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Chapter 1

Introduction

1.1 Motivation

In recent years, vehicular congestion has become one of the major issues

for large cities, as it brings about a series of negative consequences that

affect both the economy of the cities and the health of their residents. In

economic and environmental terms, the high costs associated with traffic

congestion result from increased fuel consumption, greater wear and tear on

road infrastructure, disruptions to public transportation services, and the

deterioration of air quality due to the emission of pollutants. This leads to

an increase in respiratory and cardiovascular diseases that impact various

population groups.

For example, the cities that make up the Metropolitan Area of the Aburrá

Valley (AMVA - Área Metropolitana del Valle de Aburrá) [1], in the state of

Antioquia (Colombia), are not immune to the effects that the transportation

sector has on air quality (mainly in the capital, Medellin). According to the

entity, in the emissions inventory for the base year 2018, 91% of PM2.51 emis-

sions came from mobile sources such as trucks, buses, 4-stroke motorcycles,

and private vehicles [3].

Given the relationship between transportation and environmental pollu-

tion, major cities like Rome, Milan, and London have started to engage in

more conscious mobility planning through strategies such as higher parking

fees to encourage the use of public transportation, standardization of speeds

1Complex mixture with diverse chemical components, containing aerodynamic parti-

cles with diameters of less than or equal to 2.5µm. These particles are mainly produced

by combustion processes of gasoline, oil, and diesel fuels [2]

9



10 1.2. Research Question

for specific urban areas, the establishment of restricted traffic zones during

specific hours [4], and the labeling of Low Emission Zones (LEZ) [5][6].

Moreover, improvements have not only been sought through policies and

infrastructure but also through academic and private sector research and

development of traffic management systems. From these research and exper-

iments, strategies heavily reliant on technological and computational inputs

have emerged, such as route planning, Vehicle-to-Infrastructure (V2I)2 com-

munication, and traffic light control, taking into account weather conditions,

traffic history, and information collected from sensors and communication

systems.

Currently, with the rise of artificial intelligence (AI), various machine

learning techniques have been explored as potential solutions that, in con-

junction with the aforementioned strategies, could drive the development of

more robust and dynamic systems capable of adapting to traffic conditions.

Among these techniques are traffic prediction models [8], traffic lights opti-

mization, traffic simulation, reinforcement learning, and computer vision.

This research work aims to address traffic management from a multi-

agent perspective, considering the existing road infrastructure in the city

of Medellin, to execute traffic light control in a simulated environment and

evaluate the impact that an intelligent management system could have on

the city’s traffic, which could positively affect the air quality in the study

region.

1.2 Research Question

Considering the above, the research questions is defined:

✓ How can a Machine Learning-based model approach be effectively ap-

plied in urban traffic management to enhance traffic efficiency and re-

duce emissions within a Low Emission Zone?

1.3 Contribution of the Research Work

This research represents a contribution to the field of traffic management

and emissions reduction in urban areas. Addressing a gap in the literature,

2Wireless data communication between vehicles and highway infrastructure such as

traffic lights, road signs, and sensors [7]
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this study focuses on the implementation of a Deep Reinforcement Learning

(DQN) model in the context of a Low Emission Zone, using a multi-agent

architecture for the purpose of traffic light control. Unlike previous research,

which has mostly focused on simulations with synthetic data and primarily

single-agent approaches, this research is based on real traffic data captured in

the city of Medellin to simulate a scenario with a real map of the study area,

containing multiple intersections. In this simulation, a novel weighted multi-

objective reward function is proposed, incorporating both traffic efficiency

and emissions reduction as key objectives. This multi-objective approach

takes into account both the need to reduce congestion and the importance

of minimizing emissions, which is essential for creating sustainable urban

environments. The inclusion of traffic characterization and a more realis-

tic simulation scenario provides a foundation for modeling and evaluating

traffic congestion and emissions control policies. The results obtained show

improvements in both traffic efficiency and emissions reduction, validating

the effectiveness of the applied methodology.

1.4 Objectives

1.4.1 General Objective

To design, implement, and evaluate a dynamic model for intelligent traf-

fic management with the aim of reducing vehicular congestion in areas of

Medellin where the Air Quality Index (AQI) indicates high levels of harm-

fulness. This will be based on machine learning techniques and multi-agent

systems.

1.4.2 Specific Objectives

✓ Characterize vehicular traffic and the road infrastructure of the city by

exploring, analyzing, and interpreting maps and traffic data available in

the databases of the control entities in Medellin and the Metropolitan

Area.

✓ Design the architecture of a computational model based on intelligent

agents that can identify and respond to changes and trends in vehicular

congestion in the region.
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✓ Develop a software algorithm that implements the designed model

based on intelligent agents, with adaptability rooted in machine learn-

ing techniques according to current mobility conditions.

✓ Validate and simulate various vehicular traffic scenarios to analyze

the scalability and adaptability of the proposed model, as well as the

achieved reduction in congestion, considering traffic and air quality

variables.

✓ Evaluate the implementation of the computational system using per-

formance metrics such as execution times, error percentages, memory

usage, complexity, among others.

1.5 Structure of the Research Work

Chapter 2 delves into the intricate relationship between traffic and air

quality. This chapter explores various traffic management strategies and

initiatives aimed at mitigating air pollution, including Low Emission Zones.

It provides an overview of the state of the art in this field.

Chapter 3 focuses on reinforcement learning and deep reinforcement learn-

ing. It introduces the fundamental concepts and the theoretical basis of

these machine learning approaches. Additionally, it reviews the latest ad-

vancements and research in reinforcement learning applied to traffic man-

agement to provide a comprehensive understanding of this crucial aspect of

the study.

Chapter 4 is dedicated to the case study, the Low Emission Zone (LEZ)

of Medellin. It conducts a detailed time series analysis of vehicular traffic

within this specific zone, including temporal, roadwise and vehicle category-

based analyses. It also shows the methods used for feature selection. This

chapter forms the foundation for subsequent experiments and allows for

gaining insights into the traffic dynamics of the targeted area.

Chapter 5 delves into the experimental phase of the research. It em-

ploys deep reinforcement learning techniques, specifically the use of Deep

Q-Networks (DQN), to learn policies for traffic light control within a simu-

lated environment. This section showcases the experiments, the methodol-

ogy employed for policy learning, and the results obtained.
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Chapter 6 brings the thesis to a close. Here, the key findings and insights

from the previous chapters are summarized. The implications of the re-

search on traffic management are discussed. Additionally, potential avenues

for future work are outlined, identifying areas where further research can

contribute to the field. This chapter provides a comprehensive conclusion

to the thesis and sets the stage for future research efforts.



Chapter 2

Vehicle Traffic Management

Traffic management is a fundamental aspect of urban planning and develop-

ment, particularly in densely populated areas where vehicular mobility is a

constant concern. The smooth flow of vehicles is essential for maintaining

efficient transportation networks. However, one of the most prevalent and

challenging issues in urban traffic management is traffic congestion. This

occurs when the demand for road and street usage surpasses their capac-

ity, resulting in slow-moving or stationary vehicles, leading to standstills and

traffic jams [9].

Traffic congestion is a multifaceted problem influenced by several factors,

such as the ever-increasing number of vehicles on the road, traffic accidents,

and adverse weather conditions [9]. These conditions often cause reduced

traffic speeds and, in some cases, complete standstills, significantly extend-

ing travel times and adversely affecting the overall quality of life for urban

residents.

2.1 Vehicle Traffic and Air Quality

Beyond the inconvenience of longer commute times, traffic congestion also

has serious environmental consequences. When vehicles are forced to operate

inefficiently due to congestion, they release higher volumes of pollutants into

the atmosphere. This increased emission of pollutants, including carbon diox-

ide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and particulate

matter (PM), has a substantial and detrimental impact on air quality [10].

These emissions not only contribute significantly to air pollution but also

have direct health implications for urban inhabitants. Prolonged exposure

14
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to such pollutants can lead to respiratory and cardiovascular problems, exac-

erbating the already pressing issue of public health in cities and contributing

to global warming.

In view of these environmental and health concerns, efficient traffic man-

agement in urban and suburban areas has become an ongoing challenge for

traffic authorities and urban planners. As cities continue to expand, and the

volume of vehicles on the roads gradually increases, the need to formulate

effective strategies and harness innovative technologies becomes increasingly

vital. These approaches are essential for optimizing traffic flow, mitigat-

ing congestion, and ultimately minimizing travel times. Not only do these

strategies enhance transportation efficiency, but they also play a central role

in addressing the serious environmental consequences of traffic congestion,

making them integral to safeguarding the well-being of urban populations

and the environment [10].

2.2 Traffic Management Strategies

In the pursuit of comprehensive solutions to address urban traffic challenges

and improve air quality, various strategies have emerged. One key approach

is the promotion of public transportation systems. These systems not only

alleviate congestion but also offer more sustainable mobility alternatives to

private vehicle use [11]. Additionally, cities are encouraging active trans-

portation modes such as cycling and walking, which not only reduce con-

gestion but also contribute to better public health. However, the lack of

necessary infrastructure in many cities often leads citizens to opt for private

vehicles due to limited transportation choices.

Furthermore, the implementation of urban tolls and traffic restrictions,

as previously discussed in studies [12][13], encourages environmentally con-

scious transportation choices and the adoption of cleaner vehicles, including

electric ones. These measures serve a dual purpose: they mitigate pollution

and alleviate traffic congestion. Urban tolls and pricing zones are designed

to incentive carpooling and boost public transportation usage by imposing

fees on drivers entering specific areas during peak demand times [14]. The

generated revenue can be reinvested in infrastructure enhancements and the

development of sustainable public transportation systems, underscoring the

importance of policies that support such modes of transportation. Addition-

ally, the promotion of cycling, improvements in pedestrian infrastructure,
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and incentives for public transportation all play significant roles in reducing

car dependency, alleviating congestion, and curbing emissions. To further

complement these efforts, urban planning can facilitate the development of

residential and commercial areas near public transportation hubs, which ul-

timately reduces reliance on private vehicles [15].

In addition to these strategies the field of traffic management encom-

passes classical, data-driven, and machine learning methodologies: classical

methods, which are mainly based on traffic engineering principles, allow to

understand traffic dynamics and signal optimization strategies. These incor-

porate traffic signal optimization, where historical traffic patterns inform the

timing of signals to enhance traffic flow. Additionally, classical traffic flow

theory, and models like the Greenshields’ [16], provides a theoretical foun-

dation for understanding traffic dynamics, helping to predict congestion and

formulating optimal control strategies. Some traffic simulation tools such as

VISSIM [17], AIMSUN [18], and SUMO [19] offer virtual environments to

simulate various traffic scenarios, facilitating the evaluation of management

strategies before practical implementation.

On the other hand, data-driven methods use big data and analysis to un-

derstand traffic better. These methods gather data from elements like traffic

sensors [20], GPS devices, and social media. By studying this information,

traffic controllers learn about how traffic moves, helping them make quick de-

cisions. Real-time traffic control involves continuous monitoring and making

changes to respond to incidents and optimize traffic flow. In recent years, the

growth of ML has revolutionized traffic management, introducing adaptive

and predictive capabilities. These techniques, which are very aligned with

data-driven methods, consider, for example, predictive analytics. These anal-

yses use historical traffic data to forecast future traffic patterns and identify

congestion hotspots. Within this domain, reinforcement learning (RL) tech-

niques enable traffic control systems to autonomously learn optimal control

policies through interaction with the environment, dynamically adjusting

traffic signals or routing strategies to minimize congestion. Moreover, ML

algorithms excel in traffic pattern recognition, discerning complex patterns

from sensor data or video, enhancing incident detection, accident prediction,

and traffic flow.

These methodologies highlight the importance of an adaptive approach to

traffic management to addresses congestion, but like urban tolls and pricing

zones, they can be focused on environmental concerns such as air quality,
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which is highly related to vehicles pollutant emissions.

Some cities have started to implement smarter mobility plans to reduce

traffic congestion, accidents, and environmental impact. For example, in

Singapore, innovative traffic management systems have become very impor-

tant to reduce environmental impact and enhancing overall traffic flow. The

Junction Electronic Eyes (J-Eyes) system [21], comprising approximately 400

surveillance cameras strategically positioned at major traffic junctions, con-

tinuously monitors traffic conditions in real-time. These data enable the Land

Transport Authority (LTA) [22] to promptly respond to incidents and imple-

ment effective action plans. Additionally, TrafficScan [21] utilizes GPS data

from taxis to provide drivers with real-time information on road conditions,

allowing for route planning and better journeys. The Expressway Monitor-

ing Advisory System (EMAS) [21] improves traffic management by detecting

accidents and coordinating traffic along expressways. Electronic signboards

along expressways and major roads provide drivers with up-to-date traffic

information, while LTA Traffic Marshals [21] ensure efficient management of

incidents. These comprehensive strategies underscore Singapore’s commit-

ment to sustainable and efficient traffic management practices, ultimately

contributing to reduced emissions and improved air quality.

Another example is the city of Amsterdam [23], where the Smart Flow

platform stands out as an alternative to alleviate traffic congestion and op-

timize parking. This IoT cloud-based system utilizes a network of sensors

spread across the city to monitor real-time traffic flow and parking avail-

ability. By providing drivers with up-to-date information on parking spots,

Smart Flow significantly reduces the time spent searching for parking, leading

to less congestion, lower fuel consumption, and decreased pollution levels.

Following a similar path, the Main Roads Western Australia (MRWA)

[24] has developed applications for Australia’s Traffic Management System.

One of these applications is the Traffic Management System Network (TMS),

which gathers information to ”monitor and manage traffic congestion, inci-

dents and planned events” [25]. A traffic control system to manage dynamic

timing of traffic lights, an Intelligent Transport System (ITS), composed by

message boards, lane use management signs, vehicle detection stations, and

a travel time system which collects vehicle movement data though Bluetooth

device are the components of the TMS. By sharing important details like

traffic accidents, daily traffic reports, road closures, accident summaries, and

travel maps, the TMS promotes teamwork with other entities while helping



18 2.2. Traffic Management Strategies

people make informed choices for managing traffic and planning. MRWA is

also working with the gathering of live traffic information (like travel time)

obtained from vehicles through monitoring devices, by using MAC addresses

[25], but this strategy still has some restrictions due to privacy and regula-

tions, so its use is restricted.

