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RESEARCH PAPER

Variants in genes of innate immunity, appetite control and energy metabolism
are associated with host cardiometabolic health and gut microbiota
composition
Esteban L. Ortega-Vegaa, Sandra J. Guzmán-Castañedaa, Omer Campoa, Eliana P. Velásquez-Mejíab,
Jacobo de la Cuesta-Zuluaga a, Gabriel Bedoya a, and Juan S. Escobar b

aGrupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia;
bVidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia

ABSTRACT
Identifying the genetic and non-genetic determinants of obesity and related cardiometabolic
dysfunctions is cornerstone for their prevention, treatment, and control. While genetic variants
contribute to the cardiometabolic syndrome (CMS), non-genetic factors, such as the gut micro-
biota, also play key roles. Gut microbiota is intimately associated with CMS and its composition is
heritable. However, associations between this microbial community and host genetics are under-
studied. We contribute filling this gap by genotyping 60 variants in 39 genes of three modules
involved in CMS risk, measuring cardiometabolic risk factors, and characterizing gut microbiota in
a cohort of 441 Colombians. We hypothesized that CMS risk variants were correlated with
detrimental levels of clinical parameters and with the abundance of disease-associated microbes.
We found several polymorphisms in genes of innate immunity, appetite control, and energy
metabolism that were associated with metabolic dysregulation and microbiota composition; the
associations between host genetics and cardiometabolic health were independent of the partici-
pants’ gut microbiota, and those between polymorphisms and gut microbes were independent of
the CMS risk. Associations were also independent of the host genetic ancestry, diet and lifestyle.
Most microbes explaining genetic-microbiota associations belonged to the families
Lachnospiraceae and Ruminococcaceae. Multiple CMS risk alleles were correlated with increased
abundance of beneficial microbiota, suggesting that the phenotypic outcome of the evaluated
variants might depend upon the genetic background of the studied population and its environ-
mental context. Our results provide additional evidence that the gut microbiota is under the host
genetic control and present pathways of host–microbe interactions.
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Introduction

Identifying the genetic and non-genetic determi-
nants of human health has been the object of intense
research for many decades.1 Genome-wide associa-
tion studies have revealed that the susceptibility to
obesity and related cardiometabolic dysfunctions,
such as abnormal body fat distribution, insulin resis-
tance, atherogenic dyslipidemia, elevated blood pres-
sure, and pro-inflammatory state, which together
contribute to the cardiometabolic syndrome
(CMS),2 is partly genetically determined, with
many small-effect variants at different loci adding
to the risk of disease.3 However, genetic factors do
not explain the bulk of variation in CMS risk, which

is further accounted for by non-genetic determinants
including diet and lifestyle.4 Another of such factors
is the gut microbiota, the set of microbes that natu-
rally colonize the human gastrointestinal tract.

Gut microbiota is intimately related to CMS.5–8

These microbes are acquired from the environment
and colonization is partially under the host genetic
control.9 Furthermore, recent studies have pin-
pointed specific human genetic variants that were
associated with gut microbiota.10–13 Despite these
latest efforts, the relationship between gut micro-
biota and host genetics remains incompletely eluci-
dated. One reason for this is that both the
composition of intestinal microbes and host genetic
architecture are dependent on the geographic origin
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of the studied population,14,15 limiting the replicabil-
ity of previous results. In addition, studies analyzing
host genetics and gutmicrobiota have been restricted
to a small number of human populations–mainly
Americans and Europeans.9

We here contribute filling this gap by genotyp-
ing variants in genes of innate immunity, appetite
control and energy metabolism related to CMS
and gut physiology, and associating this variation
with gut microbiota and CMS risk. We hypothe-
sized that genetic polymorphisms were associated
with host cardiometabolic health and gut micro-
biota in a consistent fashion, that is, variants
increasing the risk of CMS were expected to
directly correlate with detrimental levels of clinical
parameters and the abundance of disease-
associated microbes.

Results and discussion

We performed a cross-sectional study in which we
enrolled 441 adults from Colombia (South America)
living in five large cities spanning the Andes and
both the Caribbean and Pacific coasts. Participants
were enrolled in similar proportions according to the
city of origin (Bogota, Medellin, Cali, Barranquilla
and Bucaramanga), body mass index (BMI: lean,
overweight, obese), sex (male, female), and age
range (18–40 years, 41–62 years). In these partici-
pants, we measured numerous clinical CMS risk
factors (blood chemistry, blood pressure, and adip-
osity), and obtained information about diet (intake
of calories, macronutrients, and dietary fiber) and
lifestyle (levels of physical activity, smoking status,
and medicament consumption).

In 440 participants, we genotyped 60 variants in
39 genes of three modules: innate immunity
(Figure S1), appetite control (Figure S2), and
energy metabolism (Figure S3). One individual of
our cohort could not be genotyped because we
were not able to acquire DNA from blood. We
obtained 26,223 genotypes informing about the
host genetic variation (Table S1). We also charac-
terized the gut microbiota through 16S rRNA gene
sequencing, and obtained 14,742,223 reads that
grouped into 4,719 OTUs, which informed about
gut microbiota composition and diversity. We
focused on the 137 OTUs with median relative
abundance ≥0.001%, thus limiting the inclusion

of OTUs potentially severely affected by technical
artifacts (e.g., sequencing errors). This set of OTUs
comprised the majority of sequenced reads
(83 ± 12% SD) and were sufficiently abundant to
be of biological relevance. The analysis by OTUs
(Table S2) produced similar results as the analysis
by taxonomic levels (Table S3).

As detailed below, we detected six associations
between host genetics and cardiometabolic out-
comes, and 70 between host genetics and gut
microbiota. These associations involved genes of
the three evaluated modules (Figure 1). Fifty-one
different OTUs were associated with host genetics.
The relative abundance of these OTUs accounted
for 17.7 ± 0.8% (SD) of the microbial community,
and they were classified in 15 taxonomic families;
two of these comprised the majority of associa-
tions: Lachnospiraceae (25) and Ruminococcaceae
(20). We did not detect significant associations
between the evaluated genetic variants and gut-
microbiota alpha diversity (adjusted p > 0.20).
Importantly, the rich set of metadata collected in
our participants allowed adjusting statistical mod-
els by potential confounding such that the associa-
tions between genetic polymorphisms and
cardiometabolic health were independent of gut
microbiota; and the associations between host
genetics and gut microbiota were independent of
the host CMS risk. They were also independent of
the genetic ancestry of the Colombian population
(i.e., the individual contributions of European,
Native American and African genetic back-
grounds; see accompanying paper by
Guzmán-Castañeda et al.), sex, age, and variables
related to diet and lifestyle.

In what follows, we present and discuss results
per evaluated module, examine the strengths and
limitations of our study, and draw conclusions on
this work.

