beams are beams of mesons which are the most traditionally used reactions for the
study of nucleon resonances, in particular, the scattering of pions has substantially con-
tributed to the experimental data base. However this sort of reactions are complicated
since the initial and final states are dominated by the strong interaction and, in the case
of baryons, high energies must be employed to access the resonance regions, due to the
large mass of the beam particles.

An alternative way to excite the nucleon, which has been widely used during the last
decades, is the use of reactions induced by the electromagnetic interaction such as pho-
toproduction and electroproduction of mesons, an important tool for studying the elec-
tromagnetic properties of nucleon resonances which has played a significant role in the
tests of quark models, such as the ratio of the electric quadrupole to the magnetic dipole
transition amplitudes (EMR) in the processes (y N = A(1232)).

From the experimental point of view, the database has grown considerably thanks to
the progress made in accelerator and detector technology; observables such as the to-
tal cross-sections and the electromagnetic multipoles have been measured with higher
precision than hadron induced reactions, although the cross-sections corresponding to
this type of reactions are three orders of magnitude larger than the electromagnetically
induced reactions. All experiments are based at electron accelerators and, in the specific
case of photoproduction, two different techniques are employed to produce the photon
beams: bremsstrahlung and laser backscattering. The bremsstrahlung technique is used
at ELSA [3] and MAMI [4] (in Germany), CLAS [5] (in United States), and at LNS (in
Japan) while laser backscattering is employed at LEGS (in United States), at GRAAL [6]
(in France), and at SPring-8 [7] (in Japan).

This work will focus on the particular case of pion photoproduction to evaluate, analyti-
cally and numerically through a model that will be described below, physical observables
such as the cross-section and the multipole amplitudes which will be compared with the
available experimental data to extract the relevant coupling constants of the nucleon
resonances. However, from the theoretical point of view, we face the problem that in
the low energy limit of quantum chromodynamics that is, at low momentum transfers
Q@ in the GeV region, where the nucleon and its main resonances live, a perturbative
analysis is not appropriate [8]. Therefore, we have to adopt an effective approach to try
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to represent in a “simple way” the dynamical content of the theory.

Several models have been proposed for studying the pion photoproduction of nucleon
resonances, such as Breit-Wigner models [9, 10], effective Lagrangian approach models
(ELAs) [11, 12], dynamical models [13], etc. Being phenomenological models, we shall
adopt the ELA because it has become an acceptable approach in the energy range from
threshold (~ 0.149 GeV) up to ~ 1.70 GeV in the center of mass coordinate system
(~ 1.0 GeV in the laboratory coordinate system) for the reaction yp — wN. Another
reason is that the ELA also provides a natural framework to extend the model to other
processes such as pion electroproduction, two pion photoproduction, photoproduction of
other mesons such as 7, etc.

In the ELA all contributions to the reaction are derived from effective Lagrangian den-
sities corresponding to the interaction vertices, in which each particle is considered as
an effective field having mass, spin, isospin, strong decay width, etc. [14, 15]. In the
specific case of photoproduction of pseudoscalar mesons such pion or 7, the two com-
monly encountered forms of the meson-nucleon interaction are through the pseudoscalar
(PS) or pseudovector (PV) couplings, which are equivalent for elementary fields without
anomalous magnetic moment. However in the specific case of pion photoproduction, the
wINN coupling is chosen to be PV to obtain the right low energy behaviour in accord
with current algebra results and chiral symmetry, due to the small mass of the pion [16].
In the case of the 1 meson, there is no preference for the coupling to be PS or PV due
to the larger mass of the 1 meson [17].

On the other hand, in the photoproduction of pions off the nucleon, the spin—% reso-
nance A(1232) plays the most important role in the first resonance region, however, the
treatment of the spin—% nucleon resonances namely, vertices and propagator, are not
completely consistent in the literature. It deserves special attention because the quan-
tum field theory of particles with spin > % is an open problem since the Lagrangian and
the propagator are not unique, there are arbitrary parameters in the theory. On one
hand, the free-field Lagrangian as well as the propagator for spin—% particles contain an
arbitrary parameter A which defines the so-called point transformation™. On the other
hand, the interaction Lagrangians are constructed in such a way that they are invariant
under the same point transformation as the free Lagrangian, but they depend now on
two parameters, A and Z (named off-shell parameter), as we will see in the specific case
of the coupling of the spin—% field to the nucleon and pion fields and the coupling of the
spin—% field to the electromagnetic and pion fields. Even though the physical amplitudes
depend on the Z parameter, it can be set consistently to a fixed value [11, 18].

For the case of a spin—% field coupled to a spin—% and the derivative of the pion field, the
approach that we adopt, the value of the off-shell parameter is fixed to Z = %, by requir-

ing the interaction to be consistent with the principles of second quantization [12, 19].

*A point transformation is a transformation of the variables, which does not involve time derivatives.
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With regard to the A parameter, we make the choice A = —%,

the propagator [20], in agreement with [21], an election that differs from other works in
which the value of A is not fixed consistently in both, vertices and propagator.

both in the vertices and

In our model, the internal structure of hadrons is taken into account by means of phe-
nomenological form factors which are included, consistently, in the tree level amplitudes
by preserving the symmetries of the theory namely, gauge invariance and crossing sym-
metry, giving rise to additional current contributions beyond the usual Feynman dia-
grams to cancel the resulting gauge-violating terms [22, 23, 24].

This work is distributed as follows: in Ch. 2, we fix the notation and list all the basic
kinematical formulas for pion photoproduction. In Ch. 3 we present the Lagrangians
for all the free fields taking part in pion photoproduction below ~ 1.7 GeV. In Ch. 4
we present the most general interaction Lagrangians for vertices, compatible with all
possible symmetries namely, chiral symmetry, gauge invariance and crossing symmetry.
In Ch. 5 we present the general form of the total propagator for the spin—% field which is
considered first as a stable bare particle that later obtains its empirical mass and width
by dressing with pions by means of the absorptive one-loop self-energy correction to the
spin—% particle propagator which reproduces the complex-mass prescription for its reso-
nant form. In Ch. 6 we present the analytic expressions for the amplitudes contributing
to pion photoproduction off the proton (as well as neutron, for the sake of completeness)
at the tree level, without including form factors, which are included later in Ch. 7 for
the numerical calculation of the cross-sections corresponding to the specific processes
vp — wtn and yp — 7¥p. Finally, in Ch. 8 we perform the analysis of the relavant

3 3
electromagnetic multipoles in pion photoproduction namely, M7, and Ef, .



2. Units and Kinematics

In this chapter we will fix the units, the notation and list all the basic kinematical
formulas for photoproduction of pion (m) from a free proton (p), yp — 7N, where
N = p or n (neutron) and the four-vector momentum of the incident photon () and
the outgoing pion are denoted by k and ¢, respectively, while those of the initial and
final nucleon are p; and py, respectively. For the sake of simplicity we will evaluate the
scattering amplitudes in a coordinate system in which k and p;i each lies along a given
line, say the z—axis of a rectangular coordinate system (that is, k x P = 6) Since the
scattering matrix is a Lorentz invariant, the general case may then be obtained from a
Lorentz transformation. The two most common coordinate systems are the laboratory
coordlnate system, in which p; = 0, and the center of mass coordinate system, in which
k+ Py = 0, as shown in Fig. 2.1, where we indicate the components of each four-vector
momentum.

2.1. Units
We will use the system of natural units, where
h=c=1, (2.1)

such that
[length] = [time] = [energy] ! = [mass] . (2.2)

Therefore, in this system, the electric charge of the proton is given by

e = Vima = 0.302862. (2.3)

2.2. Relativity and Tensors

Our conventions for relativity and tensors follow Bjorken and Drell [25], Jackson [26],
and Peskin [27]. For example, for the metric tensor, 7,,, we use

1 0 0 0
0 -1 0 0
0 O 0 -1
such that
P’ = nup'p” = B* — |p’, (2.5)
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where the energy ' and the momentum p of the particle are represented by the operators

E—isg =i, and - —iV. (2.6)
Then, the plane wave e~*% has momentum k,, since
i@ue_ik'“” = kue_ilm. (2.7)

2.3. Pauli and Dirac Matrices

We use the Pauli sigma matrices

0 1 0 —1 1 0
O'1=<1 O), O’QZ(Z. 0), and O’3=<0 _1>. (2.8)

For the Dirac matrices, v*, we use the Weyl or chiral representation given by

o (0 1 . (0 &

which satisfy the anticommutation relation

(YW} = 20 1, (2.10)

and the additional gamma matrix, s, is defined as

. { -1 0
Y5 = Y0123 = —$e’“’a6%%%% = ( 0 1) , (2.11)
with the properties
W=7 and {y5,7.}=0. (2.12)

2.4. Mandelstam Variables

In the case of 2-body — 2-body processes, it is useful to express the scattering amplitudes
in terms of the Mandelstam variables that make it easy to apply crossing relations.
The Mandelstam variables are defined by

s=(k+p)* = (¢+p)%

t=(q—k)* = (p —p)°,

u=(k—p)?=(g—m)? (2.13)
where,
4
stt+u=» mi=2M;+m?
i=1

with My = 0.938 GeV and m, = 0.138 GeV, the nucleon and pion mass, respectively
and for any process, s is the square of the total initial 4-momentum.
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pi = <Ei,_E)

X

(reaction plane: ¢* = 0°)
pf - (Ef7 _(7)
z
)

Figure 2.1.: Kinematics of pion meson photoproduction in the ¢.m. coordinate system.

2.5. Center of Mass Coordinate System

In the center of mass (c.m.) coordinate system of the initial proton and the photon,
where the experimental observables will be calculated, the Mandelstam variables become

s=W? = (B + |k|)?,
t =m2 — 2wlk| + 2|q]|k| cos 6%,
u= M2 — 2E|k| — 2|q]|k| cos 6%, (2.14)

where 0* is the scattering angle and W = /s, the total energy.
The energies and momenta are determined in terms of W as

FoWRME L WM WRomieME
ow ow 1 oW ’ '
W2+ m2 — M2 W2+ m2 — M2)?

w= ST R and |ql = ( e S m2. (2.16)

Threshold of the Reaction

The threshold for the reaction yp — 7N is defined at the pion momentum |g] = 0, where
the photon lab energy is

M. 2 M2
p, = M M7= MY G 49 Gev, (2.17)

v 9 My

corresponding to a c.m. energy of W ~ 1.08 GeV.



3. Free Lagrangians

The relevant degrees of freedom used to describe nuclei depend on the energy resolution
by which the nucleus is probed. As discussed in the introduction, the energy range of
the more actual experiments is up to ~ 2.0 GeV, thus for energy transfers below ~ 1.7
GeV and momentum transfers below ~ 1.7 GeV/¢, the important degrees of freedom
are limited to the lowest states of the nucleon and meson spectrum. The main role
is played by the pion, the nucleon and the nucleon resonances: Ps3(1232), Pyq(1440),
D13(1520), S11(1535), P33(1600), S11(1650), and S11(1710); the vector mesons p and w
also play an important role. Their properties are displayed in Table 3.1. Other mesons
such as 1, 7’ and ¢ do not contribute significantly at tree level. In the case of n mesons,
first order electromagnetic decays, n — Vv are forbidden by conservation of angular
momentum [28], while the contribution of the ¢ meson is suppressed by the OZI rule [29].
In this section we present the Lagrangians for all the free fields taking part in pion
photoproduction below ~ 1.7 GeV, before to describe the interacting Lagrangians from
which we will calculate the invariant amplitudes.

3.1. The Pion Field (3,)

The Lagrangian for the spin-0, isospin-1 pion free field is the Klein-Gordon Lagrangian

1/ - B ..
Lr=3 (a“cbﬂ 9By —m2B, - <1>7T> , (3.1)
where
1
‘1371— = T2 (32)
3

denotes the three-component pion field in terms of its cartesian isospin components, in
terms of which the charge components 7 and 7° of the pion field are defined by [13]

i % and 70 = m3, (3.3)
then the pion field is rewritten as
o, = 7T+<i>+ + 7+ 79D, (3.4)
with unit vectors
(ihrzL _2'1 , @EL 1 , ®g= 8 . (3.5)
V2 \ o V2 \o 1

N
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Hadron H Isospin Charge states Spin (Parity) Mass (MeV) Tiota (MeV)
. L0 - _ my+ = 139.6 “stable”
Pion 1 T 0 { Mo = 135.0 8.02 x 1076
p-meson 1 pt, 0% p~ 1~ 775.3 147.4
w-meson 0 WO 1~ 782.7 8.7
1 1+ M, =938.3 stable
Nucleon 2 b, 2 { M, = 939.6 “stable”
3 tE A+ AD A 3+ { My = 1206 — 1213 97 — 119
P3(1232) 2 AT, AT, AL A 2 Mo = 1212 — 1214 103 — 105
P11(1440) i pt, p° i 1360 — 1380 160 — 190
D13(1520) i D+, DO 3 1505 — 1515 105 — 120
S11(1535) i S+, 80 o 1500 — 1520 110 — 150
P33(1600) 3 AT AT AL A~ 3t 1460 — 1560 200 — 340
S11(1650) i S+, 80 o 1640 — 1670 100 — 170
P11(1710) 3 Pt PO 1 1680 — 1720 80 — 160
Table 3.1.: Properties of the hadrons considered in this work [1]. The mass and total

width of the resonances correspond to the resonance pole position, sy, given

by /sr = Mg —iFTR.

3.2. Vector Meson Fields

Spin-1 massive particles may be described by the well known Proca Lagrangian [30].
1. The p Field (3")
The Lagrangian for the spin-1, isospin-1 p free field is

1 - - 1 52, =
Ly == W W+ 5m§<1>¢j P, (3.6)
where the tensor W is defined by
WH = 6“<1>Z — 6”<1>g. (3.7)
As in the previous case,
o
., P1
o
P3

denot
in ter

es the three-component p field in terms of its cartesian isospin components,
ms of which the charge components p** and p"Y of the rho field are defined

by [13]

oo
Pt = L\/;/)Q and p"0 = ph. (3.9)
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2. The w Field (®#)
Similarly, for the spin-1, isospin-0 w field

1 1
L, =—7B" By, + 5m3<1>5 D, (3.10)
where the tensor B is defined by
BHY = or®Y — 9V Dk, (3.11)

3.3. Nucleon (Vy) and Spin-1 Resonance (V) Fields

The Lagrangian for the spz'n—%, z'sospz'n—% Nucleon (N) and Resonance (R) free fields is
given by the well known Dirac Lagrangian

Ly = Uy (iv"9, — Mx) U, (3.12)

where My is the mass of the spin—% baryon (X = N, R) and the v, matrices satisfy the
anticommutation relation

{fY;u’YV} = 2guu- (313)

In this case, the nucleon field ¥y, is given by the isospin doublet

= (ij) , (3.14)

where 9, and 1), represent the proton and neutron fields, respectively.
Similarly, for the P;1(1440), S11(1535), S11(1650) and P;1(1710) resonances

U (ﬁ?) , (3.15)

where the superscripts + and 0 denote the electric charge of the corresponding fields.

