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1. Introduction

In the study of the properties of nucleon resonances, the production of mesons (π, η, etc.)
by hadron-induced reactions like beams of stable baryons such as protons, deuterons, and
alpha-particles is an important tool that has been extensively used. The other type of
beams are beams of mesons which are the most traditionally used reactions for the
study of nucleon resonances, in particular, the scattering of pions has substantially con-
tributed to the experimental data base. However this sort of reactions are complicated
since the initial and final states are dominated by the strong interaction and, in the case
of baryons, high energies must be employed to access the resonance regions, due to the
large mass of the beam particles.

An alternative way to excite the nucleon, which has been widely used during the last
decades, is the use of reactions induced by the electromagnetic interaction such as pho-
toproduction and electroproduction of mesons, an important tool for studying the elec-
tromagnetic properties of nucleon resonances which has played a significant role in the
tests of quark models, such as the ratio of the electric quadrupole to the magnetic dipole
transition amplitudes (EMR) in the processes (γ N ⇆ ∆(1232)).

From the experimental point of view, the database has grown considerably thanks to
the progress made in accelerator and detector technology; observables such as the to-
tal cross-sections and the electromagnetic multipoles have been measured with higher
precision than hadron induced reactions, although the cross-sections corresponding to
this type of reactions are three orders of magnitude larger than the electromagnetically
induced reactions. All experiments are based at electron accelerators and, in the specific
case of photoproduction, two different techniques are employed to produce the photon
beams: bremsstrahlung and laser backscattering. The bremsstrahlung technique is used
at ELSA [3] and MAMI [4] (in Germany), CLAS [5] (in United States), and at LNS (in
Japan) while laser backscattering is employed at LEGS (in United States), at GRAAL [6]
(in France), and at SPring-8 [7] (in Japan).

This work will focus on the particular case of pion photoproduction to evaluate, analyti-
cally and numerically through a model that will be described below, physical observables
such as the cross-section and the multipole amplitudes which will be compared with the
available experimental data to extract the relevant coupling constants of the nucleon
resonances. However, from the theoretical point of view, we face the problem that in
the low energy limit of quantum chromodynamics that is, at low momentum transfers
Q in the GeV region, where the nucleon and its main resonances live, a perturbative
analysis is not appropriate [8]. Therefore, we have to adopt an effective approach to try

1



1. Introduction

to represent in a “simple way” the dynamical content of the theory.

Several models have been proposed for studying the pion photoproduction of nucleon
resonances, such as Breit-Wigner models [9, 10], effective Lagrangian approach models
(ELAs) [11, 12], dynamical models [13], etc. Being phenomenological models, we shall
adopt the ELA because it has become an acceptable approach in the energy range from
threshold (∼ 0.149 GeV) up to ∼ 1.70 GeV in the center of mass coordinate system
(∼ 1.0 GeV in the laboratory coordinate system) for the reaction γp → πN . Another
reason is that the ELA also provides a natural framework to extend the model to other
processes such as pion electroproduction, two pion photoproduction, photoproduction of
other mesons such as η, etc.

In the ELA all contributions to the reaction are derived from effective Lagrangian den-
sities corresponding to the interaction vertices, in which each particle is considered as
an effective field having mass, spin, isospin, strong decay width, etc. [14, 15]. In the
specific case of photoproduction of pseudoscalar mesons such pion or η, the two com-
monly encountered forms of the meson-nucleon interaction are through the pseudoscalar
(PS) or pseudovector (PV) couplings, which are equivalent for elementary fields without
anomalous magnetic moment. However in the specific case of pion photoproduction, the
πNN coupling is chosen to be PV to obtain the right low energy behaviour in accord
with current algebra results and chiral symmetry, due to the small mass of the pion [16].
In the case of the η meson, there is no preference for the coupling to be PS or PV due
to the larger mass of the η meson [17].

On the other hand, in the photoproduction of pions off the nucleon, the spin-32 reso-
nance ∆(1232) plays the most important role in the first resonance region, however, the
treatment of the spin-32 nucleon resonances namely, vertices and propagator, are not
completely consistent in the literature. It deserves special attention because the quan-
tum field theory of particles with spin ≥ 3

2 is an open problem since the Lagrangian and
the propagator are not unique, there are arbitrary parameters in the theory. On one
hand, the free-field Lagrangian as well as the propagator for spin-32 particles contain an
arbitrary parameter A which defines the so-called point transformation∗ . On the other
hand, the interaction Lagrangians are constructed in such a way that they are invariant
under the same point transformation as the free Lagrangian, but they depend now on
two parameters, A and Z (named off-shell parameter), as we will see in the specific case
of the coupling of the spin-32 field to the nucleon and pion fields and the coupling of the
spin-32 field to the electromagnetic and pion fields. Even though the physical amplitudes
depend on the Z parameter, it can be set consistently to a fixed value [11, 18].

For the case of a spin-32 field coupled to a spin-12 and the derivative of the pion field, the
approach that we adopt, the value of the off-shell parameter is fixed to Z = 1

2 , by requir-
ing the interaction to be consistent with the principles of second quantization [12, 19].

∗A point transformation is a transformation of the variables, which does not involve time derivatives.

2



1. Introduction

With regard to the A parameter, we make the choice A = −1
3 , both in the vertices and

the propagator [20], in agreement with [21], an election that differs from other works in
which the value of A is not fixed consistently in both, vertices and propagator.

In our model, the internal structure of hadrons is taken into account by means of phe-
nomenological form factors which are included, consistently, in the tree level amplitudes
by preserving the symmetries of the theory namely, gauge invariance and crossing sym-
metry, giving rise to additional current contributions beyond the usual Feynman dia-
grams to cancel the resulting gauge-violating terms [22, 23, 24].

This work is distributed as follows: in Ch. 2, we fix the notation and list all the basic
kinematical formulas for pion photoproduction. In Ch. 3 we present the Lagrangians
for all the free fields taking part in pion photoproduction below ∼ 1.7 GeV. In Ch. 4
we present the most general interaction Lagrangians for vertices, compatible with all
possible symmetries namely, chiral symmetry, gauge invariance and crossing symmetry.
In Ch. 5 we present the general form of the total propagator for the spin-32 field which is
considered first as a stable bare particle that later obtains its empirical mass and width
by dressing with pions by means of the absorptive one-loop self-energy correction to the
spin-32 particle propagator which reproduces the complex-mass prescription for its reso-
nant form. In Ch. 6 we present the analytic expressions for the amplitudes contributing
to pion photoproduction off the proton (as well as neutron, for the sake of completeness)
at the tree level, without including form factors, which are included later in Ch. 7 for
the numerical calculation of the cross-sections corresponding to the specific processes
γp → π+n and γp → π0p. Finally, in Ch. 8 we perform the analysis of the relavant

electromagnetic multipoles in pion photoproduction namely, M
3
2

1+ and E
3
2

1+.

3



2. Units and Kinematics

In this chapter we will fix the units, the notation and list all the basic kinematical
formulas for photoproduction of pion (π) from a free proton (p), γp → πN , where
N = p or n (neutron) and the four-vector momentum of the incident photon (γ) and
the outgoing pion are denoted by k and q, respectively, while those of the initial and
final nucleon are pi and pf, respectively. For the sake of simplicity we will evaluate the
scattering amplitudes in a coordinate system in which ~k and ~pi each lies along a given
line, say the z−axis of a rectangular coordinate system (that is, ~k × ~pi = ~0). Since the
scattering matrix is a Lorentz invariant, the general case may then be obtained from a
Lorentz transformation. The two most common coordinate systems are the laboratory
coordinate system, in which ~pi = ~0, and the center of mass coordinate system, in which
~k + ~pi = ~0, as shown in Fig. 2.1, where we indicate the components of each four-vector
momentum.

2.1. Units

We will use the system of natural units, where

~ = c = 1, (2.1)

such that
[length] = [time] = [energy]−1 = [mass]−1. (2.2)

Therefore, in this system, the electric charge of the proton is given by

e =
√
4πα = 0.302862. (2.3)

2.2. Relativity and Tensors

Our conventions for relativity and tensors follow Bjorken and Drell [25], Jackson [26],
and Peskin [27]. For example, for the metric tensor, ηµν , we use

η =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (2.4)

such that
p2 = ηµνp

µpν = E2 − |~p|2, (2.5)

4



2. Units and Kinematics

where the energy E and the momentum ~p of the particle are represented by the operators

E → i
∂

∂x0
≡ i∂0, and ~p→ −i~∇. (2.6)

Then, the plane wave e−ik·x has momentum kµ, since

i∂µe
−ik·x = kµe

−ik·x. (2.7)

2.3. Pauli and Dirac Matrices

We use the Pauli sigma matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, and σ3 =

(

1 0
0 −1

)

. (2.8)

For the Dirac matrices, γµ, we use the Weyl or chiral representation given by

γ0 =

(

0 1

1 0

)

, and ~γ =

(

0 ~σ
−~σ 0

)

, (2.9)

which satisfy the anticommutation relation

{γµ, γν} = 2ηµν1, (2.10)

and the additional gamma matrix, γ5, is defined as

γ5 ≡ iγ0γ1γ2γ3 = − i

4!
ǫµναβγµγνγαγβ =

(

−1 0

0 1

)

, (2.11)

with the properties
γ†5 = γ5, and {γ5, γµ} = 0. (2.12)

2.4. Mandelstam Variables

In the case of 2-body→ 2-body processes, it is useful to express the scattering amplitudes
in terms of the Mandelstam variables that make it easy to apply crossing relations.
The Mandelstam variables are defined by

s ≡ (k + pi)
2 = (q + pf)

2,

t ≡ (q − k)2 = (pi − pf)
2,

u ≡ (k − pf)
2 = (q − pi)

2, (2.13)

where,

s+ t+ u =

4
∑

i=1

m2
i = 2M2

N +m2
π

with MN = 0.938 GeV and mπ = 0.138 GeV, the nucleon and pion mass, respectively
and for any process, s is the square of the total initial 4-momentum.

5



2. Units and Kinematics

❇

θ∗
k =

(

|~k|, ~k
)

pi =
(

Ei,−~k
)

q = (ω, ~q)

pf = (Ef,−~q)
z

x

y

(reaction plane: φ∗ = 0◦)

Figure 2.1.: Kinematics of pion meson photoproduction in the c.m. coordinate system.

2.5. Center of Mass Coordinate System

In the center of mass (c.m.) coordinate system of the initial proton and the photon,
where the experimental observables will be calculated, the Mandelstam variables become

s ≡W 2 = (Ei + |~k|)2,
t = m2

π − 2ω|~k|+ 2|~q||~k| cos θ∗,
u =M2

N − 2Ef|~k| − 2|~q||~k| cos θ∗, (2.14)

where θ∗ is the scattering angle and W =
√
s, the total energy.

The energies and momenta are determined in terms of W as

|~k| = W 2 −M2
N

2W
, Ei =

W 2 +M2
N

2W
, Ef =

W 2 −m2
π +M2

N

2W
, (2.15)

ω =
W 2 +m2

π −M2
N

2W
, and |~q| =

√

(W 2 +m2
π −M2

N)
2

4W 2
−m2

π. (2.16)

Threshold of the Reaction

The threshold for the reaction γp→ πN is defined at the pion momentum |~q| = 0, where
the photon lab energy is

Eγ =
(mπ +MN)

2 −M2
N

2MN

≃ 0.149GeV, (2.17)

corresponding to a c.m. energy of W ≃ 1.08 GeV.

6



3. Free Lagrangians

The relevant degrees of freedom used to describe nuclei depend on the energy resolution
by which the nucleus is probed. As discussed in the introduction, the energy range of
the more actual experiments is up to ∼ 2.0 GeV, thus for energy transfers below ∼ 1.7
GeV and momentum transfers below ∼ 1.7 GeV/c, the important degrees of freedom
are limited to the lowest states of the nucleon and meson spectrum. The main role
is played by the pion, the nucleon and the nucleon resonances: P33(1232), P11(1440),
D13(1520), S11(1535), P33(1600), S11(1650), and S11(1710); the vector mesons ρ and ω
also play an important role. Their properties are displayed in Table 3.1. Other mesons
such as η, η′ and φ do not contribute significantly at tree level. In the case of η mesons,
first order electromagnetic decays, η → π0γ are forbidden by conservation of angular
momentum [28], while the contribution of the φ meson is suppressed by the OZI rule [29].
In this section we present the Lagrangians for all the free fields taking part in pion
photoproduction below ∼ 1.7 GeV, before to describe the interacting Lagrangians from
which we will calculate the invariant amplitudes.

3.1. The Pion Field (~Φπ)

The Lagrangian for the spin-0, isospin-1 pion free field is the Klein-Gordon Lagrangian

Lπ =
1

2

(

∂µ~Φπ · ∂µ~Φπ −m2
π
~Φπ · ~Φπ

)

, (3.1)

where

~Φπ =





π1
π2
π3



 (3.2)

denotes the three-component pion field in terms of its cartesian isospin components, in
terms of which the charge components π± and π0 of the pion field are defined by [13]

π± ≡ ∓π1 − iπ2√
2

and π0 ≡ π3, (3.3)

then the pion field is rewritten as

~Φπ = π+Φ̂+ + π−Φ̂− + π0Φ̂0, (3.4)

with unit vectors

Φ̂+ ≡ 1√
2





−1
i
0



 , Φ̂≡
1√
2





1
i
0



 , Φ̂0 ≡





0
0
1



 . (3.5)

7



3. Free Lagrangians

Hadron Isospin Charge states Spin(parity) Mass (MeV) Γtotal (MeV)

Pion 1 π+, π0, π− 0−
{mπ± = 139.6
mπ0 = 135.0

“stable”
8.02 × 10−6

ρ-meson 1 ρ+, ρ0, ρ− 1− 775.3 147.4

ω-meson 0 ω0 1− 782.7 8.7

Nucleon 1
2 p, n 1

2

+
{Mp = 938.3
Mn = 939.6

stable
“stable”

P33(1232)
3
2 ∆++, ∆+, ∆0, ∆− 3

2

+
{M∆+ = 1206 − 1213
M∆0 = 1212 − 1214

97− 119
103 − 105

P11(1440)
1
2 P+, P 0 1

2

+
1360 − 1380 160− 190

D13(1520)
1
2 D+, D0 3

2

−
1505 − 1515 105− 120

S11(1535)
1
2 S+, S0 1

2

−
1500 − 1520 110− 150

P33(1600)
3
2 ∆++, ∆+, ∆0, ∆− 3

2

+
1460 − 1560 200− 340

S11(1650)
1
2 S+, S0 1

2

−
1640 − 1670 100− 170

P11(1710)
1
2 P+, P 0 1

2

+
1680 − 1720 80− 160

Table 3.1.: Properties of the hadrons considered in this work [1]. The mass and total
width of the resonances correspond to the resonance pole position, sR, given
by

√
sR =MR − iΓR

2 .

3.2. Vector Meson Fields

Spin-1 massive particles may be described by the well known Proca Lagrangian [30].

1. The ρ Field (~Φµ
ρ
)

The Lagrangian for the spin-1, isospin-1 ρ free field is

Lρ = −1

4
~W µν · ~Wµν +

1

2
m2

ρ
~Φµ

ρ · ~Φρµ, (3.6)

where the tensor ~W µν is defined by

~W µν ≡ ∂µ~Φν
ρ − ∂ν~Φµ

ρ . (3.7)

As in the previous case,

~Φµ
ρ
=





ρµ1
ρµ2
ρµ3



 (3.8)

denotes the three-component ρ field in terms of its cartesian isospin components,
in terms of which the charge components ρµ± and ρµ0 of the rho field are defined
by [13]

ρµ± ≡ ∓ρµ1 − iρµ2√
2

and ρµ0 ≡ ρµ3 . (3.9)

8



3. Free Lagrangians

2. The ω Field (Φµ
ω
)

Similarly, for the spin-1, isospin-0 ω field

Lω = −1

4
BµνBµν +

1

2
m2

ωΦ
µ
ω Φωµ, (3.10)

where the tensor Bµν is defined by

Bµν ≡ ∂µΦν
ω
− ∂νΦµ

ω
. (3.11)

3.3. Nucleon (ΨN) and Spin-12 Resonance (ΨR) Fields

The Lagrangian for the spin-12 , isospin-
1
2 Nucleon (N) and Resonance (R) free fields is

given by the well known Dirac Lagrangian

LX = ΨX (iγµ∂µ −MX)ΨX, (3.12)

where MX is the mass of the spin-12 baryon (X = N,R) and the γµ matrices satisfy the
anticommutation relation

{γµ, γν} = 2gµν . (3.13)

In this case, the nucleon field ΨN , is given by the isospin doublet

ΨN =

(

ψp

ψn

)

, (3.14)

where ψp and ψn represent the proton and neutron fields, respectively.
Similarly, for the P11(1440), S11(1535), S11(1650) and P11(1710) resonances

ΨR =

(

ψR+

ψR0

)

, (3.15)

where the superscripts + and 0 denote the electric charge of the corresponding fields.