Another city that has been open to the use of technology and information

to support traffic decisions is Moscow. One of the approaches is the creation

of a ”digital twin”, which is a virtual replica or model of the city, where the

traffic authorities can evaluate the situation of traffic, and apply changes to

the city, that can be evaluated after. The second approach is a dynamic

transport model, that allows to gather data and evaluate traffic in real time.

This system makes forecasting and the inhabitants of the city may receive

messages with information about the state of the roads [26]. This city is also

trying to research and expand to V2I-based implementations with sensors

and other devices, to get closer to the development of robust systems for

autonomous vehicles.

Medellin city, on the other hand, is still new to these implementations,

however, its information systems have improved and now the authorities have

different types of CCTVs, sensors, and data gathering stations [27][28][29]

that have been helping the city to build better information systems to mon-

itor, understand and improve vehicular traffic and its environmental impact.

Now, in relation to the topic of air quality, which is our main focus for

this work, we can also find another effective strategy to control traffic and

mitigate emissions, which is the establishment of Low Emission Zones (LEZs),

are described next.

2.2.1 Low Emission Zones

Low Emission Zones are designated urban areas with the purpose of address-

ing air pollution challenges and promoting sustainability in urban mobility

[30]. These zones have clear objectives, such as improving air quality and

reducing pollution in congested urban areas. To achieve this, regulations and

emissions standards that consider factors such as the vehicle type, age, and

fuel type are defined to rule the entry of vehicles into the protected zone

[5]. Consequently, these standards are not only determinant for entry to

the LEZ, but also influence urban planning by encouraging the use of public

transportation and active modes of transportation, which leads to the trans-
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formation of the urban landscape, and improvement of the quality of public

space. The implementation of LEZs results in varied effects on air quality

and public health.

In addition to their environmental impact, LEZs can have economic im-

plications by incentivizing the upgrading of vehicles to cleaner and more

energy-efficient models, leading to a renewal of a city’s vehicle fleet. The

successful implementation of an LEZ often requires active participation from

the local community and continuous monitoring to assess its effectiveness

in terms of emission reduction and air quality improvement [6]. This peri-

odic evaluation allows for adjustments to the regulations based on the results

obtained, contributing to an adaptable and effective approach [31].

To achieve this effectively, traffic and road infrastructure have to be char-

acterized, such that two important components for this task are traffic mon-

itoring and measurement. For this purpose, strategies such as vehicle count-

ing, identification of vehicle types; and variables such as circulation speed

[32], lane occupancy, and traffic volume, combined with temporal informa-

tion such as the day of the week [8], have been observed.

2.2.1.1 State of the Art

As we examine the state of the art in LEZs, it is worth noting recent research

findings that underscore their effectiveness. For instance, a study conducted

in the German cities of Berlin and Munich [33] provides valuable insights

into the impact of LEZs. This research reveals that LEZs, particularly in

their advanced stages, have demonstrated remarkable efficacy in reducing

PM101 concentrations, with substantial reductions observed in both traffic

and urban sites. Furthermore, the study highlights the efficiency of LEZs in

lowering levels of elemental carbon (EC), a component considered more toxic

than PM10. However, it is important to note that the effects on NO22 levels

were inconsistent, with no significant impact observed in Berlin and limited

reductions in Munich.

On the other hand, in the city of Brussels, researchers utilized a remote

sensing system to collect data on pollutant emissions, the number of vehicles,

1Complex mixture with diverse chemical components, containing aerodynamic parti-

cles with diameters of less than or equal to 10µm [2]. These particles come mainly from

agriculture, wildfires, waste burning, industrial sources, among others [34].
2“Gas commonly released from the combustion of fuels in the transportation and

industrial sectors” - WHO [35].
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and average speeds within the vehicle fleet [6]. These data allowed for the

identification of the most common vehicle types and the estimation of pollu-

tants emitted. Such detailed information played a crucial role in the initial

implementation of the LEZ. After a period of operation, the city conducted

an assessment to gauge the impact of the LEZ on regional air quality, pro-

viding valuable insights into the effectiveness of this environmental strategy.

Similarly, the city of Lisbon adopted a multifaceted approach to assess

the potential effects of introducing an LEZ [5]. They characterized the ve-

hicle fleet by gathering data on vehicle counts, vehicle age, and conducting

interviews with drivers to estimate the impact. This comprehensive approach

allowed them to evaluate daily traffic patterns in three distinct areas of the

city. Their findings indicated that the LEZ had the potential to be par-

ticularly effective in reducing PM10 emissions, though its impact on NOx

reduction was somewhat less pronounced. Moreover, the study underscored

that emission reduction is influenced not only by the number of vehicles but

also by factors such as vehicle types, speed distribution, and travel distances.

Likewise, a study focused on the LEZ in Greater London and the stricter

Ultra Low Emission Zone (ULEZ) [36] shed light on their significant impact.

Both zones led to substantial reductions in NO2 and PM10 levels, primarily

attributed to changes in the composition of the vehicle fleet. Beyond air

quality improvements, both the LEZ and ULEZ demonstrated positive ef-

fects on public health, resulting in fewer health problems, reduced instances

of long-term illnesses, decreased sick leave, and enhanced overall well-being.

Notably, the ULEZ (Figure 2.1) exhibited even more pronounced impacts in

these aspects. These findings underscore that LEZs possess the capacity to

effectively enhance urban air quality, particularly by reducing PM concen-

trations, and deliver associated health benefits. However, their effectiveness

may vary contingent on the rigor of the policy and localized factors.

Thanks to the success of these zones in various cities, their replicability

and profound contributions to the creation of healthier and more sustain-

able urban environments have been unmistakably demonstrated. Beyond

addressing air pollution concerns, these zones have a transformative effect

on the quality of life for urban inhabitants. By promoting cleaner modes of

transportation and alleviating traffic congestion, they foster improved mobil-

1Image source: https://www.mandata.co.uk/insights/low-emission-zones/
2Image source: https://www.lse.ac.uk/granthaminstitute/wp-content/

uploads/2023/08/ULEZ-sign_Matt-Brown-Flickr.jpg

https://www.mandata.co.uk/insights/low-emission-zones/
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2023/08/ULEZ-sign_Matt-Brown-Flickr.jpg
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2023/08/ULEZ-sign_Matt-Brown-Flickr.jpg
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(a) ULEZ delimitation3 (b) ULEZ signs4

Figure 2.1. London’s Ultra Low Emission Zone

ity and air quality simultaneously. For instance, drawing from the successful

Greater London example [37], a report delivered in 2019 highlighted a sig-

nificant reduction in the number of vehicles circulating in the ULEZ area,

amounting to approximately 13,500 fewer vehicles. This accomplishment

vividly illustrates how LEZs play an important role in mitigating traffic con-

gestion within urban areas, leading to enhanced mobility and superior air

quality for residents and commuters.

Although LEZs in urban areas have mainly been implemented in Euro-

pean cities [38], there is a relevant case study in the local context of interest.

This is the case of the city of Medellin in Colombia, which has implemented

its own Low Emission Zone (known as ZUAP - Zona Urbana de Aire Prote-

gido in Spanish) [39] with the purpose of addressing pollution and congestion

challenges in the urban environment. This Zone was established downtown in

2018 and it has an area of 2km2. Its main objective is to reduce atmospheric

pollutant concentrations by decreasing emissions from transportation (mo-

bile sources) in the center, thus improving air quality and health for everyone

in the city and the Aburrá Valley. The Zone was chosen by the AMVA [1]

because it presented high levels of pollutants, resulting in a poor Air Quality

Index (AQI)5. In the chapter 4 of this thesis, a deeper analysis of the traffic

dynamics of the LEZ in Medellin will be undertaken with the aim of ob-

taining valuable information that can subsequently be used to address traffic

management challenges.

5Standardized measurement for the level of air pollution in a specific location. Provides

a value that represents overall air quality and its potential health effects [40]
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In addition to these strategies, technology plays a crucial role in revolu-

tionizing traffic management, with the aim of addressing its challenges and

reducing its impact on air quality. Some of these approaches are described

in the next chapter.



Chapter 3

Deep Reinforcement Learning

for Vehicle Traffic Management

In this chapter, we introduce the theoretical foundation of reinforcement

learning and the necessary concepts for understanding it. Additionally, we

explore the state of the art in its application to vehicular traffic management,

with a primary focus on the approach of deep reinforcement learning for

traffic control.

3.1 Reinforcement Learning

Reinforcement learning is one of the fundamental paradigms of machine

learning [41]. Along with supervised and unsupervised learning, it forms

a set of algorithms applicable to a wide variety of problems, depending on

the available observations and the specific application.

Reinforcement learning is based on the concept of learning through expe-

rience [42], which sets it apart from the other two paradigms. In supervised

learning, algorithms are trained using labeled examples, while in unsuper-

vised learning, the goal is to find patterns and structures in data without

using labels. In contrast, in reinforcement learning, an agent learns to make

optimal decisions by interacting with a dynamic environment.

The agent in reinforcement learning is the entity that learns and acts

within the environment. It perceives the environment through observations

and can take actions based on those perceptions. Each action the agent

takes causes a state transition, meaning that the environment changes, and

the agent faces a new situation [43]. The ongoing interaction between the

23
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agent and the environment allows the agent to learn how to make decisions

that lead to maximizing a feedback signal called reward, taking its state into

account.

Figure 3.1 illustrates the reinforcement learning cycle. In this figure,

the state St is a representation of the current situation or configuration of

the environment at a given time, and its value is based on data collected

by the agent through its observations. The state should contain relevant

information that enables the agent to make decisions that lead to obtaining

a higher reward in the future [44].

The reward Rt, on the other hand, is a feedback signal that the environ-

ment provides to the agent after it has taken an action. This reward can be

a numerical value, positive, negative, or zero, and it represents a measure of

how good or bad the execution of action At was in relation to the system’s

ultimate goal. In reinforcement learning problems, the agent’s purpose is to

maximize the cumulative reward value over time.

Environment

Agent

action

state

reward

Figure 3.1. Reinforcement learning cycle

To manage decision-making in reinforcement learning, two fundamental

concepts are used. First, the discount factor (denoted as γ) is employed to

weigh the importance of rewards over time. A value of γ close to 1 gives

greater importance to long-term rewards, implying that the agent will con-

sider more the future consequences of its actions. Conversely, a value of γ

close to 0 makes the agent focus on immediate rewards [45].

Second, the balance between exploration and exploitation, controlled by

the parameter ϵ, is crucial in reinforcement learning. Since the agent is inter-

acting with the environment and learning from its experiences, it must find

an optimal way to act [46]. Exploration involves experimenting with previ-

ously untried actions to discover new opportunities for higher rewards, while

exploitation entails leveraging known actions that have resulted in favor-

able rewards in the past. Striking the right balance between exploration and

exploitation is a key challenge in reinforcement learning because excessive ex-
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ploration can lead to inefficient resource usage, while excessive exploitation

might limit the discovery of better strategies [46].

It’s important to note that reinforcement learning uses a theoretical

framework called Markov Decision Processes (MDPs) to model the inter-

action between the agent and the environment. An MDP is defined as a

tuple 〈S, A, P , R, γ〉, where [44]:

✓ S is the set of system states. Each state s ∈ S represents an environ-

ment configuration at a given moment.

✓ A is the set of actions available to the agent. Each action a ∈ A

represents a decision that the agent can make.

✓ P : S × A × S → [0, 1] is the state transition function. For each pair

of states s and s′ and action a, P (s′|s, a) represents the probability of

the system transitioning to state s′ from state s when taking action a.

✓ R : S × A × S → R is the reward function. For each state transition

s→ s′ by action a, it is the immediate reward obtained by the agent.

✓ γ ∈ [0, 1] is the discount factor. It represents the weight of future

rewards relative to immediate rewards. A value of γ close to 1 indicates

that the agent values long-term rewards, while a value close to 0 places

greater importance on immediate rewards.

MDPs are a fundamental basis in reinforcement learning as they allow

modeling problems in which actions can affect system state transitions and

obtained rewards. By representing the problem in the form of an MDP, the

agent can use learning algorithms to find an optimal policy.

Both in an MDP and in reinforcement learning, a policy is the strategy

that guides the agent’s decisions in an environment to maximize rewards

over time [42], and it can be deterministic or stochastic depending on the

situation and the problem at hand.

Having a deterministic policy means that for each state of the environ-

ment, a unique and specific action that the agent must take is specified [47].

For example, if there is a robot on a grid that must collect objects, it could

have a policy that indicates that when it reaches a wall, it should always

turn left until it has collected the objects in its path.

On the other hand, in a stochastic policy, instead of a single action for

each state, a probability distribution over possible actions is assigned for
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each state. This means that in a given state, the agent can take different

actions with certain probabilities [47]. This would be the case in a chess

game, where different pieces can be assigned probabilities of movement, and

in similar situations, the agent could make different decisions.

It is also important to consider, both in MDPs and in reinforcement learn-

ing, that a good use of the discount factor and the exploration-exploitation

balance has proven to be especially useful for addressing complex problems

where a complete set of labeled data is not available. By learning to maximize

rewards over time, the agent acquires intelligent and adaptable behavior to

solve complex tasks in various fields such as robotics [48], automatic control,

games [49], recommendations [50], and many other areas where decision-

making and adaptation to an uncertain environment are essential.

In attempting to address these and other challenges posed by reinforce-

ment learning, two fundamental paradigms have emerged that address how

agents make decisions and learn in dynamic environments. These paradigms

are model-based reinforcement learning and model-free reinforcement learn-

ing.