Innate immunity

In this module, we analyzed 20 variants in 12 genes
involved in host–microbiota interactions through pat-
tern recognition receptors, such as the nucleotide-
binding oligomerization (NOD), NOD-like receptor
(NLR) and Toll-like receptor (TLR) signaling path-
ways. We also evaluated some genes for downstream
production of pro-inflammatory cytokines, such as
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Figure 1. Associations between variants in genes of innate immunity, appetite control and energy metabolism with CMS risk factors and
gut microbiota. Standardized linear regression coefficients (β) are depicted as colored dots (yellow = β < 0.30; orange = 0.30 ≤ β < 0.45;
light red = 0.45 ≤ β < 0.60; dark red = β ≥ 0.60). Exact values are provided as Table S2.
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interleukin (IL-) 1β, IL-6, IL-12B, IL-18, and tumor
necrosis factor alpha (TNFα) (Figure S1). Ten variants
in eight genes of this module were significantly corre-
latedwith gutmicrobiota. Of these, SNPs rs1800629 in
TNFα, rs2075820 in NOD1, and rs2066842 and
rs2076756 in NOD2 accounted for most of the asso-
ciations (Figure 1; Table S2).

The regulatory SNP rs1800629 in TNFα has been
well studied in the context of CMS and, in our case,
was the one showing more and strongest associa-
tions with themeasured clinical outcomes (Figure 1).
Previous evidence in Europeans indicated that this
variant was associated with low levels of total serum
cholesterol, low-density lipoprotein (LDL) choles-
terol, and triglycerides.16 However, it was recently
shown to be associated with increased coronary
artery disease risk in a Kashmiri population.17 It
was associated with higher levels of very low-
density lipoprotein (VLDL) cholesterol and trigly-
cerides in Colombians, as well as with higher levels of
fasting glucose, suggesting it is involved in lipid and
glycemic responses. This variant was also associated
with greater abundance of an OTU classified as
Ruminococcus bromii (Ruminococcaceae), a primary
degrader of resistant starch18 and a major producer
of colonic butyrate.19 Fecal levels of butyrate and
other short-chain fatty acids (SCFAs) have been
associated with obesity and increased energy
harvesting.20–22

NODs are cytoplasmic receptors that recognize
muramyl dipeptides, components of the bacterial
cell wall. Polymorphisms inNOD2 have been mostly
associated with altered susceptibility to Crohn’s
disease.23–25 We found that the missense SNP
rs2066842 in NOD2 was associated with increased
levels of high-density lipoprotein (HDL) cholesterol
(“good cholesterol”) and higher abundance of mostly
beneficial microbes (Figure 1; Table S2), including
OTUs related to Coprococcus, a group of bacteria
more abundant in healthy individuals than Crohn’s
disease patients;26 Oscillospira, bacteria that were
associated with leanness and health;27

Ruminococcus albus (Ruminococcaceae), a species
more abundant in healthy individuals than in
patients with colorectal cancer;28 and Ruminococcus
callidus (Ruminococcaceae), a species that was asso-
ciated with plant-based diets29 and reduced symp-
toms in patients with inflammatory bowel disease.30

However, it was also associated with increased

abundance of Streptococcus infantis, an opportunis-
tic pathobiont that flourished after antibiotic
course.31 Coprococcus, Oscillospira and
Ruminococcus (Ruminococcaceae) have been shown
to be heritable.9,11,32

The intronic SNP rs2076756 in NOD2 was asso-
ciated with the abundance of the same microbes as
variant rs2066842. In addition, it was associated with
increased counts of OTUs related to Clostridium alde-
nense (Lachnospiraceae) and Clostridium celatum
(Clostridicaceae) (Figure 1; Table S2). The former
species was included in a mix of 17 bacterial strains
that enhanced immune regulatory T cells and induced
anti-inflammatory molecules upon inoculation in
germ-free mice33 while the latter was more abundant
in non-diabetic individuals than diabetic patients
under metformin treatment.34 The genus
Clostridium (Clostridicaceae) and the family
Lachnospiraceae have been shown to be heritable.11,35

The missense SNP rs2075820 in NOD1 was asso-
ciated with Crohn’s disease36 and to Helicobacter
pylori-related gastric cancer.37 In our study, it was
associated with higher abundance of three OTUs
related to Blautia, Clostridium xylanolyticum
(Lachnospiraceae) and Coprococcus catus (Figure 1;
Table S2). The particular OTU of Blautia detected
here clustered in a consortium of bacteria that were
associated with obesity38 and impaired cardiometa-
bolic health;39 Clostridium xylanolyticum was corre-
lated with lipopolysaccharide-associated metabolic
endotoxemia and pathophysiological features of
liver disease;40 and Coprococcus catus clustered in
a consortium of beneficial gut microbiota.39

Blautia, Coprococcus and Lachnospiraceae have
been shown to be heritable.9,11

Not only had the NOD signaling hubs associated
with gut microbiota. Variants at NLRP3, TLR4,
TLR5, IL-6, and IL-18 were also associated with
increased abundance of bacterial groups (Figure 1;
Table S2), some of which are heritable, including
Mollicutes RF39,9 Oscillospira, and Prevotella.11

Appetite control

We analyzed 13 variants in nine genes that pro-
duce hormones acting in the gut-brain axis and
controlling food intake (Figure S2). While the
majority of associations were between gut micro-
biota and variants in genes encoding ghrelin
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(GHRL), melanocortin 4 receptor (MC4R) and
glucagon-like peptide-1 receptor (GLP1R), we
highlight that the neuropeptide Y (NPY) promoter
SNP rs16147 was associated with increased levels
of glycated hemoglobin (HbA1c), the intronic SNP
rs1859223 in the gene encoding peptide tyrosine
tyrosine (PYY) was associated with gut-microbiota
beta diversity, and the missense SNP rs6265 in the
gene encoding the brain-derived neurotrophic fac-
tor (BDNF) was associated with greater abundance
of Otu00068 (Enterococcus casseliflavus) (Figure 1;
Table S2).

The missense SNP rs696217 in GHRL was
associated with increased susceptibility to
CMS41 and early onset of obesity.42

Consistently, this variant was associated with
greater abundance of microbiota found in indi-
viduals with impaired health, such as Blautia38

and Ruminococcus lactaris (Lachnospiraceae).30

However, it was also associated with higher
abundance of microbiota enriched in healthy
individuals, such as Christensenellaceae,43

Coprococcus,26 Coprococcus catus, and unclassi-
fied Ruminococcaceae39 (Figure 1; Table S2).
Blautia, Christensenellaceae, Coprococcus, and
Lachnospiraceae are heritable.9

The SNP rs571312 in MC4R was associated with
increased levels of triglycerides, C-reactive protein and
BMI.44–46 In our study, it was associated with greater
abundance of gut microbiota proper of the mucosal
lining, including butyrate producers such as
Anaerostipes,47 Butyricicoccus pullicaecorum,48

Faecalibacterium prausnitzii,49 and microbes that co-
occur with the beneficial mucin degrader
Akkermansia muciniphila, such asAlistipes putredinis,
Bacteroides fragilis, and Paraprevotella39 (Figure 1;
Table S2). Butyricicoccus32 and Faecalibacterium9 are
heritable, whereas Bacteroides has low heritability.11

While all these microbes are beneficial in the context
of inflammatory bowel disease, the role of butyrate
and other SCFAs for cardiometabolic disease is
a matter of debate.20–22

The missense SNP rs6923761 in GLP1R was
associated with decreased metabolic and cardio-
vascular biomarkers in obese females.50 We
found it was associated with higher abundance of
Catenibacterium, a bacterium enriched in hunter-
gatherers with high intake of dietary fiber;51

Collinsella aerofaciens, a bacterium able to ferment

a variety of dietary carbohydrates52 that end up in
the production of SCFAs; and Oscillospira,
a heritable beneficial microbe (Figure 1; Table S2).