3.4. Spin-2 Resonance Fields (¥# and U*)

The Lagrangian for the spz'n—%, isospm—% (¥4h) and the spin—%, isospm—% (%) resonance
free fields is the Rarita-Schwinger Lagrangian [19, 31]

1

Ly = EiAua gaﬁ (Z@ - MX) + 3

1
(72977 = 770" — 9% ) + gMX’yo‘vﬁ] Mg WY,
(3.16)
where My is the mass of the spin—% baryon (X = A, D) and the tensor A, is defined as

1
Apo = gpo + 5(1 + 34)77s, (3.17)



3. Free Lagrangians

with A an arbitrary parameter subject to the restriction A # —%.
On the other hand, the spin—% field describing the A resonances, Wk, is a spinor-vector
field given by the z'sospz'n—% quartet

o

T/JA++
Un+
Yho |

Y-

o = (3.18)

while the spin—% field describing the D resonances, W', is a spinor-vector field given by

the z'sospz'n—% doublet
o
Uh = wg* : (3.19)
Yo

3.4.1. The Point Transformation

The free Lagrangian given by Eq. (3.16) is invariant under the point transformation [11,
31]
Uh — U = Uk 4+ ayty, 0%, A— A = A-2a (3.20)
X X vV * X 1 +4a7
where a # —i, but is otherwise arbitrary.
It implies that physical properties of the free field, such as the energy-momentum tensor
and the canonical commutation relations are independent of the parameter A [19].

3.4.2. Spin-% Resonance Field Propagator

The propagator of the Rarita-Schwinger field deserves special attention and will be
considered in Ch. 5 with more detail.

10



4. Interaction Lagrangians

In the study of photoproduction of pseudoscalar mesons such as pion off the nucleon,
the strong interaction vertex will be treated phenomenologically using the effective La-
grangian approach (ELA) [11, 17]. The two standard couplings are the pseudoscalar
(PS) and the pseudovector (PV') which for elementary fields, without anomalous mag-
netic interactions, are equivalent in the lowest order in strong coupling constant [32]. In
the case of our interest, pion photoproduction, the 7NN coupling is preferred to be PV
according with the low energy theorem (LET) [16].

The model consists of effective interaction Lagrangians which are splitted into two dif-
ferent types of contributions: the first type consists of the non-resonant or background
term which include the nucleon s- and w-channels, the pion t-channel, the vector me-
son exchanges (p and w), the contact term and the u-channel of the resonance exci-
tations, namely Ps3(1232), P;1(1440), D13(1520), S11(1535), Ps3(1600), S11(1650), and
P11(1710). The second type consists of the s-channel of the above resonance excitations.
The corresponding plots of each of these Feynman graphs will be shown later.

In this chapter, we present the most general interaction Lagrangians for vertices, com-
patible with all possible symmetries: chiral symmetry, gauge invariance and crossing
symimetry.

4.1. Strong Interaction

The strong interaction is invariant under time reversal (t — —t) and parity (7 — —7), it
is also invariant under charge conjugation which transforms particles into antiparticles.
Isospin symmetry is also an important concept in the physics of the strong interac-
tion, isospin symmetry means that the strong interaction is invariant under rotations in
isospin space. Thus, the total isospin of an interacting system of pions and nucleons is
a conserved quantity, however, this is broken by electromagnetic interactions.

4.1.1. Vertices for Born Terms
The 7NN Vertex

The interaction Lagrangian is given by

EN”V'E)%LF\I]N : alhiﬁm (4'1)

where m,; is the mass of the pion, and f,yy is the pseudovector coupling constant whose
experimental value has been determined accurately from pion-nucleon and nucleon-

11
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nucleon scattering [11, 32]
2

27NN — ().0749. 4.2
47 ( )

On the other hand, the scalar product 7 - ®, with the nucleon isospin matrix 7 has the
form

7o, =770 )+ (7 0_) 4+ 707 Dy), (4.3)
where

?'@+:—T_, 7?'@_:—7'4_, 7?-(1)0:7'3 (44)

with the charge “raising” and charge “lowering” operators 7 and 7_ given in the spher-
ical basis by [13]
_ FTi—in

T4+ =
TN

4.1.2. Vertices for Vector Meson Terms

(4.5)

In the energy region of our interest, that is from threshold up to ~ 1.7 GeV, the main
contribution of vector mesons to pion photoproduction is given by the p and w exchanges.
The role of the ¢ meson is found to be negligible, less than 2% of the p 4+ w contribution
at threshold [17].

The pNN Vertex

The interaction Lagrangian is given by [11]

t
- g -
Loun = Uy T | gPunTVa + 2200507 | 22T, (4.6)

where g7 and gf) vy are the vector and tensor couplings of the pN N vertex, respectively

and o0, is defined by
1

O = 51 - (4.7)

The experimental values of these couplings will be described below.

The wNN Vertex
Except for the isospin, the interaction Lagrangian in this case is similar to the previous

one and is given by [11]

t
ngN — \I’N QZNN% + g})\]}N Jaﬁaﬁ (I)g\I]N, (48)
N

where g¥,y and ¢!, are the vector and tensor couplings of the WNN vertex, respec-
tively.

12
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The Vector and Tensor Couplings: g%, and ¢!, (V = p,w)

The experimental values of the vector and tensor couplings of the vector meson-nucleon
vertex (pNN and wNNN) are taken from several sources. For example, analyses of strong
interaction processes such as 7N and N N scattering using dispersion relations [17] obtain
the values

9oy =2.63+£0.38, g7y =10.09+£0.93, (4.9)

pNN

for the vector couplings, and
gun =16.05£0.82, ¢!\ =1.42+1.99, (4.10)

for the tensor couplings.
On the other hand, analysis of nucleon electromagnetic form factors [11] obtain the

values
g:jNN =2.63, g’yy =20.86+0.25, (4.11)

and
gzNN = 15.86 £ 0.52, ngNN = —3.41+0.24. (4.12)

In Ref. [13], the reported values are

Gonn = 266, gl = T7.98, (4.13)
for the vector couplings, and

Giun =984, gLy =00, (4.14)

for the tensor couplings.

Thus we can see that the values of the couplings g” ., gﬁNN, and ¢’ are not well
determined experimentally and therefore will be considered as free parameters to be
varied within the estimated ranges in order to get the best fit.

4.1.3. Vertices for Spin-% Resonance Terms

The interaction Lagrangian is given by [17]

Lopt = _Jonrt (UNT, 7 W) - 0"®, + hc., (4.15)

where the coupling f,yz+ for the 7N RT vertex is set to [17, 32]

fang® 9aNR*E
=4 4.16
My Mp+ + My ( )

with the upper (lower) sign corresponding to even (odd) parity resonances, and the
operator structure for I, is, respectively, I, = «y,, for odd parity resonances, and I';, =
YuYs for even parity resonances.
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4. Interaction Lagrangians

Resonance H I'ron (%) | frnrl

Py1(1440) 55— 175  0.293 — 0.373
S11(1535) 32-52  0.121 - 0.180
S11(1650) 50 - 70  0.107 - 0.165
Py1(1710) 520 0.029 — 0.081

Table 4.1.: Estimated strong coupling constants for the sz’n—% nucleon resonances.

The Strong Coupling: g, yr+

It will be more convenient to express the couplings in terms of the experimentally ob-
servable quantities, namely the partial decay width (I'z+ _, ).
The decay width for the process RT — 7N is given by [27]

ar_ 1 1 Jq
dQ  2Mp 1672 /s

| M |2, (4.17)

where

M =~ (g (), (1.18)

™

with I the corresponding isospin factor (see Table 6.3), I' = 1 (v5) for the even (odd)
parity resonances and |Mg|? denotes the average over the initial spin (s;) and sum over
the final spins (s;), namely

M ? E%ZZIMHI2 (4.19)

Si Sf
1 2
:5 7;71;12?# L%Tr [(}51 + MR)gF(pf + MN)gF] (4.20)
:2gzNRiI}%’,MRi [Ee(Mps) F My] . (4.21)

After integrating over the phase space and summing over all channels (I'p+ _ .y =

PRi S atn + FRi — ‘rrop)

gzNRi = MRi PR:E N
dm 3|q(Mpe )| [Ef(Mps) F My] & 77

(4.22)

with E; and |q] evaluated at W = Mp=.

The magnitude of the estimated values of the strong coupling constants for the spin—%
nucleon resonances are displayed in Table 4.1, according with the decay width ranges
given in the previous column of the same table [1].

14



4. Interaction Lagrangians

4.1.4. Vertices for Spin-3 Resonance Terms
The 7 NA Vertex

The interaction of the A resonances with the pion and the nucleon has been discussed
extensively in the literature [11, 19, 31]. In the present case, we consider the interaction
Lagrangian given by [13, 19, 31, 33]

fﬂ'NA

™

‘ZTFNA =

(W‘;f @W\IIN) 98, +h., (4.23)

where T is the N — A isospin excitation operator given by [11]

1 0 1 0 0 0
1| 0 =+ i [0 % 201 0
- L il o=t B =y 4.24
1 \/5 _\/Lg 0 y L2 \/5 % 0 » 43 3 0 1 ’ ( )
0 -1 0 1 0 0
with 177 , 75 and T3 such that
t 2 1. o
Ti T] = gézj - gzeijkaa (Za.]’ k= 1,2, 3) (425)
and the tensor ©,,, is defined as [34]
1
O = o + |5(LH42)A+ Z| . (4.26)

in order to guarantee that the total Lagrangian is invariant under the point transforma-
tion,

A-2
\Iji — \Ij/l;( = \I/l;( + a'yﬂ’)’y\p§7 A— A/ = TZI:;’ (427)

and
Uy =0y =Ty, <I>7T—><I>;T:<I>7T. (4.28)

The parameter Z, usually referred as the off-shell parameter, is arbitrary and will appear
in the physical amplitudes. However, it can be set to a fixed value or just let it run freely
to obtain the best possible fit. In this work we shall adopt the former and fix its value
to % if, in accordance with the principles of second quantization, the interacting fields
are quantized on a spacelike surface [19].

With this choice, the tensor ©,, becomes

1
O = G + 5 (1+34) v, (4.29)
in agreement with [31, 35].

On the other hand, the S-matrix elements for the interaction Lagrangian given by
Eq. (4.23) are independent of the parameter A according to an equivalence theorem
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4. Interaction Lagrangians

given in Ref. [36].

Therefore we will choose A = —% so that
@uu = Guv, (430)
and the interaction Lagrangian describing the 7 NA vertex becomes [31, 35]
Lown = Jrna (@;f \11N> -9, + h.c. (4.31)
M

The Strong Coupling: f.ya

Expressing the coupling in terms of the partial decay width (T'a _, ,x)
dar 1 1 g ——

a _ 14 2 4.32
dQ ~ 2M, 1672 \/E’Mﬁ’ ’ (4:32)

where f
Mg =i ;;VA I u(ps)ua(p)g®, (4.33)

™

with I, an isospin factor (see Table 6.3), uq(p;) is the corresponding Rarita-Schwinger
spinor, and |Mg|? denotes the average over the initial spin (s;) and sum over the final
spins (s;), namely

M2 Ei DD MG (4.34)

Si Sf

2 3

1 3
=4 AT [qa(pa + Ms)Pas(p)a” (p, + M) | (4.35)

where X

> ua(p)us(p) = (p+ Ma)P24(p), (4.36)

3
with PZ25(p), the spin—% projection operator, given by [32]

3 1 1 1
(D) = Gap — 32PePs ~ 3% < 33 (Pa8 — PBYa) P- (4.37)

Therefore, in the mass shell of the decaying particle (p> = M?2), we obtain

2

- 9 _
[(Maf? = S22 LML |G(Ma) | [Be(Ma) + My] . (4.38)

™

After integrating over the phase space and summing over all channels (I _ .y =
PA omtn T FA N ,rop)

T?NA o 3mngA T

4 (@M [Ed(Ma) + My] 27
with E; and |q] evaluated at W = M,.
The magnitude of the estimated value of the strong coupling constant for the spin—%

(isospin—%) nucleon resonance is displayed in Table 4.2, according with the value of the
decay width given in the previous column of the same table [1].

(4.39)
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4. Interaction Lagrangians

Resonance H Trlan (%) | frnzl

2.214 — 2.452 (A*)
Fy3(1232) 994 { 2.252 — 2.274 (A?)
D13(1520) 55 — 65 1.504 — 1.748
P33(1600) 8- 24 0.311 - 0.703

Table 4.2.: Estimated strong coupling constants for the sz’n—% nucleon resonances.

The #ND Vertex

This resonance is similar to the previous one except that it has the opposite parity and
isospin—%. The Lagrangian for the 7N D vertex is then given by

f‘rrND

T

Lonp = — (U7 Uy) - 8,®x + hec, (4.40)

where we have made the replacement

VAT - 7 (4.41)

nw
Ul = < z*) . (4.42)
DO

The decay width for the process D — wN is given by

ar 1 1 e
aQ ~ 2Mp, 1672 /s

with

The Strong Coupling: f.vp

M2, (4.43)

where

;Lo

™

M =

I u(pe)vsua(p)g®, (4.44)

with I, = I, and |Mg|? denotes the average over the initial spin (s;) and sum over the
final spins (s;), namely

— 1
(M= D M) (4.45)
Si 8¢
1 QND 2 3 5
T4 ;z T [ (P, + Mp)Pas(p)vsa” (B, + Mu)vs | (4.46)

3
where PZ25(p;) is given by Eq. (4.37). With M, — Mp, then

2 2
Mo = 2500 12 01, (01, ) P [08) — M), (1.47)

K
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4. Interaction Lagrangians

After integrating over the phase space and summing over all channels (I'y _ .y =
PD—»ﬂ+n +FD—>7r0p)
Zvp _ maMp [E(Mp) + My]

=D AL Thoons (4.48)

with E; and |q] evaluated at W = M.
The magnitude of the estimated value of the strong coupling constant for the spin—%
(isospin—%) nucleon resonance is displayed in Table 4.2, according with the decay width

ranges given in the previous column of the same table [1].