3.4. Spin-32 Resonance Fields (Ψµ
∆
and Ψµ

D
)

The Lagrangian for the spin-32 , isospin-
3
2 (Ψµ

∆) and the spin-32 , isospin-
1
2 (Ψµ

D) resonance
free fields is the Rarita-Schwinger Lagrangian [19, 31]

LX = Ψ
µ
X
Λµα

[

gαβ
(

i/∂ −MX

)

+
i

3

(

γα /∂γβ − γα∂β − ∂αγβ
)

+
1

3
MXγ

αγβ
]

ΛβνΨ
ν
X
,

(3.16)
where MX is the mass of the spin-32 baryon (X = ∆,D) and the tensor Λρσ is defined as

Λρσ ≡ gρσ +
1

2
(1 + 3A)γργσ, (3.17)

9



3. Free Lagrangians

with A an arbitrary parameter subject to the restriction A 6= −1
2 .

On the other hand, the spin-32 field describing the ∆ resonances, Ψµ
∆, is a spinor-vector

field given by the isospin-32 quartet

Ψµ
∆ =











ψµ
∆++

ψµ
∆+

ψµ
∆0

ψµ
∆−











, (3.18)

while the spin-32 field describing the D resonances, Ψµ
D, is a spinor-vector field given by

the isospin-12 doublet

Ψµ
D =

(

ψµ
D+

ψµ
D0

)

. (3.19)

3.4.1. The Point Transformation

The free Lagrangian given by Eq. (3.16) is invariant under the point transformation [11,
31]

Ψµ
X → Ψ′µ

X = Ψµ
X + aγµγνΨ

ν
X , A→ A′ =

A− 2a

1 + 4a
, (3.20)

where a 6= −1
4 , but is otherwise arbitrary.

It implies that physical properties of the free field, such as the energy-momentum tensor
and the canonical commutation relations are independent of the parameter A [19].

3.4.2. Spin-3
2
Resonance Field Propagator

The propagator of the Rarita-Schwinger field deserves special attention and will be
considered in Ch. 5 with more detail.
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4. Interaction Lagrangians

In the study of photoproduction of pseudoscalar mesons such as pion off the nucleon,
the strong interaction vertex will be treated phenomenologically using the effective La-
grangian approach (ELA) [11, 17]. The two standard couplings are the pseudoscalar
(PS ) and the pseudovector (PV ) which for elementary fields, without anomalous mag-
netic interactions, are equivalent in the lowest order in strong coupling constant [32]. In
the case of our interest, pion photoproduction, the πNN coupling is preferred to be PV
according with the low energy theorem (LET ) [16].
The model consists of effective interaction Lagrangians which are splitted into two dif-
ferent types of contributions: the first type consists of the non-resonant or background
term which include the nucleon s- and u-channels, the pion t-channel, the vector me-
son exchanges (ρ and ω), the contact term and the u-channel of the resonance exci-
tations, namely P33(1232), P11(1440), D13(1520), S11(1535), P33(1600), S11(1650), and
P11(1710). The second type consists of the s-channel of the above resonance excitations.
The corresponding plots of each of these Feynman graphs will be shown later.
In this chapter, we present the most general interaction Lagrangians for vertices, com-
patible with all possible symmetries: chiral symmetry, gauge invariance and crossing
symmetry.

4.1. Strong Interaction

The strong interaction is invariant under time reversal (t→ −t) and parity (~r → −~r), it
is also invariant under charge conjugation which transforms particles into antiparticles.
Isospin symmetry is also an important concept in the physics of the strong interac-
tion, isospin symmetry means that the strong interaction is invariant under rotations in
isospin space. Thus, the total isospin of an interacting system of pions and nucleons is
a conserved quantity, however, this is broken by electromagnetic interactions.

4.1.1. Vertices for Born Terms

The πNN Vertex

The interaction Lagrangian is given by

LπNN = −fπNN

mπ
ΨNγ5γµ~τ ΨN · ∂µ~Φπ, (4.1)

where mπ is the mass of the pion, and fπNN is the pseudovector coupling constant whose
experimental value has been determined accurately from pion-nucleon and nucleon-

11



4. Interaction Lagrangians

nucleon scattering [11, 32]
f2
πNN

4π
= 0.0749. (4.2)

On the other hand, the scalar product ~τ · ~Φπ with the nucleon isospin matrix ~τ has the
form

~τ · ~Φπ = π+(~τ · Φ̂+) + π−(~τ · Φ̂−) + π0(~τ · Φ̂0), (4.3)

where
~τ · Φ̂+ = −τ−, ~τ · Φ̂− = −τ+, ~τ · Φ̂0 = τ3 (4.4)

with the charge “raising” and charge “lowering” operators τ+ and τ− given in the spher-
ical basis by [13]

τ± ≡ ∓τ1 − iτ2√
2

. (4.5)

4.1.2. Vertices for Vector Meson Terms

In the energy region of our interest, that is from threshold up to ∼ 1.7 GeV, the main
contribution of vector mesons to pion photoproduction is given by the ρ and ω exchanges.
The role of the φ meson is found to be negligible, less than 2% of the ρ+ω contribution
at threshold [17].

The ρNN Vertex

The interaction Lagrangian is given by [11]

LρNN = ΨN ~τ ·
[

gv
ρNN

γα +
gtρNN

2MN

σαβ∂
β

]

~Φα
ρ
ΨN , (4.6)

where gvρNN and gtρNN are the vector and tensor couplings of the ρNN vertex, respectively
and σµν is defined by

σµν ≡ i

2
[γµ, γν ]. (4.7)

The experimental values of these couplings will be described below.

The ωNN Vertex

Except for the isospin, the interaction Lagrangian in this case is similar to the previous
one and is given by [11]

LωNN = ΨN

[

gv
ωNN

γα +
gtωNN

2MN

σαβ∂
β

]

Φα
ω
ΨN , (4.8)

where gvωNN and gtωNN are the vector and tensor couplings of the ωNN vertex, respec-
tively.

12



4. Interaction Lagrangians

The Vector and Tensor Couplings: gv
V NN

and gt
V NN

(V = ρ, ω)

The experimental values of the vector and tensor couplings of the vector meson-nucleon
vertex (ρNN and ωNN) are taken from several sources. For example, analyses of strong
interaction processes such as πN andNN scattering using dispersion relations [17] obtain
the values

gv
ρNN

= 2.63± 0.38, gv
ωNN

= 10.09 ± 0.93, (4.9)

for the vector couplings, and

gtρNN = 16.05 ± 0.82, gtωNN = 1.42 ± 1.99, (4.10)

for the tensor couplings.
On the other hand, analysis of nucleon electromagnetic form factors [11] obtain the
values

gvρNN = 2.63, gvωNN = 20.86 ± 0.25, (4.11)

and
gt
ρNN

= 15.86 ± 0.52, gt
ωNN

= −3.41± 0.24. (4.12)

In Ref. [13], the reported values are

gv
ρNN

= 2.66, gv
ωNN

= 7.98, (4.13)

for the vector couplings, and

gtρNN = 9.84, gtωNN = 0.0, (4.14)

for the tensor couplings.
Thus we can see that the values of the couplings gv

ωNN
, gt

ρNN
, and gt

ωNN
are not well

determined experimentally and therefore will be considered as free parameters to be
varied within the estimated ranges in order to get the best fit.

4.1.3. Vertices for Spin-1
2
Resonance Terms

The interaction Lagrangian is given by [17]

LπNR± = −fπNR±

mπ

(

ΨNΓµ~τ ΨR

)

· ∂µ~Φπ + h.c., (4.15)

where the coupling fπNR± for the πNR± vertex is set to [17, 32]

fπNR±

mπ
≡ ± gπNR±

MR± ±MN

(4.16)

with the upper (lower) sign corresponding to even (odd) parity resonances, and the
operator structure for Γµ is, respectively, Γµ = γµ for odd parity resonances, and Γµ =
γµγ5 for even parity resonances.
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4. Interaction Lagrangians

Resonance ΓR → πN (%) |fπNR|
P11(1440) 55 – 75 0.293 – 0.373

S11(1535) 32 – 52 0.121 – 0.180

S11(1650) 50 – 70 0.107 – 0.165

P11(1710) 5 – 20 0.029 – 0.081

Table 4.1.: Estimated strong coupling constants for the Spin-12 nucleon resonances.

The Strong Coupling: gπNR±

It will be more convenient to express the couplings in terms of the experimentally ob-
servable quantities, namely the partial decay width (ΓR±

→ πN).
The decay width for the process R± → πN is given by [27]

dΓ

dΩ
=

1

2MR

1

16π2
|~q|√
s
|Mfi|2, (4.17)

where

Mfi = −ifπNR±

mπ

IR u(pf)/q [Γ]u(pi), (4.18)

with IR the corresponding isospin factor (see Table 6.3), Γ = 1 (γ5) for the even (odd)
parity resonances and |Mfi|2 denotes the average over the initial spin (si) and sum over
the final spins (sf), namely

|Mfi|2 ≡
1

2

∑

si

∑

sf

|Mfi|2 (4.19)

=
1

2

f2
πNR±

m2
π

I2RTr
[

(/p
i
+MR)/qΓ(/pf

+MN)/qΓ
]

(4.20)

=2g2
πNR±I2RMR± [Ef(MR±)∓MN] . (4.21)

After integrating over the phase space and summing over all channels (ΓR±
→ πN =

ΓR±
→ π+n + ΓR±

→ π0p)

g2
πNR±

4π
=

MR±

3|~q(MR±)| [Ef(MR±)∓MN]
ΓR±

→ πN , (4.22)

with Ef and |~q| evaluated at W =MR± .
The magnitude of the estimated values of the strong coupling constants for the spin-12
nucleon resonances are displayed in Table 4.1, according with the decay width ranges
given in the previous column of the same table [1].
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4.1.4. Vertices for Spin-3
2
Resonance Terms

The πN∆ Vertex

The interaction of the ∆ resonances with the pion and the nucleon has been discussed
extensively in the literature [11, 19, 31]. In the present case, we consider the interaction
Lagrangian given by [13, 19, 31, 33]

LπN∆ =
fπN∆

mπ

(

Ψ
µ
∆
~T ΘµνΨN

)

· ∂ν~Φπ + h.c., (4.23)

where ~T is the N → ∆ isospin excitation operator given by [11]

T1 =
1√
2









1 0
0 1√

3

− 1√
3

0

0 −1









, T2 = − i√
2









1 0
0 1√

3
1√
3

0

0 1









, T3 = −
√

2

3









0 0
1 0
0 1
0 0









, (4.24)

with T1 ,T2 and T3 such that

T †
i Tj =

2

3
δij −

1

3
iǫijkτk, (i, j, k = 1, 2, 3) (4.25)

and the tensor Θµν is defined as [34]

Θµν ≡ gµν +

[

1

2
(1 + 4Z)A+ Z

]

γµγν , (4.26)

in order to guarantee that the total Lagrangian is invariant under the point transforma-
tion,

Ψµ
X → Ψ′µ

X
= Ψµ

X + aγµγνΨ
ν
X
, A→ A′ =

A− 2a

1 + 4a
, (4.27)

and
ΨN → Ψ′

N = ΨN , ~Φπ → ~Φ′
π = ~Φπ. (4.28)

The parameter Z, usually referred as the off-shell parameter, is arbitrary and will appear
in the physical amplitudes. However, it can be set to a fixed value or just let it run freely
to obtain the best possible fit. In this work we shall adopt the former and fix its value
to 1

2 if, in accordance with the principles of second quantization, the interacting fields
are quantized on a spacelike surface [19].
With this choice, the tensor Θµν becomes

Θµν = gµν +
1

2
(1 + 3A) γµγν , (4.29)

in agreement with [31, 35].
On the other hand, the S-matrix elements for the interaction Lagrangian given by
Eq. (4.23) are independent of the parameter A according to an equivalence theorem
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given in Ref. [36].
Therefore we will choose A = −1

3 so that

Θµν = gµν , (4.30)

and the interaction Lagrangian describing the πN∆ vertex becomes [31, 35]

LπN∆ =
fπN∆

mπ

(

Ψ
µ
∆
~T ΨN

)

· ∂µ~Φπ + h.c. (4.31)

The Strong Coupling: fπN∆

Expressing the coupling in terms of the partial decay width (Γ∆ → πN)

dΓ

dΩ
=

1

2M∆

1

16π2
|~q|√
s
|Mfi|2, (4.32)

where

Mfi = i
fπN∆

mπ

I∆ u(pf)uα(pi)q
α, (4.33)

with I∆ an isospin factor (see Table 6.3), uα(pi) is the corresponding Rarita-Schwinger
spinor, and |Mfi|2 denotes the average over the initial spin (si) and sum over the final
spins (sf), namely

|Mfi|2 ≡
1

4

∑

si

∑

sf

|Mfi|2 (4.34)

=
1

4

f2
πN∆

m2
π

I2∆Tr

[

qα(/p
i
+M∆)P

3
2
αβ(pi)q

β(/p
f
+MN)

]

, (4.35)

where
∑

s

uα(p)uβ(p) = (/p +M∆)P
3
2
αβ(p), (4.36)

with P
3
2
αβ(p), the spin-32 projection operator, given by [32]

P
3
2
αβ(p) ≡ gαβ − 1

3p2
pαpβ − 1

3
γαγβ − 1

3p2
(pαγβ − pβγα) /p. (4.37)

Therefore, in the mass shell of the decaying particle (p2 =M2
∆), we obtain

|Mfi|2 =
2

3

f2
πN∆

m2
π

I2∆M∆|~q(M∆)|2 [Ef(M∆) +MN] . (4.38)

After integrating over the phase space and summing over all channels (Γ∆ → πN =
Γ∆ → π+n + Γ∆ → π0p)

f2πN∆

4π
=

3m2
πM∆

|~q(M∆)|3 [Ef(M∆) +MN]
Γ∆ → πN , (4.39)

with Ef and |~q| evaluated at W =M∆.
The magnitude of the estimated value of the strong coupling constant for the spin-32
(isospin-32 ) nucleon resonance is displayed in Table 4.2, according with the value of the
decay width given in the previous column of the same table [1].
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Resonance ΓR → πN (%) |fπNR|

P33(1232) 99.4
{ 2.214 − 2.452 (∆+)
2.252 − 2.274 (∆0)

D13(1520) 55 – 65 1.504 – 1.748

P33(1600) 8 – 24 0.311 – 0.703

Table 4.2.: Estimated strong coupling constants for the Spin-32 nucleon resonances.

The πND Vertex

This resonance is similar to the previous one except that it has the opposite parity and
isospin-12 . The Lagrangian for the πND vertex is then given by

LπND = −fπND

mπ

(

Ψ
µ
D
γ5~τ ΨN

)

· ∂µ~Φπ + h.c., (4.40)

where we have made the replacement

Ψ
µ
∆
~T → Ψ

µ
D~τ , (4.41)

with

Ψµ
D =

(

ψµ
D+

ψµ
D0

)

. (4.42)

The Strong Coupling: fπND

The decay width for the process D → πN is given by

dΓ

dΩ
=

1

2MD

1

16π2
|~q|√
s
|Mfi|2, (4.43)

where

Mfi = i
fπND

mπ

ID u(pf)γ5uα(pi)q
α, (4.44)

with ID = IR, and |Mfi|2 denotes the average over the initial spin (si) and sum over the
final spins (sf), namely

|Mfi|2 ≡
1

4

∑

si

∑

sf

|Mfi|2 (4.45)

=− 1

4

f2
πND

m2
π

I2DTr

[

qα(/p
i
+MD)P

3
2
αβ(pi)γ5q

β(/p
f
+MN)γ5

]

, (4.46)

where P
3
2
αβ(pi) is given by Eq. (4.37). With M∆ →MD, then

|Mfi|2 =
2

3

f2
πND

m2
π

I2DMD|~q(MD)|2 [Ef(MD)−MN] . (4.47)
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After integrating over the phase space and summing over all channels (ΓD → πN =
ΓD → π+n + ΓD → π0p)

f2πND

4π
=
m2

πMD [Ef(MD) +MN]

|~q(MD)|5
ΓD → πN , (4.48)

with Ef and |~q| evaluated at W =MD.
The magnitude of the estimated value of the strong coupling constant for the spin-32
(isospin-12 ) nucleon resonance is displayed in Table 4.2, according with the decay width
ranges given in the previous column of the same table [1].