Energy metabolism

We analyzed 27 variants in 18 genes affecting
energy expenditure (Figure S3). Genetic variants
in four of the 18 genes assessed accounted for the
majority of associations with CMS risk factors and
gut microbial shifts, including ADIPOQ,
ADIPOR2, ADRβ2, and UCP3 (Figure 1; Table S2).

The synonymous SNP rs2241766 in the gene
encoding adiponectin (ADIPOQ) has been highly
studied and recent meta-analyses have associated it
with CMS,53 hypertension,54 and coronary artery
disease.55 We found it was associated with a pro-
inflammatory state (higher levels of high-
sensitivity C-reactive protein: hs-CRP), as well as
to increased abundance of several gut microbiota,
including the same OTUs of Coprococcus,
Prevotella stercorea, Ruminococcus albus and
Ruminococcus callidus that were associated with
variants at NOD2 and TLR5 (Figure 1; Table S2).
As said above, many of these are purportedly ben-
eficial microbes. In addition, it was positively asso-
ciated with the abundance of Dorea and
Ruminococcus gnavus (Lachnospiraceae), bacteria
that thrive in patients with atherosclerotic cardio-
vascular disease,6 adiposity, insulin resistance, and
dyslipidemia.56

The synonymous SNP rs16928751 in the gene
encoding adiponectin receptor 2 (ADIPOR2) was
associated with type-2 diabetes57 and cardiovascu-
lar disease.58 We found it was associated with
greater abundance of the same OTUs of purport-
edly beneficial Clostridium aldenense and
Clostridium celatum that were associated with the
SNP rs2076756 in NOD2. It was also associated
with thriving of an OTU of Atopobium, abundant
bacteria found in patients with atherosclerotic car-
diovascular disease;6 and, oddly, with higher
counts of an OTU classified as Defluviitalea sac-
charophila, a thermophilic anaerobic bacterium
isolated from slaughterhouse wastewaters (Figure
1; Table S2).

The missense SNP rs1042714 in the gene encod-
ing beta-2 adrenergic receptor (ADRβ2) was asso-
ciated with obesity59 and CMS.60 We found it was

560 E. L. ORTEGA-VEGA ET AL.



associated with higher abundance of OTUs of
Christensenellaceae, Clostridium aerotolerans,
Clostridium ramosum, Coprococcus, and
Oscillospira (Figure 1; Table S2). The OTUs of
Christensenellaceae and Coprococcus associating
with this variant were the same associating with the
missense SNP rs696217 in GHRL (Figure 1), and are
presumably beneficial. Clostridium aerotolerans is an
anaerobic xylanolitic bacterium that clustered in
a consortium that was associated with leanness and
cardiometabolic regulation.39 One of the two OTUs
of Oscillospira found here was the same associating
with the SNP rs6923761 in GLP1R (Figure 1); as
already mentioned, Oscillospira is a beneficial
microbe. In contrast, Clostridium ramosum,
a member of the Erysipelotrichi, was associated with
CMS in humans61 and mice.62

Recent meta-analyses showed that the SNP
rs1800849 in the 5ʹ untranslated region of the gene
encoding the mitochondrial uncoupling protein 3
(UCP3) was associated with type-2 diabetes63 and
increased BMI in Asians but not in Europeans.64 In
Colombians, we found it was associated with higher
abundance of OTUs related to: Bacillus solfatarensis,
a poorly studied bacterium that branches deeply
among Bacilli and that warrants taxonomic
reclassification;65 Clostridium clostridioforme
(Lachnospiraceae), a clinically relevant bacterium
involved in infection and bacteremia66 and asso-
ciated with gut microbiota with low gene diversity
and CMS;56 and Subdoligranulum variabile, a major
butyrate-producing bacterium that was recently
associated with gut microbiota of patients with
atherosclerotic cardiovascular disease6 but that, in
the studied population, together with Clostridiaceae
02d06, clustered in a consortium of microbes that
thrive in lean and cardiometabolically healthy
individuals39 (Figure 1; Table S2).

The four remaining variants were associated
with higher abundance of a unique OTU: the
SNP rs266729 in ADIPOQ was associated with an
OTU related to Subdoligranulum variabile; the
intronic SNP rs2975760 in the gene encoding cal-
pain-10 (CAPN10) with an OTU related to
Lachnospira; the intronic SNP rs709149 in the
gene encoding peroxisome proliferator-activated
receptor gamma (PPARγ) with an OTU related
to Coprococcus eutactus; and the intronic SNP
rs7903146 in the gene encoding transcription

factor 7-like 2 (TCF7L2) with an OTU related to
Ruminococcus gauvreauii (Figure 1; Table S2).
Most of these variants and microbiota were asso-
ciated with impaired cardiometabolic
health6,30,44,54,67 but the limited number of associa-
tions detected here requires further confirmation.

Strengths and limitations

Our study has important strengths. Of note, the
rich set of metadata collected in the participants
allowed adjusting statistical models for potential
confounding such that the associations between
genetic variants and cardiometabolic health were
independent of the gut microbiota, and the asso-
ciations between host genetics and gut microbiota
were independent of the participants’ CMS risk.
They were also independent of the host genetic
ancestry, diet intake and lifestyle features (levels
of physical activity, medicament consumption and
smoking status).

Limitations include our targeted gene approach,
in which we focused on some genes affecting host–
microbiota interactions, energy intake, and expen-
diture. This approach missed many genes not in
our candidate list that could be associated with
cardiometabolic health and gut microbiota.
Furthermore, we focused on variants with past
evidence of association with CMS risk and gut
physiology; they were expected to have higher like-
lihood of association with gut microbiota and clin-
ical outcomes. Collectively, our reduced genomic
mapping precluded the attribution of associations
to the tested polymorphisms. It is indeed likely
that the detected associations stem from variants
in strong linkage disequilibrium with the ones
evaluated. Additional limitations include the cross-
sectional design, which did not allow inference
into causal relationships; and the possibility that
unmeasured confounding by other factors could
explain our results.

Conclusions

We uncovered several associations between var-
iants in genes of innate immunity, appetite control
and energy metabolism with the host cardiometa-
bolic health and gut microbiota composition. It is
noteworthy that we found many associations
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between gut microbiota and genetic composition
independent of the host cardiometabolic health.
This and past evidence on the subject, reviewed
by Goodrich et al.,9 suggest that genetic-
microbiota interactions are complex phenotypes
affected by many genes with small effects.
Moreover, several of the microbes exhibiting asso-
ciations with host genetics have been previously
shown to be heritable, providing further evidence
that the composition of the gut microbiota is
partly under the host genetic control. This seems
to be especially true for two bacterial families:
Lachnospiraceae and Ruminococcaceae, the most
prevalent families of Firmicutes, the most abun-
dant phylum in the studied population39 and in
others.68 Interestingly, other taxa that were asso-
ciated with health in this and other populations,
such as Akkermansia muciniphila
(Verrucomicrobia), and members of the families
Bacteroidaceae (Bacteroidetes) and
Enterobacteriaceae (Proteobacteria) showed fewer
or no associations with genetic variants.