4.2. Electromagnetic Interaction

For the case of the Born terms, the electromagnetic interaction is introduced by means
of minimal coupling, that is, replacing the differential opertor % in the Lagrangian of

the system by
0 , 9 4 QA (4.49)
— = — 41 .
Ozt Ozt o
where A, is the photon field and Q = Q N+ QW is the total charge operator [37].
The extended structure of the nucleon and the pion is considered by including the

isoscalar, the isovector, and the pion form factors

A e
Qv=3 [F3(k2) + FY (k%)) (4.50)
and R R
O = eFL ()T, (4.51)
where
Fy=F +F' and Fy =FF—F), (4.52)

which at the photon point (k* = 0) take the values
Fy=F'=1 and F,=F} (4.53)

to ensure gauge invariance [11].
The matrix elements of the isospin operator T3 in a cartesian isospin basis are given by

<7Ti|T3|7Tj> = 1€35, (4.54)

and the magnetic moment of the nucleon is taken phenomenologically into account by
adding the magnetic dipole term [25]

M v
273 [F5(K*) + Fy (k*)73] 0/ F, (4.55)
where P g
F§ = % and Fj = % (4.56)
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N(pi) N (pr) N(pi) N (p)

Figure 4.1.: Feynman diagrams for Nucleon Born terms: (a) direct or s-channel, and (b)
crossed or u-channel.

which at the photon point take the values
FP=k? =179 and Fj =r"=-191 (4.57)

in units of ug = ﬁ, o es given by Eq. (4.7) and the electromagnetic field tensor is
defined by [27]
F. =0,A, — 0,A,. (4.58)

4.2.1. Vertices for Born Terms
The YNN Vertex

Applying the minimal gauge invariant coupling according to Egs. (4.50) and (4.55) to
the free Dirac Lagrangian given by Eq. (3.12) we obtain the effective y¥/NN interaction
Lagrangian

e —

Z - Uy (F5 4 Fym3) 00U P, (4.59)
AMy

Y

e —
N —§AQ\IIN7(1 (Fy + FY13) Uy
From Lagrangians (4.1) and (4.59) we obtain the tree level Feynman diagrams of Fig. 4.1.

The ymn NN Vertex

In this case the minimal gauge invariant coupling applied to the interaction Lagrangian (4.1)
leads to the following effective interaction Lagrangian involving the pion

Lnn = —eﬁ‘ﬂmym [F x cﬁﬂ} W A", (4.60)
My 3

From Lagrangians (4.1) and (4.60) we obtain the tree level Feynman diagram of Fig. 4.2a.
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N(p) N (pr) N(p) N (pr)

Figure 4.2.: Feynman diagrams for the Born terms: (a) Kroll-Rudermann (contact) term,
and (b) pion in flight term.

The vy Vertex

Besides the contact term given by Eq. (4.60), the minimal gauge invariant coupling
applied to the free Lagrangian (3.1) also leads to the effective y7r interaction Lagrangian

RZ—— [q“),r x aﬁwh/w. (4.61)
From Lagrangians (4.1) and (4.61) we obtain the tree level Feynman diagram of Fig. 4.2b.

4.2.2. Vertices for Vector Meson Terms

For the interaction of vector mesons with pion and photon we use the following standard
Lagrangians [13, 38]:

The pry Vertex

For the isospin-1 p meson,

pmy

Mo = o
Ly = S E, W - B, (4.62)

where the tensor W is given by Eq. (3.7) and F;w = %euuaﬁF @8 is the dual of FM.
With

€apuy OV FP =0, (4.63)
the above Lagrangian may equivalently be written as
Aprny = > o
Ly = —e#FW oMo, - D). (4.64)

The wny Vertex

Similarly, for the isospin-0 w meson,

Mo = B}
L = eSO F B [@W]g, (4.65)

2my
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Vector meson H Iy . ., (keV) [Av s
iy
pT:67 £ 8 0.092 — 0.106
p(T70) { P89 +12  0.109 — 0.123

w(782) 70347  0.310 — 0.314

Table 4.3.: Estimated electromagnetic coupling constants for the vector mesons.

where the tensor B*” is given by Eq. (3.11).
The above Lagrangian is equivalent to

A - .
L= e [aﬂq%]g V. (4.66)

My
From Lagrangians (4.6), (4.8), (4.64), and (4.66) we obtain the tree level Feynman
diagram of Fig. 4.3.
The Electromagnetic Coupling: A,

The electromagnetic Ay, couplings can be estimated from the partial decay widths of
the vector mesons by using the Lagrangians (4.64) and (4.66).
The decay width for the process V' — 7y is given by [27]

ar 1 1 Ik

Rt S i 2 4.67
dQ  2my 1672 \/E’Mﬁ‘ ’ (4.67)

where )
Mﬁ = _%Euuaﬁei{*kﬁqueg(p)’ (468)

™

with € and € (p), the photon and vector meson polarization vectors, respectively.

|M;|? denotes the average over the vector meson polarization (o) and sum over the
photon polarization (), namely

1
[ Mi[? =3 Z Z Mg/ (4.69)
o A

1 (e) . 2 . pGpu
:g(m%”)ewagepgwkﬁq“kéqp <ge s >g‘m (4.70)
™ \%
2 (eAvey)? 72 2
After integrating over the phase space
Mvn )2 24m2Zm3
(e Zm) - 2m,,m;)3pwm. (4.72)
4 mV - m7r
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v(k) m(q)
\\,//

o
N(pi) N(pr)

Figure 4.3.: Feynman diagram for vector meson exchanges: p and w.

The magnitude of the estimated values of the electromagnetic coupling constants A,
and A, are displayed in Table 4.3, according with the decay width values given in the
previous column of the same table [1].

4.2.3. Vertices for Resonance Terms

The YNR™ Vertex

For a spin—% nucleon resonance, the coupling to the photon that preserves gauge invari-

ance is analog to the coupling of the nucleon to the photon given by Eq. (4.59). In this
case, the first term of Eq. (4.59) is absent because the difference of the masses of the
resonance and the nucleon leads to violation of gauge invariance. Therefore the effective
vNR* Lagrangian is given by

e —
gﬂ/NRi = im\lﬂvraﬁ (Ii; + /@%7’3) \I]RFaﬁ + h.C., (473)
N R

where Ky = k3, + K%, and k) = K3, — K}, are the transition magnetic couplings for the pro-
ton and neutron targets, respectively and the operator structure for I'y5 is I'og = V5043
for odd nucleon resonances (R™), and I'yg = 04 for even nucleon resonances (RT).
This vertex is similar to the YN N vertex given by Eq. (4.59), except that the first term
in the right-hand side of this equation is abscent because its presence violates gauge
invariance due to the mass difference of the resonance (R) and the nucleon (V).

From Lagrangians (4.15) and (4.73) we obtain the tree level Feynman diagrams of
Fig. 4.4.

The Transition Magnetic Moments: /@1;(")

The transition magnetic moments will be conveniently expressed in terms of the experi-
mental helicity amplitudes A5™ [39].

2
First, the decay width for the process R — N is given by [27]

dQ  2Mp 1672 /s

| M |2, (4.74)
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N(pi) ) N (pr) N(pi) ) N (p)

Figure 4.4.: Feynman diagrams for resonance excitations (X = R, A, D): (a) direct or
s-channel, and (b) crossed or u-channel.

where
ekp

M, = mu(]?f) (¢ u(pi), (4.75)

with €§ the photon polarization vector, and |Mg|? is given by

M= S S S IMp (4.76)

Si Sf A
=5 (s ) e+ ok, + ok )
3 (MN%RMRYM@EP. (4.78)

Then, integrating over the phase space, one obtains the radiative width

273
€kn |k
Tpoon=(—2—) &4 4.79
foan (MN+MR> T (479)
)
_(__ctn kP2 MG — M (4.80)
MN+MR ™ 2MR . ‘

Second, the decay width of a spin—% resonance can also be determined in terms of
the helicity amplitude (A45™) for the excitation of the nucleon into a resonant state of
2

helicity- through [39]

K12 My i1
r — I v ez, 481
R — N T MR’ 5 ’ ( )
therefore
2 Mp + My (n)|2
eK =2M — | |A% . 4.82
(erir) N(MR—MN>’ 3| (4.82)

In Table 4.4 we present their absolute values, according with the ranges of the values of
the helicity amplitudes given in the previous column of the same table [1], but their sign
will be determined by the best fit.
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Resonance Agfl) (Gev™2) |k | |k

Py1(1440) _%%275: & (?5'(5)39 0.403 — 0.601  0.363 — 0.571
S11(1535) || { _8'8;5: 0_‘%9(2)84 0.429 - 0.957 0.789 — 0.862
S11(1650) { 8:812 B 8:823 0.129 - 0.327 0.102 — 0.172
P(1710) || { _()(')(.)ggoio('fg’g ¢ 0-218-0.310 0.050 - 0.505

Table 4.4.: Estimated transition magnetic moments for the spz'n—% nucleon resonances.

The YNA Vertex

With respect to the yNA vertex, the so called normal parity decomposition (G1,G2)
given by [12, 40]

ZLonva = ieW T3TEW A + hec., (4.83)

Qv

which will be described below with more detail, has been widely used.

However, another decomposition based upon the same idea as the Sachs form factors
for the nucleon is also possible [32]. This decomposition, known as the covariant mul-
tipole decomposition (Gg,Gpr), is directly connected to physical quantities, such as the
electric and magnetic multipoles which are of great interest from both experimental and
theoretical points of view [13, 40]. This second decomposition is equivalent to the normal
parity decomposition when baryons are on shell as we will show below [35].

e The Covariant Multipole Decomposition (MD)
The yNA interaction Lagrangian is given by

ZLyna = ieW TP UL AY + hee, (4.84)
where I’%D) is written in a covariant multipole decomposition as [13, 40]
I‘S\;[/D) = G]\JK;I\/JV + GEKEV' (4.85)

G, and G are the magnetic and electric form factors of the A resonance, respec-
tively, and the tensors Kj;, and K, are given respectively by

' 3
= _72MNEMGM/3P%5, (4.86)
and 6
E _ M B_ A Y 1.0
K, =-K,, - ML SM(AM) €uras Pk €, 15 DAK 175, (4.87)

with P = %(p, + pa) for the s-channel, P = %(pf + pa) for the u-channel, XM =
My + My, and AM = M, — My.
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The Normal Parity Decomposition (NP)

The most general electromagnetic interaction Lagrangians are given by [41]

. Gy =
LOs = ie— T T30,\(X) 15U F + hec., (4.88)
and o
29, = _eQ—A;QE’;TgeW(Y)%(amN)FM +h.c., (4.89)
N

where the tensor ©,, was defined in Eq. (4.26) and X and Y are off-shell param-
eters.

With X =Y = £ [19] and A = —% [35], as it was discussed above, we obtain the
so called normal parity decomposition [12, 40, 42] for the YN A vertex

Lona = ieUTTND WU A + hee., (4.90)
where
LD = —i Q%N,%j}y — 2%%,%;2” , (4.91)
with the standard normal parity set (%1,/,%2”) defined as
Ay, = (kv — kg )5, (4.92)
and
Hyn, = (kyPy = (P k)gu )75, (4.93)

in accordance with the notation of [40].

Relation Between the MD and NP Sets

For this purpose we have to make use of the following “non-trivial” relation [35]

Eaﬁ;wAuBy'Yfi = (A B — AB)UCYB + Z'B('YQAB - r}/ﬁAa) - Z'A('YaBﬁ - WBBQ) (4'94)
+ Z'(AQBB — ABBQ).

By taking A = P and B = k, we get in general that

fuuaﬁpakﬁ'% = Yy [(P k- Pk)%/ — (kP, — PkV)] + i(kPM - Pku)'yv (4.95)
- Z(P k- P%)g/.tl/ + i(k,upl/ - P,uk:l/)'

In the limit case of A on-shell,

EZ%L =0, EZ Pay = 0, and EZ pA = MAWZ, (4.96)
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from which we obtain, in terms of the standard parity set (Jifl}w %2”) that
eap POk’ =i My, + 0] (4.97)
The tensor K, then becomes
K, = —iKy [Madt), + 2] (4.98)
here K 5
r = ——.
e = oMM
Next, we make use of the identity
\ Guv  Guy  Gus
—€uaB € v = (Gav Yoy Gad| s (4'99)
9y 9By 985
from which we obtain (for A on-shell) that
eu)\ozﬁel/)\fyépakﬁpzké = _(pA . k)(kﬂpl/ - (P : k)g,ul/)’ (4100)
therefore
€pnap € s PURPpIK (ivs) = —i(pa - k) A 0, (4.101)
and 3Mx+ M
, +
K, =iKy [MA,%j}V | BMa + My) AAM N)Jiffy} : (4.102)
where we have made use of
2pa k= M2 — M2, (4.103)
Finally, from Eq. (4.98) and Eq. (4.102) we get
. 3Mx + M
TP = ik, [(GM — Gg) My, + (GM - 72 7 NGE> %2”] : (4.104)
which is the expression of I‘%D) in terms of the standard parity set (%11,, %2,/)
Comparing Eq. (4.104) to
e Ga
D = — H, — A 4.105
pv ? |:2MN Qv 2M]% pv| o ( )
we find that o
2]\41,N — (G]\/j _GE) MAK]M’ (4106)
and G 3Mx+ M
2 A+ My
e = - <GM My GE> Ky (4.107)
By using the effective values of G, and G given by [35]
Gy =297£0.08, and Gy = 0.055=£0.010, (4.108)
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we obtain that
G1 =493, and Go= —2.68. (4.109)

From Egs. (4.106) and (4.107) we obtain that

1
GM:_

[t Mg, . (1110)
and
Gp = é [%Gl + %Gg} , (4.111)
which agree with Eq. (54) of Jones-Scadron’s paper [40] if we identify
GhL— G = 2G71N, and Gy — G = QGTQJQV (4.112)
With G; = 4.93 and Gy = —2.68, then
15 =262GeV!, and G = —1.51GeV 2 (4.113)

The Ratio of Electric Quadrupole to Magnetic Dipole Amplitudes for A(1232)

The ratio of electric quadrupole to magnetic dipole transition amplitudes Rg,, in the
process YN = A is an important quantity by means of which theories for effective forces
between quarks are tested in order to understand the structure of hadrons. However,
from the experimental point of view, the determination of the Ry, is not precise, current
measured values of electromagnetic helicity amplitudes lead to different values for the
Ry, which range from —0.034 to —0.010 [1].