4.2. Electromagnetic Interaction

For the case of the Born terms, the electromagnetic interaction is introduced by means
of minimal coupling, that is, replacing the differential opertor ∂

∂xµ in the Lagrangian of
the system by

∂

∂xµ
→ ∂

∂xµ
+ iQ̂Aµ, (4.49)

where Aµ is the photon field and Q̂ ≡ Q̂N + Q̂π is the total charge operator [37].
The extended structure of the nucleon and the pion is considered by including the
isoscalar, the isovector, and the pion form factors

Q̂N ≡ e

2

[

F s
1 (k

2) + F v
1 (k

2)τ3
]

, (4.50)

and
Q̂π ≡ eFπ(k

2)T̂3, (4.51)

where
F s
1 ≡ F p

1 + Fn
1 and F v

1 ≡ F p
1 − Fn

1 , (4.52)

which at the photon point (k2 = 0) take the values

F s
1 = F v

1 = 1 and Fπ = F v
1 (4.53)

to ensure gauge invariance [11].
The matrix elements of the isospin operator T̂3 in a cartesian isospin basis are given by

〈πi|T̂3|πj〉 = iǫi3j , (4.54)

and the magnetic moment of the nucleon is taken phenomenologically into account by
adding the magnetic dipole term [25]

i
µB

2

[

F s
2 (k

2) + F v
2 (k

2)τ3
]

σµνFµν , (4.55)

where

F s
2 ≡ F p

2 + Fn
2

2
and F v

2 ≡ F p
2 − Fn

2

2
, (4.56)
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γ(k)

N(pi)

π(q)

N(pf)

N

γ(k)

N(pi)

π(q)

N(pf)

N
+

Figure 4.1.: Feynman diagrams for Nucleon Born terms: (a) direct or s-channel, and (b)
crossed or u-channel.

which at the photon point take the values

F p
2 = κp = 1.79 and Fn

2 = κn = −1.91 (4.57)

in units of µB ≡ e
2MN

, σµν es given by Eq. (4.7) and the electromagnetic field tensor is
defined by [27]

Fµν ≡ ∂µAν − ∂νAµ. (4.58)

4.2.1. Vertices for Born Terms

The γNN Vertex

Applying the minimal gauge invariant coupling according to Eqs. (4.50) and (4.55) to
the free Dirac Lagrangian given by Eq. (3.12) we obtain the effective γNN interaction
Lagrangian

LγNN = −e
2
AαΨNγα (F

s
1 + F v

1 τ3)ΨN − e

4MN

ΨN (F s
2 + F v

2 τ3)σαβΨNF
αβ . (4.59)

From Lagrangians (4.1) and (4.59) we obtain the tree level Feynman diagrams of Fig. 4.1.

The γπNN Vertex

In this case the minimal gauge invariant coupling applied to the interaction Lagrangian (4.1)
leads to the following effective interaction Lagrangian involving the pion

LγπNN = −efπNN

mπ
ΨNγ5γµ

[

~τ × ~Φπ

]

3
ΨNA

µ. (4.60)

From Lagrangians (4.1) and (4.60) we obtain the tree level Feynman diagram of Fig. 4.2a.

19



4. Interaction Lagrangians

γ(k)

N(pi)

π(q)

N(pf)

π

γ(k)

N(pi)

π(q)

N(pf)

+

Figure 4.2.: Feynman diagrams for the Born terms: (a) Kroll-Rudermann (contact) term,
and (b) pion in flight term.

The γππ Vertex

Besides the contact term given by Eq. (4.60), the minimal gauge invariant coupling
applied to the free Lagrangian (3.1) also leads to the effective γππ interaction Lagrangian

Lγππ = −e
[

~Φπ × ∂µ~Φπ

]

3
Aµ. (4.61)

From Lagrangians (4.1) and (4.61) we obtain the tree level Feynman diagram of Fig. 4.2b.

4.2.2. Vertices for Vector Meson Terms

For the interaction of vector mesons with pion and photon we use the following standard
Lagrangians [13, 38]:

The ρπγ Vertex

For the isospin-1 ρ meson,

Lρπγ = e
λρπγ

2mπ
F̃µν

~W µν · ~Φπ, (4.62)

where the tensor ~W µν is given by Eq. (3.7) and F̃µν ≡ 1
2ǫµναβF

αβ is the dual of Fµν .
With

ǫαρµν ∂
µFαρ = 0, (4.63)

the above Lagrangian may equivalently be written as

Lρπγ = −eλρπγ

mπ
F̃µν ∂

µ~Φπ · ~Φ ν
ρ
. (4.64)

The ωπγ Vertex

Similarly, for the isospin-0 ω meson,

Lωπγ = e
λωπγ

2mπ
F̃µνB

µν
[

~Φπ

]

3
, (4.65)
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Vector meson ΓV → πγ (keV) |λV πγ|

ρ(770)
{

ρ±: 67± 8
ρ0: 89± 12

0.092 − 0.106
0.109 − 0.123

ω(782) 703± 7 0.310 − 0.314

Table 4.3.: Estimated electromagnetic coupling constants for the vector mesons.

where the tensor Bµν is given by Eq. (3.11).
The above Lagrangian is equivalent to

Lωπγ = −eλωπγ

mπ
F̃µν

[

∂µ~Φπ

]

3
Φν

ω
. (4.66)

From Lagrangians (4.6), (4.8), (4.64), and (4.66) we obtain the tree level Feynman
diagram of Fig. 4.3.

The Electromagnetic Coupling: λV πγ

The electromagnetic λV πγ couplings can be estimated from the partial decay widths of
the vector mesons by using the Lagrangians (4.64) and (4.66).
The decay width for the process V → πγ is given by [27]

dΓ

dΩ
=

1

2mV

1

16π2
|~k|√
s
|Mfi|2, (4.67)

where

Mfi = −eλV πγ

mπ
ǫµναβǫ

α
λ
∗kβqµǫνσ(p), (4.68)

with ǫαλ and ǫνσ(p), the photon and vector meson polarization vectors, respectively.

|Mfi|2 denotes the average over the vector meson polarization (σ) and sum over the
photon polarization (λ), namely

|Mfi|2 ≡
1

3

∑

σ

∑

λ

|Mfi|2 (4.69)

=
1

3

(eλV πγ)
2

m2
π

ǫµναβǫρθγδk
βqµkδqρ

(

gθν − pθpν

m2
V

)

gαγ (4.70)

=
2

3

(eλV πγ)
2

m2
π

|~k|2m2
V . (4.71)

After integrating over the phase space

(eλV πγ)
2

4π
=

24m2
π
m3

V

(m2
V
−m2

π
)3
ΓV → πγ. (4.72)
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γ(k)

N(pi)

π(q)

N(pf)

ρ, ω

Figure 4.3.: Feynman diagram for vector meson exchanges: ρ and ω.

The magnitude of the estimated values of the electromagnetic coupling constants λρπγ

and λωπγ are displayed in Table 4.3, according with the decay width values given in the
previous column of the same table [1].

4.2.3. Vertices for Resonance Terms

The γNR± Vertex

For a spin-12 nucleon resonance, the coupling to the photon that preserves gauge invari-
ance is analog to the coupling of the nucleon to the photon given by Eq. (4.59). In this
case, the first term of Eq. (4.59) is absent because the difference of the masses of the
resonance and the nucleon leads to violation of gauge invariance. Therefore the effective
γNR± Lagrangian is given by

LγNR± = ± e

2(MN +MR)
ΨNΓαβ (κ

s
R + κvRτ3)ΨRF

αβ + h.c., (4.73)

where κpR ≡ κs
R
+κv

R
, and κn

R
≡ κs

R
−κv

R
are the transition magnetic couplings for the pro-

ton and neutron targets, respectively and the operator structure for Γαβ is Γαβ = γ5σαβ
for odd nucleon resonances (R−), and Γαβ = σαβ for even nucleon resonances (R+).
This vertex is similar to the γNN vertex given by Eq. (4.59), except that the first term
in the right-hand side of this equation is abscent because its presence violates gauge
invariance due to the mass difference of the resonance (R) and the nucleon (N).
From Lagrangians (4.15) and (4.73) we obtain the tree level Feynman diagrams of
Fig. 4.4.

The Transition Magnetic Moments: κ
p(n)
R

The transition magnetic moments will be conveniently expressed in terms of the experi-
mental helicity amplitudes Ap(n)

1
2

[39].

First, the decay width for the process R→ γN is given by [27]

dΓ

dΩ
=

1

2MR

1

16π2
|~k|√
s
|Mfi|2, (4.74)
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γ(k)

N(pi)

π(q)

N(pf)

X

γ(k)

N(pi)

π(q)

N(pf)

X

(a) (b)

+

Figure 4.4.: Feynman diagrams for resonance excitations (X = R,∆,D): (a) direct or
s-channel, and (b) crossed or u-channel.

where
Mfi =

eκR

MN +MR

u(pf) [/k/ǫ
∗]u(pi), (4.75)

with ǫαλ the photon polarization vector, and |Mfi|2 is given by

|Mfi|2 ≡
1

2

∑

si

∑

sf

∑

λ

|Mfi|2 (4.76)

=
1

2

(

eκR

MN +MR

)2

Tr
[

(/p
i
+MR)/ǫ/k(/p

f
+MN)/k/ǫ

∗
]

(4.77)

=8

(

eκR

MN +MR

)2

M2
R|~k|2. (4.78)

Then, integrating over the phase space, one obtains the radiative width

ΓR → γN =

(

eκR

MN +MR

)2 |~k|3
π

(4.79)

=

(

eκR

MN +MR

)2 |~k|2
π

M2
R
−M2

N

2MR

. (4.80)

Second, the decay width of a spin-12 resonance can also be determined in terms of
the helicity amplitude (Ap(n)

1
2

) for the excitation of the nucleon into a resonant state of

helicity-12 through [39]

ΓR → γN =
|~k|2
π

MN

MR

|Ap(n)
1
2

|2, (4.81)

therefore

(eκR)
2 = 2MN

(

MR +MN

MR −MN

)

|Ap(n)
1
2

|2. (4.82)

In Table 4.4 we present their absolute values, according with the ranges of the values of
the helicity amplitudes given in the previous column of the same table [1], but their sign
will be determined by the best fit.
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Resonance A

(

p
n

)

1
2

(GeV−
1
2 ) |κpR| |κnR|

P11(1440)
{−0.057 – − 0.039

0.035 – 0.055
0.403 – 0.601 0.363 – 0.571

S11(1535)
{ 0.046 – 0.102
−0.092 – − 0.084

0.429 – 0.957 0.789 – 0.862

S11(1650)
{ 0.015 – 0.038
0.012 – 0.020

0.129 – 0.327 0.102 – 0.172

P11(1710)
{ 0.026 – 0.037
−0.060 – 0.006

0.218 – 0.310 0.050 – 0.505

Table 4.4.: Estimated transition magnetic moments for the spin-12 nucleon resonances.

The γN∆ Vertex

With respect to the γN∆ vertex, the so called normal parity decomposition (G1, G2)
given by [12, 40]

LγN∆ = ieΨ
µ
∆T3Γ

(NP)
µν ΨNA

ν + h.c., (4.83)

which will be described below with more detail, has been widely used.
However, another decomposition based upon the same idea as the Sachs form factors
for the nucleon is also possible [32]. This decomposition, known as the covariant mul-
tipole decomposition (GE , GM ), is directly connected to physical quantities, such as the
electric and magnetic multipoles which are of great interest from both experimental and
theoretical points of view [13, 40]. This second decomposition is equivalent to the normal
parity decomposition when baryons are on shell as we will show below [35].

• The Covariant Multipole Decomposition (MD)

The γN∆ interaction Lagrangian is given by

LγN∆ = ieΨ
µ
∆T3Γ

(MD)
µν ΨNA

ν + h.c., (4.84)

where Γ(MD)
µν is written in a covariant multipole decomposition as [13, 40]

Γ(MD)
µν ≡ GMK

M

µν +GEK
E

µν . (4.85)

GM and GE are the magnetic and electric form factors of the ∆ resonance, respec-
tively, and the tensors KM

µν and KE
µν are given respectively by

KM

µν ≡ − 3

2MNΣM
ǫµναβP

αkβ , (4.86)

and

KE

µν ≡ −KM

µν −
6

MNΣM(∆M)2
ǫµλαβP

αkβǫν
λ
γδ p

γ
∆k

δiγ5, (4.87)

with P ≡ 1
2(pi + p∆) for the s-channel, P ≡ 1

2(pf + p∆) for the u-channel, ΣM ≡
M∆ +MN , and ∆M ≡M∆ −MN .
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• The Normal Parity Decomposition (NP)

The most general electromagnetic interaction Lagrangians are given by [41]

L
(1)
γN∆ = ie

G1

2MN

Ψ
µ
∆T3Θµλ(X)γνγ5ΨNF

νλ + h.c., (4.88)

and

L
(2)
γN∆ = −e G2

2M2
N

Ψ
µ
∆T3Θµν(Y )γ5(∂λΨN)F

νλ + h.c., (4.89)

where the tensor Θµν was defined in Eq. (4.26) and X and Y are off-shell param-
eters.

With X = Y = 1
2 [19] and A = −1

3 [35], as it was discussed above, we obtain the
so called normal parity decomposition [12, 40, 42] for the γN∆ vertex

LγN∆ = ieΨ
µ
∆T3Γ

(NP)
µν ΨNA

ν + h.c., (4.90)

where

Γ(NP)
µν ≡ −i

[

G1

2MN

K
1
µν −

G2

2M2
N

K
2
µν

]

, (4.91)

with the standard normal parity set (K 1
µν ,K

2
µν) defined as

K
1
µν ≡ (kµγν − /kgµν)γ5, (4.92)

and
K

2
µν ≡ (kµPν − (P · k)gµν)γ5, (4.93)

in accordance with the notation of [40].

Relation Between the MD and NP Sets

For this purpose we have to make use of the following “non-trivial” relation [35]

ǫαβµνA
µBνγ5 = (A ·B − /A/B)σαβ + i /B(γαAβ − γβAα)− i /A(γαBβ − γβBα) (4.94)

+ i(AαBβ −AβBα).

By taking A = P and B = k, we get in general that

ǫµναβP
αkβγ5 = iγµ

[

(P · k − /P /k)γν − (/kPν − /Pkν)
]

+ i(/kPµ − /Pkµ)γν (4.95)

− i(P · k − /P /k)gµν + i(kµPν − Pµkν).

In the limit case of ∆ on-shell,

Ψ
µ
∆γµ = 0, Ψ

µ
∆ p∆µ = 0, and Ψ

µ
∆ /p∆ =M∆Ψ

µ
∆, (4.96)

25



4. Interaction Lagrangians

from which we obtain, in terms of the standard parity set (K 1
µν ,K

2
µν) that

ǫµναβP
αkβ = i

[

M∆K
1
µν + K

2
µν

]

. (4.97)

The tensor KM
µν then becomes

KM

µν = −iKM

[

M∆K
1
µν + K

2
µν

]

, (4.98)

where KM ≡ 3

2MNΣM
.

Next, we make use of the identity

−ǫµλαβ ǫνλγδ =

∣

∣

∣

∣

∣

∣

gµν gµγ gµδ
gαν gαγ gαδ
gβν gβγ gβδ

∣

∣

∣

∣

∣

∣

, (4.99)

from which we obtain (for ∆ on-shell) that

ǫµλαβǫν
λ
γδP

αkβpγ∆k
δ = −(p∆ · k)(kµPν − (P · k)gµν), (4.100)

therefore
ǫµλαβ ǫν

λ
γδP

αkβpγ∆k
δ(iγ5) = −i(p∆ · k)K 2

µν , (4.101)

and

KE

µν = iKM

[

M∆K
1
µν +

(3M∆ +MN)

∆M
K

2
µν

]

, (4.102)

where we have made use of
2 p∆ · k =M2

∆ −M2
N . (4.103)

Finally, from Eq. (4.98) and Eq. (4.102) we get

Γ(MD)
µν = −iKM

[

(GM −GE)M∆K
1
µν +

(

GM − 3M∆ +MN

∆M
GE

)

K
2
µν

]

, (4.104)

which is the expression of Γ(MD)
µν in terms of the standard parity set (K 1

µν ,K
2
µν).