3.1.1 Reinforcement Learning Paradigms

3.1.1.1 Model-Free Reinforcement Learning

This paradigm is based on the idea that the agent can learn through direct

interaction with its environment without prior or explicit knowledge of it. In

this approach, the agent explores different actions and observes the resulting

rewards to improve its strategy over time [51]. Some key components within

this paradigm include:

✓ The balance between exploration and exploitation (described in sec-

tion 3.1).

✓ Policy evaluation methods, where the agent directly modifies its

decision-making policy based on the rewards obtained during explo-

ration.

✓ Temporal difference methods, where value estimates are adjusted as

the agent interacts with the environment.



27 3.1. Reinforcement Learning

3.1.1.2 Model-Based Reinforcement Learning

The model-based paradigm involves establishing a model of the agent’s op-

erating environment, which is used for planning and decision-making. This

model captures how states and rewards evolve based on the agent’s actions

[52].

As stated by [53], ”model-based reinforcement learning attempts to over-

come the problem of lack of prior knowledge by allowing the agent—whether

it’s a real-world robot, an avatar in a virtual world, or just a computer

program carrying out actions—to construct a functional representation of its

environment.” Within this process, two additional components are important

[54]:

✓ Planning, as the agent can simulate sequences of actions and predict the

resulting rewards before choosing the action sequence that maximizes

the anticipated reward.

✓ Learning from execution, where information about different sequences

of states and actions is collected through interaction with the environ-

ment, which is then used to learn a policy through optimization or

supervised learning methods.

In practice, the line separating the described paradigms can be quite

blurry, as some algorithms can incorporate elements from both types [52].

Depending on the representation of their states and actions and how their

values are updated, these algorithms can be classified as either tabular or

non-tabular methods.

3.1.2 Tabular Methods

In the field of reinforcement learning, tabular methods represent an essential

foundation upon which more advanced techniques are built. These methods

are based on the representation of Q-functions (also known as Q-value func-

tions) and policies in discrete tables that contain information about states

and possible actions in an environment. These tables, known as Q-tables,

are matrices where rows represent possible states of the environment, and

columns represent possible actions an agent can take. Agents use them to

learn explicitly through iterations based on the Bellman equation [55], as

they interact with the environment and learn from the rewards received.
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The structure and size of these tables are defined in the code implementing

the algorithms and depend on the complexity of the problem the agent is

trying to solve.

The following subsections delve into these concepts, as well as three fun-

damental tabular methods and their most relevant applications.

3.1.2.1 Q-Learning

The Q-Learning algorithm is one of the most relevant in reinforcement learn-

ing and is based on the Bellman equation to find the optimal Q-function. A

Q-function (or action-value function) is a representation of the estimate of

the expected value for the reward an agent can earn from taking an action a

in a state s. The iterative update of Q is expressed as [42]:

Q(St, At)← Q(St, At) + α · [Rt+1 + γ ·max
A

Q(St+1, A)−Q(St, At)] (3.1)

In this equation, Q(St, At) represents the value of action At in state St.

α is the learning rate, and γ is the discount factor. The agent interacts

with the environment, takes actions, and updates the Q-values based on the

obtained rewards and future estimations of Q-values. Q-Learning is partic-

ularly effective in applications such as game control, robotics, autonomous

navigation [56], among others, where the agent learns to navigate and pick

up passengers by optimizing its sequential decisions. The general structure

of Q-Learning is illustrated in Figure 3.2.

Figure 3.2. Q-Learning diagram

3.1.2.2 SARSA (State-Action-Reward-State-Action)

SARSA is another widely used tabular algorithm in reinforcement learning.

Its process is similar to that of Q-Learning but with an on-policy focus,
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meaning it updates the policy based on the action taken in the current state

[57]. The update equation is as follows:

Q(St, At)← Q(St, At) + α · [(Rt+1 + γ ·Q(St+1, At+1)−Q(St, At)] (3.2)

Here, At+1 represents the next action taken by the agent in the state.

SARSA is especially suitable for problems that require sequential control

and planning, such as robot navigation in unfamiliar environments. Unlike

Q-Learning, which selects the action with the highest possible reward in the

next state, SARSA takes into account the agent’s current policy.

3.1.2.3 Temporal-Difference Learning (TD)

The TD(0) method1 is a generalized approach that encompasses both Q-

Learning and SARSA as special cases. The update equation is similar to

those of the two previous methods:

Q(St, At)← Q(St, At) + α · [Rt+1 + γ ·Q(St+1, At+1)−Q(St, At)] (3.3)

TD(0) seeks to estimate Q-values from immediate rewards and future Q-

value estimates. Through this combination, the method aims to balance im-

mediate reward and long-term expectations in decision-making [59]. There-

fore, it is applicable in environments where a balance between immediate

gain and long-term planning is needed, such as financial decision-making

problems.

The main difference between SARSA and TD lies in their specific update

rules and their focus on different types of value functions. SARSA is a

variant of TD that specifically updates Q-values for state-action pairs based

on agent interactions and policy, while TD is a broader category of methods

that update value estimates using temporal difference updates.

3.1.2.4 Limitations of Tabular Methods in a Traffic Scenario

Although tabular methods in reinforcement learning provide a solid founda-

tion for understanding fundamental concepts, they have certain limitations

that restrict their applicability in more complex environments.

1Most basic type of TD learning [58], considering only one-step lookahead in decision

making.
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One of the primary limitations is their inability to handle high-

dimensional state and action spaces. In real-world problems, state and action

spaces can be vast and continuous, making their representation and storage

in discrete tables challenging. Additionally, tabular methods are susceptible

to the curse of dimensionality [44], which means that the amount of data and

resources required to address complex problems increases exponentially with

the dimensionality of the space [44].

Another significant limitation is the lack of generalization. Tabular meth-

ods tend to memorize specific situations rather than capture general patterns

in the data. This makes them less effective in scenarios where it is essential

to make inferences from previously unseen examples. Furthermore, tabular

methods can be sensitive to noise in reward data, leading to erratic fluctua-

tions in learning and suboptimal policies.

In the context of traffic management in a large-scale scenario, a tabu-

lar approach faces several critical limitations that render it inadequate for

effective application. First and primarily, the inherent inability of tabular

methods to handle high-dimensional state and action spaces is a substantial

barrier. In real-world traffic scenarios, the number of potential states and

actions can be vast and continuous, making it practically impossible to rep-

resent and store this information in discrete tables. This limitation is further

compounded by the curse of dimensionality, where the volume of data and

computational resources required increases exponentially with the complex-

ity of the state and action spaces, rendering a tabular approach impractical

[60].

Additionally, tabular methods lack the capacity for generalization, as

they tend to memorize specific situations rather than capturing overarching

patterns in the data. In the dynamic and constantly evolving domain of

traffic management, the inability to make inferences from previously unseen

situations becomes a significant drawback. Furthermore, tabular methods

are sensitive to noise in reward data, which can lead to erratic fluctuations

in learning and ultimately result in suboptimal traffic management policies.

Given these limitations, it is evident that a tabular approach is not well-

suited for the complexities of traffic management in a large-scale scenario,

where adaptability, efficiency, and the ability to handle high-dimensional,

dynamic environments are of paramount importance [61].

Despite these limitations, tabular methods remain an essential foundation

for understanding key concepts in reinforcement learning. As we enter the
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era of non-tabular methods, these limitations drive the exploration of more

sophisticated and adaptable approaches that can address the complexity and

uncertainty of real-world problems. In the next section, we address how non-

tabular methods have largely overcome these difficulties.

3.1.3 Non-Tabular Methods

In contrast to tabular methods, non-tabular approaches in reinforcement

learning have managed to overcome many of the limitations of dimension-

ality and generalization, allowing for more effective adaptation to complex

problems. These methods are based on the use of deep neural networks to

approximate Q-functions and policies to map environmental states to the

actions the agent should take in those states. This gives them the ability to

learn more abstract and generalizable representations [62].

In the upcoming sections, we’ll dive into the theoretical foundations of

DRL, focusing in the most relevant concepts and components for the use

and application of a Deep Q-Learning algorithm that incorporates a Deep

Q-Network (DQN) to manage traffic in simulated environment. It is impor-

tant to note that our approach takes a different path compared to traditional

tabular methods, which we have just discussed due to their limitations. We

have chosen to work with non-tabular methods because our research focuses

on managing a large area with dynamic traffic (chapter 4), and conventional

tabular methods struggle in such a complex environment. These traditional

methods can’t handle the complexity of vast, ever-changing traffic scenarios.

In contrast, non-tabular approaches use deep neural networks with multiple

layers to create more advanced and meaningful representations of data. In

this case, the DQN extends the Deep Q-learning capability of being able

to work within high-dimensional state spaces. This is particularly valuable

in reinforcement learning because it allows the agent to make informed deci-

sions based on meaningful data knowledge, resulting in more effective actions

within the specific context of our dynamic traffic management scenario. As

we look into the specifics of DRL and DQNs, we will explore how these non-

tabular methods harness deep learning to address the challenges of traffic

management [63].
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3.1.3.1 Deep Reinforcement Learning and DQN

Deep learning relies on the use of neural networks with multiple hidden lay-

ers to model relationships within data. Through an iterative parameter tun-

ing process, these networks can gradually capture increasingly abstract and

meaningful representations of input data. This feature is particularly benefi-

cial in reinforcement learning, where obtaining high-level representations can

be essential for making informed decisions, i.e., decisions backed by mean-

ingful data knowledge and representations that allow the agent to take more

effective actions in the specific context. In other words, deep reinforcement

learning combines the capacity of deep neural networks to model complex

relationships with reward-based decision making in reinforcement learning.

Within the spectrum of non-tabular methods in deep reinforcement learn-

ing, the Deep Q-Network approach stands out as a concrete example of how

deep learning can transform decision-making in complex environments.

3.1.3.1.1 Deep Q-Learning (DQN)

DQN is a type of algorithm that represents a convergence between re-

inforcement learning and deep learning. By combining the core concept of

Q-learning with the capabilities of deep neural networks, it tackles challeng-

ing tasks in decision-making environments, even those characterized by high

dimensionality and complexity. Its general structure, as illustrated in Fig-

ure 3.3, involves taking the current state as input and passing it through

a deep neural network, resulting in Q-values for various available actions.

These Q-values are essential for decision-making, as they estimate the cumu-

lative expected value of future rewards for each action in a given state.

The algorithm’s update equation, depicted in Equation 3.4, demonstrates

how it refines its Q-value estimates based on the observed rewards and the

predicted future rewards, effectively guiding the agent’s decision-making pro-

cess in pursuit of optimal outcomes.

Q(St, At)← Q(St, At)+α · [Rt+1+γ ·max
A

Q(St+1, A; θ)−Q(St, At; θ)] (3.4)

In this equation, Q(St, At; θ) represents the estimation of the Q-function

parameterized by the weights θ in a deep neural network architecture, and

the term:
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Figure 3.3. DQN Diagram

Rt+1 + γ ·max
A

Q(St+1, A; θ)−Q(St, At; θ) (3.5)

represents the difference between the expected reward and the current

estimation of the Q-value, which is used to update the Q-value. The term α

corresponds to the learning rate, and γ to the discount factor.

Neural Networks in Deep Reinforcement Learning

The chosen neural network architecture for the DQN model is crucial for its

performance. In general, this network consists of several hidden layers, each

composed of a set of interconnected neurons, as shown in Figure 3.3. These

layers transform the input state representation into a more abstract repre-

sentation and, ultimately, into Q-values for each possible action [64]. The

choice of architecture and the number of layers directly affect the network’s

ability to accurately and efficiently approximate the Q-function.

Not only does the network architecture play a crucial role in DQN, but

the choice of the type of neural network is also a crucial aspect that can

influence the agent’s ability to effectively and efficiently approximate the Q-

function [65]. Some of the most commonly used types of neural networks in

these models are:

✓ Convolutional Neural Networks (CNN): This type of network has

proven to be effective in processing data with spatial structure, such as

images and videos. In the context of DQN, CNNs are especially useful

when working with environments that have a visual representation of
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the state. The convolutional layers in a CNN can capture relevant pat-

terns and features in images, allowing the agent to learn more compact

and meaningful state representations [63]. Figure 3.4 shows an example

of a CNN.

Figure 3.4. Convolutional Neural Network2

✓ Recurrent Neural Networks (RNN): These are a type of neural

network architecture designed specifically for modeling and processing

sequential or temporal data (Figure 3.5). Unlike traditional neural

networks, RNNs incorporate recurrent connections, allowing them to

maintain and utilize a kind of internal memory to capture patterns over

time [66].

Figure 3.5. Recurrent Neural Network (RNN)3

2Image source: https://docs.ecognition.com/v9.5.0/Resources/Images/

ECogUsr/UG_CNN_scheme.png

https://docs.ecognition.com/v9.5.0/Resources/Images/ECogUsr/UG_CNN_scheme.png
https://docs.ecognition.com/v9.5.0/Resources/Images/ECogUsr/UG_CNN_scheme.png
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In an RNN, information flows through the hidden layers while being

updated at each time step, allowing the network to learn to model

complex contexts and temporal dependencies in the input data.

✓ Fully Connected Neural Networks (Fully connected NN):

These consist of layers of interconnected neurons, where each neuron in

one layer is connected to all neurons in the next layer [67], as illustrated

in Figure 3.6. Multi-Layer Perceptrons (MLPs) are a prime example of

fully connected neural networks. These networks offer the advantage

of versatility, as they can handle input and output spaces of different

sizes. This flexibility makes them suitable for a wide range of appli-

cations, particularly when dealing with structured data or problems

where intricate relationships need to be learned.