The Rg,, is defined by [13, 42] ;

By

RE]\J - 9
fMl

where the M; and F, multipole amplitudes of the resonance production YN — A, are
given, respectively by

(4.114)

—

e | |k
6\ MMy

e [Mx - |k [ G Ga
=R k= M, —= 4.11
Je, 3V M, |EM 2MN+ oMm2 | (4.116)

which may be written, by means of Eq. (4.106) and Eq. (4.107), in terms of the Sachs-
type form factors G,; and G as

e My -
=—/—k 4.11
Fin = 537\ 3 ¥ G (4.117)
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e MA g 2MA g
=— \| —— k| =——=1k| G&. 4.118

Finally, in the A-rest frame, the photon momentum is

and

. M2 _ M2
e ——] 4.119
F = = (4.119)
therefore the Ry, is expressed as
Je Gp
Ry =2 =——-. 4.120
o fM1 Gy ( )
The values G, = 2.97, and Gz = 0.055 give the ratio
Ry = —0.0185 = 0.0039. (4.121)

The YND Vertex

The difference of this case with respect to the previous one is that this resonance has
opposite parity and, both the I = 0 and the I = 1 components of the photon contribute.
Thus the yN D interaction Lagrangian is similar to the yNA interaction Lagrangian
given by Eq. (4.90) if we make the replacements

1
Gi = 5GP+ Gim), i=1,2 (4.122)
and
T“Tg — 0. 4.123
A D
Therefore
_ 1 1
Lowp = eV | 7 (Gl + GY71) Ky, — 7 (G5 + Goma) A, | 1 WnA” +hie., (4.124)
N N

where the isoscalar and isovector electromagnetic couplings G and G are defined by
G” + G and GY — G, respectively, with G} = —5.570, G} = 0.624, G} = 0.853, and
7 =0.100 [12].
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5. The Spin-2 Propagator

In this chapter we present the general form of the total nonrenormalized propagator
for the massive Rarita-Schwinger field with all spin components. In addition to the
leading component of spin—%, the massive off-shell spin—% field incorporates two spin-
% components, which cannot be eliminated from the amplitudes. In general, for the
massive off-shell fields with spin J > 1, there are contributions involving the spin-(J —1)
sector in the effective amplitudes [43]. The case of the renormalized propagator will be

considered at the end of the chapter.

5.1. Free (Bare) Propagator

Applying the Euler-Lagrange equations to the Lagrangian for the free spin—% field given
by Eq. (3.16), we obtain the wave equation for the spin—% particle

V% =0, (5.1)
where

i

‘EMV = A;wz gaﬂ (23 - MX) + 3

1
<7“<‘7W3 — 797 — 9%’ ) + 5 Mx7™y” } Ay

= (z@ - MX) Guv + 1A (0 + 1,0,) + % (3A2 + 24+ 1) Y@V
+ (BA% +3A+1) Myy, - (5.2)

Eq. (5.1) leads to the constraint equations
7, ¥% =0, and 9,¥% =0, (5.3)

which are necessary to eliminate the redundant components of the free spin—% field Wh
from sixteen to eight (four spin projections for the particle and the other four for the
anti-particle). However, in the presence of interactions, these constraints do not hold
in general, but it is possible to derive the necessary number of constraints for a certain
type of interactions [19].

The propagator for the free spin—% field is [34]

4 .
d’p v e~ (z—y) (5.4)

O VT I0) =0 | G |
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5. The Spin—% Propagator

where the operator d,, (0) is given by

Iy 1 1 2 1 A+1

dl“/(a) = (Za_F MX) |:ng/ - gr}//j%/ - 3MX (’yﬂal’ _ryl’aﬂ) + 3M)2( aﬂa’/:| - 3M)2( 24 +1
i A+l A A ,

X [<§2A+1$_ 2A+1M >%ﬁu+wuf9 +12A+1 7,0 } O+ M3). (5.5)

In momentum space, the free propagator becomes [17, 19]

i(p+ My) [ 1 1 2 ]

G =7 =7 Z — I
uu(p) pg _ M)% + iﬁ guy 37#71/ 3M (W;pr Wl/pu) 3M)2( pupu
1 A+1 A+1 A M N A
BMZ2A+1 [\2QA 1 )P T 2A 1 X ) W Wbyt o Wl -
(5.6)

On the other hand, as it was stated in Sec. 3.4, the physical properties of the free field
are independent of the parameter A, which we have taken equal to A = —% [21, 31].
This choice yields the expression for the bare (unperturbed) Spin—% propagator [31, 33]

W(P) = m Guv — g’m% - M(’M% - ’Yupp) - mpupu
.2
+ Z@ [(}5 + MX) Yu Vv + Yuby — 'Yup“] > (5-7)
differing from the traditional choice A = —1 which leads to the well-known Rarita-
Schwinger propagator [11, 12]
Z(}” + MX) 1 1 2
GR35 (p) — _ = _ S —— . 5.8
puv (p) p2 . M)Q( + e |:g;u/ 37#71/ 3M (W;pr Wl/pu) 3M)2( pupV:| ( )

Spin Operators

It will be convenient to consider the set of spin operators [33, 43]

3 2 1 1

(P> );w =9w — 3—p2pupu - g’m% + 3—292(%171/ - %Pu)?, (5.9)
1o 1 1

(Pn)uu = g'}’;ﬂ/u - 3—]92pupy - 3—])2('7;1171/ - ’vau)% (5'10)
1 1

(P)pw = 3 Pubu: (5.11)
. o 3 1

(P31 = ;@( 0™ PPu: (5.12)
3 . 3 1

(P12)ul/ = E?)—])Q (_Zauap )]ﬁpw (5 13)
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5. The Spin—% Propagator

which satisfy the orthonormality condition
(P{j)MA(PILc]l)AV = ( Z,II)NV 61J(Sjk, (514)

and the commutation and anti-commutation relations

1

§ = 07 f . .7
[pa (P%)My] = 07 and [p7 (szl)u ] ne J (515)
{47/57 (P@?’)W} =0, if i # j.
1 1
From these, P %, Py, and Pg,, are projection operators
3 1 1
(PQ )mx + (P121)uu + (P222);w = Guv, (5-16)

1 1
while P, and P, are nilpotent operators [44].
In terms of the projection operators, the bare propagator given in Eq. (5.7) becomes

z'(p + My) 1 1
G (p) = 22+ ic Piy)uw — (Pi1) uw
(5.17)

This expression for the bare propagator in terms of the projection operators will be
useful in next section.

(733)W+z’Mi)2((p+Mx)(P1%1)w+i$p (

5.2. Total (Dressed) Propagator

The bare spin—% propagator is singular at p? = M2 and should be dressed by including
a self-energy (X) which gives to it a width corresponding to an unstable particle [45].
This self-energy includes the lowest order 7N one-loop contribution of Fig. 5.1 as well
as other higher order contributions which will not be considered here.

The expression for the corresponding dressed propagator (é‘“’) is more difficult and has
not been solved conclusively yet. In this work we will make use of the analytic expression
for the propagator given in Refs. [33, 44| which takes into account all spin components.
The dressed propagator is obtained by solving the Dyson-Schwinger equation [30]

G/J,l/(p) - G/J,l/(p) + é,ua(p) Eaﬁ(p) Gﬁu(p)a (518)
or equivalently for the inverse propagators
é,uu(p)il = G,ul/(p)il - EHV(p)’ (519)

where the one-loop self-energy correction is given by

2“”<p>=—i<fm>2/ <d4v PP (5.20)

Mo 2m)4 (p + v)2 — M3 v2 — m?2
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5. The Spin—% Propagator

Figure 5.1.: One-loop wNN self-energy correction to the spin—% propagator.

We evaluate the discontinuity of the loop according to the Cutkosky rule [27] by replacing

1
P2 —m2

— —2mid(p* — m?) (5.21)

in each cut propagator, from which 3#¥(p) becomes [33]

A fonx ) d*v 5
S (p) =z<fmw ) [ e 4+ 2 o 6(<p+v>2—M§)6(v2—miz5- .,

0

Integrating over v” we obtain

y A fanx 2 By , 1 p? +m2 — M?
E,LL (p):1<27rmﬂ_ ﬂ(p‘i_?é‘i‘MN)fU“’U Wé w7r+—N X

x 0 (p? = (My +ma)?),
where w2 = |7]? + m2.
Evaluating the volume integral, taking into account that [ d*¢' = 4 [ |5|? d|¥|, we obtain

10
S (p) = 3 TP, (5.24)

=1

where the projection operators (P;)* are defined in terms of the spin projection opera-
tors given above by

1
2

(P™ = AF(PR™,  (Po)™ = A~(PEI™,  (Py)™ = AT(PR)™,
(P™ = A=(PR)Y™,  (Ps)™ = NH(PR)™,  (Po)™ = A~ (PR)™,
(Pry = NF(PRI™, (P = A (PE)™, (P = A+ (PR,
(Pro)™ = A~ (PR, (5.25)

32



5. The Spin—% Propagator

\/p? + _
with AT = 21)7\/,2?, and the coefficients J; are given by [33]
p

T T . fTrNX 2 IO (\/ p2 + MN)2 - m2 2 ) )
=Jy=— 7r M 2
Jl J3 ? <27Tm7r 12p2 4\/]? )‘(p ) N7m7r)7 (5 6)
7 7 . fTrNX 2 Iy (\/ p2 - MN)2 —m?2 2 2 2
= = T M -2
Jo=Js =1 <2ﬂm7r 122 4\/1? AP, My, mz), (5.27)
— (Jenx Vo Do [P MO)EPmE |, a2
=5 —= | — T - M 2
= . waX 2 Iy (\/]72_]MN)2_WL2 9 9 212
=g == ) — s - M 2
Jo = Je = Jo = o =i [ Lzx > [3 (p? — M2 +m2) A(p?, M2, m2), (5.30)
2mm, ) 48p2\ p? N i N
where
)‘(waya Z) = (.YJ - y)2 + (.YJ - 2)2 + (y - 2)2 - xZ - y2 - 227 (531)
and )
Iy = —2p N (p2, M2, m2) © (p2 (M + mw)2> . (5.32)

By replacing these results into Eq. (5.18) we obtain the following expression for the
dressed propagator

- i [ (p+My) 1 My, 2
Gup) =1 7 { <5 |9 = 3w~ = (YuPy — Wby) — 3PPy

p? — M3 3p?
YE/3 - %G _AE/3—AG YE/3 - %G _AE/3+AG
92 P N TuPy 2?2 P 2/ TPu
L1 1 [AE3+AF-2AG  SE/3-%XF
3 2) / p fYM v p2 5 p—Q 5 p,upl/ ,
(5.33)
where AE=FE, — E_,Y>E=FE, + FE_, etc. with
J. J. ~
A T e e
E, = , Fu=" LR g =X TR (53
—M2+B:|: —M)Q(—l-Bi —M)Q(—i-B:t
++/p -2 +\/p
Ay = 3(J5 *Jo) = 2(1 ‘]2 (5.35)
1—Js
B. = 2My (J1 + J3 £ V3J7 F /p2Js) + 2/ D2 (FJ3 + /P2 Ja) +J1 (5.36)

(1—J3)?
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5. The Spin—% Propagator

and the effective mass term, My, is defined by

My + J1
1—Jy

My (5.37)

The J; coefficients are defined in terms of the .J; coefficientes given in Eqgs. (5.26) - (5.30)
by means of
Jon—1 + J- Jop—1 — J:
Jop_q = 221 1+ M and Jy, = 22n=l e
24/p?

2
Finally, in terms of the spin projection operators, the dressed propagator becomes

n=1,---,5. (5.38)

- i p+Mx s 1 ! 1 !
Gﬂy(p) :1 A {pg — M)% (P2)MV - §EE (,Pfl)MV + WAEp(,Pﬁ)MV
Lop ps ! by V3 3 ;
- 3IF (P — AP P — G (Pl + (Pl
V3 1 1
508 | (P~ Pl - (5:39)

5.2.1. The Complex Mass Scheme
The effective mass term defined above is given explicitly by
MX + Jl
1—Js
= (Mx+ )1+ T2+ J5+-+)
=My +Ji+ MxJo+ -+ (Vp*Ja — VP J2)
= Mx + (i + Vp* o) + (Mx — V/p?)J2 + -
= My + 1+ (Mx — V/p?)J2 + O(g"), (5.40)

My

where we have made use of J; = J; + /p?Js and g = ff;n%
By neglecting terms of the order O(g*) and O((Myx — /p?)g?), which are expected to
be small in the resonance region (\/p? ~ My), the effective mass term is then given

approximately by

2

~ I VP + My)? —m?

My o My —i [ L22% 0 (WP My)7 = ma )y 02 a2 m2). (5.41)
2rmy ) 12p? 44/ p?

On the other hand, according to the complex-mass scheme (CMS), which is the most
straightforward method to describe unstable particles in perturbation theory [46], the
effective mass is given by

My ~ My — %Fx(s), (5.42)
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5. The Spin—% Propagator

where I'y(s) is the energy-dependent decay width of the resonance, with s = p?.

Comparing Eq. (5.41) and Eq. (5.42) we find that the decay width, I'x(s), becomes

2 1 (\/§+ M )2 o m2 3
() = 4o 7 T AZ (s, My, m; 5.43
X(S) 47Tm?r 1252 4\/5 2 (S’ N7m7r)7 ( )

which agrees with the expression for ' _, .5 given in Eq. (4.39) when /s = M.

5.2.2. The Renormalized Propagator

The renormalized propagator, G}, (p), is defined by [33]

G,uu(p) = (1 - JQ)ilGﬁy(p% (544)

where the factor (1 — J;)~! is absorbed as a component of the X wavefunction renor-
malization constant.