Comparing Eq. (4.104) to

Γ(NP)
µν ≡ −i

[

G1

2MN

K
1
µν −

G2

2M2
N

K
2
µν

]

, (4.105)

we find that
G1

2MN

= (GM −GE)M∆KM , (4.106)

and
G2

2M2
N

= −
(

GM − 3M∆ +MN

∆M
GE

)

KM . (4.107)

By using the effective values of GM and GE given by [35]

GM = 2.97 ± 0.08, and GE = 0.055 ± 0.010, (4.108)
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we obtain that
G1 = 4.93, and G2 = −2.68. (4.109)

From Eqs. (4.106) and (4.107) we obtain that

GM =
1

6

[

3M∆ +MN

M∆

G1 +
∆M

MN

G2

]

, (4.110)

and

GE =
1

6

[

∆M

M∆

G1 +
∆M

MN

G2

]

, (4.111)

which agree with Eq. (54) of Jones-Scadron’s paper [40] if we identify

G1 → GJS
1 ≡ G1

2MN

, and G2 → GJS
2 ≡ G2

2M2
N

. (4.112)

With G1 = 4.93 and G2 = −2.68, then

GJS
1 = 2.62GeV−1, and GJS

2 = −1.51GeV−2. (4.113)

The Ratio of Electric Quadrupole to Magnetic Dipole Amplitudes for ∆(1232)

The ratio of electric quadrupole to magnetic dipole transition amplitudes REM in the
process γN ⇄ ∆ is an important quantity by means of which theories for effective forces
between quarks are tested in order to understand the structure of hadrons. However,
from the experimental point of view, the determination of the REM is not precise, current
measured values of electromagnetic helicity amplitudes lead to different values for the
REM , which range from −0.034 to −0.010 [1].
The REM is defined by [13, 42]

REM ≡ fE2

fM1

, (4.114)

where the M1 and E2 multipole amplitudes of the resonance production γN → ∆, are
given, respectively by

fM1
≡ e

6

√

|~k|
M∆MN

[

(3M∆ +MN)
G1

2MN

+M∆∆M
G2

2M2
N

]

, (4.115)

and

fE2
≡ −e

3

√

M∆

MN

|~k| |
~k|

ΣM

[

G1

2MN

+M∆

G2

2M2
N

]

, (4.116)

which may be written, by means of Eq. (4.106) and Eq. (4.107), in terms of the Sachs-
type form factors GM and GE as

fM1
=

e

2MN

√

M∆

MN

|~k|GM , (4.117)
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and

fE2
= − e

2MN

√

M∆

MN

|~k| 2M∆

M2
∆ −M2

N

|~k|GE . (4.118)

Finally, in the ∆-rest frame, the photon momentum is

|~k| = M2
∆ −M2

N

2M∆

, (4.119)

therefore the REM is expressed as

REM ≡ fE2

fM1

= −GE

GM

. (4.120)

The values GM = 2.97, and GE = 0.055 give the ratio

REM = −0.0185 ± 0.0039. (4.121)

The γND Vertex

The difference of this case with respect to the previous one is that this resonance has
opposite parity and, both the I = 0 and the I = 1 components of the photon contribute.
Thus the γND interaction Lagrangian is similar to the γN∆ interaction Lagrangian
given by Eq. (4.90) if we make the replacements

Gi →
1

2
(Gs

i +Gv
i τ3), i = 1, 2. (4.122)

and
Ψ

µ
∆T3 → Ψ

µ
D. (4.123)

Therefore

LγND = eΨ
µ
D

[

1

4MN

(Gs
1 +Gv

1τ3)K
1
µν −

1

4M2
N

(Gs
2 +Gv

2τ3)K
2
µν

]

γ5ΨNA
ν + h.c., (4.124)

where the isoscalar and isovector electromagnetic couplings Gs
i and Gv

i are defined by
Gp

i + Gn
i and Gp

i − Gn
i , respectively, with Gp

1 = −5.570, Gp
2 = 0.624, Gn

1 = 0.853, and
Gn

2 = 0.100 [12].
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5. The Spin-3
2
Propagator

In this chapter we present the general form of the total nonrenormalized propagator
for the massive Rarita-Schwinger field with all spin components. In addition to the
leading component of spin-32 , the massive off-shell spin-32 field incorporates two spin-
1
2 components, which cannot be eliminated from the amplitudes. In general, for the
massive off-shell fields with spin J ≥ 1, there are contributions involving the spin-(J−1)
sector in the effective amplitudes [43]. The case of the renormalized propagator will be
considered at the end of the chapter.

5.1. Free (Bare) Propagator

Applying the Euler-Lagrange equations to the Lagrangian for the free spin-32 field given
by Eq. (3.16), we obtain the wave equation for the spin-32 particle

ΞµνΨ
ν
X = 0, (5.1)

where

Ξµν ≡ Λµα

[

gαβ
(

i/∂ −MX

)

+
i

3

(

γα /∂γβ − γα∂β − ∂αγβ
)

+
1

3
MXγ

αγβ
]

Λβν

=
(

i/∂ −MX

)

gµν + iA (γµ∂ν + γν∂µ) +
i

2

(

3A2 + 2A+ 1
)

γµ/∂γν

+
(

3A2 + 3A+ 1
)

MXγµγν . (5.2)

Eq. (5.1) leads to the constraint equations

γµΨ
µ
X = 0, and ∂µΨ

µ
X = 0, (5.3)

which are necessary to eliminate the redundant components of the free spin-32 field Ψµ
X

from sixteen to eight (four spin projections for the particle and the other four for the
anti-particle). However, in the presence of interactions, these constraints do not hold
in general, but it is possible to derive the necessary number of constraints for a certain
type of interactions [19].
The propagator for the free spin-32 field is [34]

〈0|T Ψµ
X(x)Ψ̄

ν
X
(y)|0〉 = dµν(∂)

∫

d4p

(2π)4
i

p2 −M2
X + iǫ

e−ip·(x−y), (5.4)
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where the operator dµν(∂) is given by

dµν(∂) ≡ (i/∂ +MX)

[

gµν − 1

3
γµγν −

i

3MX

(γµ∂ν − γν∂µ) +
2

3M2
X

∂µ∂ν

]

− 1

3M2
X

A+ 1

2A+ 1

×
[(

i

2

A+ 1

2A+ 1
/∂ − A

2A+ 1
MX

)

γµγν + iγµ∂ν + i
A

2A+ 1
γν∂µ

]

(�+M2
X). (5.5)

In momentum space, the free propagator becomes [17, 19]

Gµν(p) =
i(/p+MX)

p2 −M2
X + iǫ

[

gµν − 1

3
γµγν −

1

3MX

(γµpν − γνpµ)−
2

3M2
X

pµpν

]

+
i

3M2
X

A+ 1

2A+ 1

[(

A+ 1

2(2A+ 1)
/p−

A

2A+ 1
MX

)

γµγν + γµpν +
A

2A+ 1
γνpµ

]

.

(5.6)

On the other hand, as it was stated in Sec. 3.4, the physical properties of the free field
are independent of the parameter A, which we have taken equal to A = −1

3 [21, 31].
This choice yields the expression for the bare (unperturbed) spin-32 propagator [31, 33]

Gµν(p) =
i(/p +MX)

p2 −M2
X + iǫ

[

gµν −
1

3
γµγν −

1

3MX

(γµpν − γνpµ)−
2

3M2
X

pµpν

]

+ i
2

3M2
X

[(

/p+MX

)

γµγν + γµpν − γνpµ
]

, (5.7)

differing from the traditional choice A = −1 which leads to the well-known Rarita-
Schwinger propagator [11, 12]

GRS

µν (p) =
i(/p +MX)

p2 −M2
X + iǫ

[

gµν − 1

3
γµγν −

1

3MX

(γµpν − γνpµ)−
2

3M2
X

pµpν

]

. (5.8)

Spin Operators

It will be convenient to consider the set of spin operators [33, 43]

(P 3
2 )µν ≡ gµν − 2

3p2
pµpν −

1

3
γµγν +

1

3p2
(γµpν − γνpµ)/p, (5.9)

(P
1
2
11)µν ≡ 1

3
γµγν −

1

3p2
pµpν −

1

3p2
(γµpν − γνpµ)/p, (5.10)

(P
1
2
22)µν ≡ 1

p2
pµpν , (5.11)

(P
1
2
21)µν ≡

√

3

p2
1

3p2
(−iσµαpα) /ppν , (5.12)

(P
1
2
12)µν ≡

√

3

p2
1

3p2
(−iσναpα) /ppµ, (5.13)
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which satisfy the orthonormality condition

(PI

ij)
µλ(PJ

kl)λν = (PI

il)
µ
ν δ

IJδjk, (5.14)

and the commutation and anti-commutation relations

[/p, (P
3
2 )µν ] = 0, and







[/p, (P
1
2
ij)µν ] = 0, if i = j,

{/p, (P
1
2
ij)µν} = 0, if i 6= j.

(5.15)

From these, P
3
2 , P

1
2
11, and P

1
2
22, are projection operators

(P 3
2 )µν + (P

1
2
11)µν + (P

1
2
22)µν = gµν , (5.16)

while P
1
2
21 and P

1
2
12 are nilpotent operators [44].

In terms of the projection operators, the bare propagator given in Eq. (5.7) becomes

Gµν(p) =
i(/p +MX)

p2 −M2
X + iǫ

(P 3
2 )µν+i

2

M2
X

(/p+MX)(P
1
2
11)µν+i

√
3

MX

√

p2
/p

[

(P
1
2
12)µν − (P

1
2
21)µν

]

.

(5.17)
This expression for the bare propagator in terms of the projection operators will be
useful in next section.

5.2. Total (Dressed) Propagator

The bare spin-32 propagator is singular at p2 = M2
X and should be dressed by including

a self-energy (Σ) which gives to it a width corresponding to an unstable particle [45].
This self-energy includes the lowest order πN one-loop contribution of Fig. 5.1 as well
as other higher order contributions which will not be considered here.
The expression for the corresponding dressed propagator (G̃µν) is more difficult and has
not been solved conclusively yet. In this work we will make use of the analytic expression
for the propagator given in Refs. [33, 44] which takes into account all spin components.
The dressed propagator is obtained by solving the Dyson-Schwinger equation [30]

G̃µν(p) = Gµν(p) + G̃µα(p)Σ
αβ(p)Gβν(p), (5.18)

or equivalently for the inverse propagators

G̃µν(p)
−1 = Gµν(p)

−1 − Σµν(p), (5.19)

where the one-loop self-energy correction is given by

Σµν(p) = −i
(

fπNX

mπ

)2 ∫ d4v

(2π)4
/p+ /v +MN

(p+ v)2 −M2
N

vµvν

v2 −m2
π

. (5.20)

31



5. The Spin-32 Propagator

µ ν

p p

v

p+ v

Figure 5.1.: One-loop πN self-energy correction to the spin-32 propagator.

We evaluate the discontinuity of the loop according to the Cutkosky rule [27] by replacing

1

p2 −m2
→ −2πiδ(p2 −m2) (5.21)

in each cut propagator, from which Σµν(p) becomes [33]

Σµν(p) = i

(

fπNX

mπ

)2 ∫ d4v

(2π)2
(

/p+ /v +MN

)

vµvν δ
(

(p+ v)2 −M2
N

)

δ
(

v2 −m2
π

)

.

(5.22)
Integrating over v0 we obtain

Σµν(p) = i

(

fπNX

2πmπ

)2 ∫ d3~v

2ωπ

(

/p+ /v +MN

)

vµvν
1

2
√

p2
δ

(

ωπ +
p2 +m2

π −M2
N

2
√

p2

)

×

(5.23)

×Θ
(

p2 − (MN +mπ)
2
)

,

where ω2
π ≡ |~v|2 +m2

π.
Evaluating the volume integral, taking into account that

∫

d3~v = 4π
∫

|~v|2 d|~v|, we obtain

Σµν(p) =
10
∑

i=1

J̄i(Pi)
µν , (5.24)

where the projection operators (Pi)
µν are defined in terms of the spin projection opera-

tors given above by

(P1)
µν ≡ Λ+(P 3

2 )µν , (P2)
µν ≡ Λ−(P 3

2 )µν , (P3)
µν ≡ Λ+(P

1
2
11)

µν ,

(P4)
µν ≡ Λ−(P

1
2
11)

µν , (P5)
µν ≡ Λ+(P

1
2
22)

µν , (P6)
µν ≡ Λ−(P

1
2
22)

µν ,

(P7)
µν ≡ Λ+(P

1
2
21)

µν , (P8)
µν ≡ Λ−(P

1
2
21)

µν , (P9)
µν ≡ Λ+(P

1
2
12)

µν ,

(P10)
µν ≡ Λ−(P

1
2
12)

µν , (5.25)
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5. The Spin-32 Propagator

with Λ± ≡
√

p2 ± /p

2
√

p2
, and the coefficients J̄i are given by [33]

J̄1 = J̄3 ≡ −i
(

fπNX

2πmπ

)2 I0
12p2

[

(
√

p2 +MN)
2 −m2

π

4
√

p2

]

λ(p2,M2
N
,m2

π), (5.26)

J̄2 = J̄4 ≡ i

(

fπNX

2πmπ

)2 I0
12p2

[

(
√

p2 −MN)
2 −m2

π

4
√

p2

]

λ(p2,M2
N
,m2

π), (5.27)

J̄5 ≡ i

(

fπNX

2πmπ

)2 I0
4p2

[

(
√

p2 +MN)
2 −m2

π

4
√

p2

]

(

p2 −M2
N +m2

π

)2
, (5.28)

J̄6 ≡ −i
(

fπNX

2πmπ

)2 I0
4p2

[

(
√

p2 −MN)
2 −m2

π

4
√

p2

]

(

p2 −M2
N +m2

π

)2
, (5.29)

J̄7 = J̄8 = J̄9 = J̄10 ≡ i

(

fπNX

2πmπ

)2 I0
48p2

√

3

p2
(

p2 −M2
N
+m2

π

)

λ(p2,M2
N
,m2

π), (5.30)

where
λ(x, y, z) ≡ (x− y)2 + (x− z)2 + (y − z)2 − x2 − y2 − z2, (5.31)

and
I0 ≡

π

2p2
λ

1
2 (p2,M2

N ,m
2
π)Θ

(

p2 − (MN +mπ)
2
)

. (5.32)

By replacing these results into Eq. (5.18) we obtain the following expression for the
dressed propagator

G̃µν(p) =
i

1− J2

{

(/p + M̃X)

p2 − M̃2
X

[

gµν −
1

3
γµγν −

M̃X

3p2
(γµpν − γνpµ)−

2

3p2
pµpν

]

−
[

ΣE/3− ΣG

2p2
/p−

∆E/3−∆G

2
√

p2

]

γµpν +

[

ΣE/3− ΣG

2p2
/p−

∆E/3 + ∆G

2
√

p2

]

γνpµ

+
1

3

[

∆E

2
√

p2
/p−

ΣE

2

]

γµγν −
1

p2

[

∆E/3 +∆F − 2∆G

2
√

p2
/p−

ΣE/3− ΣF

2

]

pµpν

}

,

(5.33)

where ∆E ≡ E+ − E−, ΣE ≡ E+ + E−, etc. with

E± ≡ 2M̃X ∓ 2
√

p2 +A±

−M̃2
X +B±

, F± ≡
3
J3∓

√
p2J4

1−J2

−M̃2
X +B±

, G± ≡
M̃X − J1±

√
3J7

1−J2

−M̃2
X +B±

, (5.34)

A± ≡ 3(J5 ±
√

p2J6)− 2(J1 ±
√

p2J2)

1− J2
, (5.35)

B± ≡ 2MX(J1 + J3 ±
√
3J7 ∓

√

p2J4) + 2
√

p2(∓J3 +
√

p2J4) + J2
1

(1− J2
2 )

2
, (5.36)
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5. The Spin-32 Propagator

and the effective mass term, M̃X , is defined by

M̃X ≡ MX + J1
1− J2

. (5.37)

The Ji coefficients are defined in terms of the J̄i coefficientes given in Eqs. (5.26) - (5.30)
by means of

J2n−1 ≡
J̄2n−1 + J̄2n

2
, and J2n ≡ J̄2n−1 − J̄2n

2
√

p2
, n = 1, · · · , 5. (5.38)

Finally, in terms of the spin projection operators, the dressed propagator becomes

G̃µν(p) =
i

1− J2

{

/p+MX

p2 −M2
X

(P 3
2 )µν −

1

2
ΣE (P

1
2
11)µν +

1

2
√

p2
∆E /p(P

1
2
11)µν

− 1

2
ΣF (P

1
2
22)µν −

1

2
√

p2
∆F /p(P

1
2
22)µν −

√
3

2
∆G

[

(P
1
2
12)µν + (P

1
2
21)µν

]

−
√
3

2
√

p2
ΣG/p

[

(P
1
2
12)µν − (P

1
2
21)µν

]

}

. (5.39)

5.2.1. The Complex Mass Scheme

The effective mass term defined above is given explicitly by

M̃X ≡ MX + J1
1− J2

= (MX + J1)(1 + J2 + J2
2 + · · · )

=MX + J1 +MXJ2 + · · ·+ (
√

p2J2 −
√

p2J2)

=MX + (J1 +
√

p2J2) + (MX −
√

p2)J2 + · · ·
=MX + J̄1 + (MX −

√

p2)J2 +O(g4), (5.40)

where we have made use of J̄1 = J1 +
√

p2J2 and g ≡ fπNX

mπ
.