Figure 3.6. Fully Connected Neural Network4

Once the architecture is defined, the network is trained with the goal of

minimizing the loss function. This loss function quantifies the disparity be-

tween the Q-value estimates derived from the network and the actual rewards

obtained during interactions with the environment. Optimization algorithms

like stochastic gradient descent [68] and the Adam algorithm [69] guide the

weight updates during training. The choice of the optimization algorithm

plays a crucial role as it can enhance the effectiveness, and stability of the

3Image source: https://miro.medium.com/v2/resize:fit:553/

0*xs3Dya3qQBx6IU7C.png
4Image source: https://www.oreilly.com/api/v2/epubs/9781491980446/files/

assets/tfdl_0402.png

https://miro.medium.com/v2/resize:fit:553/0*xs3Dya3qQBx6IU7C.png
https://miro.medium.com/v2/resize:fit:553/0*xs3Dya3qQBx6IU7C.png
https://www.oreilly.com/api/v2/epubs/9781491980446/files/assets/tfdl_0402.png
https://www.oreilly.com/api/v2/epubs/9781491980446/files/assets/tfdl_0402.png
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training process, influencing the performance of the trained model. This

choice can also influence the convergence speed and ability for generalization

of the model and perform better with new data.

With training, the neural network becomes proficient in mapping states

to Q-values without relying on a Q-table, as typically seen in traditional

Q-learning. This approach effectively avoids the impracticality of storing

and updating values for every conceivable combination of states and actions,

particularly in high-dimensional problems, as discussed in Section 3.1.2.4.

Instead, the neural network, specifically the Q-Network in DQN, uses a

continuous (it doesn’t store discrete values for each state-action pair) and

differentiable approach to estimate Q-values. The Q-Network is trained to

learn a function that takes a state as input and generates Q-value estimates

for all possible actions in that state [70]. This is accomplished by minimizing

a loss function that quantifies the difference between the current Q-Network

estimates and the targets provided by the target network [71]. The target

network, a slower duplicate of the Q-Network, serves a crucial purpose in

generating stable training targets during the learning process. While the Q-

Network receives updates at each training step, the target network is updated

more gradually by periodically copying the weights from the Q-Network.

The presence of both the Q-Network and the target network is essential to

address a common challenge in training deep reinforcement learning models.

The use of a target network helps stabilize the training process and prevents

the network from oscillating or diverging during training [71]. By having a

consistent set of target values, it enables more reliable and effective learning.

Throughout the training process, the neural network gradually adapts so

that its Q-value estimates become increasingly closer to the optimal values.

As the agent interacts with the environment and accumulates training data,

the Q-Network refines its estimates. This, in turn, enables the agent to make

more informed decisions that maximize future rewards (Figure 3.7).

To perform this training process and minimize the difference between

estimated Q-values and target Q-values, the agent’s experiences are collected

and stored in a memory known as the replay buffer.
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Figure 3.7. Prediction and target network in DQN

Replay Buffer

The replay buffer is a fundamental component of DQN; it stores past ex-

periences in memory and reuses them for learning. Instead of using each

experience immediately to train the neural network, they are stored in mem-

ory (see Figure 3.8). During the agent’s interaction with the environment,

each time it takes an action, experiences a state change, and receives a re-

ward. From this information, a tuple is generated containing the current

state, the action taken, the received reward, and the resulting state after the

action [20]. The tuple is stored in memory and then randomly sampled.

Figure 3.8. Replay buffer

Random sampling from the replay buffer provides several advantages.

First, it helps prevent the neural network from being biased toward specific

experience patterns that could arise if it were trained only with the most

recent experiences [72]. Second, by shuffling experiences in the buffer, they
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are randomly selected in groups or batches. This helps reduce the temporal

correlation between state-action transitions, contributing to more stable and

faster convergence.

Furthermore, the use of the replay buffer is a key feature that allows DQN

to be an off-policy algorithm, meaning it can learn from past experiences

without directly relying on the agent’s current policy. This also allows DQN

to perform less frequent updates to the neural network, which is beneficial

for training stability [63]. That’s why, in addition to the learning rate and

discount factor, the memory size is an important parameter in the replay.

Remarks on DQN

In addition to its solid theoretical foundation, DQN has demonstrated its ef-

fectiveness in a variety of practical applications, from games like Atari [73] to

autonomous driving [74] and recommendation systems [75]. In these contexts,

deep neural networks enable the algorithm to learn more sophisticated repre-

sentations of states and actions, making it an attractive choice for addressing

real-world problems. Although there are other notable methods such as A3C

(Asynchronous Advantage Actor-Critic) [76] and PPO (Proximal Policy Op-

timization) [77], DQN presents particular advantages that make it especially

suitable in certain scenarios.

One of the main advantages of DQN lies in its ability to address high-

dimensional and complex environments, such as those found in Atari games

[78] used as benchmarks in early research. These spaces can be large and

continuous, and DQN can handle them more effectively. This feature is

essential for practical applications where state spaces are rich in information

and cannot be easily represented in a tabular manner.

While it’s true that methods like A3C and PPO also possess strengths

in handling complex environments and learning from past experiences, DQN

offers a significant advantage with its ability to learn from past observations,

allowing for the creation of more stable and generalized policies. Since DQN

stores and reuses past experiences in its memory, it can mitigate issues of

correlated sampling and noise in reward data. This property gives DQN

greater stability in learning and the ability to obtain more robust policies.

Additionally, A3C and PPO might require more computational resources due

to their synchronous or asynchronous nature, which could be a limiting factor

in real-world applications where efficiency is crucial. Also, they might need
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more samples; if data is limited, they could be more constraining.

Furthermore, while A3C and PPO excel in handling continuous action

spaces, DQN’s strength lies in its ability to effectively address both discrete

and continuous action spaces. This versatility makes DQN well-suited for

traffic management scenarios, where a combination of discrete decisions (such

as lane changes or traffic light controls) and continuous actions (such as

vehicle speed adjustments, if needed) may be required.

Based on the advantages of DQN highlighted above, the decision was

made to use this algorithm to address the case study in this project, con-

sidering its ability to tackle high-dimensional and complex environments,

essential features in our research, and the ability to take discrete decisions

(changes of traffic lights phases). Next, we will go deeper into the research

scenario we are addressing.

3.1.4 State of the Art of RL in Traffic Application

In the context of traffic, reinforcement learning systems have emerged as a

dynamic and adaptable solution for optimizing various aspects of traffic flow.

This technique empowers the real-time adjustment of traffic lights timings,

routing strategies, and other variables to navigate complex and ever-changing

urban environments effectively. The utilization of RL in traffic management

is particularly promising for densely populated urban areas as it addresses

critical challenges in traffic optimization.

These type of approaches enable smart traffic management through dif-

ferent technologies that involve real-time data collection via sensors and cam-

eras, intelligent traffic lights control implementations [20], recommendation

systems [79], and the integration of artificial intelligence models [80]. These

data serve as inputs for advanced systems that employ various technologies.

For instance, adaptive traffic light control systems, leveraging AI algorithms,

have been instrumental in optimizing traffic flow by collecting real-time data,

identifying patterns, and considering current traffic conditions to minimize

congestion. This integration of data-driven technologies not only enhances

the performance of traffic management systems but also contributes to more

efficient and adaptive urban traffic flow.

An important application of RL in the context of traffic management

revolves around autonomous vehicles, where it is employed to make driv-

ing decisions, taking into account factors such as vehicle speed, following
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distance, traffic lights, and lane changes. The decision-making process is

influenced by real-time traffic conditions and individual objectives, illustrat-

ing the adaptability and intelligence of RL algorithms in ensuring safe and

efficient autonomous vehicle navigation [81].

Furthermore, information and communication technologies, integral to

autonomous vehicle applications, play a crucial role in enhancing the driving

experience. Real-time navigation systems and mobile applications provide

drivers with the necessary information to make informed route decisions and

avoid traffic congestion. These technologies, in conjunction with autonomous

vehicle systems, offer a seamless and safer driving experience. Vehicle detec-

tion systems further facilitate the collection of precise traffic data, aiding

in swift incident identification. However, while some autonomous features

are available to consumers (for example, those of Tesla vehicles), fully au-

tonomous vehicles that can navigate complex urban environments are not

yet widely accessible. The development and deployment of autonomous ve-

hicles still face regulatory, safety, and technological challenges [82] before

they become a commonplace mode of transportation for the average citizen.

In recent years, vehicle traffic related applications have been increasingly

exploring the capabilities of deep reinforcement learning (explained in the

previous subsection 3.1.3.1.1), thereby demonstrating a growing trend toward

the utilization of more advanced and sophisticated techniques in the field.

3.1.4.1 Traffic Light Control Systems

Among the applications of deep RL, traffic light control systems stand out as

a prime example, since algorithms like DQN excel in handling the intricate

aspects of traffic control and signal optimization, surpassing the capabilities

of traditional RL methods.

In the domain of traffic control systems, it’s evident that traditional fixed-

time traffic light phases, although widely employed, often fall short of opti-

mizing traffic flow in real-world scenarios. A light phase refers to a specific

state of a traffic light, which determines the allocation of right-of-way to var-

ious directions of traffic at an intersection. It includes the combination of

lights (e.g., red, green, yellow) and their respective timing, indicating when

vehicles, pedestrians, or other road users should stop, yield, or proceed [83].

The static approaches for traffic lights, like those currently in use in

Medellin (our Case Study, chapter 4), typically rely on pre-determined tim-
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ings that fail to adapt to changing traffic conditions, resulting in inefficiencies

and congestion during peak hours and unexpected events. To address these

limitations and improve traffic management, many researchers have turned

to RL and DQN techniques, which have demonstrated significant promise in

crafting dynamic, adaptive traffic control solutions.

For example, in one notable contribution, Vidali et al. [20] introduced an

adaptive traffic lights management system that leverages an occupancy-based

state representation and a fixed set of predefined actions. They employed a

DQN agent to optimize traffic efficiency at a 4-way intersection though traffic

phases control. To enhance the learning process, the authors incorporated a

MLP and experience replay, while adopting a cumulative waiting time-based

reward system. This approach demonstrated promise in traffic management.

However, it’s important to note that the experimental setting primarily uti-

lized a synthetic grid scenario, lacking real-world data and a broader range

of environmental complexities.

In pursuit of a similar goal, Gao et al. adopted an approach that aims to

use the power of CNNs to extract features such as vehicle positions, speeds,

and traffic light states from real-time traffic data. Their algorithm, built upon

this feature-rich foundation, effectively determines the optimal traffic lights

control strategy. To enhance the robustness of their model, they integrated

critical reinforcement learning components, including experience replay and a

target network. Much like Vidali’s work, these authors tested their approach

in a 4-way intersection scenario. However, it’s worth noting that, in this case,

they relied on synthetic data to facilitate their experiments.

Similarly, Van der Pol’s research emphasizes the significance of hyperpa-

rameter tuning in deep RL [84]. The study systematically explored the influ-

ence of factors like learning rate, normalization, and network architecture on

performance stability. Additionally, she incorporated prioritized experience

replay in her methodology. The author extended her investigation to en-

compass multi-agent coordination within a 2x2 grid structure, involving up

to four agents situated at different intersections. Despite the comprehensive

exploration of hyperparameters and multi-agent coordination, the research

relied on synthetic data and grid-based simulations, which may not fully

capture the intricacies of real-world traffic dynamics.

On the other hand, Kővári et al. [85] present an interesting approach

aimed at promoting sustainability within traffic management. Their work

extends beyond conventional metrics, such as waiting time, travel time, and
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queue length, to include a comprehensive evaluation of various sustainability

aspects, including CO2 emissions, NOx levels, CO emissions, and more. In

their research, the authors also compare the performance of two distinct

algorithms (DQN and Policy Gradient (PG)). It’s worth noting that their

study, like the previously described, is constrained by the use of an isolated

intersection scenario, thereby suggesting the need for further research that

accounts for more complex traffic environments and interconnections.

Now, regarding more realistic scenarios, we find examples such as the work

developed by Fuad et al. [86], where a traffic network of the city of Jakarta

was used as the simulation scenario, considering real-world data. This work

presents a promising approach with its adaptive reward mechanism and real-

world data usage, resulting in improved traffic throughput. However, there

are potential limitations, including the pressure calculation method that as-

sumes a direct proportionality between lane capacity and length, which may

not always hold true.

The state of the art in traffic management through traffic lights control

showcases several innovative approaches to optimize urban traffic flow. Re-

searchers like the ones presented (and others mentioned in Table 3.1) have

made significant strides in leveraging deep RL techniques, CNNs, and ad-

vanced RL components to enhance traffic lights control strategies. Their

contributions have demonstrated promise in improving traffic efficiency and

addressing various key performance metrics. Notably, Kővári’s focus on sus-

tainability metrics offers a broader perspective on traffic management, while

Van der Pol’s emphasis on hyperparameter tuning enhances our understand-

ing of the fine points of deep RL. Fuad’s work, which incorporates real-world

data in the dynamic context of Jakarta’s traffic network, provides valuable

insights into adaptive reward mechanisms. These studies collectively inform

and inspire our own research project, as we consider incorporating elements

and insights from these diverse approaches to tackle the challenges of traf-

fic management in a real-world urban environment, while considering the

impact of traffic on air quality.

Yet, considering the practical application of AI-based vehicle manage-

ment in real cities, it is crucial to acknowledge that most developments have

been primarily tested and refined in simulated environments. Although the

potential for real-world implementation is evident, a significant gap remains

between research and practical application. This gap is primarily due to the

profound implications that could result from system failures in real-world
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Table 3.1. Previous DRL-based works for traffic light control

Name of the resource Autor State rep. Type of NN

Traffic Signal Control via Reinforce-

ment Learning for Reducing Global

Vehicle Emission [85]

B. Kővári, L. Szőke, T.

Bécsi, S. Aradi, and P.