By keeping terms of order g2 in the coefficients of the projection operators in Eq. (5.39),
the renormalized propagator becomes

.2 ~ 1 . 3 1 1
5 0) = EE P+ i (ot V(P + ﬁp—% (Pl — (P
(5.45)
Then, by comparing Eq. (5.17) and Eq. (5.45), we conclude that the form of the renor-
mailized propagator is, up to order g2, identical to that of the bare propagator under

the replacement My — My = My — %I’X(s).
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6. Scattering Amplitudes

The central problem in the study of scattering processes is the calculation of $-matrix el-
ements between on-shell states. Given the interaction Lagrangians, %, which describe
the interactions involved in pion photoproduction, the S-matriz is [27, 32]

§ = 7o) e Limle), (6.1)

where .7 denotes the time-ordered product of the meson, nucleon and photon field op-
erators.
The $-matrix has the following structure: if the particles involved do not interact at all,
then $ is simply the identity operator (1), but if the theory contains interactions, we
define the T-matrix by

S=1+:4T, (6.2)

from which we define the invariant matrix element M by [27, 32]

(P, 718 — 1| i, E> = (27?)454(])1 +k—p—q)iM(p, k= pr,q), (6.3)

which is useful because it allows us to separate all the physics that depends on the details
of the interaction Lagrangian (dynamics) from all the physics that does not (kinematics).
In the following sections we present each of the analytic expressions for the amplitudes
contributing to pion photoproduction off the proton (as well as neutron, for the sake of
completeness) at the tree level, without including form factors. It is worth to mention
that at low energies, the use of a pseudovector coupling scheme in pion photoproduction
is favorable in the energy region near threshold but starts to diverge above the delta
resonance region in comparison with the current available experimental data. Later
we will calculate the same amplitudes by including form factors which account for the
structure of the interacting particles not included in the model, or to reqularize those
quantities which would otherwise be divergent.

6.1. Born Terms

1. Nucleon

To first order in e and f,yy, the Lagrangians (4.1) and (4.59), yield the invariant
amplitudes for the nucleon term

iy, = e, [Wp R (1o ¢k>] ), (64)
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6. Scattering Amplitudes

[ Iy | L. | L
Channel | pr— pr® nrt x| pr  pr® nat onx® | prm pr® nnt na®
vp 0 1 =2 0 0 0 V2 0 0 V2 0
n V2 0 0 —1]—-/2 0 0 0 | v2 0 0 0

Table 6.1.: Isospin factors for nucleon Born terms.

for the s-channel in pion photoproduction on proton, where I is an isospin factor
given in Tab. 6.1, and

pk+

f‘rrNN
%= I
IMy - QMN N (pr) | V54

ﬂé] u(pi); (6.5)

for the s-channel in pion photoproduction on neutron.

For the u-channel,

iMy = — f’r INu(pf) [(#- ﬂé) 1 iéj\_@v 754 u(pi), (6.6)

for the processes vp — 7’p and yn — 7~ p, and

¥+

Mg, = el By )[%%priM%ﬁ] up), 67)

0

tn and yn — 70n.

for the processes yp — &

. Kroll-Rudermann (Contact)

The Lagrangian (4.60) yields the invariant amplitude for the Kroll-Rudermann
term of Fig. 4.2a
fﬂ'NN

IM. = *e
My

L. u(p) [v5¢] w(ps), (6.8)

where the (+) sign corresponds to 7" photoproduction and the (—) sign corre-
sponds to 7~ photoproduction. I, is an isospin factor given in Table 6.1.

. Pion in Flight or ¢-channel

To first order in e and f,yy, the Lagrangians (4.1) and (4.61), yield the invariant
amplitude for the pion in flight term
iML = f’rNN I

My t—

5(pr) [v5 (4 — K)] w(m), (6.9)

s

where I is an isospin factor given in Table 6.1.
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6. Scattering Amplitudes

[ I, | L,
Channel | pr~ pr® nxt  an® | prm pr® nxt  na®
vp 0 1 =2 0 0 1 0 0
n V20 0 -11 0 0 0

Table 6.2.: Isospin factors for p and w mesons.

6.2. Vector Meson Terms

To first order in e and g,yy, the Lagrangians (4.6) and (4.64), yield the invariant am-
plitude for the p meson term
A €opav€ q“ko‘

z’Mt +e—L0 0
My t—m

(pr) [gme +%g’}(}z P (q—k)ﬁ} u(ps),  (6.10)

where the (4) sign corresponds to 7+ photoproduction and the (—) sign corresponds to
70 photoproduction. I, is an isospin factor given in Tab. 6.2.

Similarly, for the w meson term, the Lagrangians (4.8) and (4.66), yield the invariant
amplitude

a(ps) [QWNNW +%g‘}(}§ g - k)g] u(pi),  (6.11)

where 1, is an isospin factor given in Table 6.2.

6.3. Resonance Terms

1. Spin-; Resonances of Negative Parity: S11(1535) and S11(1650)

To first order in e and f, yx-, the Lagrangians (4.15) and (4.73), yield the invariant
amplitudes for the negative parity resonances of spin—% (R7)

s fTr p % -
M = i Sy mz—ﬁé up)  (612)
for the s-channel, where /ffr = /sfr (k7_) for pion photoproduction on proton

(neutron), and I is an isospin factor given in Table 6.3.

For the u-channel,

u fTrNR pf k MR,
’LM M. E};WIR u(pf) ¢kZ—M§7W5g u(pl), (613)
where li?{ = /<; _ for the processes vp — 7% and yn — 7~ p, and /<; = K" for

0

tn and yn — 7¥n.

the processes yp — 7
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6. Scattering Amplitudes

2. Spin-1 Resonances of Positive Parity: P;;(1440) and P;;(1710)

Similarly, to first order in e and f, yp+, the Lagrangians (4.15) and (4.73), yield
the invariant amplitudes for the positive parity resonances of spin—% (RT)

 fonnt K + k +
iy = ielzs Eany i Lo B M ) Gy
for the s-channel, where /sf% = HZI;+ (k7. ) for pion photoproduction on proton
(neutron).

For the u-channel,

u frrNR+ + }’jf k + MR+
iMy. =ie o 21;\411% u(ps) ¢k1_—M§+’YS¢ u(pi) (6.15)
where «’ = KZ . for the processes vp — 7% and yn — 7~ p, and KZ = K, for

0

*n and yn — 7¥n.

the processes yp -

3. Spln—— Resonances of Isospln—— P33(1232) and P33(1600)

To first order in e and f,.ya, and following the covariant multipole decomposition
(MD) or the normal parity set (NP), the Lagrangians (4.23) and (4.84), yield the
invariant amplitudes

fﬂ'NA
e

™

iMs = L a(pr) [qu iGHe (pA)raﬁeﬁ] w(pi), (6.16)

for the s-channel, where I, is an isospin factor given in Table 6.3, G (p,) is the
spin—% propagator discussed in the previous chapter and I'yg = I’%D) (I‘%})).

For the u-channel,

fTrNA

s

IMy = Fe

IA H(pf) [fuuey iGﬂa (pA)Qa U(pi), (617)

where T, = T\)” (Tin), with

F;u/ = VOFLVWOa (618)
and I'y, = T”(In”). The negative (positive) sign corresponds to 70 (7%)
photoproduction on proton.

4. Spin-3 Resonances of Isospin-3: D;3(1520)

To first order in e and f,yp, the Lagrangians (4.40) and (4.124), and following the

normal parity set, yield the invariant amplitudes

LIV

iMy, = —ie T2 Ly () 150, 0GP (pp) K iP5 | ulp),  (6.19)

s
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6. Scattering Amplitudes

| T | Ia

Channel | pr~ pr® nrt x| prm  pn® nxt nx

p 0 I —V2 0 0 2/3 V2/3 0
yn V2 0 0 —1[+v2/3 0 0 2/3

0

Table 6.3.: Isospin factors for isospin-3 (R, D) and isospin-3 (A) resonance terms.

for the s-channel in pion photoproduction on proton (neutron), where I, is an
isospin factor given in Table 6.3, and

K = 1 2 2
of T 2My Hai 2M2‘%/ (6.20)

In the covariant multipole decomposition, it may be written as

’L’MS o ef‘rrND
D=

Lo @(pr) | 350 1G4 (po) T8 €5 | (), (6.21)
where T'j,”) is given by Eq. (4.85).

In this case, the magnetic and electric form factors of the D resonance, G4, and
G%, are given, respectively by

1 (3Mp+ M AM
Gh == = TGP+ Gh 6.22
M6 [ M,y My (6:22)
and AM AM
Gh=-|—Gl+—G} 6.23
P06 [ M, My } (6:23)
With G} = —5.570 and G = 0.624, we obtain the values
Gh, = -3.298 and G = —0.288. (6.24)
For the u-channel,
iMy, = —i ol = 1o U(pr) [v5 K€’ GH (pp) qays)| u(ps), (6.25)
where K,3 = K QE for the processes vp — 7'p and yn — 7~ p, while
n+ — 1 G2
Kyp=K);= Ji/ Ji/ (6.26)

B 2My T om
for the processes yp — 7tn and yn — 7%n.

Similarly, with G =0.853 and G5 = 0.100, we obtain the value of the magnetic and
electric form factors, G, and G, respectively

G" =1575 and G7. = 0.064. (6.27)
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7. Gauge Invariance and Form Factors

Gauge invariance is one of the central issues in the description of the interaction of
photons with hadronic systems. In the case of pion photoproduction off the nucleon
at the tree level Feynman diagrams, this condition is guaranteed with bare, point like
particles. However, the tree-level (total) amplitude is no longer gauge invariant if one
makes use of (off-shell) hadronic form-factors to account for the internal structure of
extended particles such as mesons and baryons which are not point-like.

In order to preserve gauge invariance, we will need to construct additional current con-
tributions beyond the usual Feynman diagrams to cancel the resulting gauge-violating
terms.

For bare nucleons, the tree-level amplitudes may be written as [22, 23, 24]

1
iMg = ef;ZrN Iy Z;Aj a(pr) [eaM] ulps), (7.1)
=

which represents an expansion based on the operators

¢ = =k, (7.2)

MG =275 (pr- kpi' — pi - kpf), (7.3)

M =75 (pi - kY = pF) (7.4)

MG =75 (pe- kY™ —pik) (7.5)

where each of the operators MY, --- , M¢ is gauge invariant by itself, that is k, M = 0.
The coefficient functions Aq,--- , A4 will be calculated below for each of the processes

vp—nnt and yp — pr?, respectively.

7.1. Coefficient Functions

1. yp—nat

The terms inside the brackets of the amplitudes given by Eq. (6.4), Eq. (6.7),
Eq. (6.8), and Eq. (6.9), factoring out the polarization vector €,, become respec-

tively
(1+kp) C 1+ kp)
) o foysy® — —P o oy — Lo N e
py v LR Ry v vk P N 57K
AM, 2,
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7. Gauge Invariance and Form Factors

Kn Chn Kn
I 2pt - k57 + VP 2p¢ - ks — I 2My vy
2Ky
—757% (7.8)
and 4N, 4N,
N a N (e7
o TN 7.9
t—m%pl V5 t—m%pf 75, ( )
K K
where C), = ﬁp? and C), = MnQ

Then, the contrlbutlon to the total 71 photoproduction amplitude given by the nu-
cleon s- and u-channels, the contact term, and the pion t-channel to the expansion
given by Eq. (7.1) leads to the coefficient functions

A; = 2My <81_+ ]\Ii[% + - f?wg) + ”’;L:" (7.10)
AM,

A= TR0y (711

Ay = - E“&I% (7.12)

Ar=- i’ﬁ]’\}% (7.13)

From these we can see that the terms proportional to M, M§ and MY arise from
purely magnetic contributions (k, and ;) and therefore are always gauge invariant
by themselves, regardless of whether one uses form factors or not. The problem
is with the term Ao which arises from the sum of the electric contributions of the

nucleon s-channel and the pion t-channel, this is known as the As problem [22, 23,
24].

. yp— pn°
Similarly, for the process vp — p7?, the terms inside the brackets of the amplitudes

given by Eq. (6.4), and Eq. (6.6), factoring out the polarization vector €,, become
respectively

((91—+7M2) 2pi -k sy = CMz 2pi - ks k- LMQ) 2My 57k

* le—Mz\I}g Ml EK]@% sk (7.14)
and

ujiMz)pr kysy® + —M2 2pg - ks K — (uljiMﬁ)zMN Nl

. 4MM2 P s — iﬁ&% pE s k. (7.15)
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7. Gauge Invariance and Form Factors

In this case, the contribution to the total 7° photoproduction amplitude given by
the nucleon s- and u-channels to the expansion given by Eq. (7.1) leads to the
coefficient functions

Ay = 2My (1 + k) (S _1M£ + - _1M£> + ]\Z—i (7.16)
Ay = - im&% (7.18)
A= 35]1(413 (7.19)

which differ a bit from the previous case because the contact and pion t-channel
terms are abscent in 7° photoproduction (see isospin factors, Table 6.1).