By neglecting terms of the order O(g4) and O((MX −
√

p2)g2), which are expected to
be small in the resonance region (

√

p2 ≃ MX), the effective mass term is then given
approximately by

M̃X ≃MX − i

(

fπNX

2πmπ

)2 I0
12p2

[

(
√

p2 +MN)
2 −m2

π

4
√

p2

]

λ(p2,M2
N
,m2

π). (5.41)

On the other hand, according to the complex-mass scheme (CMS), which is the most
straightforward method to describe unstable particles in perturbation theory [46], the
effective mass is given by

M̃X ≃MX − i

2
ΓX(s), (5.42)
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5. The Spin-32 Propagator

where ΓX(s) is the energy-dependent decay width of the resonance, with s = p2.
Comparing Eq. (5.41) and Eq. (5.42) we find that the decay width, ΓX(s), becomes

ΓX(s) =
f2
πNX

4πm2
π

1

12s2

[

(
√
s+MN)

2 −m2
π

4
√
s

]

λ
3
2 (s,M2

N ,m
2
π), (5.43)

which agrees with the expression for Γ∆ → πN given in Eq. (4.39) when
√
s =M∆.

5.2.2. The Renormalized Propagator

The renormalized propagator, GR
µν(p), is defined by [33]

G̃µν(p) ≡ (1− J2)
−1GR

µν(p), (5.44)

where the factor (1 − J2)
−1 is absorbed as a component of the X wavefunction renor-

malization constant.
By keeping terms of order g2 in the coefficients of the projection operators in Eq. (5.39),
the renormalized propagator becomes

GR

µν(p) ≃
i(/p+ M̃X)

p2 − M̃2
X

(P 3
2 )µν + i

2

M̃2
X

(/p + M̃X)(P
1
2
11)µν + i

√
3

M̃X

√

p2
/p

[

(P
1
2
12)µν − (P

1
2
21)µν

]

.

(5.45)
Then, by comparing Eq. (5.17) and Eq. (5.45), we conclude that the form of the renor-
mailized propagator is, up to order g2, identical to that of the bare propagator under
the replacement MX → M̃X =MX − i

2ΓX(s).
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6. Scattering Amplitudes

The central problem in the study of scattering processes is the calculation of S-matrix el-
ements between on-shell states. Given the interaction Lagrangians, Lint, which describe
the interactions involved in pion photoproduction, the S-matrix is [27, 32]

S ≡ T ei
∫
d4xLint(x), (6.1)

where T denotes the time-ordered product of the meson, nucleon and photon field op-
erators.
The S-matrix has the following structure: if the particles involved do not interact at all,
then S is simply the identity operator (1), but if the theory contains interactions, we
define the T-matrix by

S ≡ 1+ iT, (6.2)

from which we define the invariant matrix element M by [27, 32]

〈~pf, ~q |S− 1| ~pi, ~k〉 ≡ (2π)4δ4(pi + k − pf − q) iM(pi, k → pf, q), (6.3)

which is useful because it allows us to separate all the physics that depends on the details
of the interaction Lagrangian (dynamics) from all the physics that does not (kinematics).
In the following sections we present each of the analytic expressions for the amplitudes
contributing to pion photoproduction off the proton (as well as neutron, for the sake of
completeness) at the tree level, without including form factors. It is worth to mention
that at low energies, the use of a pseudovector coupling scheme in pion photoproduction
is favorable in the energy region near threshold but starts to diverge above the delta
resonance region in comparison with the current available experimental data. Later
we will calculate the same amplitudes by including form factors which account for the
structure of the interacting particles not included in the model, or to regularize those
quantities which would otherwise be divergent.

6.1. Born Terms

1. Nucleon

To first order in e and fπNN , the Lagrangians (4.1) and (4.59), yield the invariant
amplitudes for the nucleon term

iMs

N = −iefπNN

mπ
IN u(pf)

[

γ5/q i
/pi + /k +MN

s−M2
N

(

/ǫ − κp
2MN

/ǫ/k

)

]

u(pi), (6.4)
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6. Scattering Amplitudes

IN Ic Iπ

Channel pπ− pπ0 nπ+ nπ0 pπ− pπ0 nπ+ nπ0 pπ− pπ0 nπ+ nπ0

γp 0 1 −
√
2 0 0 0

√
2 0 0 0 −

√
2 0

γn
√
2 0 0 −1 −

√
2 0 0 0

√
2 0 0 0

Table 6.1.: Isospin factors for nucleon Born terms.

for the s-channel in pion photoproduction on proton, where IN is an isospin factor
given in Tab. 6.1, and

iMs

N
= ie

fπNN

mπ

κn
2MN

IN u(pf)

[

γ5/q i
/pi + /k +MN

s−M2
N

/ǫ/k

]

u(pi), (6.5)

for the s-channel in pion photoproduction on neutron.

For the u-channel,

iMu

N = −iefπNN

mπ
IN u(pf)

[

(

/ǫ − κp
2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

γ5/q

]

u(pi), (6.6)

for the processes γp→ π0p and γn→ π−p, and

iMu

N
= ie

fπNN

mπ

κn
2MN

IN u(pf)

[

/ǫ/k i
/pf − /k +MN

u−M2
N

γ5/q

]

u(pi), (6.7)

for the processes γp→ π+n and γn→ π0n.

2. Kroll-Rudermann (Contact)

The Lagrangian (4.60) yields the invariant amplitude for the Kroll-Rudermann
term of Fig. 4.2a

iMc = ±efπNN

mπ
Ic u(pf) [γ5/ǫ] u(pi), (6.8)

where the (+) sign corresponds to π+ photoproduction and the (−) sign corre-
sponds to π− photoproduction. Ic is an isospin factor given in Table 6.1.

3. Pion in Flight or t-channel

To first order in e and fπNN , the Lagrangians (4.1) and (4.61), yield the invariant
amplitude for the pion in flight term

iMt

π = ie
fπNN

mπ
Iπ i

q · ǫ
t−m2

π

u(pf)
[

γ5
(

/q − /k
)]

u(pi), (6.9)

where Iπ is an isospin factor given in Table 6.1.
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6. Scattering Amplitudes

Iρ Iω

Channel pπ− pπ0 nπ+ nπ0 pπ− pπ0 nπ+ nπ0

γp 0 1 −
√
2 0 0 1 0 0

γn
√
2 0 0 −1 0 0 0 1

Table 6.2.: Isospin factors for ρ and ω mesons.

6.2. Vector Meson Terms

To first order in e and gρNN , the Lagrangians (4.6) and (4.64), yield the invariant am-
plitude for the ρ meson term

iMt

ρ
= ±eλρπγ

mπ
Iρ i

ǫσµανǫ
σqµkα

t−m2
ρ

u(pf)

[

gv
ρNN

γν + i
gtρNN

2MN

σνβ (q − k)β

]

u(pi), (6.10)

where the (+) sign corresponds to π± photoproduction and the (−) sign corresponds to
π0 photoproduction. Iρ is an isospin factor given in Tab. 6.2.
Similarly, for the ω meson term, the Lagrangians (4.8) and (4.66), yield the invariant
amplitude

iMt

ω
= e

λωπγ

mπ
Iω i

ǫσµανǫ
σqµkα

t−m2
ω

u(pf)

[

gv
ωNN

γν + i
gtωNN

2MN

σνβ (q − k)β

]

u(pi), (6.11)

where Iω is an isospin factor given in Table 6.2.

6.3. Resonance Terms

1. Spin-12 Resonances of Negative Parity: S11(1535) and S11(1650)

To first order in e and fπNR− , the Lagrangians (4.15) and (4.73), yield the invariant
amplitudes for the negative parity resonances of spin-12 (R−)

iMs

R− = −iefπNR−

mπ

κj
R−

ΣM
IR u(pf)

[

γ5/q i
/pi + /k −MR−

s−M2
R−

/ǫ/k

]

u(pi) (6.12)

for the s-channel, where κj
R− = κp

R−(κnR−) for pion photoproduction on proton
(neutron), and IR is an isospin factor given in Table 6.3.

For the u-channel,

iMu

R− = −iefπNR−

mπ

κj
R−

ΣM
IR u(pf)

[

/ǫ/k i
/pf − /k −MR−

u−M2
R−

γ5/q

]

u(pi), (6.13)

where κj
R− = κp

R− for the processes γp → π0p and γn → π−p, and κj
R− = κn

R− for
the processes γp→ π+n and γn→ π0n.
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6. Scattering Amplitudes

2. Spin-12 Resonances of Positive Parity: P11(1440) and P11(1710)

Similarly, to first order in e and fπNR+ , the Lagrangians (4.15) and (4.73), yield
the invariant amplitudes for the positive parity resonances of spin-12 (R+)

iMs

R+ = ie
fπNR+

mπ

κj
R+

ΣM
IR u(pf)

[

γ5/q i
/pi + /k +MR+

s−M2
R+

/ǫ/k

]

u(pi) (6.14)

for the s-channel, where κj
R+ = κp

R+ (κn
R+) for pion photoproduction on proton

(neutron).

For the u-channel,

iMu

R+ = ie
fπNR+

mπ

κj
R+

ΣM
IR u(pf)

[

/ǫ/k i
/pf − /k +MR+

u−M2
R+

γ5/q

]

u(pi), (6.15)

where κj
R+ = κp

R+ for the processes γp → π0p and γn → π−p, and κj
R+ = κn

R+ for
the processes γp→ π+n and γn→ π0n.

3. Spin-32 Resonances of Isospin-32 : P33(1232) and P33(1600)

To first order in e and fπN∆, and following the covariant multipole decomposition
(MD) or the normal parity set (NP), the Lagrangians (4.23) and (4.84), yield the
invariant amplitudes

iMs

∆ = e
fπN∆

mπ
I∆ u(pf)

[

qµ iG
µα(p∆)Γαβǫ

β
]

u(pi), (6.16)

for the s-channel, where I∆ is an isospin factor given in Table 6.3, Gµν(p∆) is the
spin-32 propagator discussed in the previous chapter and Γαβ = Γ(MD)

αβ (Γ(NP)

αβ ).

For the u-channel,

iMu

∆ = ∓efπN∆

mπ
I∆ u(pf)

[

Γ̃µνǫ
ν iGµα(p∆)qα

]

u(pi), (6.17)

where Γ̃µν = Γ̃(MD)
µν (Γ̃(NP)

µν ), with

Γ̃µν ≡ γ0Γ
†
µνγ0, (6.18)

and Γµν = Γ(MD)
µν (Γ(NP)

µν ). The negative (positive) sign corresponds to π0 (π+)
photoproduction on proton.

4. Spin-32 Resonances of Isospin-12 : D13(1520)

To first order in e and fπND, the Lagrangians (4.40) and (4.124), and following the
normal parity set, yield the invariant amplitudes

iMs

D = −iefπND

mπ
ID u(pf)

[

γ5qµ iG
µα(pD)K

p−

αβǫ
βγ5

]

u(pi), (6.19)
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6. Scattering Amplitudes

IR(D) I∆

Channel pπ− pπ0 nπ+ nπ0 pπ− pπ0 nπ+ nπ0

γp 0 1 −
√
2 0 0 2/3

√
2/3 0

γn
√
2 0 0 −1

√
2/3 0 0 2/3

Table 6.3.: Isospin factors for isospin-12 (R, D) and isospin-32 (∆) resonance terms.

for the s-channel in pion photoproduction on proton (neutron), where ID is an
isospin factor given in Table 6.3, and

Kp±

αβ ≡ Gp

1

2MN

K
1
αβ ± Gp

2

2M2
N

K
2
αβ. (6.20)

In the covariant multipole decomposition, it may be written as

iMs

D = e
fπND

mπ
ID u(pf)

[

γ5qµ iG
µα(pD)Γ

(MD)

αβ ǫβγ5

]

u(pi), (6.21)

where Γ(MD)
µν is given by Eq. (4.85).

In this case, the magnetic and electric form factors of the D resonance, Gp
M and

Gp
E, are given, respectively by

Gp
M =

1

6

[

3MD +MN

MD

Gp
1 +

∆M

MN

Gp
2

]

, (6.22)

and

Gp
E =

1

6

[

∆M

MD

Gp
1 +

∆M

MN

Gp
2

]

. (6.23)

With Gp
1 = −5.570 and Gp

2 = 0.624, we obtain the values

Gp
M = −3.298 and Gp

E = −0.288. (6.24)

For the u-channel,

iMu

D
= −iefπND

mπ
ID u(pf) [γ5Kµνǫ

νGµα(pD)qαγ5] u(pi), (6.25)

where Kαβ = Kp+

αβ for the processes γp→ π0p and γn→ π−p, while

Kαβ = Kn+

αβ ≡ Gn
1

2MN

K
1
αβ +

Gn
2

2M2
N

K
2
αβ (6.26)

for the processes γp→ π+n and γn→ π0n.

Similarly, with Gn
1 =0.853 and Gn

2 = 0.100, we obtain the value of the magnetic and
electric form factors, Gn

M
and Gn

E
, respectively

Gn
M = 1.575 and Gn

E = 0.064. (6.27)
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7. Gauge Invariance and Form Factors

Gauge invariance is one of the central issues in the description of the interaction of
photons with hadronic systems. In the case of pion photoproduction off the nucleon
at the tree level Feynman diagrams, this condition is guaranteed with bare, point like
particles. However, the tree-level (total) amplitude is no longer gauge invariant if one
makes use of (off-shell) hadronic form-factors to account for the internal structure of
extended particles such as mesons and baryons which are not point-like.
In order to preserve gauge invariance, we will need to construct additional current con-
tributions beyond the usual Feynman diagrams to cancel the resulting gauge-violating
terms.
For bare nucleons, the tree-level amplitudes may be written as [22, 23, 24]

iMfi = e
fπNN

mπ
IN

4
∑

j=1

Aj u(pf)
[

ǫαMα
j

]

u(pi), (7.1)

which represents an expansion based on the operators

Mα
1 ≡ −γ5γα/k, (7.2)

Mα
2 ≡ 2γ5 (pf · k pαi − pi · k pαf ) , (7.3)

Mα
3 ≡ γ5 (pi · k γα − pαi /k) , (7.4)

Mα
4 ≡ γ5 (pf · k γα − pαf /k) , (7.5)

where each of the operators Mα
1 , · · · ,Mα

4 is gauge invariant by itself, that is kαMα
i = 0.

The coefficient functions A1, · · · , A4 will be calculated below for each of the processes
γ p→ nπ+ and γ p→ p π0, respectively.

7.1. Coefficient Functions

1. γ p→ nπ+

The terms inside the brackets of the amplitudes given by Eq. (6.4), Eq. (6.7),
Eq. (6.8), and Eq. (6.9), factoring out the polarization vector ǫα, become respec-
tively

(1 + κp)

s−M2
N

2pi · k γ5γα − Cp

s−M2
N

2pi · k γ5γα/k −
(1 + κp)

s−M2
N

2MN γ5γ
α/k

+
4MN

s−M2
N

pαi γ5 −
2κp

s−M2
N

pαi γ5/k, (7.6)
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κn
u−M2

N

2pf · k γ5γα +
Cn

u−M2
N

2pf · k γ5γα/k −
κn

u−M2
N

2MN γ5γ
α/k

− 2κn
u−M2

N

pαf γ5/k, (7.7)

−γ5γα, (7.8)

and
4MN

t−m2
π

pαi γ5 −
4MN

t−m2
π

pαf γ5, (7.9)

where Cp ≡
κp
M2

N

, and Cn ≡ κn
M2

N

.