Gáspár

Occupancy MLP

Adaptive Deep Q-Network Algo-

rithm with Exponential Reward

Mechanism for Traffic Control in Ur-

ban Intersection Networks [86]

M. R. T. Fuad, E.

O. Fernandez, F.

Mukhlish, A. Putri,

H.Y. Sutarto

Green phase, den-

sity of incoming

vehicles, queue

length

MLP

A Deep Reinforcement Learning Ap-

proach to Adaptive Traffic Lights

Management [20]

A. Vidali, L. Crociani,

G. Vizzari, S. Bandini

Cell occupancy MLP

IntelliLight: A Reinforcement

Learning Approach for Intelligent

Traffic Light Control [80]

H. Wei, G. Zheng, H.

Yao, and Z. Li

Queue lenght,

waiting time, im-

age representation

CNN

Deep Reinforcement Learning for

Coordination in Traffic Light Con-

trol [84]

E. van der Pol Position matrix,

speed, acceleration

NIPS, Nature,

DDQN

Adaptive traffic signal control: Deep

reinforcement learning algorithm

with experience replay and target

network [72]

J. Gao, Y. Shen, J. Liu,

M. Ito, and N. Shira-

tori

Position, speed CNN

Heterogeneous Multi-Agent Deep

Reinforcement Learning for Traffic

Lights Control [87]

Calvo, J. Dusparic, I Position, speed DDDQNs
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traffic scenarios, given the critical nature of traffic management and its di-

rect impact on public safety. Thus, simulation serves as a crucial tool for

experimenting and refining algorithms in controlled environments, mitigat-

ing the risks associated with incorrect operation. Achieving the right balance

between innovation, safety, and responsibility is essential in the development

of RL-based vehicle management systems, making simulation an indispens-

able component of the process [88].



Chapter 4

Case Study

4.1 Low Emission Zone in Medellin

In 2018, the Metropolitan Area of the Aburrá Valley (AMVA) [1] defined a

Low Emission Zone (LEZ) based on data collected by the traffic monitor-

ing station called Tráfico Centro [39] between 2014 and 2017. This LEZ is

bounded from south to north by Calle San Juan and Calle Echeverri, and

from west to east by the Avenida Ferrocarril and Carrera Girardot, covering

the downtown area of Medellin, as shown in Figure 4.1.

Figure 4.1. Medellin’s Low Emission Zone polygon1

1Image taken from [39]

45
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As part of the planned initiatives for this area, several entities in the en-

vironmental and mobility sectors are seeking strategies to reduce emissions

from mobile sources (vehicles). The Integrated Traffic and Transportation

Center (CITRA - Centro Integrado de Tráfico y Transporte) [28] is an agency

that is part of the Medellin Mobility Secretariat and its role is to moni-

tor and process traffic data to make better decisions that enable mobility

management through technological infrastructure and information systems.

This organization provided a dataset used to characterize vehicular traffic in

Medellin’s LEZ. This dataset is described in the following section.

4.2 Dataset

The vehicular traffic dataset provided by CITRA contains 134,824,218 ob-

servations, resulting from information captured from cameras located in the

city of Medellin, corresponding to the Support for the Traffic Light Network

(ARS - Apoyo a la Red Semafórica [89]), and CCTV systems of the city’s

Intelligent Mobility System (SIMM - Sistema Inteligente de Movilidad de

Medellin) [90].

The information was collected between the years 2020 and 2023, and the

available fields are shown in Table 4.1.

Table 4.1. Description of the dataset fields.

Variable Description

Class 1 No. of vehicles with a length between 0 and 3 meters

Class 2 No. of vehicles with a length between 3 and 6 meters

Class 3 No. of vehicles with a length higher than 6 meters

Class 4 No. of motorcycles

Speed Speed in km/h

Location Latitude and longitude

Direction of travel Direction in which data is captured (NS, SN, WE, EW)

Date time Timestamp in YYYY-MM-DD format

Road Name of street or avenue

Records No. of captured records per observation

Occupancy Lane occupancy percentage2

Intensity Total number of vehicles
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In this traffic dataset, each observation represents a specific timestamp,

so the Records column indicates the number of vehicles reported by CITRA

for each specific observation. Consequently, the different data presented cor-

respond to the average values of each variable for that number of vehicles

recorded by the cameras in each specific time interval.

Previous to the data preprocessing presented in subsection 4.2.1, and

given that the study area for the development of this project corresponds to

the LEZ, a demarcation of this area was carried out using Python [92] and

Google Earth [93], considering the geographical coordinates (Location field)

and the road name (Road field) in the dataset. This was made to ensure that

the resulting data came exclusively from cameras located within the LEZ.

Figure 4.2 shows the data capture points. Finally, the number of resulting

observations for the area of interest was 5,290,071.

Figure 4.2. Data capture points within the LEZ

4.2.1 Data Preprocessing

Real-world data often contain missing fields, irrelevant data, and errors.

Therefore, a proper preprocessing is necessary [94] to obtain reliable results

and make more accurate decisions. This is an essential stage to ensure the

2Proportion of time a lane is occupied by vehicles, expressed as a percentage of the

total time interval under consideration [91].

Occupancy (%) = Total time lane is occupied/Total time interval× 100
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integrity of the results. After an initial analysis, observations from the year

2020 were removed due to their atypicality attributed to the mobility restric-

tions imposed during Covid-19 quarantines. Afterwards, observations with

null data were also removed, and outliers were filtered. Additionally, some

columns were added to the dataset (hour, day, month, year, holiday indica-

tor) for subsequent visualization and analysis. Furthermore, considering that

the received information is a product of grouped data (Records), the average

was calculated for variables Class 1, Class 2, Class 3, Class 4 and Intensity,

dividing the number of vehicles by the number of records of the observation

(e.g. Class 1[i]/Records[i] where i is the index of the observation) through

the entire dataset. The resulting units are vehicles per observation (called

veh/obs from now on).

4.3 Time Series Analysis for Vehicular Traffic Data in

Medellin’s LEZ

Data analysis, and in this case time series analysis, is an essential tool for

identifying patterns and trends inherent in the collected data. It also al-

lows understanding the changing dynamics of the vehicular flow in the LEZ.

Through the exploration of observations over time, it is possible to iden-

tify seasonal and cyclical trends that can be crucial for traffic management

strategies. In addition to the temporal component, variables such as traffic

flow, speed, travel time, and density can be evaluated.

In the context of time series analysis, a wide range of statistical methods

can be employed to extract such information. Among these methods, tools

such as correlation [95] and Principal Component Analysis (PCA) [96] are

highlighted, often supported by different types of graphs to represent and

understand the data. Among the most used are line plots, which show the

evolution of the series over time, allowing the identification of trends and

fluctuations; and boxplots [97], which are useful for visualizing the dispersion

and presence of outliers in specific intervals.

The visualization and feature selection of the LEZ will be detailed below.

4.3.1 Visualization and Analysis

In this section, the visualization and analysis of patterns in LEZ’s vehicular

traffic data are explored. First, the identification of periodicity in the time



49 4.3. Time Series Analysis for Vehicular Traffic Data in Medellin’s LEZ

series is performed, highlighting trends and repetitions over different time

intervals. Identifying seasonal and cyclical patterns is crucial for a better

understanding of traffic dynamics in the LEZ, which in turn can inform

strategic decisions in urban transportation planning.

Additionally, the analysis of vehicular circulation categories is addressed,

examining how the flow of different types of vehicles varies on each road cor-

ridor. This characterization provides insights into the composition of traffic

in the area of interest. Furthermore, a review of traffic by day of the week is

conducted to discover differences between weekdays, weekends, and holidays.

The exploration of specific road corridors is also an essential component

of this analysis. By segmenting the time series based on road corridors,

specific patterns in the variables describing vehicular traffic can be identi-

fied and evaluated. This segmentation provides relevant information for the

individualized management of different road areas within the LEZ.

Finally, the use of boxplots enhances visualization by providing a repre-

sentation of the dispersion and distribution of traffic values at different times

and road corridors. Boxplots allow the identification of outliers, providing

information about data variability and distribution.

4.3.1.1 Periodicity

Temporal decomposition is an essential tool in vehicular traffic analysis, as

it allows breaking down observed data into three fundamental components:

trend, seasonality, and the observed part [98]. In this context, we have exam-

ined three key variables: Occupancy, Intensity, and Speed between January

2021 and January 2023.

The figures that will be described in next subsections 4.3.1.1.1, 4.3.1.1.2,

and 4.3.1.1.3 have three components, each of them with its corresponding

subplot3:

✓ The first subplot corresponds to the observed component, which repre-

sents the values or measurements over time and includes all underlying

patterns, encompassing both the trend and seasonality.

✓ The second subplot represents the trend component showing the un-

derlying direction in the data, which may be increasing or decreasing

over time.

3This decomposition was made with Python’s statsmodel library [99].
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✓ The third subplot shows the seasonal component and represents the

regular and repeating patterns that occur at specific intervals within

the time series. These patterns often correspond to calendar-related

cycles, such as daily, weekly, monthly, or yearly patterns [98]. In this

component, the y axis shows values (e.g. -0.5 to 0.5, and -1 to 1, as seen

in the next subsections), such that the maximum positive values indi-

cate peaks where data reached its highest points during the observed

period, and the most negatives indicate the lowest data points. These

values indicate how much the data deviates from its long-term average

at each point in the seasonal cycle [100].

4.3.1.1.1 Occupancy

Observed occupancy data (illustrated in Figure 4.3), experienced a peak

between May and June 2021, suggesting a high traffic season during that pe-

riod. After this peak, occupancy values began to rapidly decline and reached

a stabilization point with a slight increase between November and Decem-

ber, 2021. Additionally, a pronounced pattern in the seasonal component was

identified, with repetitive shapes in occupancy values from January 2021 to

2023.

Figure 4.3. Temporal decomposition for Occupancy (%)

4.3.1.1.2 Intensity

Intensity data shows a similar behavior to Occupancy (Figure 4.4). It

reached its peak for observed values (upper subplot) in May and June 2021



51 4.3. Time Series Analysis for Vehicular Traffic Data in Medellin’s LEZ

and then decreased, but with a steeper decline than Occupancy, reaching a

minimum in July of the same year, where values stabilized until January

2022 when a decrease in flow was observed, followed by a slight but steady

increase until the end of the observation period. The trend graph reflects this

variation. Similar to Occupancy, a seasonal pattern is detected, repeating

from January 2021 to January 2023.

Figure 4.4. Temporal decomposition for Intensity (veh/obs)

4.3.1.1.3 Speed

In the case of Speed, plotted in Figure 4.5, an inverse dynamic is ob-

served compared to Occupancy and Intensity. When Occupancy and In-

tensity decreased between June and July 2021, Speed experienced a peak.

Subsequently, speed values decreased and stabilized, which is more evident

around April 2022 (these observations can be seen both in the graph of ob-

served values and in the trend). However, a slight but steady decrease is

observed towards the end of the observation period. The trend graph reflects

this evolution. Like the other two variables, there is a seasonal pattern that

repeats from January 2021 to 2023. In this case, where Intensity presented

curves with lower values, the highest values for speed were evident. This

can be observed, for example, between the months of October and January

and between March and April considering the observable behavior in the

seasonality subplot.

It is important to note that, in this case, the focus is on the temporal

description and decomposition of Occupancy, Intensity, and Speed variables

in the LEZ. Although these temporal trends are notable and provide valu-
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Figure 4.5. Temporal decomposition for Speed (km/h)

able information about vehicular traffic dynamics, we will not delve into the

analysis of the underlying causes of these patterns in this particular context.

The main objective is to provide an overview of how these variables change

over time in the LEZ, which can serve as a basis for decision-making related

to traffic management and mobility in the area.

4.3.1.2 Analysis by Month and Day of the Week

Since the data in the dataset exhibited cyclic behavior over time, and ve-

hicular traffic has temporal variations, monthly averages were calculated for

Occupancy, Intensity, and Speed for the years 2021 and 20224. This was

conducted to identify the most critical months for mobility in the LEZ and

to evaluate how traffic varies between days of the week.

4.3.1.2.1 Monthly Traffic

In the case of Occupancy (see Figure 4.6), there was a general increase

between 2021 and 2022. More specifically, the highest occupancy percentage

occurred in May (51.0%) of 2021, followed by October (35.08%), while the

lowest was in January (23.97%) of the same year. In 2022, the highest average

occupancy percentages were in August (33.17%) and September (32.88%).

In contrast, as observed in the previous year, the lowest occupancy was in

January (28.9%).

On the other hand, Intensity (see Figure 4.7) reached its highest averages

4No observations were obtained for February and April 2021.
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Figure 4.6. Average occupancy (%) by month for 2021 and 2022

Figure 4.7. Average intensity (veh/obs) by month for 2021 and 2022

for 2021 in May (15.8 veh/obs) and December (5.19 veh/obs); the lowest

were observed in March (1.5 veh/obs) and January (3.889 veh/obs). In 2022,

December had the highest Intensity value (6.749 veh/obs) compared to the

other months, and January had the lowest (4.996 veh/obs). Generally, there
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was an increase between 2021 and 2022, resulting in a behavior similar to

that obtained for Occupancy.

Using the same procedure, monthly values for Speed were calculated (see

Figure 4.8). When analyzing the monthly behavior for the same period, it

was found that for 2021, the highest speed was evident in May (33.40 km/h)

and March (25.25 km/h), while the lowest was in June (19.99 km/h). In

2022, the lowest average speed occurred in November (22.67 km/h), and the

highest was in May (23.79 km/h). Comparing the years 2021 and 2022, it

cannot be conclusively determined whether there was a general decrease or

increase.

Figure 4.8. Average speed (km/h) by month for 2021 and 2022

4.3.1.2.2 Weekly Traffic

The analysis of Occupancy data (Figure 4.9) on different days of the week

shows that Fridays are the busiest day of the week, with an average occu-

pancy of approximately 32.60%, suggesting higher mobility activity. In con-

trast, Sundays show the lowest average occupancy, at approximately 27.0%,

indicating lower road utilization, possibly due to reduced vehicle circulation

on Sundays when work activities are reduced.
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Figure 4.9. Average occupancy (%) for weekdays of 2021 and 2022

On the other hand, Saturdays stand out with the highest average intensity

(Figure 4.10), recording approximately 6.24 veh/obs, followed by Fridays

with 5.97 veh/obs, indicating higher vehicle activity and flow during these

weekend days. Sundays have the lowest Intensity, at approximately 5.26

veh/obs, suggesting a similar pattern to occupancy on this day.