7.2. Form Factors

We now consider the nucleons as composite objects by introducing a momentum depen-
dent strong form factor at the tNN vertex of each Born term

F = Fl(s) - f[(pi + k)27 Ml\217 m72r]7 (7'20)
Fy, = FQ(U) = f[M1\217 (pf — k)27 m72r]7 (7'21)
Fy = F3(t) = f[Mg, Mg, (pi — po)?], (7.22)

which are chosen as a function of the squares of the four momenta of its three legs [22,
24, 23].
The total amplitude given by Eq. (7.1) then becomes

4
Jovny o) |3 A0M + M2, | u(), (7.23)

My

iM,=e

J=1

+

where the coefficient functions for the process yp — naw™ are given by

A1 — A = 2M, (F{S(iL’E”) uf}'j@g) Fl“g]‘\;f?“", (7.24)
AFM

Ay — Ay = o Mg) (tN_ 2y’ (7.25)

Az — Al = 55 1]\’}’%, (7.26)

Ay — A, = umf Q;Z%, (7.27)
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7. Gauge Invariance and Form Factors

and the additional gauge-invariance-violating term, M€, is given by
(FL = F)pf | (F3 — F)g”
M =4M ! -1 e, 7.28
vio N’y5 ( s — M1\21 + t _ m72r + ( 1 )757 ( )

It is important to mention that, after including the form factors, the additional form
factor F in the coefficient A, is undefined and has been included “strategically” in the
following way

Fi(t —m2)pd + Fa(s — M) (pf' — pf) — Fa(t — m2)p{* + F3(s — M) (0 — pf)
T (= M2 — Fu— M)yt
+Fls — M3)pf — Fls — M)pf, (7.29)
from which, with s — M2 = 2p; - k and v — M2 = —2p; - k, we obtain that
Fi(t —m2)pf + Fy(s — M3)(pf = pf) = 2F (pr - kpf' = pi - kpf) + (F1 = F)(t —m2)p!
+ (Fs = F)(s — M{)q®, (7.30)
where ¢ = p; — ps.
In this way we have isolated the gauge-invariance-violating term given by Eq. (7.28) in
a form that makes the comparison with Eq. (7.1) easier and the full amplitude iMj, does
not depend on it since the sum of the F contributions from Eq. (7.28) exactly cancels
the A} term.
Notice that the pointlike Born terms are recovered by setting all form factors equal to
unity.
In order to restore gauge-invariance we have to introduce an additional contact current
(that is, a term free of poles), M, with on-shell matrix elements cancelling exactly the
gauge-violating term given by Eq. (7.28), that is
€ali(pr) M u(pi) = —eati(pr) M ] u(pr)- (7.31)

Then by adding this contact term to Eq. (7.23), we obtain the gauge-invariant amplitude

4
f;;vN Iy eau(pr) Z ALMS | u(p), (7.32)

s

iM, =e
j=1

which depends on the undefined form factor F. However, the functional form of F is not
arbitrary, it is constrained because the resulting amplitudes should obey the constrains

imposed by gauge invariance and crossing symmetry. In addition the contact term given
by Eq. (7.31) must be free of poles, therefore Fi(s), Fo(u) and F3(t) must be such that

Fi(Mg) = Fy(M) = Fy(m3) = 1. (7.33)

Then, for example, one possible choice for the form factor F which satisfies the above
constrains is [24]

]:(s,u,t) = Fl(S) + FQ(U) + Fg(t) — Fl(s)Fg(u) — Fl(S)Fg(t) — F2(U)F3(t)+
+ Fl(S)FQ(u)Fg(t). (7.34)
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7. Gauge Invariance and Form Factors

Similarly, the coefficient functions for the process vp — p7® are given by

Ay — Ay = 2My (1 + k) (S _F}wg +- _F§w£> + Q’EN (Fy + Fy), (7.35)
4F M,
2= A = T - ) 70
Az — A = ff 1]\’}”%, (7.37)
Ay — A, = uﬂj 2]723’ (7.38)
and the additional gauge-invariance-violating term in this case is given by
M, = 40y <(F; - Qg’? o j\?f ?) F(F - Bt (739)

7.3. Scattering Amplitudes

By means of the above analysis, we obtain the gauge invariant scattering amplitudes
including form factors.

7.3.1. Born Terms

1. Nucleon

For the nucleon term

My
My
+2iMy (i — f)ef L () [75 ! (7.41)
for the s-channel.
For the u-channel,
NN Bn _ P~ K My
iMy = —Z'F2€f;% 2MN\/§U(pf) [ﬂ“%%%] u(pi), (7.42)

for 7+ photoproduction on proton, and

. . NN
iMy = —ngefTr
m

s

mpf)[( ‘- Fop ﬁé) P~ ié;\;]% 754 u(p)  (7.43)

a(p )[¢2pf+j\\j§ 75} u(ps), (7.44)

™

for 70 photoproduction on proton.
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7. Gauge Invariance and Form Factors

2. Kroll-Rudermann (Contact)

iML = —Flef;;w V27 (py) [vs¢] u(pi), (7.45)

K

for 7t photoproduction on proton, and for 7% photoproduction on proton, there
appears a contact (non-physical) term given by

M = ~(F1 ~ Ba)el™ () [ysf] u(pr). (7.46)

s

3. Pion in Flight or ¢-channel

M = =i 2Lt [ (¢ - )] () (747
— 2iMy(F5 — f)ef;r];N \/iz't z;ﬂ u(pr) [v5] w(pi), (7.48)

for 7+ photoproduction on proton.

For the numerical evaluation of the scattering amplitudes, we will choose covariant
vertex parametrizations without any singularities on the real axis. One common
vertex parametrization used is of the form [11]

4
Fi(s) = 7 (SA_ 7 (7.49)
4
Fy(u) = 11 (UA_ Tt (7.50)
By(t) A (7.51)

A (t—m2)?

where A is some cutoff parameter to be determined from the fitting.

7.3.2. Vector Meson and Resonance Terms

The terms corresponding to vector mesons and resonances are all gauge invariant inde-
pendently, therefore do not depent on other prescriptions for restoring gauge invariance.
It is important to mention, that in the case of the spin—% resonances a form factor must

be included to regularize the behaviour of the propagator at high energies.

46



8. Electromagnetic Multipoles

In the study of pion photoproduction via the intermediate excitation of resonances it is
convenient to decompose the initial and final state into multipole components since the
intermediate resonance has definite parity and angular momentum.

In the initial state the photon with orbital angular momentum (L) relative to the target
nucleon

Ly=1,2 -, (8.1)
spin (5:,)
Sy=1, (8.2)
total angular momentum (J_;,)
Jy=Ly+1, Ly, Ly —1 (8.3)

and parity (Py)

P (—1)L for the electric (EL~) — multipoles, (8.4)
T (=)t for the magnetic (M L) — multipoles '
couples electromagnetically [47] to the target nucleon with spin (L)
1
and parity (Py)
Py=1 (8.6)
to produce a resonance with spin (fR)
1 1
JR:JA/—Fi, ny—a (87)
and parity (Pg)
Py=P-P,=P,. (8.8)

The resonance subsequently decays by the strong interaction to the nucleon ground state
via the emission of the pion with spin 0, parity P, = —1 and orbital angular momentum
(L) relative to the recoiling nucleon, such that

1 1
JR:Lw+_, LT('

S Ln— 3 (8.9)
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8. Electromagnetic Multipoles

photon  initial state intermediate state final state multipole

M-pole (L5 U (jF,17)
~ 1+ - + =
E1l (1 7% ) % (% ;0 ) E0+
3= (3*,27) o
M1 (1+,1%) i (3* 1) M, _
+ +
5 (37,17 My
B2 (25,37) g T B
ng (%+53+) E3,
-1+ - + o
M2 (2 a% ) % (% 52 ) M2f
- + o
2 (37,27) Ms

Table 8.1.: Lowest order multipoles for photoproduction of pion meson [2].

and
Py = Py- P (—1)F = (=1)F=+1, (8.10)

Parity and angular momentum conservation lead to the following selection rules

Py =P, = (-1)l=, (8.11)

1 1 1 1
— S J ==L+~ Ly — =, 12
Jr J,ﬁ—Q,J7 5 +2 5 (8.12)

allowing the two possibilities for L,
L,+1, for EL
L, = o Ey (8.13)
L, for ML,.

The corresponding photoproduction multipoles will be denoted by Ej;+ and M., where
FE and M stand for the electric and magnetic photon multipoles, respectively, [ denotes
the relative angular momentum of the final meson (L), and ‘+’ or ‘—’ indicate whether
the spin (1/2) of the nucleon must be added to or substracted from [ to form the total
angular momentum Jg of the intermediate state.

The lowest electromagnetic excitation modes and the corresponding states of the pion-
proton system with the relevant quantum numbers are summarized in Table 8.1. From
this we can see that each resonance can be excited by one electric and one magnetic
multipole, with the exception of spin-1/2 resonances, which can only be excited by one
multipole (Ep4 for negative parity states and M;j_ for positive parity states).
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8. Electromagnetic Multipoles

8.1. Isospin Amplitudes

For the calculation of the electromagnetic multipoles we will use the following isospin
decomposition of the invariant amplitude for a pion with isospin j [2, 11, 32]

M = x; (./\/l0 Tj + M~ [73,7'3] + M* 5J3> i Xis (8.14)

where the isospin decomposition amplitudes M?, M™* and M~ are related to the physical
amplitudes by

M(yp — %) = METP) = pt+ 4 MO, (8.15)
M(yp = )= MT ™ = /2 (M~ + M), (8.16)

for the case of pion photoproduction on proton.
To build up the multipoles it is convenient to change the isospin basis from (M°%, M~ M)

to (./\/l%, pM%, n./\/l%) Both bases are related by means of [2]

M2 =Mt — M, (8.17)
Mz = éM* + %M* + MO, (8.18)
M3 = —éM* - gM* + M, (8.19)
in terms of which the physical amplitudes become
M(yp = ) = MEP) = A5 + gM (8.20)
M(yp = wtn) = MO = /2 <pM% - %M) . (8.21)

Then the invariant amplitudes in the isospin decomposition that shall be needed for the
calculation of the electromagnetic multipoles are given below.

8.1.1. Born Terms

1. Nucleon

IMZT =My = Qf"NN

2M

b (m )]()

u(ps) [%%Z 2
(8.22)

where FY = 1 and Fy = 1.85, according to Eq. (4.53), Eq. (4.56), and the values
given in Eq. (4.57).

(0= il g >[¢w%( 1¢—2MN¢%>] up),  (823)
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8. Electromagnetic Multipoles

where F}7 =1 and F5 = —0.12.

From these we obtain the isospin amplitudes for the nucleon s-channel

. 53 e fann ZI’ k + M,
72
Zp N _12 Mo ( ) [%751 M 2M ( )7 (824)
and s
iMy? =0. (8.25)
Similarly, for the nucleon u-channel we obtain
. g€ fann . Py F+ My
IMGT = —iMy T = i ﬂZrN u(pr) <F1 > Zf_iMl%ﬁ% u(pi),
(8.26)

and

uO ef‘rrNN
IMyY 05 - u(pr)

k+ M

<F1S¢ - ﬂé) i e s | ulp).  (8:27)
- AN

From these we obtain the isospin amplitudes for the nucleon u-channel

Z M“7 2 Ze f‘rrNN ﬂ(pf)

(m— ¢k> b f;}ffvg%] ulp) (329

6 Mg
€ JanN My

and

Muyg o fTrNN —
iMy? =ie——u(pr)
m

s

v _ My
(p;,g - ﬁﬁe) L e m] a(p). (830)

. Kroll-Rudermann (Contact)

iMo = . u(pr) [ivs¢] w(ps), (8.31)
and

iMF=iM2=0. (8.32)

From these we obtain the isospin amplitudes for the contact term

i ME =2 ) (15 ut), (8.33)

and

U(pr) [ivs¢] ulps). (8.34)

s
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8. Electromagnetic Multipoles

3. Pion in Flight or ¢-channel

fﬂ'NN 2

e
IMPT = deF:
i Yy t—m2

(q-€) ape) [(¢ — K) 5] ulps),

and
iMET =iMB0 = 0.

From these we obtain the isospin amplitudes for the ¢-channel

PpMi Y = 2y I (o) ) [(4— K) 3] (),

3 my t—m2

and

ZM:% = —ielY o 0 (q-€) u(pr) [(51 - k) 'YS] u(pi).

My t—m2
8.1.2. Vector Meson Terms

1. p Meson

- . A s 6)\0’ kquEA_ vV gt .
iM:0 = e o t”i —ya(pr) |97 = 57 i (q — k)| ulp),
™ P N

and
y t,+ t,— __
iM)T =iM;T =0.
From these we obtain the isospin amplitudes for the p meson

. t, 1 . eAauuquyeA— v gt . _up
ipM, 2 =ie n;: [ —m? u(pr) | gy — ﬁw“ (q—k)z| ups),

and

N que)\ gt 8

. t, o — Vo u w s _ .
MLt = e o) [0 oo (a = )] u(),
iMy™ =iMEY =0,

From these we obtain the isospin amplitudes for the w meson

t

. ¢, 1 .e)\wr—y eAauuquyeA_ Vo 9o _uB
ipMa? = '3 e t—m2 u(pr) (g™ — oMy ic"” (q - k)ﬁ u(pi),
and
.Mt,% . >\mr«, E)\Uuukaqyek_ Vo gf; - up k
e u(pr) (gt — DY (q—k)g| ulpi).
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8. Electromagnetic Multipoles

8.1.3. Resonance Terms

1. Spin-3 Nucleon Resonances of Negative Parity: S11(1535) and S11(1650)

s, + s efﬂ'NR ’V”'q})?, pl—i_k_M*
= T =g LR a 1), 8.47
M =ML =g . T u(pr) [ﬁw —yEy ¢k| ulp),  (8.47)
and "
5,0 _ e fanr- ’f}qr _ .I’i + K= Mg-
1), 8.48
ZM 2 My EM u(pf) [%751 S — MQ, ¢% u(p) ( )
From these we obtain the isospin amplitudes for the negative parity resonances
s-channel
P My-
Sy 5 2 _ 6 fﬂ'NR K/R* p % 49
and

3
iM 2 =0. (8.50)

Similarly, for the u-channel we obtain

. Ca U, — . NR™ v . _k_MIT
IME = M :sz”m R () [W%m u(pi),  (8:51)
2

2 m; M
and ;
RS M,
i/\/l’;’,ozz'gf;n&;?\/l_( )[gkz%g%] u(pi).- (8.52)

From these we obtain the isospin amplitudes for the negative parity resonances
u-channel

v

ip/\/(;’,% __ e fevn K () [fékszl%] w(pi) (8.53)

6 my; XM Mg,
“§f’;i§f ;%\2 u(pr) [’éh%yl%] u(pi), (8.54)
and .
3 M,
Z'./\/l;’} _ f’;Z: EE u(pr) [’{}ézpf—ng,%] u(pp). (8.55)

2. Spin-1 Nucleon Resonances of Positive Parity: Pj;(1440) and P;;(1710)

P+ K+ Mg

2
s— M2,

57+_ ST efﬂNR+K+_
IMT =AM 2—m7r E}]?W u(pe) [q%z

Mé] u(pi),  (8.56)
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8. Electromagnetic Multipoles

and

R+ M
iM) =~ & K e u(ps) [q% Zif—k ~

i ¢%] up). (857)

From these we obtain the isospin amplitudes for the positive parity resonances
s-channel

; Ms,§ _ ewaR+ K+ —( )lﬁ%zwfgk] u(pi), (8.58)