Collectively, the hypothesized consistency of
associations between host genetics, cardiometa-
bolic health and gut microbiota was unclear. In
some cases, risk variants were associated with
impaired cardiometabolic health and detrimental
gut microbiota. However, in other cases they were
associated with beneficial gut microbiota. This
suggests that the phenotypic outcome of the eval-
uated variants might depend upon the genetic
background of the studied population and its
environmental context, which may be indirectly
accounted for by the gut microbiota. We believe
that this result represents an opportunity to reduce
disease risk through personalized medicine
approaches targeting specific modulation of the
gut microbiota in light of individualized genetic
makeups.

Materials and methods

Study population

Between July and November 2014, we enrolled 441
adult Colombians of both sexes, living in five
capital cities: Bogota, Medellin, Cali, Barranquilla,
and Bucaramanga (min-max distances between
cities: 238–861 km). Participants were enrolled in

similar proportions according to the city of resi-
dence, BMI (lean, overweight and obese), sex
(male, female), and age range (18–40 years and
41–62 years). We excluded underweight partici-
pants (i.e., BMI <18.5 kg/m2), pregnant women,
individuals who had consumed antibiotics or anti-
parasitics in the 3 months prior to enrollment, and
individuals diagnosed with neurodegenerative dis-
eases, current or recent cancer (<1 year), and gas-
trointestinal diseases (Crohn’s disease, ulcerative
colitis, short bowel syndrome, diverticulosis or
celiac disease).

This study followed the principles of the
Declaration of Helsinki and had minimal risk
according to the Colombian Ministry of Health
(Resolution 8430 of 1993). We obtained written
informed consent from all the participants. The
study was approved by the Bioethics Committee
of SIU–Universidad de Antioquia (act 14–24–588
dated May 28, 2014). A detailed description of the
acquisition of these data can be found elsewhere.39

Genetic data

We isolated total genomic DNA from venous
blood using the DNeasy Blood & Tissue kit
(Qiagen; cat. no. 69504) following the manufac-
turer’s instructions. This served as starting mate-
rial to genotype 60 variants in 39 genes related to
CMS risk and gut physiology (Table S1), clustering
in three modules: innate immunity, appetite con-
trol and energy metabolism. Genes of innate
immunity were targeted because this system is
located at the host-microbiota interface, sensing
microbes and their metabolic products (Figure
S1). Impaired communication between the innate
immune system and the gut microbiota has been
shown to contribute to CMS.69 Genes of appetite
control and energy metabolism were selected
because the former regulate food intake (Figure
S2) and the latter energy expenditure (Figure S3).
Imbalances between these two quantities lead to
obesity and CMS.70

Fifty-seven out of the 60 variants mentioned
above corresponded to single nucleotide poly-
morphisms (SNP), and three to insertion/deletion
(InDel) polymorphisms (Table S1). All of them
had minor allele frequencies >0.05 in the studied
population (population CLM: http://www.1000gen
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omes.org). SNPs were genotyped by PCR-RFLP
and InDels by PCR and electrophoresis. The pri-
mers to genotype variants were obtained from
previous publications or with Primer371

(Table S1).
In addition, we estimated the ancestral genetic

composition of each participant by genotyping 40
ancestry informative markers (see accompanying
paper by Guzmán-Castañeda et al.). The ancestral
genetic composition of each subject served to
adjust statistical models (see Statistical analysis
below), limiting the detection of spurious associa-
tions due to hidden genetic structure produced by
the recent admixture among Europeans, Native
Americans and Africans of the Colombian
population.72

Gut microbiota

Detailed laboratory and bioinformatic procedures
can be found elsewhere.39 Briefly, each participant
collected a fecal sample from which the total
microbial DNA was isolated using the QIAamp
DNA Stool Mini Kit (Qiagen; cat. no. 51504).
Afterwards, we obtained amplicons of the V4
hypervariable region of the 16S rRNA gene with
the primers F515 and R806. Primers were bar-
coded, multiplexed, and sequenced with the
Illumina MiSeq Reagent Kit v2. The raw
sequenced reads were processed as previously
described39 and deposited at the SRA-NCBI
(BioProject PRJNA417579).

The gut microbiota composition was summar-
ized at different levels. First, we calculated the
relative abundance of operational taxonomic
units (OTUs). OTUs were obtained with the aver-
age neighbor algorithm using 97% sequence iden-
tity as threshold with Mothur v.1.36 and classified
by consensus with Greengenes 13_8_99. We
restricted the analyses to the set of 137 OTUs
with median relative abundance ≥0.001% across
participants to limit the impact of sequencing
errors, chimeras and other artifacts that could
have gone through our processing pipeline.
Afterwards, we obtained relative abundances at
the phylum, class, order, family, genus, and species
levels following the Greengenes taxonomy.

The gut microbiota diversity within and
between individuals (alpha and beta diversities,

respectively) were also calculated. For the alpha
diversity, we calculated the observed OTU rich-
ness, Shannon diversity index, inverse Simpson
index, and Pielou evenness using BiodiversityR.
For the beta diversity, we calculated phylogeny-
based weighted UniFrac distances with GUniFrac,
using a relaxed neighbor-joining tree obtained
with Clearcut.

CMS risk, diet, and lifestyle

We collected clinical data informing about CMS
risk: body fat distribution (BMI, waist circumfer-
ence and percentage body fat), blood pressure
(systolic and diastolic), blood lipids (serum levels
of HDL, LDL, VLDL, total cholesterol and trigly-
cerides), and insulin resistance (serum levels of
fasting glucose, HbA1c, fasting insulin levels and
the insulin-resistance index through the homeo-
static model assessment: HOMA-IR). In addition,
we measured the serum levels of hs-CRP inform-
ing about pro-inflammatory states, and adipokines
(leptin and adiponectin). Body fat distribution and
blood pressure were measured by trained person-
nel; blood chemistry by a professional clinical
laboratory (Dinámica IPS, Medellin, Colombia).

Waist circumference, diastolic blood pressure,
and the levels of triglycerides, fasting insulin, and
hs-CRP were used to calculate a CMS risk scale
that further served to adjust statistical models (see
Statistical analysis below). To calculate the CMS
risk scale, variables were log-transformed, cen-
tered, scaled, and added (see accompanying paper
by Guzmán-Castañeda et al. for details).

In addition, each participant completed a 24-h
dietary recall interview to calculate the daily calo-
ric intake. Dietary recalls were randomly distribu-
ted in the different days of the week. Trained
interviewers used validated forms, food models,
geometric figures, and full-size pictures to assess
portion sizes and improve accuracy. Ten percent
of the participants were interviewed a second time
on a different day of the week, with a minimum of
2 days between consecutive evaluations, to esti-
mate intra-individual variability.