Figure 4.10. Average intensity (veh/obs) for weekdays of 2021 and 2022

Regarding Speed, the results shown in Figure 4.11 indicate that Sundays

have the highest average speed, registering approximately 25.09 km/h, sug-

gesting smoother traffic conditions and higher speeds compared to other days

of the week. In contrast, Fridays have the lowest average speed, at around

22.13 km/h.
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Figure 4.11. Average speed (km/h) for weekdays of 2021 and 2022

4.3.1.2.3 Traffic on Holidays

Colombia is a country with 18 holidays, one of the highest amounts in the

world [101], which impact traffic as many people take days off or reduce their

working hours. For this reason, to identify if there is a significant difference

in mobility between regular days and holidays, monthly and daily averages

were evaluated for the variables of Occupancy, Intensity, and Speed for 2021

and 2022.

The results obtained (see Figure 4.12) reflect lower occupancy (Fig-

ure 4.12a) and intensity (Figure 4.12c) during holidays for all months of

the year5, while higher average speed (Figure 4.12b) was observed on all

recorded holidays.

5No observations were obtained for February and September (no holidays) and April

(no observations available for holidays in either year).
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(a) Occupancy regular vs holidays (%) (b) Speed regular vs holidays (km/h)

(c) Intensity regular vs holidays

(veh/obs)

Figure 4.12. Comparison between regular and holidays

4.3.1.3 Analysis by Road Corridor and Vehicle Category

Although all data capture points are located in the LEZ, each road may ex-

hibit different behavior, reflected in traffic descriptive variables (Occupancy,

Intensity, and Speed), as well as in the type of vehicles that circulate. For

this reason, the following analyses were performed.

4.3.1.3.1 Analysis by Road

When evaluating the average occupancy values (Figure 4.13a), Carrera

57 - Avenida Oriental, and Avenida Oriental - Calle 52 presented the highest

occupancy values, while Av. Oriental and Av. Ferrocarril - Colombia showed
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(a) Occupancy in LEZ roads (%) (b) Speed in LEZ roads (km/h)

(c) Intensity in LEZ roads (veh/obs)

Figure 4.13. Variables results in LEZ’s roads

the lowest values.

On the other hand, the Av. Ferrocarril - Calle 48 had the highest speeds,

and the Carrera 57 - Avenida Oriental recorded the lowest speeds (Fig-

ure 4.13b). In this case, on the road where the lowest average speed was

observed, the highest occupancy was obtained. This may provide clues to

an inverse relationship between these variables. This relationship was not as

clear when comparing Intensity and Speed variables.
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Vehicle intensity (Figure 4.13c) showed its highest values on Carrera 57

- Avenida Oriental and Carrera 43 - Girardot, and the lowest values on the

Av. Oriental.

4.3.1.3.2 Analysis by Vehicle Category

Considering that traffic varies constantly due to several factors, the av-

erages of vehicle counts per record were graphed for different categories on

each of the road corridors, as shown in Figure 4.14.

Figure 4.14. Average vehicle count circulating in LEZ according to

Class X variables (veh/obs)

From these, it was obtained that Class 1, which mainly represents small

private cars, dominates in all the corridors, indicating its influence on the

traffic in the LEZ. In general, there is less presence of motorcycles compared

to the other types of vehicles. A significant presence is only noticeable on

the corridors Carrera 57 - Avenida Oriental, Carrera 43 - Girardot, and

Avenida Oriental - Calle 52. On the other hand, Class 2 vehicles, which

include those with lengths between 3 and 6 meters, are more noticeable on

the corridors Avenida Oriental - Sucre, Avenida Ferrocarril - Colombia, and

Avenida Ferrocarril - Calle 48, indicating a preference for larger private cars

on these specific routes. The circulation of Class 3 vehicles, which are longer
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than 6 meters, is is primarily noticeable on the corridors Avenida Ferrocarril

- Calle 48, and Avenida Oriental. There is not a very significant presence on

Avenida Oriental - Calle 52, and Carrera 43 - Girardot. This information

may reflect the better suitability of certain roads for the circulation of longer

and heavier vehicles.

Considering the above, the distribution of vehicles in the LEZ through

different roads reveals clear traffic flow patterns. The constant predominance

of small private cars (Class 1 ) suggests their central role in the daily mobility

of the area. The limited presence of motorcycles on some roads could be

attributed to specific traffic and infrastructure conditions, and the variation

in the presence of Class 2 and Class 3 vehicles on certain roads points to

the possible suitability of those routes for different types of vehicles based

on their sizes and characteristics. These results are not only crucial for road

network planning and optimization but also highlight the need for specific

measures for each road, with a view to improving safety, efficiency, and (in

relation to the interest of this project) traffic management. The analysis

conducted demonstrates the importance of management that is sensitive to

the presence of different types of vehicles in a dynamic area like the Medellin’s

LEZ.

4.3.2 Feature Selection

Feature selection is a process that involves reducing the number of vari-

ables in such a way that the most consistent and relevant ones are identified

[23]. It can reduce the dimensionality of the input space, which can lead to

faster convergence and improved computational efficiency while focusing the

learning process on the most informative features. For the LEZ’s data, this

selection was carried out through different methods, described next.

4.3.2.1 Correlation

Correlation is a statistical measure that indicates the relationship between

two variables through a coefficient that varies from -1 to 1, where a magnitude

close to 1 indicates that the variables are highly related either directly (if

positive) or inversely (if negative) [102].

In the context of data analysis, correlation allows exploring the underlying

connections between the collected data, revealing patterns and dependencies

that can provide a better insight into the data of interest. The use of correla-
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tion coefficients allows quantifying and qualifying the strength and direction

of relationships between variables.

The correlation analysis between the different variables related to vehic-

ular traffic in the LEZ reveals patterns that allow exploring its dynamics. A

heatmap with correlation coefficients was used to visualize the relationships

between the variables: Occupancy, Class 1, Class 2, Class 3, Class 4, Vehi-

cle Intensity, and Speed. This map is shown in Figure 4.15, where significant

coefficients are highlighted with red rectangles.

Figure 4.15. Correlation heatmap for LEZ variables

Firstly, a moderate negative correlation between Speed and road Occu-

pancy (correlation coefficient: -0.28) was observed. This suggests that as

road occupancy increases, speed tends to decrease, which could be related to

congestion and reduced traffic flow. Furthermore, significant positive correla-

tions were found between vehicle Intensity and Occupancy (correlation coef-

ficient: 0.49), as well as with vehicle classes of type Class 1, corresponding to

small private vehicles (correlation coefficient: 0.83), followed by Class 2 vehi-

cles, corresponding to vehicles with lengths between 3m and 6m (correlation

coefficient: 0.54), and motorcycles, i.e., Class 4 vehicles (correlation coeffi-

cient: 0.51). These relationships may indicate the general traffic flow trend

on the road, highlighting the impact of Class 1 vehicles on road occupancy

and traffic density.
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Additionally, albeit not very strong, a negative correlation was found be-

tween Speed and vehicle Intensity (correlation coefficient: -0.096), suggesting

that higher traffic intensity tends to lead to lower speed. This could indicate

the presence of congestion on the road and the need for traffic management

measures to improve flow.

4.3.2.2 Principal Component Analysis (PCA)

Considering that there are significant correlations between some of the vari-

ables, it is feasible to apply PCA (Principal Component Analysis). This

technique is used to reduce dimensionality in large datasets by creating new

variables or Principal Components (PCs) that are linear functions of the orig-

inal variables while preserving as much information as possible. Generally,

components that can explain between 70% and 90% of the total variance are

used [103]. PCA can also be used to identify the importance of variables in

a dataset in terms of their contribution to the principal components. This

contribution can be evaluated with variable weights: weights close to 1 or -1

indicate that the variable significantly influences a component, while weights

close to zero represent a moderate or low contribution of a variable to a

specific component.

The Python library called Scikit-learn [104] was used to apply PCA to the

vehicular traffic-related variables in the LEZ dataset, obtaining the following

results. Firstly, a total of 79% of the variance was captured with the first

three components (Figure 4.16b).

(a) Percentage of variance for each

component

(b) Cumulative variance in principal

components

Figure 4.16. PCA for LEZ dataset variables
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The first principal component (Figure 4.17a) emerged as a cluster of In-

tensity, Class 1, and Occupancy primarily, revealing the high correlation be-

tween the first two. This suggests that these variables share an underlying

relationship that may indicate the general traffic trend on the road. The

close relationship between Vehicle Intensity and Class 1 can be attributed

to the influence of vehicles in this category on occupancy and traffic density.

In the second principal component (Figure 4.17b), it was observed that

Speed emerged as the most prominent variable, followed by Occupancy, im-

plying its importance in explaining variance. Regarding the variables related

to vehicle categories, Class 3 contributes the most information. The appear-

ance of Speed in this component suggests its significant role in traffic flow,

possibly related to traffic smoothness in the absence of vehicles from other

categories.

(a) PC1 (b) PC2

(c) PC3

Figure 4.17. Contribution of variables to PCs
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In the third principal component (Figure 4.17c), Speed stood out as the

main variable, followed by Class 4. This configuration highlights the differen-

tial influence of Class 4 on the variability not captured by the previous com-

ponents. The presence of Class 4 in this component may indicate a specific

association of this vehicle category with different traffic patterns, possibly

related to higher speeds or specific traffic flow behaviors for motorcycles.

After reviewing these components, it can be affirmed that variables re-

lated to vehicle categories emerge as key factors in explaining the observed

variability in traffic patterns. This underscores the importance of consider-

ing the specific composition of vehicles on the road when understanding and

managing traffic flow.

4.3.2.3 Boxplots

Box and whisker plots are visual tools that provide an understanding of data

distribution and dispersion. A boxplot represents data distribution through

a box covering the interquartile range (IQR), a segment or line indicating

the median, and ”whiskers,” which are lines extending to the minimum and

maximum values or to certain limits that indicate the presence of outliers. In

addition to being useful for identifying factors as mentioned, they can also be

used to compare distributions between different variables or groups [97]. For

example, if the median line of one box extends beyond the limits of another

box, this may indicate notable differences between the variables.

In this case, boxplots for the numerical variables (previously scaled) are

plotted using the Python library Matplotlib [105].

It can be observed that the boxes and whiskers tend to vary in length

and presence of outliers, except for the case of Occupancy. Regarding these

outliers, it is important to mention that they were not removed during the

initial data cleaning, as they were validated by CITRA [28] as values that are

still within a range considered normal during specific hours. For example,

in the case of speed, during late-night and early morning hours, drivers can

reach speeds of up to approximately 120 km/h.

On the other hand, when comparing the numerical variables plotted in

the diagrams, it is possible to observe that the distributions of the vehicle

categories Class 2 and Class 3 are similar, while Class 4 has a long tail, but

its median is very close to 0.

Now, the variable Class 1, in line with what was observed in correlation



65 4.3. Time Series Analysis for Vehicular Traffic Data in Medellin’s LEZ

Figure 4.18. Box and whisker plot for LEZ variables

and PCA, has a distribution similar to Intensity, both in the width of its

box and in its median. Taking into account this last measure, it could be

stated that variables like Class 2 and Class 3 have similar characteristics.

Below, in Table 4.2, the information obtained from the box and whisker

plot is presented, where ”X” indicates that two variables being compared

may show notable differences between them, while the ”*” represent that

no significant differences between the variables were observed. For example,

when comparing Speed and Intensity, it is clear that their distributions are

different and their median lines are also very distant from the limits of the

other box; in this case, an ”X” was assigned. On the other hand, considering

the previous statement about Class 2 and Class 3, a ”*” was set in the table.

4.3.3 Key Takeaways

The analysis of vehicular traffic data in Medellin’s Low Emission Zone re-

vealed important insights. Notably, the temporal component played a signif-

icant role, observing variations between months and weekdays, also showing

repetitive patterns in the seasonal decomposition. Likewise, several corridors

exhibited variations in the vehicle category, as well as changes in average val-

ues for Speed, Occupancy, and Intensity.

During feature selection process, the correlation analysis provided signif-



66 4.3. Time Series Analysis for Vehicular Traffic Data in Medellin’s LEZ

Table 4.2. Summary of the boxplot visualization.

Occupancy Intensity Speed Class 1 Class 2 Class 3

Occupancy - - - - - -

Intensity X - - - - -

Speed * X - - - -

Class 1 X * X - - -

Class 2 X X X X - -

Class 3 X X X X * -

Class 4 X X X X * *

icant insights into the relationships among various traffic-related variables.

For example, positive and significant correlations were found between Inten-

sity and Occupancy, as well as with specific vehicle classes, highlighting their

influence on road occupancy and traffic density.

PCA showed that the first three components captured 79% of the vari-

ance, emphasizing their importance in explaining traffic patterns. The anal-

ysis highlighted the interplay between variables such as Intensity, Class 1

vehicles, and Occupancy underlining their shared influence on traffic trends.

Finally, the boxplots validated the findings, and helped understanding

some aspects of traffic behavior. For instance, the presence of outliers in the

Speed variable can be attributed to higher speeds during late-night and early

morning hours. These plots also indicated variations in the length of boxes

emphasizing differences between variables.

These findings provide valuable insights for understanding and managing

traffic patterns in Medellin’s Low Emission Zone 6.

In the upcoming section, we will define the key elements of our Deep

Q-Network implementation, which is informed by the analyses and feature

selection conducted in this section. This includes a detailed description of

the state representation, reward structure, and the action set. Furthermore,

we will explore how the findings from the time series analyses and the feature

selection process, particularly with regard to important variables and vehicle,

are incorporated into the DQN state representation.