2 my LM
and s
iM_ 2 =0. (8.59)
Similarly, for the u-channel we obtain
gt o qu— € fanmt Kpr Py~ K+ Mg+
Mt = MR = —ig S S ) lﬂ“mf“ ulp), - (8.60)
and ,
g, 0 e fanpt Kpt _ }’jf + Mp+
M = i o ) [WWW dp SO

From these we obtain the isospin amplitudes for the positive parity resonances
u-channel

€ + Ko+ MR*
U MU’Q = 6%2?\4 u(pr) [ﬁkllM—Laﬁ%l u(pi) (8.62)
e fonpt i+ _ Mp+
- Z§f7rm—7r E}]?W u(pr) [¢k2%¢75] u(pi), (8.63)
and )
w3 NRt Fp+ _ Mp-+
iM2 = —zefﬂm—ﬂzf;w u(ps) [#kﬂjf_—;aﬁ%l u(p;). (8.64)

. Spln-— Nucleon Resonances of Isospm—— P33(1232)

. s e ™
IMET = %ML = ST ) (0,600 () (G + GeEy) ] (e,
(8.65)
and
iM% =0. (8.66)
From these we obtain the isospin amplitudes for the A resonance s-channel
1
iM% =0, (8.67)
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and

5. u(pr) [un’“‘(m) (GuKNs + GpKlpg) eﬁ] u(p;). (8.68)

Similarly, for the A resonance u-channel we obtain

iMET =2iMRT = —ig f;;tf u(ps) [ (GuK)l, + GK};,) G* (pa)ga] u(pi),
(8.69)
and
iM% =o0. (8.70)

From these we obtain the isospin amplitudes for the A resonance u-channel

. U, l 2 s — 14 16}
PipMy? = —zgemeA u(pr) [e (GMKSIV + GEKEV) GH (pA)qa] u(pi), (8.71)

and

u,§ € Jr _ v a
Al = —zameA u(pr) [ (GuKpy, + GeK}y,) GH(pa)da] u(pi)- (8.72)

. Spin—% Nucleon Resonances of Isospin—%: D13(1520)

iMBt =iMyT = —ief;rZrD u(pr) [qu%GW(pD)Kgé%eﬁ] u(p), (8.73)
and
M = el ) (4,056 (o) 056 ), (3.74)
where
Cot Gi(v) G;(v)

= K+
of T 4M TP T 4M2

From these we obtain the isospin amplitudes for the D resonance s-channel

His. (8.75)

1
ipMp? = —ief;;w u(pr) qu’)’5G“a(pD)Kgg’)’5€6 u(pi), (8.76)

and s
iM52 =0. (8.77)

Similarly, for the D resonance u-channel we obtain

Myt = My = el ) [ K G o saa] ), (87
and f
iMy" = e ;;VD a(pr) (€5 Kb GP (pp)V5da) w(pi)- (8.79)

K
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8. Electromagnetic Multipoles

From these we obtain the isospin amplitudes for the D resonance u-channel

u,— . € ks — v v (67
Myt = i g [ K o ulp) (850)
. fTrND — v s+ Yo .
+e m u(pf) [E 75K;1,1/G (pD)’75QOz] u(pl)a (881)
and , f
My ? = 2ie= == 10(pg) [y K G (po) Vs ] u(ph)- (8.82)

s

Notice that for a given isospin resonance the direct term contributes only to a single

isospin channel, 5, while the crossed term contributes to both channels, % and %

8.2. Helicity Amplitudes

In the c.m. coordinate system, we quantize the initial and final spins along the directions
of k and ¢ so that spin up corresponds to a megative helicity

1
Xie = A= —3 (8.83)

and viceversa 1
X = A = +3- (8.84)

Then the amplitudes My become the helicity amplitudes M\, where
A=A =\ (8.85)
is the initial helicity state along the photon and
==X (8.86)

is the final helicity state along the pion.
For pion photoproduction the eight possible helicity amplitudes M\ are not indepen-

dent because for real, transverse photons, A, = 1 and the four amplitudes with A, = —1
are related to the four with A\, = +1 by parity symmetry [9, 48]
My x(8,6,V/5) = —e T2, (0,0, V5). (8.87)

8.2.1. Partial Wave Analysis

The angular momentum decomposition of the helicity amplitudes M, (60, ¢, /s) is writ-
ten as [9]
M, (0 Z ML (V5)(25 + 1) ), (0) /A2, (8.88)
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8. Electromagnetic Multipoles

where the d{\ ,.(0) are Wigner d-functions given by [1]

, 1 0 142
Uy 0) =y eosg (Fla = F), d,00) = Sm‘(\/z+2 bty Pl)

889
j 1 .0 ; / [+2
dj_%%(H):l+1sm§(pl/+1+pl/),dj_%%(H) ( ) l+1+ P[)

890

with j =1+ 1 and P/ = dP,/dcos 6.
On the other hand, since the functions

V@i + 1) &, (0) 12, (8.91)

for different values of j, are mutually orthogonal and normalized to 4w, when integrated
over dS), the helicity coefficients MiA(\/E) are given by

. 1 . o
MUV = 1= [ 42 M (6,0,75) & (0) e 0. (.92)
These coefficients depend only on /s and refer to states of definite j but mized parity.
By separating the ¢ phase factor, the following four standard helicity amplitudes are

defined [17]

H1(6,/5) = ¢ My2(0, 6, V5) (8.93)
H3(0,+/5) = e™**M_13(0,6,V/5), (8.95)
Hy(6,y/5) = e "M _11(0,0,V5), (8.96)
from which we obtain, for example, the four helicity coefficients
3 1 3
M4 (V5) = 5 [ deoso (0. 5) a2, 0) (8.7
M, (V5) = 5 [ deost (0. 5) a3 0) (5.99
M2, (V5) = ;/dcosﬁHg(H V5 di_,(0) (8.99)
Mi,(V5) = 5 [ deoso B0, v5) a2, 0) (8.100)

which shall be relevant in the calculation of the multipoles.
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8. Electromagnetic Multipoles

8.2.2. Helicity Elements

Final states of definite parity are formed by the sum and difference of final states having
opposite helicity, 4 and —p. Thus the sum and difference

J J

M 1) + M (8.101)

of the two final helicity states for given initial helicity do correspond to definite parity.
These combinations are called helicity elements and are defined by [17]

1 , A
App=—— (M + M), 8.102
" ﬂ( 5 ;;> (8.102)
1 . .
Awrn- =75 (MJ%% - M]_%%> : (8.103)
2 |

By =775y (M1 ! 104
“=\a+2) (M%%+M—%%>’ (8.104)

2 . .

= _ J J
By = I(1+2) <M;g M;g>, (8.105)

where [+ refer to the two states with pion orbital angular momentum [ and total angular
momentum j =1+ %

8.3. Multipole Amplitudes

The relations between the multipoles and the helicity elements are given by [17]

1
A = 5 My + (14 2) By ], (8.106)
1
Agry- = 5 [0+ 2)Main- = 1By, (8.107)
By = Eiy — My, (8.108)
Bay1y- = Eqy)- + Mgy (8.109)
Then the first multipoles are
1 = _@ 3 3y 1 3 13
E{| (v5) = - [(/\/léé + M) G (M +M_§g)} , (8.110)
I \/5 13 13 13 13
ME(V5) = =7 |(Myh + ) VB (MG + M) (8.111)

where I indicates the isospin in the final state (Egs. (8.17) - (8.19)).

3 _ 3
For example, with I = 3
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B (V5) =

where

etc.

8. Electromagnetic Multipoles

2My (! 0 3 0 3
V2My dcosH |:COS§(3COSH—1) H3(0,4/s) —sin= (30059—{—1) HE (9, \/5)}

RN

éﬁ;ﬂjﬁ dcos @ [Sin 2(0089 +1)H 1%(9 V's) + cos 2(0059 - 1)H3%(9 \/_)}
(8.112)

1 3 3

£T7M\/]i d cos 6 [0082(30089—1) H; (0, \/_)—51119(3C059+1) H{©, \/_)]

éﬁ;ﬂjﬁ dcos 0 {sing(cosﬁ—i-l) 1%(9 \/_)+COSg(COSQ_1) 3%(0 \/7)}
(8.113)

HE (6,7/5) = O M3, (8, 6, v/5)
= e a(pe, 1) | ME (O, = 1,6,6,V5) | u(pi, ), (8.114)

[N NI

3
2

These multipoles, for example, are of interest because they provide valuable information

about the Ps3(1232) resonance, as it was discussed in Ch. 4.
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9. Results and Conclusions

0.1. Results

In this section we present the results obtained for the parameters of the nucleon reso-
nances namely, mass, width, strong coupling constants and magnetic moments, by fitting
the total cross-section given by Eq. (9.11), with the tree-level amplitudes obtained in

Sec. 7.3 for the reactions, vp — 7tn and yp — 7%.

For the calculation of the cross-section and other observables such as the electromagnetic
multipoles, which will described with more detail in next chapter, we use pion-nucleon
center-of-mass system (c.m.) with the photon direction pointing along the positive z-
axis and the pion momentum in the zz plane, that is, with polar angle 6 and azimuthal
angle ¢ = 0, as shown in Fig. 2.1. In this system the Dirac spinors u(p;) and u(pf), used

in evaluating the amplitudes become

1
Ei+ M Xi
u(plaT) - ETNN (_ G-k T) )

E+ My Xi
1
_ El + MN Xl
u(pla\l/) 2MN (_Eli]]TJleL )

and

2MN f f Ef+MN

_ E¢ + M, 3
u(pr,d) = WNN( d H—q>7

_ E; + M, -
a(ps, 1) = f N(TT M §q )

f Xt B My

where the spinors of the initial and final nucleon are, respectively

and
4 cos % ! —sin g
Xt = sin? )’ X = cos? )’
2 2
with
7 kXT(i) _ iXiT(i)
and
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Figure 9.1.: Calculated total cross-sections in ub of pion photoproduction off proton for
different photon energies up to ~ 1.7 GeV in the laboratory frame: (a) 7+
and (b) 7°. The experimental data are taken from the Data Analysis Center
of the George Washington University <http://gwdac.phys.gwu.edu>.

so that spin up would correspond, in the c.m. system, to a negative helicity and viceversa.
For real photons, the photon polarization vector has two independent components which
we have taken to be

1
el = —2(0; -\, —1,0), (9.9)
with A = £+1.
On the other hand, the averaged differential cross-section for pion photoproduction is
given by [32]
do g M2 1 _ 9
= — — i 3 9.10
K = 3 167752 ZZ; [ (pr) Mu(p)| (9.10)
from which, integrating over dQ2*, the total cross-section is calculated according to
do ., T do «
a(+/s) :/dQ* aQ* = 277/0 0 sin 6™ do*. (9.11)

Our results for the total cross sections are shown in Fig. 9.1a and Fig. 9.1b for the two
reactions of interest: yp — 7tn and vp — 7%, and for the whole energy region from
threshold up to ~ 1.7 GeV.

9.1.1. First Resonance Region

The so called first resonance region consist of the A(1232) resonance only, corresponding
to an energy range from 150 MeV (threshold) to ~ 630 MeV in the laboratory frame
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system. In this case we use the magnetic (G,,) and electric (G) form factors given in
Eq. (4.108), as input parameters [35], for which the ratio Ry, given by Eq. (4.121) is in
good agreement with the value given by Ref [1],

Ry = —0.025 £ 0.005. (9.12)

The parameters that give the best fit to the experimental data, corresponding to this
region, are displayed in table 9.1.

9.1.2. Second Resonance Region

This region consists of the spin-1 resonances Pi;(1440) and S11(1535), and the spin-3
nucleon resonances D3(1520) and Ps3(1600), corresponding to an energy range from ~
630 MeV to ~ 930 MeV in the laboratory frame system. The parameters that give the
best fit to the experimental data in this region are displayed in table 9.1.

The behaviour of the propagator for the case of spin—% resonances at high energies does
not requiere the inclusion of a form factor.

According to the analysis performed for the A(1232) resonance electromagnetic ver-
tex, we can estimate the magnetic (G,,) and electric (Gg) form factors of the A(1600)
resonance, obtaining

Gy =0.260, and G = 0.030, (9.13)

from which we determine the helicity amplitudes A1 and As for this resonance, obtaining
2 2
A1 = —0.012GeV~2, and As = —0.035GeV 2. (9.14)
2 2
We observe that these estimated values are in close agreement with the measured ex-
perimetal values given in Ref. [1] for two different experiments, namely

—0.051 + 0.010 GeV ™2 —0.055 + 0.010 GeV ™2
A = 1, As= _1 (9.15)
2 —0.018 £ 0.015 GeV ™2 2 —0.025 £ 0.015 GeV ™2
In the model proposed in Ref. [49], for example, they obtain the values
Gy =0.202£0.148, and Gz = 0.000, (9.16)
for the magnetic and the electric form factors, respectively and
As = —0.0154 £ 0.0113GeV™2, and As = —0.0266 £ 0.0196GeV 2.  (9.17)
2 2

for the helicity amplitudes A; and As.

2 2
Finally, by means of Eq. (4.120), we estimate the ratio of electric quadrupole to magnetic
dipole transition amplitudes Rg,, for this resonance as

G
Rpy = ——— = —0.115, (9.18)
G]VI

which is not yet reported in Ref. [1].
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Spin—% Resonances  f.yr Mg (GeV) Ty (GeV) Kb, Ky A (GeV)
Pp1(1440) 0.373 1.380 0.180 —0.601  0.400 -
S11(1535) —0.153 1.510 0.110 0.920 —0.690 -
S11(1650) 096 1.640 0100 047 -0430 -
Py1(1710) 0.055 1.680 0.090 —0.335 0.335 -

Spin-3 Resonances  f.xg Mg (GeV) Ty (GeV) Gy Gg A (GeV)
P33(1232) 2.202 1.213 0.108 2.970 0.055 0.70
D43(1520) —1.509 1.505 0.105 —-3.298 —0.192 0.50
P33(1600) —0.671 1.510 0.200 —0.260 —0.030 0.50

Table 9.1.: Best fit parameters for the first, second and third resonance regions.

9.1.3. Third Resonance Region

This region consists of the spin—% resonances S11(1650) and P;1(1710), corresponding to
an energy range from ~ 930 MeV to ~ 1100 MeV in the laboratory frame system. From
this value, there are no other resonance regions evident in the total cross-section as seen
in Fig. 9.1a and Fig. 9.1b. The parameters that give the best fit to the experimental
data in this region are displayed in table 9.1.