Levels of physical activity (number of metabolic
equivalents per minute per week) were obtained
with the short form of the International Physical
Activity Questionnaire, and specific questionnaires
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were employed for self-reporting smoking and
medicament consumption.38 For the latter, we
considered all drugs taken by participants on
a regular basis during the three months prior to
enrollment, to the exception of over-the-counter
vitamin and mineral supplements, phytotherapeu-
tics, and contraceptives. All measurements and
questionnaires were performed by trained
personnel.

Statistical analysis

The associations between genetic variants and
clinical parameters, and between genetic variants
and gut microbiota were determined by multiple
linear regressions with plink v1.07.73 Since we
analyzed quantitative, continuous response vari-
ables, we fitted additive genetic models adjusted
by several covariates. We employed the – linear
and – standard-beta commands to obtain standar-
dized regression coefficients (mean 0, variance 1).

For the associations between genetic variation
and clinical parameters, the statistical models were
adjusted by the participants’ ancestral genetic
composition, city of origin, sex, and age. This
because the ancestral genetic composition of
Colombians affects the host cardiometabolic
health and gut microbiota (see accompanying
paper by Guzmán-Castañeda et al.). The city of
origin is an important driver of gut microbiota
composition.39 Sex and age were considered
because they affected the cardiometabolic health:
males had higher CMS risk than women, and this
risk was higher at older age.38 In addition, since we
wanted associations to be independent of the gut
microbiota, we performed principal coordinates
analysis (PCoA) on weighted UniFrac distances,
and further adjusted associations by the first two
components of the PCoA. We repeated the ana-
lyses with additional adjustment by caloric intake,
levels of physical activity, medicament consump-
tion, and smoking status.

For the associations between genetic variation
and gut microbiota, the statistical models were
adjusted by the participants’ ancestral genetic
composition, city of origin, sex, age, caloric intake,
levels of physical activity, medicament consump-
tion, and smoking status. In addition, since we
wanted associations not to be confounded by the

host cardiometabolic status, we further adjusted
models by the CMS risk scale.

In all cases, p-values were adjusted for multiple
comparisons using the Bonferroni correction.
Associations were considered significant if they
had adjusted p-values <0.05.

Acknowledgments

We thank the participants who took part in the study, and
the GENMOL and Vidarium staff for their contributions
during field, lab work, analysis, and discussion. We are grate-
ful to EPS SURA and Dinámica IPS for their support
throughout the study, to the Centro de Computación
Científica Apolo at Universidad EAFIT for hosting super-
computing resources (http://www.eafit.edu.co/apolo), and to
the University of Michigan Medical School Host Microbiome
Initiative for sequencing support. Some authors of this work
collaborate through the Microbiome & Health Network.

Disclosure of Potential Conflicts of Interest

We disclose that, while engaged in this project, JdlC-Z, EPV-
M and JSE were employed by a food company (Grupo
Empresarial Nutresa). SJG-C, ELO-V, WR, and GB had
nothing to disclose.

Funding

This study was funded by Colciencias under grant
111565741349; Grupo Empresarial Nutresa, Universidad de
Antioquia, Dinámica IPS, and EPS SURA. The funders of this
work have not had any role in the study design; in the
collection, analysis or interpretation of the data; in the writ-
ing of the report; and in the decision to submit the paper for
publication.

ORCID

Jacobo de la Cuesta-Zuluaga http://orcid.org/0000-0002-
7369-992X
Gabriel Bedoya http://orcid.org/0000-0002-4820-6679
Juan S. Escobar http://orcid.org/0000-0001-7304-917X

References

1. Passarino G, De Rango F, Montesanto A. Human long-
evity: genetics or Lifestyle? It takes two to tango. Immun
Ageing. 2016;13:12. doi:10.1186/s12979-016-0066-z.

2. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome
- A new world-wide definition. A consensus statement
from the international diabetes federation. Diabet Med.
2006;23:469–480. doi:10.1111/dme.2006.23.issue-5.

564 E. L. ORTEGA-VEGA ET AL.

http://www.eafit.edu.co/apolo
https://doi.org/10.1186/s12979-016-0066-z
https://doi.org/10.1111/dme.2006.23.issue-5


3. Manolio TA, Collins FS, Cox NJ, Goldstein DB,
Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM,
Cardon LR, Chakravarti A, et al. Finding the missing
heritability of complex diseases. Nature.
2009;461:747–753. doi:10.1038/nature08459.

4. Yu E, Rimm E, Qi L, Rexrode K, Albert CM, Sun Q,
Willett WC, Hu FB, Manson JAE. Diet, lifestyle, bio-
markers, genetic factors, and risk of cardiovascular dis-
ease in the nurses’ health studies. Am J Public Health.
2016;106:1616–1623. doi:10.2105/AJPH.2016.303084.

5. Turnbaugh PJ, Hamady M, Yatsunenko T,
Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ,
Roe BA, Affourtit JP, et al. A core gut microbiome in
obese and lean twins. Nature. 2009;457:480–487.
doi:10.1038/nature07540.

6. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S,
Zhong H, Liu Z, Gao Y, Zhao H, et al. The gut micro-
biome in atherosclerotic cardiovascular disease. Nat
Commun. 2017;8:845.

7. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S,
Zhang W, Guan Y, Shen D, et al. A
metagenome-wide association study of gut microbiota
in type 2 diabetes. Nature. 2012;490:55–60.

8. Zhao L, Zhang F, Ding X, Wu G, Yy L, Shi Y, Shen Q,
Dong W, Liu R, Ling Y, et al. Gut bacteria selectively
promoted by dietary fibers alleviate type 2 diabetes.
Science. 2018;359:1151–1156.

9. Goodrich JK, Davenport ER, Clark AG, Ley RE. The
relationship between the human genome and micro-
biome comes into view. Annu Rev Genet.
2017;51:413–433.

10. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z,
Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M,
Smeekens SP, et al. The effect of host genetics on the
gut microbiome. Nat Genet. 2016;48:1407–1412.
doi:10.1038/ng.3663.

11. Goodrich JK, Davenport ER, Beaumont M,
Jackson MA, Knight R, Ober C, Spector TD, Bell JT,
Clark AG, Ley RE. Genetic determinants of the gut
microbiome in UK Twins. Cell Host Microbe.
2016;19:731–743. doi:10.1016/j.chom.2016.04.017.

12. Turpin W, Espin-Garcia O, Xu W, Silverberg MS,
Kevans D, Smith MI, Guttman DS, Griffiths A,
Panaccione R, Otley A, et al. Association of host gen-
ome with intestinal microbial composition in a large
healthy cohort. Nat Genet. 2016;48:1413–1417.
doi:10.1038/ng.3693.

13. Wang J, Thingholm LB, Skiecevičienė J, Rausch P,
Kummen M, Hov JR, Degenhardt F, Heinsen F-A,
Rühlemann MC, Szymczak S, et al. Genome-wide asso-
ciation analysis identifies variation in vitamin D receptor
and other host factors influencing the gut microbiota. Nat
Genet. 2017;48:1396–1406. doi:10.1038/ng.3695.