6Pending publication of the conference paper Analysis and Characterization of Vehic-

ular Traffic in a Low Emission Zone in Advances in Transdisciplinary Engineering book

series by IOS Press. This work was presented at the 7th International Conference on

Intelligent Traffic and Transportation (ICITT) in September 2023 in Madrid, Spain.



Chapter 5

Experiments and Results

5.1 Deep Q-Learning for the LEZ’s Traffic Manage-

ment

In this section, we transition from the theoretical foundation of reinforcement

learning (as discussed in subsection 3.1.3.1) to the practical domain, where

we explore the essential components of our project’s agent architecture, with

traffic lights as the central agents guided by the DQN framework. We will

look into the specific details of the neural network structure used to estimate

Q-values, the utilization of a replay buffer to store and reuse experiences,

and training methods employed to improve the agent’s performance. This

comprehensive examination of the DQN architecture serves as a fundamental

building block for the experiments and results we present, providing insight

into how our agent learns, adapts, and ultimately achieves its goals through

interactions with the environment.

5.1.1 DQN Agent Architecture

5.1.1.1 State Representation

Defining an effective state representation is crucial in a reinforcement learn-

ing algorithm. Our state is characterized by a set of continuous variables,

including Speed and Occupancy. These two variables were chosen based on

the analysis and feature selection previously described in subsection 4.3.1 and

subsection 4.3.2, since they may capture essential aspects of the traffic con-

ditions and provide a comprehensive snapshot of the traffic environment for

67
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our specific case study, allowing the agents to make context-aware decisions

using a specific action set (subsection 5.1.1.2).

In addition, the current traffic light phase and current emissions1 are also

an integral part of the state representation, such that the current traffic light

phase directly influences traffic flow at intersections, guiding the agent in

making right-of-way and safe driving decisions. On the other hand, emissions

data have been included to assess the impact of the DQN on this environmen-

tal variable, such that, by monitoring emissions, the reinforcement learning

agent can make more environmentally “conscious” choices, prioritizing not

only direct traffic variables but also seeking to reduce emissions. The capture

of these variables is detailed in section 5.3.

5.1.1.2 Action Set

As stated in subsection 3.1.4, fixed-time traffic light phases are one of the

most prevalent approaches in traffic management systems.These phases in-

volve predetermined signal configurations that dictate when vehicles in dif-

ferent directions are allowed to proceed or stop, regardless of real-time traffic

conditions. In the case of Medellin’s Low Emission Zone, traffic lights are

static, following a fixed-time pattern. To illustrate this, we show an example

of a typical traffic light configuration (in XML notation). This static setting

corresponds to the Cra 55 - Avenida Oriental road’s traffic light:

<tlLogic id="360392656" type="static" programID="1">

<phase duration="49" state="GGGrrr"/>

<phase duration="6" state="yyyrrr"/>

<phase duration="49" state="GrrGGG"/>

<phase duration="6" state="yrryyy"/>

</tlLogic>

This traffic light, located in the intersection corresponding to the men-

tioned road, has 4 possible phases and a period (sum of all phases). In this

context, the state is the configuration for every phase. For example <phase

duration="49" state="GGGrrr"/> represents the first phase of the traffic light;

the duration attribute is set to 49 seconds, indicating that this phase will last

for 49 seconds. The state attribute is ”GGGrrr”, which means that during

1Both data captured at run-time from the simulation environment.
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this phase, the traffic light allows vehicles in the ”GGG” (Green) direction

to proceed, while vehicles in the ”rrr” (Red) direction are stopped.

The default state configurations were imported from the OpenStreetMap

(OSM) [106] infrastructure network of the LEZ, and the period set for these

traffic lights is 110 seconds, a decision reached after consultation with CITRA

[28], entity that informed us that traffic lights across the city generally oper-

ate with periods ranging from 90 to 120 seconds. Based on this, we opted for

a period of 110 seconds to strike a balance between various traffic manage-

ment scenarios within the LEZ. The OSM and traffic network import process

will be shown in subsection 5.2.1.2.

However, in contrast to Medellin’s static traffic light approach, our system

employs a dynamic approach. With an action set for traffic lights that adapts

to real-time traffic conditions, our approach offers the flexibility to adjust

signal configurations based on the specific intersection under consideration.

This dynamic action set may encompass either four or eight distinct phases,

according to Table 5.1.

Table 5.1. Number of phases by road

Road Number of Phases

Avenida Oriental - Sucre 4 phases

Carrera 43 - Girardot 4 phases

Avenida Oriental - Calle 57 4 phases

Carrera 55 - Avenida Oriental 4 phases

Carrera 57 - Avenida Oriental 4 phases

Avenida Oriental 8 phases

Avenida Oriental - Calle 52 8 phases

Avenida Ferrocarril - Calle 48 8 phases

Avenida Ferrocarril - Colombia 8 phases

Considering this Table, the action sets are:

✓ For 4-phase traffic lights: A = [phase 1, phase 2, phase 3, phase 4]

✓ For 8-phase traffic lights: A = [phase 1, phase 2, phase 3, phase 4,

phase 5, phase 6, phase 7, phase 8]

These actions, when chosen, will indicate the traffic light phase, only

taking the state attribute from the corresponding traffic light settings, but



70 5.1. Deep Q-Learning for the LEZ’s Traffic Management

the total duration and the order of the phases will depend on the decision

process made by the algorithm.

5.1.1.3 Reward Function

The design of the reward function is a crucial component of a reinforcement

learning framework since this choice should lead the agent to discern whether

its chosen actions serve to optimize or degrade the intersection’s efficiency.

In our research, we have opted to incorporate a specific reward function

introduced by Vidali et al. [20]. This function is based on the cumulative

total waiting time as the traffic metric. Within the framework of this reward

function, the computation of the reward (Rt) occurs at each step. This

computation relies on the difference between the cumulative total waiting

time at the present step (ctwtt) and that at the preceding step (ctwtt−1).

The cumulative waiting time is calculated as:

ctwtt =
n∑

veh=1

cwt(veh,t) (5.1)

Equation 5.1 defines the cumulative total waiting time, which is calcu-

lated by adding up the amount of time (in seconds) that each vehicle in the

corresponding intersection has been stopped. From this, the reward function

is defined in Equation 5.2 as:

Rt = ctwtt−1 − ctwtt (5.2)

This formulation aids in reflecting the influence of the agent’s actions on

the overall waiting time, and, unlike reward functions that reset waiting time

metrics, the cumulative waiting time continues to account for vehicles that

have spent time waiting. This helps the agent recognize the persistence of

congestion and take actions to mitigate it. Furthermore, this approach con-

siders not only the immediate effect but also the sustained influence on traffic

conditions. This can lead to more strategic decision-making that considers

the long-term consequences of each action.

In addition to Vidali’s approach (referred as the baseline reward function

from now on), we propose a weighted reward function in our study. This

alternative reward function still uses cumulative waiting time as a basis, fol-

lowing Vidali’s proposal. However, in the context of evaluating the impact

of the DQN on emissions, we have introduced an additional component that
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accounts for emissions by utilizing a weighted (multi-objective) reward ap-

proach [107][108]. Our weighted reward is defined as:

Rt = weightwt ∗∆ctwt+ weightem ∗ emissionst (5.3)

Where emissionst is the cumulative emissions at the present step, and

∆ctwt = ctwtt−1 − ctwtt (5.4)

By introducing weightwt and weightem, this reward function offers a flexi-

ble mechanism to prioritize one factor over another. For example, if weightwt

is greater than weightem, the model will prioritize reducing congestion over

emissions and vice-versa.

In this approach weightwt + weightem = 1. This is used to represent the

relative importance of the components of the reward and it helps to avoid a

reward overly influenced by any single term (waiting time term or emissions

term).

The performance of these two reward functions, also considering differ-

ent weight values for the alternative reward, will be compared in the results

section (subsection 5.3.2.1) to assess their respective impacts on the inter-

section’s efficiency and emissions.

5.1.1.4 DQN Agent

In the development of our DQN algorithm to handle data derived from time

series (described in chapter 4), a thoughtful exploration of neural network

architectures was conducted to determine the most suitable approach. While

considering the advantages of RNNs, like their sequential data processing ca-

pabilities, we found that the results did not exhibit significant improvement

in our specific case. This observation led us to opt for a fully connected neu-

ral network instead. Our decision is grounded in practicality and empirical

results, as fully connected networks have demonstrated their effectiveness in

various time series applications and are known for their capacity to model

complex relationships within data. By leveraging fully connected networks,

we can efficiently capture patterns and dependencies within the time series

data, enabling the DQN to make informed decisions and adapt to dynamic

changes in our traffic management scenario.

An evaluation of CNNs was also carried out for our time series data,

considering their strengths in spatial data processing. However, as our state



72 5.1. Deep Q-Learning for the LEZ’s Traffic Management

representations primarily consist of continuous variables such as occupancy,

speed, and emissions, the grid-like structure that CNNs excel at processing

was not as prevalent in our data. This, coupled with the high computa-

tional cost of using this kind of network in a complex and large simulation

environment, reinforced the choice of a fully connected neural network.

Our choice also aligns with the approach adopted by previous researchers

[20][85][86] and serves as evidence of the flexibility and versatility of fully

connected networks in handling time series data, which ultimately facilitates

the achievement of our project’s objectives.

In the context of our research, we are using a simplified representation of

Bellman’s equation (see subsection 3.1.3.1.1) into the DQN approach:

Q(St, At)← Rt+1 + γmaxAQ(St+1, A) (5.5)

Equation 5.5 encapsulates the fundamental mechanism by which we up-

date the Q-values, while integrating the immediate reward Rt+1, with the

discounted maximum Q-value of the subsequent state St+1, and the associ-

ated action, A. In this approach, the agent is trained by receiving the states

as inputs. Once trained, it approximates the Q-function, returning the esti-

mate of the Q-values for all potential actions as the output. The agent then

selects the action with the highest Q-value to execute, aiming to maximize

its expected cumulative reward.

This agent is presented in Figure 5.1, where the architecture of the neural

network can also be observed, defined as a fully connected network with an

input layer consisting of 4 neurons (1 neuron for each state variable), followed

by 4 hidden layers, each with 128 neurons. These hidden layers use Rectified

Linear Unit (ReLU) [109] as the activation function. With this function,

we can approach the non-linearity and complexity of traffic patterns. The

output layer, on the other hand, contains as many neurons as there are

phases (see Table 5.1) and employs the Softmax activation function [109].

Softmax transforms the network’s output into a probability distribution over

the possible light phases (4 or 8 depending on the road). This probability

distribution helps the DQN make informed decisions about which light phase

to select based on the continuous input state, ensuring that the network

selects the most appropriate phase.

As described in subsection 3.1.3.1, instead of immediately incorporating

the most recent experience into Q-function updates, the DQN stores each

transition as a tuple in a memory called the replay buffer. Subsequently,
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collections of data samples from the buffer, called batches (or mini-batches),

are used to stochastically and uniformly sample these experiences. These

batches consist of a predetermined number of experiences determined by the

batch size, that indicates how many experiences are processed in each train-

ing step. Data batches are then employed for training the neural network’s

parameters using the Adam optimizer, a variant of stochastic gradient de-

scent that adapts learning rates for each parameter during optimization [69].

The use of the replay buffer has been highly used and recommended in DQN

implementations [110][111][112], since it does not only aids in constraining

the network’s learning from correlated experiences but also empowers the

DQN to revisit and learn from prior experiences.

Figure 5.1. DQN agent

Having covered the key components of the DQN agent depicted in Fig-

ure 5.1, the next section will describe the experimental setup established for

simulating the designed agent in the traffic scenario corresponding to the

representation of Medellin’s Low Emission Zone.
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5.2 Experimental Framework

In this section, we detail the experimental framework used in the work con-

ducted, as well as the results obtained during the course of the research.

It focuses on the software used, simulation parameters, and simulated sce-

narios. This section provides an insight into the planning and execution of

the experiments, establishing the necessary context for understanding and

evaluating the results that will be presented later in the chapter.

5.2.1 Traffic Simulation

Simulation is a highly valuable tool as it enables the representation of sce-

narios and phenomena for evaluating their behavior and feasibility before

real-world implementation. To bridge the gap between the simulated sce-

nario and the real world, information from the LEZ dataset characterized

in the previous sections, along with the road infrastructure in that area,

were used to transform observations into data that were suitable for use in a

traffic simulation. In this case, to achieve this objective, an experimental en-

vironment was established using the SUMO (Simulation of Urban Mobility)

traffic simulator [19] and its Traffic Control Interface (TraCI) [113]. These

components are described below.

5.2.1.1 Software

5.2.1.1.1 SUMO

SUMO is an open-source traffic simulation platform that allows modeling

and analyzing the flow of vehicles, pedestrians, public transport, and other

elements in transportation systems [19]. SUMO includes a variety of sup-

porting tools that automate tasks for the creation, execution, and evaluation

of traffic simulations, such as network import, route calculations, visualiza-

tion, emissions and fuel consumption calculations. To interact with SUMO

and perform more advanced experiments, the TraCI tool is used.

5.2.1.1.2 TraCI

TraCI is a communication protocol that enables the user to control and

monitor SUMO traffic simulation in run-time. The operation of this protocol
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is illustrated in Figure 5.2.

Figure 5.2. Connection between SUMO and TraCI2

TraCI uses a client-server architecture based on TCP (Transmission Con-

trol Protocol3) to provide access to SUMO. In this approach, SUMO acts as

the server, and once started, its primary function is to set up the simulation

and wait for all external applications to connect and take control. TraCI

acts as an intermediary between these external applications (or clients) and

SUMO [113]. Some of the functionalities of TraCI include:

✓ Dynamic Control: Allows dynamically adjusting simulation condi-

tions, such as vehicle speed, traffic light signals, and vehicle routes.

✓ Run-time Data Collection: Users can collect detailed run-time

simulation data, facilitating data analysis and data-driven decision-

making.