Then, the contribution to the total π+ photoproduction amplitude given by the nu-
cleon s- and u-channels, the contact term, and the pion t-channel to the expansion
given by Eq. (7.1) leads to the coefficient functions

A1 ≡ 2MN

(

1 + κp
s−M2

N

+
κn

u−M2
N

)

+
κp + κn
2MN

, (7.10)

A2 ≡
4MN

(s−M2
N)(t−m2

π)
, (7.11)

A3 ≡
2κp

s−M2
N

, (7.12)

A4 ≡
2κn

u−M2
N

. (7.13)

From these we can see that the terms proportional to Mα
1 , Mα

3 and Mα
4 arise from

purely magnetic contributions (κp and κn) and therefore are always gauge invariant
by themselves, regardless of whether one uses form factors or not. The problem
is with the term A2 which arises from the sum of the electric contributions of the
nucleon s-channel and the pion t-channel, this is known as the A2 problem [22, 23,
24].

2. γ p→ p π0

Similarly, for the process γ p→ p π0, the terms inside the brackets of the amplitudes
given by Eq. (6.4), and Eq. (6.6), factoring out the polarization vector ǫα, become
respectively

(1 + κp)

s−M2
N

2pi · k γ5γα − Cp

s−M2
N

2pi · k γ5γα/k −
(1 + κp)

s−M2
N

2MN γ5γ
α/k

+
4MN

s−M2
N

pαi γ5 −
2κp

s−M2
N

pαi γ5/k, (7.14)

and

(1 + κp)

u−M2
N

2pf · k γ5γα +
Cp

u−M2
N

2pf · k γ5γα/k −
(1 + κp)

u−M2
N

2MN γ5γ
α/k

+
4MN

u−M2
N

pαf γ5 −
2κp

u−M2
N

pαf γ5/k. (7.15)
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In this case, the contribution to the total π0 photoproduction amplitude given by
the nucleon s- and u-channels to the expansion given by Eq. (7.1) leads to the
coefficient functions

A1 ≡ 2MN(1 + κp)

(

1

s−M2
N

+
1

u−M2
N

)

+
κp
MN

, (7.16)

A2 ≡ − 4MN

(s−M2
N)(u−M2

N)
, (7.17)

A3 ≡
2κp

s−M2
N

, (7.18)

A4 ≡
2κp

u−M2
N

, (7.19)

which differ a bit from the previous case because the contact and pion t-channel
terms are abscent in π0 photoproduction (see isospin factors, Table 6.1).

7.2. Form Factors

We now consider the nucleons as composite objects by introducing a momentum depen-
dent strong form factor at the πNN vertex of each Born term

F1 ≡ F1(s) = f [(pi + k)2,M2
N,m

2
π], (7.20)

F2 ≡ F2(u) = f [M2
N, (pf − k)2,m2

π], (7.21)

F3 ≡ F3(t) = f [M2
N,M

2
N, (pi − pf)

2], (7.22)

which are chosen as a function of the squares of the four momenta of its three legs [22,
24, 23].
The total amplitude given by Eq. (7.1) then becomes

iM′
fi = e

fπNN

mπ
IN ǫαu(pf)





4
∑

j=1

A′
jMα

j +Mα
vio



u(pi), (7.23)

where the coefficient functions for the process γ p→ nπ+ are given by

A1 → A′
1 ≡ 2MN

(

F1(1 + κp)

s−M2
N

+
F2κn
u−M2

N

)

+
F1κp + F2κn

2MN

, (7.24)

A2 → A′
2 ≡

4FMN

(s−M2
N)(t−m2

π)
, (7.25)

A3 → A′
3 ≡

2F1κp
s−M2

N

, (7.26)

A4 → A′
4 ≡

2F2κn
u−M2

N

, (7.27)
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and the additional gauge-invariance-violating term, Mα
vio, is given by

Mα
vio ≡ 4MNγ5

(

(F1 −F)pαi
s−M2

N

+
(F3 −F)qα

t−m2
π

)

+ (F1 − 1)γ5γ
α. (7.28)

It is important to mention that, after including the form factors, the additional form
factor F in the coefficient A2 is undefined and has been included “strategically” in the
following way

F1(t−m2
π)p

α
i + F3(s−M2

N)(p
α
i − pαf ) −→ F1(t−m2

π)p
α
i + F3(s −M2

N)(p
α
i − pαf )

+ F(u−M2
N)p

α
i −F(u−M2

N)p
α
i

+ F(s−M2
N)p

α
f −F(s−M2

N)p
α
f , (7.29)

from which, with s−M2
N = 2pi · k and u−M2

N = −2pf · k, we obtain that

F1(t−m2
π)p

α
i + F3(s−M2

N)(p
α
i − pαf ) = 2F(pf · k pαi − pi · k pαf ) + (F1 −F)(t−m2

π)p
α
i

+ (F3 −F)(s −M2
N)q

α, (7.30)

where q = pi − pf.
In this way we have isolated the gauge-invariance-violating term given by Eq. (7.28) in
a form that makes the comparison with Eq. (7.1) easier and the full amplitude iM′

fi does
not depend on it since the sum of the F contributions from Eq. (7.28) exactly cancels
the A′

2 term.
Notice that the pointlike Born terms are recovered by setting all form factors equal to
unity.
In order to restore gauge-invariance we have to introduce an additional contact current
(that is, a term free of poles), Mα

c , with on-shell matrix elements cancelling exactly the
gauge-violating term given by Eq. (7.28), that is

ǫαu(pf) [Mα
c ]u(pi) ≡ −ǫαu(pf) [Mα

vio]u(pi). (7.31)

Then by adding this contact term to Eq. (7.23), we obtain the gauge-invariant amplitude

iM′
fi = e

fπNN

mπ
IN ǫαu(pf)





4
∑

j=1

A′
jMα

j



u(pi), (7.32)

which depends on the undefined form factor F . However, the functional form of F is not
arbitrary, it is constrained because the resulting amplitudes should obey the constrains
imposed by gauge invariance and crossing symmetry. In addition the contact term given
by Eq. (7.31) must be free of poles, therefore F1(s), F2(u) and F3(t) must be such that

F1(M
2
N) = F2(M

2
N) = F3(m

2
π) = 1. (7.33)

Then, for example, one possible choice for the form factor F which satisfies the above
constrains is [24]

F(s, u, t) = F1(s) + F2(u) + F3(t)− F1(s)F2(u)− F1(s)F3(t)− F2(u)F3(t)+

+ F1(s)F2(u)F3(t). (7.34)
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Similarly, the coefficient functions for the process γ p→ p π0 are given by

A1 → A′
1 ≡ 2MN(1 + κp)

(

F1

s−M2
N

+
F2

u−M2
N

)

+
κp
2MN

(F1 + F2) , (7.35)

A2 → A′
2 ≡ − 4FMN

(s−M2
N)(u−M2

N)
, (7.36)

A3 → A′
3 ≡

2F1κp
s−M2

N

, (7.37)

A4 → A′
4 ≡

2F2κp
u−M2

N

, (7.38)

and the additional gauge-invariance-violating term in this case is given by

Mα
vio ≡ 4MNγ5

(

(F1 −F)pαi
s−M2

N

+
(F2 −F)pαf
u−M2

N

)

+ (F1 − F2)γ5γ
α. (7.39)

7.3. Scattering Amplitudes

By means of the above analysis, we obtain the gauge invariant scattering amplitudes
including form factors.

7.3.1. Born Terms

1. Nucleon

For the nucleon term

iM′s
N
= −iF1e

fπNN

mπ
IN u(pf)

[

γ5/q i
/pi + /k +MN

s−M2
N

(

/ǫ − κp
2MN

/ǫ/k

)

]

u(pi) (7.40)

+ 2iMN (F1 −F)e
fπNN

mπ
IN u(pf)

[

γ5 i
/pi +MN

s−M2
N

/ǫ

]

u(pi), (7.41)

for the s-channel.
For the u-channel,

iM′u
N = −iF2e

fπNN

mπ

κn
2MN

√
2u(pf)

[

/ǫ/k i
/pf − /k +MN

u−M2
N

γ5/q

]

u(pi), (7.42)

for π+ photoproduction on proton, and

iM′u
N
= −iF2e

fπNN

mπ
u(pf)

[

(

/ǫ − κp
2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

γ5/q

]

u(pi) (7.43)

+ 2iMN (F2 −F)e
fπNN

mπ
u(pf)

[

/ǫ i
/pf +MN

u−M2
N

γ5

]

u(pi), (7.44)

for π0 photoproduction on proton.
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7. Gauge Invariance and Form Factors

2. Kroll-Rudermann (Contact)

iM′
c = −F1e

fπNN

mπ

√
2u(pf) [γ5/ǫ] u(pi), (7.45)

for π+ photoproduction on proton, and for π0 photoproduction on proton, there
appears a contact (non-physical) term given by

iM′
c = −(F1 − F2)e

fπNN

mπ
u(pf) [γ5/ǫ]u(pi). (7.46)

3. Pion in Flight or t-channel

iM′t
π = −iF3e

fπNN

mπ

√
2 i

q · ǫ
t−m2

π

u(pf)
[

γ5
(

/q − /k
)]

u(pi) (7.47)

− 2iMN(F3 −F)e
fπNN

mπ

√
2 i

q · ǫ
t−m2

π

u(pf) [γ5]u(pi), (7.48)

for π+ photoproduction on proton.

For the numerical evaluation of the scattering amplitudes, we will choose covariant
vertex parametrizations without any singularities on the real axis. One common
vertex parametrization used is of the form [11]

F1(s) =
Λ4

Λ4 + (s−M2
N)

2
, (7.49)

F2(u) =
Λ4

Λ4 + (u−M2
N)

2
, (7.50)

F3(t) =
Λ4

Λ4 + (t−m2
π)

2
, (7.51)

where Λ is some cutoff parameter to be determined from the fitting.

7.3.2. Vector Meson and Resonance Terms

The terms corresponding to vector mesons and resonances are all gauge invariant inde-
pendently, therefore do not depent on other prescriptions for restoring gauge invariance.
It is important to mention, that in the case of the spin-32 resonances a form factor must
be included to regularize the behaviour of the propagator at high energies.
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8. Electromagnetic Multipoles

In the study of pion photoproduction via the intermediate excitation of resonances it is
convenient to decompose the initial and final state into multipole components since the
intermediate resonance has definite parity and angular momentum.
In the initial state the photon with orbital angular momentum (~Lγ) relative to the target
nucleon

Lγ = 1, 2, · · · , (8.1)

spin (~Sγ)
Sγ = 1, (8.2)

total angular momentum ( ~Jγ)

Jγ = Lγ + 1, Lγ , Lγ − 1 (8.3)

and parity (Pγ)

Pγ =

{

(−1)Lγ for the electric (ELγ)−multipoles,

(−1)Lγ+1 for the magnetic (MLγ)−multipoles
(8.4)

couples electromagnetically [47] to the target nucleon with spin ( ~JN)

JN =
1

2
(8.5)

and parity (PN)
PN = 1 (8.6)

to produce a resonance with spin ( ~JR)

JR = Jγ +
1

2
, Jγ −

1

2
(8.7)

and parity (PR)
PR = PN · Pγ = Pγ . (8.8)

The resonance subsequently decays by the strong interaction to the nucleon ground state
via the emission of the pion with spin 0, parity Pπ = −1 and orbital angular momentum
(~Lπ) relative to the recoiling nucleon, such that

JR = Lπ +
1

2
, Lπ − 1

2
(8.9)
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photon initial state intermediate state final state multipole
M -pole (LP , jPp ) JP

N∗ (jPp , l
P )

E1 (1−, 12
+
) 1

2
−

(12
+
, 0−) E0+

3
2
−

(12
+
, 2−) E2−

M1 (1+, 12
+
) 1

2

+
(12

+
, 1+) M1−

3
2

+
(12

+
, 1+) M1+

E2 (2+, 12
+
) 3

2

+
(12

+
, 1+) E1+

5
2

+
(12

+
, 3+) E3−

M2 (2−, 12
+
) 3

2

−
(12

+
, 2−) M2−

5
2

−
(12

+
, 2−) M2+

Table 8.1.: Lowest order multipoles for photoproduction of pion meson [2].

and
PR = PN · Pπ · (−1)Lπ = (−1)Lπ+1. (8.10)

Parity and angular momentum conservation lead to the following selection rules

PR = Pγ = (−1)Lπ+1, (8.11)

JR = Jγ +
1

2
, Jγ −

1

2
= Lπ +

1

2
, Lπ − 1

2
, (8.12)

allowing the two possibilities for Lγ

Lγ =

{

Lπ ± 1, for ELγ

Lπ forMLγ .
(8.13)

The corresponding photoproduction multipoles will be denoted by El± and Ml±, where
E and M stand for the electric and magnetic photon multipoles, respectively, l denotes
the relative angular momentum of the final meson (Lπ), and ‘+’ or ‘−’ indicate whether
the spin (1/2) of the nucleon must be added to or substracted from l to form the total
angular momentum JR of the intermediate state.
The lowest electromagnetic excitation modes and the corresponding states of the pion-
proton system with the relevant quantum numbers are summarized in Table 8.1. From
this we can see that each resonance can be excited by one electric and one magnetic
multipole, with the exception of spin-1/2 resonances, which can only be excited by one
multipole (E0+ for negative parity states and M1− for positive parity states).

48
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8.1. Isospin Amplitudes

For the calculation of the electromagnetic multipoles we will use the following isospin
decomposition of the invariant amplitude for a pion with isospin j [2, 11, 32]

M = χ†
f

(

M0 τj +M− 1

2
[τj , τ3] +M+ δj3

)

πj χi, (8.14)

where the isospin decomposition amplitudesM0, M+ andM− are related to the physical
amplitudes by

M(γp→ π0p) ≡ M(π0p) = M+ +M0, (8.15)

M(γp→ π+n) ≡ M(π+n) =
√
2
(

M− +M0
)

, (8.16)

for the case of pion photoproduction on proton.
To build up the multipoles it is convenient to change the isospin basis from (M0,M−,M+)

to (M 3
2 , pM

1
2 , nM

1
2 ). Both bases are related by means of [2]

M 3
2 = M+ −M−, (8.17)

pM
1
2 =

1

3
M+ +

2

3
M− +M0, (8.18)

nM
1
2 = −1

3
M+ − 2

3
M− +M0, (8.19)

in terms of which the physical amplitudes become

M(γp→ π0p) ≡ M(π0p) = pM
1
2 +

2

3
M 3

2 , (8.20)

M(γp→ π+n) ≡ M(π+n) =
√
2

(

pM
1
2 − 1

3
M 3

2

)

. (8.21)

Then the invariant amplitudes in the isospin decomposition that shall be needed for the
calculation of the electromagnetic multipoles are given below.

8.1.1. Born Terms

1. Nucleon

iMs,+
N = iMs,−

N = i
e

2

fπNN

mπ
u(pf)

[

/qγ5i
/pi + /k +MN

s−M2
N

(

F v
1 /ǫ −

F v
2

2MN

/ǫ/k

)

]

u(pi),

(8.22)
where F v

1 = 1 and F v
2 = 1.85, according to Eq. (4.53), Eq. (4.56), and the values

given in Eq. (4.57).

iMs, 0
N = i

e

2

fπNN

mπ
u(pf)

[

/qγ5i
/pi + /k +MN

s−M2
N

(

F s
1/ǫ −

F s
2

2MN

/ǫ/k

)

]

u(pi), (8.23)
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where F s
1 = 1 and F s

2 = −0.12.