14. Mancabelli L, Milani C, Lugli GA, Turroni F,
Ferrario C, van Sinderen D, Ventura M. Meta-
analysis of the human gut microbiome from urbanized

and pre-agricultural populations. Environ Microbiol.
2017;19:1379–1390. doi:10.1111/1462-2920.13842.

15. Timpson NJ, Greenwood CMT, Soranzo N,
Lawson DJ, Richards JB. Genetic architecture: the
shape of the genetic contribution to human traits and
disease. Nat Rev Genet. 2018;19:110–124. doi:10.1038/
nrg.2017.101.

16. Teslovich TM, Musunuru K, Smith AV,
Edmondson AC, Stylianou IM, Koseki M,
Pirruccello JP, Ripatti S, Chasman DI, Willer CJ,
et al. Biological, clinical and population relevance of
95 loci for blood lipids. Nature. 2010;466:707–713.
doi:10.1038/nature09172.

17. Khan NS, Allai MS, Nissar B, Naykoo NA, Hameed I,
Majid M, Bhat A, Afshan FU, Ganai BA. Genetic
association of tumour necrosis factor alpha,
interleukin-18 and interleukin 1 beta with the risk of
coronary artery disease: A case-control study outcome
from Kashmir. J Appl Biomed. 2018;16:387–393.
doi:10.1016/j.jab.2018.02.004.

18. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus
bromii is a keystone species for the degradation of
resistant starch in the human colon. Isme J.
2012;6:1535–1543. doi:10.1038/ismej.2012.11.

19. Louis P, Young P, Holtrop G, Flint HJ. Diversity of
human colonic butyrate-producing bacteria revealed by
analysis of the butyryl-CoA: acetateCoA-transferase gene.
Environ Microbiol. 2010;12:304–314. doi:10.1111/j.1462-
2920.2009.02066.x.

20. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA,
Donus C, Hardt PD, Schäfer K, Beijer S, Bos NA, et al.
Microbiota and SCFA in lean and overweight healthy
subjects. Obesity. 2010;18:190–195. doi:10.1038/
oby.2009.167.

21. Rahat-Rozenbloom S, Fernandes J, Gloor GB,
Wolever TMS. Evidence for greater production of colo-
nic short-chain fatty acids in overweight than lean
humans. Int J Obes. 2014;38:1525–1531. doi:10.1038/
ijo.2014.46.

22. de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero
R, Velásquez-Mejía EP, Sierra JA, Corrales-Agudelo V,
Carmona JA, Abad JM, Escobar JS. Higher fecal
short-chain fatty acid levels are associated with gut
microbiome dysbiosis, obesity, hypertension and cardi-
ometabolic disease risk factors. Nutrients. 2019;11:51.
doi:10.3390/nu11010051.

23. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH,
Rioux JD, Brant SR, Silverberg MS, Taylor KD,
Barmada MM, et al. Genome-wide association defines
more than 30 distinct susceptibility loci for Crohn’s dis-
ease. Nat Genet. 2008;40:955–962. doi:10.1038/ng.126.

24. Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA,
Sm N, Erazo M, Ostrer H, Abraham C, Abreu MT,
et al. A genome-wide scan of ashkenazi jewish crohn’s
disease suggests novel susceptibility loci. PLoS Genet.
2012;8:e1002559. doi:10.1371/journal.pgen.1002559.

GUT MICROBES 565

https://doi.org/10.1038/nature08459
https://doi.org/10.2105/AJPH.2016.303084
https://doi.org/10.1038/nature07540
https://doi.org/10.1038/ng.3663
https://doi.org/10.1016/j.chom.2016.04.017
https://doi.org/10.1038/ng.3693
https://doi.org/10.1038/ng.3695
https://doi.org/10.1111/1462-2920.13842
https://doi.org/10.1038/nrg.2017.101
https://doi.org/10.1038/nrg.2017.101
https://doi.org/10.1038/nature09172
https://doi.org/10.1016/j.jab.2018.02.004
https://doi.org/10.1038/ismej.2012.11
https://doi.org/10.1111/j.1462-2920.2009.02066.x
https://doi.org/10.1111/j.1462-2920.2009.02066.x
https://doi.org/10.1038/oby.2009.167
https://doi.org/10.1038/oby.2009.167
https://doi.org/10.1038/ijo.2014.46
https://doi.org/10.1038/ijo.2014.46
https://doi.org/10.3390/nu11010051
https://doi.org/10.1038/ng.126
https://doi.org/10.1371/journal.pgen.1002559


25. Franke A, McGovern DPB, Barrett JC, Wang K,
Radford-Smith GL, Ahmad T, Lees CW, Balschun T,
Lee J, Roberts R, et al. Genome-wide meta-analysis
increases to 71 the number of confirmed Crohn’s dis-
ease susceptibility loci. Nat Genet. 2010;42:1118–1125.
doi:10.1038/ng.717.

26. Walters WA, Xu Z, Knight R. Meta-analyses of human
gut microbes associated with obesity and IBD. FEBS Lett.
2014;588:4223–4233. doi:10.1016/j.febslet.2014.09.039.

27. Konikoff T, Gophna U. Oscillospira: a central, enig-
matic component of the human gut microbiota.
Trends Microbiol. 2016;24:523–524. doi:10.1016/j.
tim.2016.02.015.

28. Weir TL, Manter DK, Sheflin AM, Barnett BA,
Heuberger AL, Ryan EP. Stool microbiome and meta-
bolome differences between colorectal cancer patients
and healthy adults. PLoS One. 2013;8:e70803.
doi:10.1371/journal.pone.0070803.

29. David LA, Maurice CF, Carmody RN, Gootenberg DB,
Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y,
Fischbach MA, et al. Diet rapidly and reproducibly alters
the human gut microbiome. Nature. 2014;505:559–563.
doi:10.1038/nature12820.

30. Rajilić-Stojanović M, Biagi E, Heilig HGHJ, Kajander K,
Kekkonen RA, Tims S, De Vos WM. Global and deep
molecular analysis of microbiota signatures in fecal sam-
ples from patients with irritable bowel syndrome.
Gastroenterology. 2011;141:1792–1801. doi:10.1053/j.
gastro.2011.07.043.

31. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-
Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Ben-
Zeev Brik R, Federici S, et al. Post-antibiotic gut muco-
sal microbiome reconstitution is impaired by probio-
tics and improved by autologous FMT. Cell.
2018;174:1406–1423. doi:10.1016/j.cell.2018.08.047.

32. Davenport ER, Mizrahi-Man O, Michelini K,
Barreiro LB, Ober C, Gilad Y. Seasonal variation in
human gut microbiome composition. PLoS One.
2014;9:e90731. doi:10.1371/journal.pone.0090731.

33. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y,
Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K,
et al. Treg induction by a rationally selected mixture of
Clostridia strains from the human microbiota. Nature.
2013;500:232–236. doi:10.1038/nature12331.

34. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo
V, Velásquez-Mejía EP, Carmona JA, Abad JM,
Escobar JS. Metformin is associated with higher rela-
tive abundance of mucin-degrading Akkermansia
muciniphila and several short-chain fatty acid–produ-
cing microbiota in the gut. Diabetes Care.
2017;40:54–62. doi:10.2337/dc16-1324.