9.1.4. Electromagnetic Multipoles

In Fig. 9.2a and Fig. 9.2b we plot the real and imaginary parts of the multipoles M1%+,

and Ei, given by Eq. (8.112) and Eq. (8.113), respectively, by using the estimated
parameters given in Table 9.1.

9.2. Conclusions

1. We have elaborated a model for photoproduction of pions (7 and 7%) on proton
which is based on an Effective Lagrangian Approach (ELA) fulfilling chiral sym-
metry, gauge invariance, and crossing symmetry. The model includes the Born
terms: nucleon, pion in flight, and Kroll-Rutherman, the vector meson exchanges:
p and w and, the nucleon resonances: P33(1232), P11(1440), D13(1520), S11(1535),
P33(1600), 511(1650), and P11(1710).

2. The analysis of the spin—% nucleon resonance electromagnetic vertex as well as
the spin—% field propagator are one of the main features considered in this work,
which are treated consistently under the point transformation of the W* field.
We have expressed the electromagnetic vertex in terms of the covariant multipole
decomposition, in analogy with the Dirac-Pauli decomposition of the nucleon form
factor and then we have established a relation with the well-known normal parity
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Figure 9.2.: Calculated multipoles in mF of pion photoproduction off proton for dif-

ferent photon energies in the laboratory frame: (a) Mf' f, (b) Eff The

experimental data are taken from the Data Analysis Center of the George
Washington University <http://gwdac.phys.gwu.edu>.

decomposition of the vertex, in the limit case of the spin—% nucleon resonance on
shell.

. We have made use of the prescription that includes an absorptive one-loop self-
energy correction to the spin—% field propagator to reproduce the complex-mass
prescription for its resonant form.

. We have introduced form factors preserving the gauge invariance of the model,
which give account of the structure effects of the composite particles and also per-
mit to extend the energy range to include both, the second and the third resonance
regions.

. We have established a reliable set of parameters for the model in accordance with
experimental data [1], in which the coupling constants, the magnetic moments,
masses and widths of the nucleon resonances have been adjusted within suitable
ranges by fitting to the experimental total cross-sections of the processes vp —
7tnand yp — 79p.

. By means of the established set of parameters we have tried to reproduce the elec-

tromagnetic multipoles Mf’ J/FQ, and Ei’f, obtaining a qualitatively good agreement
in the case of the Mf' f multipole. However, for the multipole Ei/f, we obtain a

partial agreement only at low energy.

. We have estimated the magnetic (G,;) and electric (Gy) form factors of the
A(1600) resonance by means of the proposed model. The value of the helicity
amplitudes obtained from these form factors are in close agreement with the mea-
sured experimetal values given in Ref. [1].
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9. Results and Conclusions

8. The analysis we have made with spin—% resonances may be extended to consider,
in the future, resonances of higher spin such as N(1675) and N(1680), both with
sh D
spin-3.
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A. Pion Field Quantization

A.1. Second Quantized Pion Field

The general normalized solution of the free-field Klein-Gordon equation is

o) = [ o (ax@e 4ol (@er7) (A1)

271')32(,«)(1*

where a=(q) and al q) are the annihilation and creation operators for a pion with charge
+ +

F and charge +, respectively, and wg = +/|q]? + m2.
For the neutral pion field,

2) = [ o (e + af (@) (A2)

271')32(,«)@'

On the other hand, the contractions of the field operator 7%(z) (o = %, 0) with external
states are given by

4 4
7*(z)|q) = e " and (J|7%(z) = €17, (A.3)
—

from which, for example, (7]0,m(x) = iq, e'?*.

A.2. Pion Field Propagator

The propagator is given by the time-ordered product (7) of the field operators [27]

4
0175 (@) )0} = [ 5 Datpere, (A4)

where ]
i
D = A5
W)= (4.5)
is the Feynman propagator in momentum space representation.
Then, by taking into account that the 7NN coupling is chosen to be PV, the propagator

that appears actually in the amplitudes is given by

d4q . —ig-(x—y)
4DF(p)(_ZqM)€ R (A.6)

(017 8,7 () ()|0) = / o

etc.
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B. Photon Field Quantization

B.1. Second Quantized Photon Field

For the photon field A*(z),
Al(z) =" / ﬂ (aA(E)eg e ke 4l (k)eh e“) , (B.1)
~ ) (2m)32lk|
where e‘; is the polarization vector, which we take as
e = %(O; -\, —1,0), (B.2)

with A = £1.
Similar to the pion field, the contractions of the field operator A*(z) with external states
are given by

 _1 — _1

ARk, N = i e T and 8PA“(9U)VZ, A) = —ik,eh e kT, (B.3)

B.2. Vector Meson Field Propagator

The massive vector field is much like the photon field, and the propagator is given by
the time-ordered product of the field operators [30]

4
(0| T VH(x)V¥(y)]0) :/(§W§4AgV(/g)e—ik.(x—y)7 (B.4)

where
i(g" — kR Jm3)

ALY (k) =
r (k) k2 —m?2 +ie

: (B.5)

is the Feynman propagator in momentum space representation.
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C. Spin-; Field Quantization

C.1. Second Quantized Dirac Field

For the spin—% nucleon and resonant fields

Z/ ;lﬂp:a Aéx s(P)us(p)e ™ + di(ﬁ)vs(p)eipw) , (C.1)

where s is the spin projection, the operators bs(p) and dl(ﬁ) annthilate and create a
Dirac particle of given spin, respectively, and E, = +/|p]? + M2.

The contractions of the field operator ¥ (x) with external states are given by

1 1

Y(@)|p,s) = us(p)e™ " and (s (z) = us(p)e™, (C.2)

E, + My [ xs
= —_— s . C'3

C.2. Dirac Field Propagator

The propagator for the spin—% is given by the Dirac propagator

5 — d'p ‘ —ip-(z—y)
0T 0()iwI0) = dO) [ GF e . (©4)
where the operator d(9) is given by
d(0) = i@ + Myx. (C.5)

In momentum space, the Feynman propagator becomes

Z(ZZ? + MX)

Sk(p) = PRy (C.6)

68



Bibliography

[1]
[2]

[3]

R. Workman and Others. Review of particle physics. PTEP, 2022:083C01, 2022.

B. Krusche and S. Schadmand. Study of nonstrange baryon resonances with meson
photoproduction. Prog.Part. Nucl. Phys., 51:399-485, 2003.

W. Hillert. The Bonn Electron Stretcher Accelerator ELSA: Past and future. The
European Physical Journal A - Hadrons and Nuclei, 28(Suppl 1):139-148, 2006.

K.-H. Kaiser et al. The 1.5 Gev harmonic double-sided microtron at Mainz Univer-
sity. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 593(3):159-170, 2008.

B. A. Mecking et al. The CEBAF Large Acceptance Spectrometer (CLAS). Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 503(3):513-553, 2003.

O. Bartalini et al. Measurement of 7 photoproduction on the proton from 550 to
1500 Mev at GRAAL. The Furopean Physical Journal A - Hadrons and Nuclei,
26:399-419, 2005.

M. Sumihama et al. The 7 p— KTA and 5 p — K1XY reactions at forward angles
with photon energies from 1.5 to 2.4 Gev. Phys. Rev. C| 73:035214, Mar 2006.

D. Drechsel and T. Walcher. Hadron structure at low Q2. Rev. Mod. Phys., 80:731—
785, Jul 2008.

R. L. Walker. Phenomenological analysis of single pion photoproduction. Phys. Rev.,
182:1729-1748, 1969.

D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator. A unitary isobar model
for pion photo- and electroproduction on the proton up to 1 gev. Nuclear Physics
A, 645(1):145 — 174, 1999.

C. Fernandez-Ramirez, E. Moya de Guerra, and J. M. Udias. Effective lagrangian
approach to pion photoproduction from the nucleon. Annals of Physics, 321(6):1408
— 1456, 2006.

H. Garcilazo and E. Moya de Guerra. A model for pion electro- and photo-
production from threshold up to 1 gev. Nuclear Physics A, 562(4):521 — 568, 1993.

69



[13]

[14]

[15]

[21]

[22]

Bibliography

S. Nozawa, B. Blankleider, and T. S. H. Lee. A dynamical model of pion photopro-
duction on the nucleon. Nuclear Physics A, 513(3-4):459 — 510, 1990.

S. Pokorski. Gauge Field Theories. Cambridge University Press, 1987.

J. F. Donoghue, E. Golowich, and B. R. Holstein. Dynamics of the Standard Model.
Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cam-
bridge University Press, 2014.

D. Drechsel and L. Tiator. Threshold pion photoproduction on nucleons. J.Phys.G,
(G18:449-497, 1992.

M. Benmerrouche, N. C. Mukhopadhyay, and J. F. Zhang. Effective lagrangian
approach to the theory of n photoproduction in the N*(1535) region. Phys. Rev.
D, 51:3237-3266, Apr 1995.

D. Badagnani, A. Mariano, and C. Barbero. Inconsistency of the ‘spin-3/2 gauge
invariant’ interaction of rarita—schwinger fields. Journal of Physics G: Nuclear and
Particle Physics, 44(2):025001, 2017.

L. M. Nath, B. Etemadi, and J. D. Kimel. Uniqueness of the interaction involving
Spin—% particles. Phys. Rev. D, 3:2153-2161, May 1971.

J. J. Quirés, C. Barbero, D. E. Jaramillo, and A. Mariano. Different vertex param-
eterizations and propagators for the A contribution in m-photoproduction. Journal
of Physics G: Nuclear and Particle Physics, 44(4):045112, Mar 2017.

C. Barbero, G. Lépez Castro, and A. Mariano. Single pion production in C C
v, N scattering within a consistent effective born approximation. Physics Letters
B, 664(1-2):70 — 77, 2008.

H. Haberzettl, C. Bennhold, T. Mart, and T. Feuster. Gauge-invariant tree-level
photoproduction amplitudes with form factors. Phys. Rev. C, 58:R40-R44, Jul
1998.

R. M. Davidson and R. Workman. Effect of form factors in fits to photoproduction
data. Phys. Rev. C, 63:058201, Apr 2001.

R. M. Davidson and R. Workman. Form factors and photoproduction amplitudes.
Physical Review C, 63(2), Jan 2001.

J. D. Bjorken and S. D. Drell. Relativistic quantum mechanics. International series
in pure and applied physics. McGraw-Hill, New York, NY, 1964.

J. D. Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition,
1999.

70



[27]

28]

[40]

[41]

[42]

Bibliography

M. E. Peskin and D. V. Schroeder. An introduction to quantum field theory. Ad-
vanced book program. Westview Press Reading (Mass.), Boulder (Colo.), 1995.
Autre tirage : 1997.

B. M. K. Nefkens and J. W. Price. The neutral decay modes of the eta-meson.
Physica Scripta, 2002(T99):114, Jan 2002.

N. Isgur and H. B. Thacker. Origin of the okubo-zweig-iizuka rule in qcd. Phys.
Rev. D, 64:094507, Oct 2001.

C. Itzykson and J. B. Zuber. Quantum Field Theory. Dover Books on Physics.
Dover Publications, 2012.

M. El Amiri, G. Lépez Castro, and J. Pesticau. AT contribution to the elastic
and radiative 7p scattering. Nuclear Physics A, 543(4):673 — 684, 1992.

T.E.O. Ericson and W. Weise. Pions and nuclei. Oxford Science Publications.
Clarendon Press, 1988.

C. Barbero, A. Mariano, and G. Lépez Castro. Absorptive one-loop corrections and
the complex-mass prescription for the A resonance propagator. Journal of Physics
G: Nuclear and Particle Physics, 39(8):085011, 2012.

L. M. Nath and B. K. Bhattacharyya. Photoproduction of pions at low energy.
Zeitschrift fur Physik C Particles and Fields, 5(1):9-15, March 1980.

C. Barbero, G. Lépez Castro, and A. Mariano. One pion production in neutrino-
nucleon scattering and the different parameterizations of the weak vertex. Physics
Letters B, 728:282 — 287, 2014.

S. Kamefuchi, L. O’Raifeartaigh, and A. Salam. Change of variables and equivalence
theorems in quantum field theories. Nuclear Physics, 28(4):529-549, December 1961.

M. L. Goldberger and K. M. Watson. Collision Theory. Wiley, New York, 1964.

M. G. Olsson and E. T. Osypowski. Vector-meson-exchange and unitarity effects
in low-energy photoproduction. Phys. Rev. D, 17:174-184, Jan 1978.

L. A. Copley, G. Karl, and E. Obryk. Single pion photoproduction in the quark
model. Nuclear Physics B, 13(2):303 — 319, 1969.

H. F. Jones and M. D. Scadron. Multipole v/N — A form factors and resonant photo-
and electroproduction. Annals of Physics, 81(1):1 — 14, 1973.

M. G. Fuda and H. Alharbi. Photoproduction of mesons from the nucleon. Phys.
Rev. C, 68:064002, Dec 2003.

R. Davidson, N. C. Mukhopadhyay, and R. Wittman. Ratio of electric quadrupole
to magnetic dipole amplitudes in the nucleon-delta transition. Phys. Rev. Lett.,
56:804-807, Feb 1986.

71



[43]

Bibliography

M. Benmerrouche, R. M. Davidson, and N. C. Mukhopadhyay. Problems of describ-
ing spin-3/2 baryon resonances in the effective Lagrangian theory. Phys. Rev. C,
39:2339-2348, Jun 1989.

A. E. Kaloshin and V. P. Lomov. Rarita-schwinger field: Dressing procedure and
spin-parity of components. Physics of Atomic Nuclei, 69(3):541-551, 2006.

C. Barbero and A. Mariano. About the validity of complex mass scheme for the A
resonance and higher energy region approaches. Journal of Physics G: Nuclear and
Particle Physics, 42(10):105104, 2015.

A. Denner and J.-N. Lang. The complex-mass scheme and unitarity in perturbative
quantum field theory. The European Physical Journal C, 75(8), Aug 2015.

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii. Quantum Electrodynamics.
Butterworth-Heinemann. Pergamon Press, 1976.

M. Jacob and G. C. Wick. On the general theory of collisions for particles with
spin. Annals of Physics, 7(4):404 — 428, 1959.

G. Ramalho and K. Tsushima. Model for the A(1600) resonance and yn — A(1600)
transition. Phys. Rev. D, 82:073007, Oct 2010.

72