From these we obtain the isospin amplitudes for the nucleon s-channel

i pM
s, 1

2
N = i

e

2

fπNN

mπ
u(pf)

[

/qγ5i
/pi + /k +MN

s−M2
N

(

F v
1 /ǫ −

F v
2

2MN

/ǫ/k

)

]

u(pi), (8.24)

and

iMs, 3
2

N = 0. (8.25)

Similarly, for the nucleon u-channel we obtain

iMu,+
N = −iMu,−

N = i
e

2

fπNN

mπ
u(pf)

[

(

F v
1 /ǫ −

F v
2

2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

/qγ5

]

u(pi),

(8.26)
and

iMu, 0
N = i

e

2

fπNN

mπ
u(pf)

[

(

F s
1/ǫ −

F s
2

2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

/qγ5

]

u(pi). (8.27)

From these we obtain the isospin amplitudes for the nucleon u-channel

i pM
u, 1

2
N =− i

e

6

fπNN

mπ
u(pf)

[

(

F v
1 /ǫ −

F v
2

2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

/qγ5

]

u(pi) (8.28)

+ i
e

2

fπNN

mπ
u(pf)

[

(

F s
1/ǫ −

F s
2

2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

/qγ5

]

u(pi), (8.29)

and

iMu, 3
2

N = ie
fπNN

mπ
u(pf)

[

(

F v
1 /ǫ −

F v
2

2MN

/ǫ/k

)

i
/pf − /k +MN

u−M2
N

/qγ5

]

u(pi). (8.30)

2. Kroll-Rudermann (Contact)

iM−
c = ie

fπNN

mπ
u(pf) [iγ5/ǫ] u(pi), (8.31)

and
iM+

c = iM 0
c = 0. (8.32)

From these we obtain the isospin amplitudes for the contact term

i pM
1
2
c = i

2

3
e
fπNN

mπ
u(pf) [iγ5/ǫ] u(pi), (8.33)

and

iM
3
2
c = −iefπNN

mπ
u(pf) [iγ5/ǫ]u(pi). (8.34)
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3. Pion in Flight or t-channel

iMt,−
π = ieF v

1

fπNN

mπ

i

t−m2
π

(q · ǫ) u(pf)
[(

/q − /k
)

γ5
]

u(pi), (8.35)

and
iMt,+

π
= iMt, 0

π
= 0. (8.36)

From these we obtain the isospin amplitudes for the t-channel

i pM
t, 1

2
π = i

2

3
eF v

1

fπNN

mπ

i

t−m2
π

(q · ǫ) u(pf)
[(

/q − /k
)

γ5
]

u(pi), (8.37)

and

iMt, 3
2

π = −ieF v
1

fπNN

mπ

i

t−m2
π

(q · ǫ) u(pf)
[(

/q − /k
)

γ5
]

u(pi). (8.38)

8.1.2. Vector Meson Terms

1. ρ Meson

iMt, 0
ρ = ie

λρπγ

mπ

ǫλσνµk
σqνǫλ

t−m2
ρ

u(pf)

[

gvρ γ
µ − gt

ρ

2MN

iσµβ (q − k)β

]

u(pi), (8.39)

and
iMt,+

ρ = iMt,−
ρ = 0. (8.40)

From these we obtain the isospin amplitudes for the ρ meson

i pM
t, 1

2
ρ = ie

λρπγ

mπ

ǫλσνµk
σqνǫλ

t−m2
ρ

u(pf)

[

gv
ρ
γµ − gtρ

2MN

iσµβ (q − k)β

]

u(pi), (8.41)

and

iMt, 3
2

ρ = 0. (8.42)

2. ω Meson

iMt,+
ω

= ie
λωπγ

mπ

ǫλσνµk
σqνǫλ

t−m2
ω

u(pf)

[

gv
ω
γµ − gtω

2MN

iσµβ (q − k)β

]

u(pi), (8.43)

and
iMt,−

ω
= iMt, 0

ω
= 0. (8.44)

From these we obtain the isospin amplitudes for the ω meson

i pM
t, 1

2
ω = i

e

3

λωπγ

mπ

ǫλσνµk
σqνǫλ

t−m2
ω

u(pf)

[

gvωγ
µ − gt

ω

2MN

iσµβ (q − k)β

]

u(pi), (8.45)

and

iMt, 3
2

ω = ie
λωπγ

mπ

ǫλσνµk
σqνǫλ

t−m2
ω

u(pf)

[

gv
ω
γµ − gtω

2MN

iσµβ (q − k)β

]

u(pi). (8.46)
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8.1.3. Resonance Terms

1. Spin-12 Nucleon Resonances of Negative Parity: S11(1535) and S11(1650)

iMs,+
R− = iMs,−

R− = i
e

2

fπNR−

mπ

κv
R−

ΣM
u(pf)

[

/qγ5i
/pi + /k −MR−

s−M2
R−

/ǫ/k

]

u(pi), (8.47)

and

iMs, 0
R− = i

e

2

fπNR−

mπ

κs
R−

ΣM
u(pf)

[

/qγ5i
/pi + /k −MR−

s−M2
R−

/ǫ/k

]

u(pi), (8.48)

From these we obtain the isospin amplitudes for the negative parity resonances
s-channel

i pM
s, 1

2

R− = i
e

2

fπNR−

mπ

κp
R−

ΣM
u(pf)

[

/qγ5i
/pi + /k −MR−

s−M2
R−

/ǫ/k

]

u(pi), (8.49)

and

iMs, 3
2

R− = 0. (8.50)

Similarly, for the u-channel we obtain

iMu,+
R− = −iMu,−

R− = i
e

2

fπNR−

mπ

κv
R−

ΣM
u(pf)

[

/ǫ/ki
/pf − /k −MR−

u−M2
R−

/qγ5

]

u(pi), (8.51)

and

iMu, 0
R− = i

e

2

fπNR−

mπ

κs
R−

ΣM
u(pf)

[

/ǫ/ki
/pf − /k −MR−

u−M2
R−

/qγ5

]

u(pi). (8.52)

From these we obtain the isospin amplitudes for the negative parity resonances
u-channel

i pM
u, 1

2

R− =− i
e

6

fπNR−

mπ

κv
R−

ΣM
u(pf)

[

/ǫ/ki
/pf − /k −MR−

u−M2
R−

/qγ5

]

u(pi) (8.53)

+ i
e

2

fπNR−

mπ

κs
R−

ΣM
u(pf)

[

/ǫ/ki
/pf − /k −MR−

u−M2
R−

/qγ5

]

u(pi), (8.54)

and

iMu, 3
2

R− = ie
fπNR−

mπ

κv
R−

ΣM
u(pf)

[

/ǫ/ki
/pf − /k −MR−

u−M2
R−

/qγ5

]

u(pi). (8.55)

2. Spin-12 Nucleon Resonances of Positive Parity: P11(1440) and P11(1710)

iMs,+
R+ = iMs,−

R+ = −i e
2

fπNR+

mπ

κv
R+

ΣM
u(pf)

[

/qγ5i
/pi + /k +MR+

s−M2
R+

/ǫ/k

]

u(pi), (8.56)
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and

iMs, 0
R+ = −i e

2

fπNR+

mπ

κs
R+

ΣM
u(pf)

[

/qγ5i
/pi + /k +MR+

s−M2
R+

/ǫ/k

]

u(pi). (8.57)

From these we obtain the isospin amplitudes for the positive parity resonances
s-channel

i pM
s, 1

2

R+ = −i e
2

fπNR+

mπ

κp
R+

ΣM
u(pf)

[

/qγ5i
/pi + /k +MR+

s−M2
R+

/ǫ/k

]

u(pi), (8.58)

and

iMs, 3
2

R+ = 0. (8.59)

Similarly, for the u-channel we obtain

iMu,+
R+ = −iMu,−

R+ = −i e
2

fπNR+

mπ

κv
R+

ΣM
u(pf)

[

/ǫ/ki
/pf − /k +MR+

u−M2
R+

/qγ5

]

u(pi), (8.60)

and

iMu, 0
R+ = −i e

2

fπNR+

mπ

κs
R+

ΣM
u(pf)

[

/ǫ/ki
/pf − /k +MR+

u−M2
R+

/qγ5

]

u(pi). (8.61)

From these we obtain the isospin amplitudes for the positive parity resonances
u-channel

i pM
u, 1

2

R+ = i
e

6

fπNR+

mπ

κv
R+

ΣM
u(pf)

[

/ǫ/ki
/pf − /k +MR+

u−M2
R+

/qγ5

]

u(pi) (8.62)

− i
e

2

fπNR+

mπ

κs
R+

ΣM
u(pf)

[

/ǫ/ki
/pf − /k +MR+

u−M2
R+

/qγ5

]

u(pi), (8.63)

and

iMu, 3
2

R+ = −iefπNR+

mπ

κv
R+

ΣM
u(pf)

[

/ǫ/ki
/pf − /k +MR+

u−M2
R+

/qγ5

]

u(pi). (8.64)

3. Spin-32 Nucleon Resonances of Isospin-32 : P33(1232)

iMs,+
∆ = −2iMs,−

∆ = i
e

3

fπN∆

mπ
u(pf)

[

qµG
µα(p∆)

(

GMK
M

αβ +GEK
E

αβ

)

ǫβ
]

u(pi),

(8.65)
and

iMs, 0
∆ = 0. (8.66)

From these we obtain the isospin amplitudes for the ∆ resonance s-channel

i pM
s, 1

2
∆ = 0, (8.67)
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and

iMs, 3
2

∆ = i
e

2

fπN∆

mπ
u(pf)

[

qµG
µα(p∆)

(

GMK
M

αβ +GEK
E

αβ

)

ǫβ
]

u(pi). (8.68)

Similarly, for the ∆ resonance u-channel we obtain

iMu,+
∆ = 2iMu,−

∆ = −i e
3

fπN∆

mπ
u(pf)

[

ǫν
(

GMK
M

µν +GEK
E

µν

)

Gµα(p∆)qα
]

u(pi),

(8.69)
and

iMu, 0
∆ = 0. (8.70)

From these we obtain the isospin amplitudes for the ∆ resonance u-channel

i pM
u, 1

2
∆ = −i2

9
e
fπN∆

mπ
u(pf)

[

ǫν
(

GMK
M

µν +GEK
E

µν

)

Gµα(p∆)qα
]

u(pi), (8.71)

and

iMu, 3
2

∆ = −i e
6

fπN∆

mπ
u(pf)

[

ǫν
(

GMK
M

µν +GEK
E

µν

)

Gµα(p∆)qα
]

u(pi). (8.72)

4. Spin-32 Nucleon Resonances of Isospin-12 : D13(1520)

iMs,+
D = iMs,−

D = −iefπND

mπ
u(pf)

[

qµγ5G
µα(pD)K

v−

αβγ5ǫ
β
]

u(pi), (8.73)

and

iMs, 0
D = −iefπND

mπ
u(pf)

[

qµγ5G
µα(pD)K

s−

αβγ5ǫ
β
]

u(pi), (8.74)

where

Ks(v)±

αβ ≡ Gs(v)

1

4MN

K
1
αβ ± Gs(v)

2

4M2
N

K
2
αβ. (8.75)

From these we obtain the isospin amplitudes for the D resonance s-channel

i pM
s, 1

2
D = −iefπND

mπ
u(pf)

[

qµγ5G
µα(pD)K

p−

αβγ5ǫ
β
]

u(pi), (8.76)

and

iMs, 3
2

D = 0. (8.77)

Similarly, for the D resonance u-channel we obtain

iMu,+
D = −iMu,−

D = ie
fπND

mπ
u(pf)

[

ǫνγ5K
v+
µνG

µα(pD)γ5qα
]

u(pi), (8.78)

and

iMu, 0
D = ie

fπND

mπ
u(pf)

[

ǫνγ5K
s+
µνG

µα(pD)γ5qα
]

u(pi). (8.79)
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From these we obtain the isospin amplitudes for the D resonance u-channel

i pM
u, 1

2
D =− i

e

3

fπND

mπ
u(pf)

[

ǫνγ5K
v+
µνG

µα(pD)γ5qα
]

u(pi) (8.80)

+ ie
fπND

mπ
u(pf)

[

ǫνγ5K
s+
µνG

µα(pD)γ5qα
]

u(pi), (8.81)

and

iMu, 3
2

D = 2ie
fπND

mπ
u(pf)

[

ǫνγ5K
v+
µνG

µα(pD)γ5qα
]

u(pi). (8.82)

Notice that for a given isospin resonance the direct term contributes only to a single
isospin channel, 1

2 , while the crossed term contributes to both channels, 1
2 and 3

2 .

8.2. Helicity Amplitudes

In the c.m. coordinate system, we quantize the initial and final spins along the directions
of k̂ and q̂ so that spin up corresponds to a negative helicity

χ↑
i,f → λi,f = −1

2
(8.83)

and viceversa

χ↓
i,f → λi,f = +

1

2
. (8.84)

Then the amplitudes Mfi become the helicity amplitudes Mµλ, where

λ ≡ λγ − λi (8.85)

is the initial helicity state along the photon and

µ = −λf (8.86)

is the final helicity state along the pion.
For pion photoproduction the eight possible helicity amplitudes Mµλ are not indepen-
dent because for real, transverse photons, λγ = ±1 and the four amplitudes with λγ = −1
are related to the four with λγ = +1 by parity symmetry [9, 48]

M−µ,−λ(θ, φ,
√
s) = −ei(λ−µ)(π−2φ)Mµλ(θ, φ,

√
s). (8.87)

8.2.1. Partial Wave Analysis

The angular momentum decomposition of the helicity amplitudes Mµλ(θ, φ,
√
s) is writ-

ten as [9]

Mµλ(θ, φ,
√
s) =

∑

j

Mj
µλ(

√
s)(2j + 1) djλµ(θ) e

i(λ−µ)φ, (8.88)
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where the djλµ(θ) are Wigner d-functions given by [1]

dj1
2

1
2

(θ) =
1

l + 1
cos

θ

2

(

P ′
l+1 − P ′

l

)

, dj1
2

3
2

(θ) =
1

l + 1
sin

θ

2

(

√

l

l + 2
P ′
l+1 +

√

l + 2

l
P ′
l

)

,

(8.89)

dj− 1
2

1
2

(θ) =
1

l + 1
sin

θ

2

(

P ′
l+1 + P ′

l

)

, dj− 1
2

3
2

(θ) =
1

l + 1
sin

θ

2

(

√

l

l + 2
P ′
l+1 +

√

l + 2

l
P ′
l

)

,

(8.90)

with j = l + 1
2 and P ′

l ≡ dPl/d cos θ.
On the other hand, since the functions

√

(2j + 1) djλµ(θ) e
i(λ−µ)φ, (8.91)

for different values of j, are mutually orthogonal and normalized to 4π, when integrated
over dΩ, the helicity coefficients Mj

µλ(
√
s) are given by

Mj
µλ(

√
s) =

1

4π

∫

dΩMµλ(θ, φ,
√
s) djλµ(θ) e

−i(λ−µ)φ. (8.92)

These coefficients depend only on
√
s and refer to states of definite j but mixed parity.

By separating the φ phase factor, the following four standard helicity amplitudes are
defined [17]

H1(θ,
√
s) ≡ e−iφM 1

2
3
2
(θ, φ,

√
s), (8.93)

H2(θ,
√
s) ≡ M 1

2
1
2
(θ, φ,

√
s), (8.94)

H3(θ,
√
s) ≡ e−2iφM− 1

2
3
2
(θ, φ,

√
s), (8.95)

H4(θ,
√
s) ≡ e−iφM− 1

2
1
2
(θ, φ,

√
s), (8.96)

from which we obtain, for example, the four helicity coefficients

M
3
2
1
2

3
2

(
√
s) =

1

2

∫

d cos θ H1(θ,
√
s) d

3
2
3
2

1
2

(θ), (8.97)

M
3
2
1
2

1
2

(
√
s) =

1

2

∫

d cos θ H2(θ,
√
s) d

3
2
1
2

1
2

(θ), (8.98)

M
3
2

− 1
2

3
2

(
√
s) =

1

2

∫

d cos θ H3(θ,
√
s) d

3
2
3
2
,− 1

2

(θ), (8.99)

M
3
2
1
2

3
2

(
√
s) =

1

2

∫

d cos θ H4(θ,
√
s) d

3
2
1
2
,− 1

2

(θ), (8.100)

which shall be relevant in the calculation of the multipoles.

56



8. Electromagnetic Multipoles

8.2.2. Helicity Elements

Final states of definite parity are formed by the sum and difference of final states having
opposite helicity, µ and −µ. Thus the sum and difference

Mj
1
2
λ
±Mj

− 1
2
λ

(8.101)

of the two final helicity states for given initial helicity do correspond to definite parity.
These combinations are called helicity elements and are defined by [17]

Al+ ≡ − 1√
2

(

Mj
1
2

1
2

+Mj

− 1
2

1
2

)

, (8.102)

A(l+1)− ≡ 1√
2

(

Mj
1
2

1
2

−Mj

− 1
2

1
2

)

, (8.103)

Bl+ ≡
√

2

l(l + 2)

(

Mj
1
2

3
2

+Mj

− 1
2

3
2

)

, (8.104)

B(l+1)− ≡ −
√

2

l(l + 2)

(

Mj
1
2

3
2

−Mj

− 1
2

3
2

)

, (8.105)

where l± refer to the two states with pion orbital angular momentum l and total angular
momentum j = l ± 1

2 .