35. Davenport ER, Cusanovich DA, Michelini K,
Barreiro LB, Ober C, Gilad Y. Genome-wide associa-
tion studies of the human gut microbiota. PLoS One.
2015;10:1–22. doi:10.1371/journal.pone.0140301.

36. Molnar T, Hofner P, Nagy F, Lakatos PL, Fischer S,
Lakatos L, Kovacs A, Altorjay I, Papp M, Palatka K,

et al. NOD1 gene E266K polymorphism is associated
with disease susceptibility but not with disease pheno-
type or NOD2/CARD15 in Hungarian patients with
Crohn’s disease. Dig Liver Dis. 2007;39:1064–1070.
doi:10.1016/j.dld.2007.09.003.

37. Wang P, Zhang L, Jiang JM, Ma D, Tao HX, Yuan SL,
Wang YC, Wang LC, Liang H, Zhang ZS, et al.
Association of NOD1 and NOD2 genes polymorph-
isms with Helicobacter pylori related gastric cancer in
a Chinese population. World J Gastroenterol.
2012;18:2112–2120. doi:10.3748/wjg.v18.i17.2112.

38. de la Cuesta-Zuluaga J, Corrales-Agudelo V,
Carmona JA, Abad JM, Escobar JS. Body size phenotypes
comprehensively assess cardiometabolic risk and refine
the association between obesity and gut microbiota.
Int J Obes. 2018;42:424–432.

39. de la Cuesta-Zuluaga J, Corrales-Agudelo V,
Velásquez-Mejía EP, Carmona JA, Abad JM,
Escobar JS. Gut microbiota is associated with obesity
and cardiometabolic disease in a population in the
midst of Westernization. Sci Rep. 2018;8:11356.
doi:10.1038/s41598-018-29687-x.

40. Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C,
Hernandez BY, Alegado R, Dong B, Li D, et al.
Distinctly altered gut microbiota in the progression of
liver disease. Oncotarget. 2016;7:19355–19366.

41. Steinle NI, Pollin TI, O’Connell JR, Mitchell BD,
Shuldiner AR. Variants in the ghrelin gene are asso-
ciated with metabolic syndrome in the old order
Amish. J Clin Endocrinol Metab. 2005;90:6672–6677.
doi:10.1210/jc.2005-0549.

42. Ukkola O, Ravussin E, Jacobson P, Snyder EE,
Chagnon M, Sjostrom L, Bouchard C. Mutations in the
preproghrelin/ghrelin gene associated with obesity in
humans. J Clin Endocrinol Metab. 2001;86:3996–3999.
doi:10.1210/jcem.86.8.7914.

43. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O,
Blekhman R, Beaumont M, Van Treuren W, Knight R,
Bell JT, et al. Human genetics shape the gut microbiome.
Cell. 2014;159:789–799. doi:10.1016/j.cell.2014.09.052.

44. Graff M, Scott RA, Justice AE, Young KL, Feitosa MF,
Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D,
et al. Genome-wide physical activity interactions in adip-
osity ― A meta-analysis of 200,452 adults. PLoS Genet.
2017;13:e1006528. doi:10.1371/journal.pgen.1006528.

45. Speliotes EK, Willer CJ, Berndt SI, Monda KL,
Thorleifsson G, Jackson AU, Allen HL, Lindgren CM,
Luan J, Mägi R, et al. Association analyses of 249,796
individuals reveal 18 new loci associated with body
mass index. Nat Genet. 2010;42:937–948. doi:10.1038/
ng.686.

46. Ligthart S, Vaez A, Hsu YH, Stolk R, Uitterlinden AG,
Hofman A, Alizadeh BZ, Franco OH, Dehghan A.
Bivariate genome-wide association study identifies
novel pleiotropic loci for lipids and inflammation.
BMC Genomics. 2016;17:443. doi:10.1186/s12864-016-
3328-4.

566 E. L. ORTEGA-VEGA ET AL.

https://doi.org/10.1038/ng.717
https://doi.org/10.1016/j.febslet.2014.09.039
https://doi.org/10.1016/j.tim.2016.02.015
https://doi.org/10.1016/j.tim.2016.02.015
https://doi.org/10.1371/journal.pone.0070803
https://doi.org/10.1038/nature12820
https://doi.org/10.1053/j.gastro.2011.07.043
https://doi.org/10.1053/j.gastro.2011.07.043
https://doi.org/10.1016/j.cell.2018.08.047
https://doi.org/10.1371/journal.pone.0090731
https://doi.org/10.1038/nature12331
https://doi.org/10.2337/dc16-1324
https://doi.org/10.1371/journal.pone.0140301
https://doi.org/10.1016/j.dld.2007.09.003
https://doi.org/10.3748/wjg.v18.i17.2112
https://doi.org/10.1038/s41598-018-29687-x
https://doi.org/10.1210/jc.2005-0549
https://doi.org/10.1210/jcem.86.8.7914
https://doi.org/10.1016/j.cell.2014.09.052
https://doi.org/10.1371/journal.pgen.1006528
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/ng.686
https://doi.org/10.1186/s12864-016-3328-4
https://doi.org/10.1186/s12864-016-3328-4


47. Allen-Vercoe E, Daigneault M, White A, Panaccione R,
Duncan SH, Flint HJ, O’Neal L, Lawson PA. Anaerostipes
hadrus comb. nov., a dominant species within the human
colonic microbiota; reclassification of Eubacterium
hadrum Moore et al. Anaerobe. 1976;18:523–529. 2012.
doi:10.1016/j.anaerobe.2012.09.002.

48. Geirnaert A, Wang J, Tinck M, Steyaert A, Van Den
Abbeele P, Eeckhaut V, Vilchez-Vargas R, Falony G,
Laukens D, De VM, et al. Interindividual differences in
response to treatment with butyrate-producing
Butyricicoccus pullicaecorum 25–3T studied in an
in vitro gut model. FEMS Microbiol Ecol. 2015;91:
fiv054. doi:10.1093/femsec/fiv054.

49. Van Den Abbeele P, Belzer C, Goossens M,
Kleerebezem M, De Vos WM, Thas O, De Weirdt R,
Kerckhof FM, Van De Wiele T. Butyrate-producing
clostridium cluster XIVa species specifically colonize
mucins in an in vitro gut model. Isme J.
2013;7:949–961. doi:10.1038/ismej.2012.158.

50. de Luis DA, Aller R, de la Fuente B, Primo D, Conde R,
Izaola O, Sagrado MG. Relation of the rs6923761 gene
variant in glucagon-like peptide 1 receptor with weight,
cardiovascular risk factor, and serum adipokine levels
in obese female subjects. J Clin Lab Anal.
2015;29:100–105. doi:10.1002/jcla.21735.

51. Obregon-Tito AJ, Tito RY,Metcalf J, SankaranarayananK,
Clemente JC, Ursell LK, Zech XZ, Van Treuren W,
Knight R, Gaffney PM, et al. Subsistence strategies in
traditional societies distinguish gut microbiomes. Nat
Commun. 2015;6:6505. doi:10.1038/ncomms7505.

52. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau L,
Griffi NW, Lombard V, Henrissat B, Bain JR, et al. Gut
microbiota from twins discordant for obesity modulate
metabolism in mice. Science. 2013;341:1241214.
doi:10.1126/science.1241214.

53. Yuan HP, Sun L, Li XH, Che FG, Zhu XQ, Yang F,
Han J, Jia CY, Yang Z. Association of adiponectin
polymorphism with metabolic syndrome risk and adi-
ponectin level with stroke risk: a meta-analysis. Sci
Rep. 2016;6:31945. doi:10.1038/srep31945.

54. Fan W, Qu X, Li J, Wang X, Bai Y, Cao Q, Ma L,
Zhou X, Zhu W, Liu W, et al. Associations between
polymorphisms of the ADIPOQ gene and hypertension
risk: a systematic and meta-analysis. Sci Rep.
2017;7:41683. doi:10.1038/srep41683.

55. Hou H, Ge S, Zhao L, Wang C, WangW, Zhao X, Sun Z.
An updated systematic review and meta-analysis of asso-
ciation between adiponectin gene polymorphisms and
coronary artery disease. Omi A J Integr Biol.
2017;21:340–351. doi:10.1089/omi.2017.0007.

56. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F,
Falony G, Almeida M, Arumugam M, Batto J-M-M,
Kennedy S, et al. Richness of human gut microbiome
correlates with metabolic markers. Nature.
2013;500:541–546. doi:10.1038/nature12506.

57. Potapov VA, Chistiakov DA, Dubinina A,
Shamkhalova MS, Shestakova MV, Nosikov VV.

Adiponectin and adiponectin receptor gene variants
in relation to type 2 diabetes and insulin
resistance-related phenotypes. Rev Diabet Stud.
2008;5:28–37. doi:10.1900/RDS.2008.5.28.

58. Siitonen N, Pulkkinen L, Lindström J, Kolehmainen M,
Schwab U, Eriksson JG, Ilanne-Parikka P, Keinänen-
Kiukaanniemi S, Tuomilehto J, Uusitupa M.
Association of ADIPOR2 gene variants with cardiovas-
cular disease and type 2 diabetes risk in individuals
with impaired glucose tolerance: the finnish diabetes
prevention study. Cardiovasc Diabetol. 2011;10:83.

59. Large V, Hellström L, Reynisdottir S, Lönnqvist F,
Eriksson P, Lannfelt L, Arner P. Human beta-2 adreno-
ceptor gene polymorphisms are highly frequent in obesity
and associate with altered adipocyte beta-2 adrenoceptor
function. J Clin Invest. 1997;100:3005–3013.

60. Dallongeville J, Helbecque N, Cottel D, Amouyel P,
Meirhaeghe A. The Gly16–>arg16 and Gln27–>glu27
polymorphisms of beta2-adrenergic receptor are asso-
ciated with metabolic syndrome in men. J Clin
Endocrinol Metab. 2003;88:4862–4866.

61. Karlsson FH, Tremaroli V, Nookaew I, Bergström G,
Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut meta-
genome in European women with normal, impaired and
diabetic glucose control. Nature. 2013;498:99–103.

62. Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M.
Clostridium ramosum promotes high-fat diet-induced
obesity in gnotobiotic mouse models. MBio. 2014;5:
e01530–14.

63. Xu K, Zhang M, Cui D, Fu Y, Qian L, Gu R, Wang M,
Shen C, Yu R, Yang T. UCP2–866G/A and Ala55Val,
and UCP3–55C/T polymorphisms in association with
type 2 diabetes susceptibility: A meta-analysis study.
Diabetologia. 2011;54:2315–2324.

64. Brondani LA, Assmann TS, De Souza BM, Bouças AP,
Canani LH, Crispim D. Meta-analysis reveals the asso-
ciation of common variants in the Uncoupling Protein
(UCP) 1–3 genes with body mass index variability.
PLoS One. 2014;9:e96411.

65. Ludwig W, Schleifer K-H, Whitman WB. Revised road
map to the phylum Firmicutes. In: Vos P, Garrity G,
Jones D, Krieg NR, Ludwig W, Rainey FA,
Schleifer K-H, Whitman W, editors. Bergey’s manual
of systematic bacteriology. Vol. 3. New York (NY):
Springer;2009. p. 1–13.

66. Finegold SM, Song Y, Liu C, Hecht DW, Summanen P,
Könönen E, Allen SD. Clostridium clostridioforme:
A mixture of three clinically important species. Eur
J Clin Microbiol Infect Dis. 2005;24:319–324.

67. Weedon MN, Schwarz PEH, Horikawa Y, Iwasaki N,
Illig T, Holle R, Rathmann W, Selisko T, Schulze J,
Owen KR, et al. Meta-analysis and a large association
study confirm a role for calpain-10 variation in type 2
diabetes susceptibility. Am J Hum Genet.
2003;73:1208–1212.

68. The Human Microbiome Project Consortium.
Huttenhower C, Gevers D, Knight R, Abubucker S,

GUT MICROBES 567

https://doi.org/10.1016/j.anaerobe.2012.09.002
https://doi.org/10.1093/femsec/fiv054
https://doi.org/10.1038/ismej.2012.158
https://doi.org/10.1002/jcla.21735
https://doi.org/10.1038/ncomms7505
https://doi.org/10.1126/science.1241214
https://doi.org/10.1038/srep31945
https://doi.org/10.1038/srep41683
https://doi.org/10.1089/omi.2017.0007
https://doi.org/10.1038/nature12506
https://doi.org/10.1900/RDS.2008.5.28


Badger JH, Chinwalla AT, Creasy HH, Earl AM,
FitzGerald MG, et al. Structure, function and diversity
of the healthy human microbiome. Nature. 2012;486:
207–214.

69. Thaiss CA, Zmora N, Levy M, Elinav E. The micro-
biome and innate immunity. Nature. 2016;535:65–74.

70. Hill JO, Wyatt HR, Peters JC. Energy balance and
obesity. Circulation. 2012;126:126–132.

71. Koressaar T, Remm M. Enhancements and modifica-
tions of primer design program Primer3.
Bioinformatics. 2007;23:1289–1291.

72. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, Quinto-
Sanchez M, Jaramillo C, Arias W, Fuentes M,
Pizarro M, Everardo P, de Avila F, et al. Admixture
in Latin America: geographic structure, phenotypic
diversity and self-Perception of ancestry based on
7,342 Individuals. PLoS Genet. 2014;10:e1004572.

73. Purcell S, Neale B, Todd-Brown K, Thomas L,
Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ, et al. PLINK: A tool set for
whole-genome association and population-based link-
age analyses. Am J Hum Genet. 2007;81:559–575.

568 E. L. ORTEGA-VEGA ET AL.


	Abstract
	Introduction
	Results and discussion
	Innate immunity
	Appetite control
	Energy metabolism
	Strengths and limitations
	Conclusions

	Materials and methods
	Study population
	Genetic data
	Gut microbiota
	CMS risk, diet, and lifestyle
	Statistical analysis

	Acknowledgments
	Disclosure of Potential Conflicts of Interest
	Funding
	References