8.3. Multipole Amplitudes

The relations between the multipoles and the helicity elements are given by [17]

Al+ =
1

2
[lMl+ + (l + 2)El+] , (8.106)

A(l+1)− =
1

2

[

(l + 2)M(l+1)− − lE(l+1)−
]

, (8.107)

Bl+ = El+ −Ml+, (8.108)

B(l+1)− = E(l+1)− +M(l+1)−. (8.109)

Then the first multipoles are

EI
1+(

√
s) = −

√
2

4

[

(

MI 3
2

1
2

1
2

+MI 3
2

−
1
2

1
2

)

− 1√
3

(

MI 3
2

1
2

3
2

+MI 3
2

−
1
2

3
2

)

]

, (8.110)

M I
1+(

√
s) = −

√
2

4

[(

MI 3
2

1
2

1
2

+MI 3
2

− 1
2

1
2

)

+
√
3
(

MI 3
2

1
2

3
2

+MI 3
2

− 1
2

3
2

)]

, (8.111)

where I indicates the isospin in the final state (Eqs. (8.17) - (8.19)).
For example, with I = 3

2
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M
3
2

1+(
√
s) =

√
2MN

64π
√
s

∫ 1

−1
d cos θ

[

cos
θ

2
(3 cos θ − 1)H

3
2
2 (θ,

√
s)− sin

θ

2
(3 cos θ + 1)H

3
2
4 (θ,

√
s)

]

− 3

√
2MN

64π
√
s

∫ 1

−1
d cos θ

[

sin
θ

2
(cos θ + 1)H

3
2
1 (θ,

√
s) + cos

θ

2
(cos θ − 1)H

3
2
3 (θ,

√
s)

]

,

(8.112)

and

E
3
2

1+(
√
s) =

√
2MN

64π
√
s

∫ 1

−1
d cos θ

[

cos
θ

2
(3 cos θ − 1)H

3
2
2 (θ,

√
s)− sin

θ

2
(3 cos θ + 1)H

3
2
4 (θ,

√
s)

]

+

√
2MN

64π
√
s

∫ 1

−1
d cos θ

[

sin
θ

2
(cos θ + 1)H

3
2
1 (θ,

√
s) + cos

θ

2
(cos θ − 1)H

3
2
3 (θ,

√
s)

]

,

(8.113)

where

H
3
2
1 (θ,

√
s) ≡ e−iφM

3
2
1
2

3
2

(θ, φ,
√
s)

= e−iφ u(pf, ↑)
[

M 3
2 (λγ = 1, θ, φ,

√
s)
]

u(pi, ↓), (8.114)

etc.
These multipoles, for example, are of interest because they provide valuable information
about the P33(1232) resonance, as it was discussed in Ch. 4.
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9.1. Results

In this section we present the results obtained for the parameters of the nucleon reso-
nances namely, mass, width, strong coupling constants and magnetic moments, by fitting
the total cross-section given by Eq. (9.11), with the tree-level amplitudes obtained in
Sec. 7.3 for the reactions, γ p→ π+n and γ p→ π0p.
For the calculation of the cross-section and other observables such as the electromagnetic
multipoles, which will described with more detail in next chapter, we use pion-nucleon
center-of-mass system (c.m.) with the photon direction pointing along the positive z-
axis and the pion momentum in the zx plane, that is, with polar angle θ and azimuthal
angle φ = 0, as shown in Fig. 2.1. In this system the Dirac spinors u(pi) and u(pf), used
in evaluating the amplitudes become

u(pi, ↑) =
√

Ei +MN

2MN

(

χ↑
i

− ~σ·~k
Ei+MN

χ↑
i

)

, (9.1)

u(pi, ↓) =
√

Ei +MN

2MN

(

χ↓
i

− ~σ·~k
Ei+MN

χ↓
i

)

, (9.2)

and

u(pf, ↑) =
√

Ef +MN

2MN

(

χ↑†
f χ↑†

f
~σ·~q

Ef+MN

)

, (9.3)

u(pf, ↓) =
√

Ef +MN

2MN

(

χ↓†
f χ↓†

f
~σ·~q

Ef+MN

)

, (9.4)

where the spinors of the initial and final nucleon are, respectively

χ↑
i =

(

1
0

)

, χ↓
i =

(

0
1

)

, (9.5)

and

χ↑
f =

(

cos θ
2

sin θ
2

)

, χ↓
f =

(

− sin θ
2

cos θ
2

)

, (9.6)

with
~σ · k̂ χ↑(↓)

i = ±χ↑(↓)
i (9.7)

and
~σ · q̂ χ↑(↓)

f = ±χ↑(↓)
f , (9.8)
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Figure 9.1.: Calculated total cross-sections in µb of pion photoproduction off proton for
different photon energies up to ∼ 1.7 GeV in the laboratory frame: (a) π+

and (b) π0. The experimental data are taken from the Data Analysis Center
of the George Washington University <http://gwdac.phys.gwu.edu>.

so that spin up would correspond, in the c.m. system, to a negative helicity and viceversa.
For real photons, the photon polarization vector has two independent components which
we have taken to be

ǫµλ =
1√
2
(0;−λ,−i, 0), (9.9)

with λ = ±1.
On the other hand, the averaged differential cross-section for pion photoproduction is
given by [32]

dσ

dΩ∗ =
|~q|
2|~k|

M2
N

16π2s

1

2

∑

si

∑

sf

∑

λ

|u(pf)Mu(pi)|2, (9.10)

from which, integrating over dΩ∗, the total cross-section is calculated according to

σ(
√
s) =

∫

dσ

dΩ∗ dΩ
∗ = 2π

∫ π

0

dσ

dΩ∗ sin θ∗ dθ∗. (9.11)

Our results for the total cross sections are shown in Fig. 9.1a and Fig. 9.1b for the two
reactions of interest: γ p → π+n and γ p → π0p, and for the whole energy region from
threshold up to ∼ 1.7 GeV.

9.1.1. First Resonance Region

The so called first resonance region consist of the ∆(1232) resonance only, corresponding
to an energy range from 150 MeV (threshold) to ∼ 630 MeV in the laboratory frame
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system. In this case we use the magnetic (GM) and electric (GE) form factors given in
Eq. (4.108), as input parameters [35], for which the ratio REM given by Eq. (4.121) is in
good agreement with the value given by Ref [1],

REM = −0.025 ± 0.005. (9.12)

The parameters that give the best fit to the experimental data, corresponding to this
region, are displayed in table 9.1.

9.1.2. Second Resonance Region

This region consists of the spin-12 resonances P11(1440) and S11(1535), and the spin-32
nucleon resonances D13(1520) and P33(1600), corresponding to an energy range from ∼
630 MeV to ∼ 930 MeV in the laboratory frame system. The parameters that give the
best fit to the experimental data in this region are displayed in table 9.1.
The behaviour of the propagator for the case of spin-12 resonances at high energies does
not requiere the inclusion of a form factor.
According to the analysis performed for the ∆(1232) resonance electromagnetic ver-
tex, we can estimate the magnetic (GM ) and electric (GE) form factors of the ∆(1600)
resonance, obtaining

GM = 0.260, and GE = 0.030, (9.13)

from which we determine the helicity amplitudes A 1
2
and A 3

2
for this resonance, obtaining

A 1
2
= −0.012GeV− 1

2 , and A 3
2
= −0.035GeV− 1

2 . (9.14)

We observe that these estimated values are in close agreement with the measured ex-
perimetal values given in Ref. [1] for two different experiments, namely

A 1
2
=

{

−0.051 ± 0.010 GeV− 1
2

−0.018 ± 0.015 GeV− 1
2

, A 3
2
=

{

−0.055 ± 0.010 GeV− 1
2

−0.025 ± 0.015 GeV− 1
2

. (9.15)

In the model proposed in Ref. [49], for example, they obtain the values

GM = 0.202 ± 0.148, and GE = 0.000, (9.16)

for the magnetic and the electric form factors, respectively and

A 1
2
= −0.0154 ± 0.0113GeV− 1

2 , and A 3
2
= −0.0266 ± 0.0196GeV− 1

2 . (9.17)

for the helicity amplitudes A 1
2
and A 3

2
.

Finally, by means of Eq. (4.120), we estimate the ratio of electric quadrupole to magnetic
dipole transition amplitudes REM for this resonance as

REM = −GE

GM

= −0.115, (9.18)

which is not yet reported in Ref. [1].
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Spin-12 Resonances fπNR MR (GeV) ΓR (GeV) κpR κn
R

Λ (GeV)

P11(1440) 0.373 1.380 0.180 −0.601 0.400 –
S11(1535) −0.153 1.510 0.110 0.920 −0.690 –
S11(1650) −0.96 1.640 0.100 0.47 −0.430 –
P11(1710) 0.055 1.680 0.090 −0.335 0.335 –

Spin-32 Resonances fπNR MR (GeV) ΓR (GeV) GM GE Λ (GeV)

P33(1232) 2.202 1.213 0.108 2.970 0.055 0.70
D13(1520) −1.509 1.505 0.105 −3.298 −0.192 0.50
P33(1600) −0.671 1.510 0.200 −0.260 −0.030 0.50

Table 9.1.: Best fit parameters for the first, second and third resonance regions.

9.1.3. Third Resonance Region

This region consists of the spin-12 resonances S11(1650) and P11(1710), corresponding to
an energy range from ∼ 930 MeV to ∼ 1100 MeV in the laboratory frame system. From
this value, there are no other resonance regions evident in the total cross-section as seen
in Fig. 9.1a and Fig. 9.1b. The parameters that give the best fit to the experimental
data in this region are displayed in table 9.1.

9.1.4. Electromagnetic Multipoles

In Fig. 9.2a and Fig. 9.2b we plot the real and imaginary parts of the multipoles M
3
2

1+,

and E
3
2

1+, given by Eq. (8.112) and Eq. (8.113), respectively, by using the estimated
parameters given in Table 9.1.

9.2. Conclusions

1. We have elaborated a model for photoproduction of pions (π+ and π0) on proton
which is based on an Effective Lagrangian Approach (ELA) fulfilling chiral sym-
metry, gauge invariance, and crossing symmetry. The model includes the Born
terms: nucleon, pion in flight, and Kroll-Rutherman, the vector meson exchanges:
ρ and ω and, the nucleon resonances: P33(1232), P11(1440), D13(1520), S11(1535),
P33(1600), S11(1650), and P11(1710).

2. The analysis of the spin-32 nucleon resonance electromagnetic vertex as well as
the spin-32 field propagator are one of the main features considered in this work,
which are treated consistently under the point transformation of the Ψµ field.
We have expressed the electromagnetic vertex in terms of the covariant multipole
decomposition, in analogy with the Dirac-Pauli decomposition of the nucleon form
factor and then we have established a relation with the well-known normal parity
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Figure 9.2.: Calculated multipoles in mF of pion photoproduction off proton for dif-

ferent photon energies in the laboratory frame: (a) M
3/2
1+ , (b) E

3/2
1+ . The

experimental data are taken from the Data Analysis Center of the George
Washington University <http://gwdac.phys.gwu.edu>.

decomposition of the vertex, in the limit case of the spin-32 nucleon resonance on
shell.

3. We have made use of the prescription that includes an absorptive one-loop self-
energy correction to the spin-32 field propagator to reproduce the complex-mass
prescription for its resonant form.

4. We have introduced form factors preserving the gauge invariance of the model,
which give account of the structure effects of the composite particles and also per-
mit to extend the energy range to include both, the second and the third resonance
regions.

5. We have established a reliable set of parameters for the model in accordance with
experimental data [1], in which the coupling constants, the magnetic moments,
masses and widths of the nucleon resonances have been adjusted within suitable
ranges by fitting to the experimental total cross-sections of the processes γ p →
π+ n and γ p→ π0 p.

6. By means of the established set of parameters we have tried to reproduce the elec-

tromagnetic multipoles M
3/2
1+ , and E

3/2
1+ , obtaining a qualitatively good agreement

in the case of the M
3/2
1+ multipole. However, for the multipole E

3/2
1+ , we obtain a

partial agreement only at low energy.

7. We have estimated the magnetic (GM) and electric (GE) form factors of the
∆(1600) resonance by means of the proposed model. The value of the helicity
amplitudes obtained from these form factors are in close agreement with the mea-
sured experimetal values given in Ref. [1].
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8. The analysis we have made with spin-32 resonances may be extended to consider,
in the future, resonances of higher spin such as N(1675) and N(1680), both with
spin-52 .
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A. Pion Field Quantization

A.1. Second Quantized Pion Field

The general normalized solution of the free-field Klein-Gordon equation is

π±(x) =

∫

d3~q

(2π)32ω~q

(

a∓(~q)e
−iq·x + a†±(~q)e

iq·x
)

, (A.1)

where a∓(~q) and a
†
±(~q) are the annihilation and creation operators for a pion with charge

∓ and charge ±, respectively, and ω~q ≡
√

|~q|2 +m2
π.

For the neutral pion field,

π0(x) =

∫

d3~q

(2π)32ω~q

(

a0(~q)e
−iq·x + a†0(~q)e

iq·x
)

, (A.2)

On the other hand, the contractions of the field operator πα(x) (α = ±, 0) with external
states are given by

πα(x)|~q 〉 = e−iq·x and 〈~q |πα(x) = eiq·x, (A.3)

from which, for example, 〈~q |∂µπα(x) = iqµ e
iq·x.

A.2. Pion Field Propagator

The propagator is given by the time-ordered product (T ) of the field operators [27]

〈0|T πα(x)πα†(y)|0〉 =
∫

d4q

(2π)4
DF (p)e

−iq·(x−y), (A.4)

where

DF (p) ≡
i

q2 −m2
π + iǫ

, (A.5)

is the Feynman propagator in momentum space representation.
Then, by taking into account that the πNN coupling is chosen to be PV, the propagator
that appears actually in the amplitudes is given by

〈0|T ∂µπ
α(x)πα†(y)|0〉 =

∫

d4q

(2π)4
DF (p)(−iqµ)e−iq·(x−y), (A.6)

etc.
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B. Photon Field Quantization

B.1. Second Quantized Photon Field

For the photon field Aµ(x),

Aµ(x) =
∑

λ

∫

d3~k

(2π)32|~k|

(

aλ(~k)ǫ
µ
λ e

−ik·x + a†λ(
~k)ǫµ∗λ eik·x

)

, (B.1)

where ǫµλ is the polarization vector, which we take as

ǫµλ =
1√
2
(0;−λ,−i, 0), (B.2)

with λ = ±1.
Similar to the pion field, the contractions of the field operator Aµ(x) with external states
are given by

Aµ(x)|~k, λ 〉 = ǫµλ e
−ik·x and ∂ρA

µ(x)|~k, λ 〉 = −ikρǫµλ e−ik·x. (B.3)

B.2. Vector Meson Field Propagator

The massive vector field is much like the photon field, and the propagator is given by
the time-ordered product of the field operators [30]

〈0|T V µ(x)V ν(y)|0〉 =
∫

d4k

(2π)4
∆µν

F (k)e−ik·(x−y), (B.4)

where

∆µν
F (k) ≡ − i(g

µν − kµkν/m2
V )

k2 −m2
V
+ iǫ

, (B.5)

is the Feynman propagator in momentum space representation.
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C. Spin-1
2
Field Quantization

C.1. Second Quantized Dirac Field

For the spin-12 nucleon and resonant fields

ψ(x) =
∑

s

∫

d3~p

(2π)3
MX

Ep

(

bs(~p)us(p)e
−ip·x + d†s(~p)vs(p)e

ip·x
)

, (C.1)

where s is the spin projection, the operators bs(~p) and d†s(~p) annihilate and create a
Dirac particle of given spin, respectively, and Ep ≡

√

|~p|2 +M2
X
.

The contractions of the field operator ψ(x) with external states are given by

ψ(x)|~p, s 〉 = us(p)e
−ip·x and 〈~q, s |ψ̄(x) = ūs(p)e

ip·x, (C.2)

where the four-component spinor us(p) is given by

us(p) =

√

Ep +MX

2MX

(

χs
~σ·~p

Ep+MX
χs

)

. (C.3)

C.2. Dirac Field Propagator

The propagator for the spin-12 is given by the Dirac propagator

〈0|T ψ(x)ψ̄(y)|0〉 = d(∂)

∫

d4p

(2π)4
i

p2 −M2
X + iǫ

e−ip·(x−y), (C.4)

where the operator d(∂) is given by

d(∂) ≡ i/∂ +MX . (C.5)

In momentum space, the Feynman propagator becomes

SF (p) =
i(/p +MX)

p2 −M2
X + iǫ

. (C.6)
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[33] C. Barbero, A. Mariano, and G. López Castro. Absorptive one-loop corrections and
the complex-mass prescription for the ∆ resonance propagator. Journal of Physics
G: Nuclear and Particle Physics, 39(8):085011, 2012.

[34] L. M. Nath and B. K. Bhattacharyya. Photoproduction of pions at low energy.
Zeitschrift fur Physik C Particles and Fields, 5(1):9–15, March 1980.
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