✓ Integration with External Tools: TraCI can integrate with other

tools and programming languages such as Python, C++, and others,

making it easier to implement custom experiments and analyses. This

allows running control algorithms in external applications, enabling

them to retrieve information and/or perform actions on the ongoing

simulation.

2Image taken from https://sumo.dlr.de/docs/TraCI/Protocol.html
3A protocol that provides bidirectional, connection-oriented communication between

two devices on a network [114]

https://sumo.dlr.de/docs/TraCI/Protocol.html
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Some of the works that have used the previously described simulation

tools are shown in Table 5.2.

Table 5.2. References of projects that use SUMO

Name of the resource Autor TraCI

Traffic Signal Control via Reinforcement Learning

for Reducing Global Vehicle Emission [85]

B. Kővári, L. Szőke, T. Bécsi,

S. Aradi, and P. Gáspár

Yes

Adaptive Deep Q-Network Algorithm with Expo-

nential Reward Mechanism for Traffic Control in

Urban Intersection Networks [86]

M. R. T. Fuad, E. O. Fer-

nandez, F. Mukhlish, A. Putri,

H.Y. Sutarto

Yes

Microscopic Simulation of Parking Violations in

Curbside With-Flow Bus Priority Lanes Using

Sumo Traffic Control Interface (TraCI) [115]

G. S. Samarakoon, T. Sivaku-

mar2

Yes

A Deep Reinforcement Learning Approach to

Adaptive Traffic Lights Management [20]

A. Vidali, L. Crociani, G. Viz-

zari, S. Bandini

Yes

IntelliLight: A Reinforcement Learning Approach

for Intelligent Traffic Light Control [80]

H. Wei, G. Zheng, H. Yao, and

Z. Li

Not specified

Deep Reinforcement Learning for Coordination in

Traffic Light Control [84]

E. van der Pol Not specified

Adaptive traffic signal control: Deep reinforce-

ment learning algorithm with experience replay

and target network [72]

J. Gao, Y. Shen, J. Liu, M. Ito,

and N. Shiratori

No

5.2.1.2 Data Transformation and Generation

In the methodology for the traffic simulation required in this project, the

starting point was the time series data, cleansed and analysed as previously

detailed in chapter 4.

Subsequently, daily trip data (for 535 days), for each of the nine roads

present in our data set, were stored in an Origin-Destination (OD) matrix.

These origins and destinations were assigned unique IDs.

To create the underlying map for our simulation, we utilized SUMO tools

[19]. Specifically, we employed the osmWebWizard.py package to generate

an OpenStreetMap (OSM) [106] file that encapsulated the road infrastruc-

ture of our study area, including roads, traffic lights, edges, and other rele-

vant elements. Some default settings included in the OSM original file were

also deleted to customize factors such as edges configuration and maximum

speed. This OSM file was then transformed into a traffic network (shown in

Figure 5.3), establishing the framework for our simulation environment.
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Figure 5.3. Traffic network of Medellin’s Low Emission Zone

Following the creation of this map, Traffic Analysis Zones (TAZ)4 [116]

were indicated though TAZ IDs to replace the previously assigned IDs. Using

SUMO libraries such as OD2trips and duarouters, and leveraging Python

scripts to manage XML files, the OD data was converted into specific vehicle

routes.

These routes were then integrated into the simulation environment, with

vehicle types assigned based on a random weighted generator.

This approach ensures that the assignment of vehicle types is not entirely

arbitrary but takes into account specific probabilities or weights associated

with each category. In this particular case, the assigned weights for vehi-

cle types are 0.65 for passenger cars (Class 1), 0.17 for buses and trucks

(Class 3), and 0.18 for motorcycles (Class 4), chosen based on the results

seen in subsection 4.3.1.3.2. This weighted system intends to get closer to

the real-world scenario where certain vehicle types are more common than

others.

By using this method, the generation of vehicles in the simulation is

purposefully not in a strict sequential order, creating a more realistic and

diverse representation of traffic within the simulated environment.

4Source and destination edges
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5.2.1.3 Emission Classes

Since each type of vehicle generates different amounts of pollutants, emission

classes were set with the SUMO HBEFA-based5 emission model in its 4th

version (HBEFA4). This model provides emission factors for all current vehi-

cle categories. Table 5.3 shows the chosen model emission classes (Emission

Class) for the simulated vehicle categories (Vehicle type).

Table 5.3. Emission classes for SUMO vehicle classes

Vehicle type Emission Class

motorcycle HBEFA4/MC 2S le250cc Euro-4

passenger HBEFA4/PC petrol Euro-4

bus HBEFA4/UBus Midi le15t Euro-IV EGR

truck HBEFA4/RigidTruck BEV le7.5t

Considering the context of Colombia, where the vehicle fleet may not

yet conform to the latest European-based emission classes6, Euro 4 emission

standard was chosen for the vehicles used in the simulation. This choice aims

to more closely represent conditions of the real-world vehicle scenario of the

city in terms of pollutant emissions, since Euro 6 just started its application

in the country in 2023 [119], and most vehicles do not meet this standard

[120].

The previous steps, as illustrated in the process depicted in Figure 5.4, fa-

cilitated the creation of a comprehensive traffic simulation environment that

closely mirrors real-world traffic conditions. Consequently, the integration of

the input data and the DQN agent presented in Figure 5.1, along with the

environment configured in SUMO, the TraCI interface and the routing files,

is presented in Figure 5.5.

Taking into account the DQN architecture and the experimental frame-

work shown in the previous subsections, the following one explores the prac-

tical implementation of the accumulated knowledge and data, focusing on

the experiments. Thus, in the next section, insights into the parameters em-

ployed to conduct these trials are presented, considering both single-agent

and multi-agent cases.

5HBEFA: Handbook Emission Factors for Road Transport [117]
6Euro 6 is the latest Euro standard applied. Euro 7 is planned to be introduced in

2025 [118]
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Figure 5.4. Process of data preparation for simulation

Figure 5.5. Integration of traffic data with SUMO and the DQN agent
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5.3 Experiment 1: Single Agent

In the single-agent scenario, we describe the specific experiments conducted

to assess the performance of our approach. Here, we examine the results of

training one agent within our designed traffic simulation environment.

To provide a comprehensive overview, Figure 5.6 illustrates the complete

architecture employed in this single-agent setup, with the intricate compo-

nents, described in the previous subsections (Figure 5.1 and Figure 5.5), and

the interactions that contribute to the agent’s decision-making process.

Once established, this setup was integrated into the already described

simulation scenario (in SUMO), where one agent was utilized for a param-

eter tuning process [84]. The goal of this process was to identify the most

effective parameters for facilitating a more efficient learning process among

the agents, considering the objective of the implementation of the model

(improving traffic and reducing pollutant emissions). Parameter tuning is

a critical step in optimizing the performance of AI models, ensuring that

they adapt better to complex real-world scenarios. After the parameter tun-

ing phase, the resulting optimized parameters, constituting the tuned agent,

were applied to simulate all agents during the execution of the multi-agent

simulation scenarios.

5.3.1 Simulation Parameters

With this scenario, we aimed to establish a baseline for simulating traffic

across several roads and evaluate relevant hyperparameters. To achieve this

goal, the agent was configured with the initial parameters shown in Table 5.4.

Regarding the training process, it was organized into multiple episodes,

starting with an initial set of 200 episodes, equivalent to 200 simulation days,

corresponding to the generation of trips in daily files. A matching number

of route files was employed to align with the dynamic nature of daily traffic

variations, which encompass differences in traffic intensity. This approach

effectively captures a diverse range of traffic flows and patterns each day.

Also, in the context of optimizing traffic lights control using reinforce-

ment learning, it is essential to establish a minimum duration for traffic light

phases. Without this constraint, the model’s actions could lead to imprac-

tically short signal times, such as 1 or 2 seconds. In a real-world scenario,

traffic lights timings need to adhere to safety standards and operational fea-

sibility. This includes providing minimum durations for the possible phases
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Figure 5.6. DQN for the LEZ traffic light control framework
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Table 5.4. Initial parameters for the single DQN simulation

Component Parameter Value

Fully connected network Batch size 64

Fully connected network Learning rate (α) 0.001

Fully connected network Training epochs 600

Fully connected network Width of layers 128

Fully connected network Number of layers 4

Fully connected network Replay buffer size Min: 600, Max: 30000

Traffic light Green light duration 15 seconds

Traffic light Yellow light duration 5 seconds

DQN Reward Total cumulative waiting time (baseline)

DQN State representation [occupancy, speed, emissions, traf-

fic light phase]

Bellman’s update rule Discount factor (γ) 0.8

Bellman’s update rule Epsilon (ϵ) 1 - (current episode/total episodes)*decay factor

(factor = 1)

to ensure smooth traffic flow and safety for all road users. Thus, incorporat-

ing these minimum phase duration is crucial in maintaining a realistic and

effective simulation environment for traffic management and control strate-

gies. That is why minimum green and yellow times were set in initial values

of 15 seconds and 5 seconds, respectively. The yellow face is activated if the

previous and new action are different, to make a transition. These values

were set considering the average duration of a complete traffic light cycle

in Medellin (110 seconds)7 and also considering previous works like Vidali’s

[20].

In addition, as stated in section 3.1, the exploration policy is really impor-

tant in Reinforcement Learning, since it allows the agent to try new actions,

but also to exploit the knowledge it has acquired. One of the most known

strategies is the ϵ-greedy policy [121][84]. In ϵ-greedy, the agent makes a

choice between exploration and exploitation by randomly selecting an ac-

tion (exploration) with probability ϵ, or selecting the action with the highest

estimated value (exploitation) with probability 1-ϵ.

Apart from this, in relation to the simulation tasks, the provided Graph-

ical User Interface (GUI) of SUMO was used to identify the TAZ ID points,

7Information provided by CITRA
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and to check weather simulations were running as expected, but for practical

purposes (execution time and computational resources), this GUI was deac-

tivated when running the DQN agent since TraCI facilitates the connection

between the Python environment and SUMO, allowing to retrieve (e.g. wait-

ing time, speed, emissions) and send information (execute actions) in during

the simulation without needing a graphical interface.

Given the elements discussed, the pseudo-code of the algorithm is pre-

sented in algorithm 1, outlining the core methodology for optimizing traffic

lights control.

Algorithm 1: Pseudocode for the DQN agent simulation
Data: Input routes and training parameters

1 Function main()

2 Initialize simulation parameters;

3 Initialize simulation memory;

4 Initialize simulation NN model;

5 for each episode do

6 while Simulation is active do

7 Simulate time step;

8 Collect state and environment data;

9 Choose action for traffic light (ϵ-greedy);

10 Execute traffic light actions;

11 Calculate rewards;

12 Add sample to memory;

13 Train models using memory replay;

14 Save episode statistics;

15 Save data and visualize results;

16 Clear episode variables (accumulators and episodic data collectors);

17 Function replay(model)

18 Retrieve a group of samples from buffer;

19 Update Q-values using the learning equation;

20 Train the neural network model;

Algorithm 1 implements the DQN framework designed for traffic light

control with the objective of training a neural network to choose the optimal

traffic light action in specific states.

At the beginning, before the actual simulation commences, three crucial

initializations are performed. First, the simulation parameters are set up.

These encompass traffic light minimum durations and the SUMO environ-

ment components, such as the route files, TraCI, GUI (if needed), simulation

delay, vehicle characteristics, the number of simulation episodes, and traffic
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lights default configuration (traffic light states, subesction 5.1.1.2). Addi-

tionally, specific parameters intrinsic to the DQN approach are set, including

learning rate, batch size, number of layers, width of the layers, and training

epochs. In relation to the agent, other important aspects are defined, such

as the replay buffer size, the size of the input state, and the discount factor.

Once the simulation environment and the parameters are initialized, a

bash script is run to call the main simulation file which is responsible for

importing the configurations and running the episodes. Each episode in the

algorithm corresponds symbolically to a day of traffic, and a distinct SUMO

road file is imported, setting the stage for that day’s simulation. Within

the execution of each episode, the simulation flows through a series of steps:

the environment is advanced by a time increment, followed by the collection

of state information and environment data, which encompass metrics such

as average speed, emissions, occupancy, waiting time, vehicle count, and

the current phase of the traffic light. Actions for the traffic light are then

determined using the ϵ-greedy strategy. Once the action is determined, it is

executed, leading to the computation of the baseline reward, which is based

on the cumulative waiting time. This entire experience is then stored as a

sample in the replay buffer.

As the day’s simulation ends, the neural network model starts training

using a batch of experiences drawn from the replay buffer. This training leads

to the update based on Bellman’s rule, using the configured discount factor.

After the epochs of training that were indicated for the training process,

the episode concludes and its statistics are stored in .txt files for subsequent

analysis. Finally, some of the accumulator variables and other elements used

exclusively for the episode are cleared to be empty for the next episode’s data

and free up memory resources.

5.3.2 Results

In the domain of traffic management using DQN, waiting time and rewards

have traditionally been the primary metrics for performance evaluation (sub-

section 3.1.4). Waiting time (subsection 5.1.1.3) directly indicates traffic flow

efficiency, while rewards reflect the model’s decision-making process. How-

ever, since this study intends to evaluate the DQN model’s impact on envi-

ronmental emission, it also incorporates emissions as a key metric.

In this section, we will examine the results of a hyperparameter analysis
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for the DQN algorithm, our primary aim was to fine-tune8 and optimize

the performance of our DQN model by varying crucial hyperparameters and

settings, considering the baseline agent. Specifically, we investigated the

impact of different rewards, variations in the state representation, replay

buffer sizes, neural network’s batch size, discount factors, and, ϵ values for

ϵ-greedy exploration.

Our goal was to gain a comprehensive understanding of how these hy-

perparameters affect the learning process and decision-making capabilities of

our DQN agent before going through a multi-agent architecture simulation.

It’s important to consider that the same data and scenario (Av. Ferrocar-

ril - Calle 48 ) was used to perform these evaluations, ensuring that the results

are directly comparable, and that the variables measured and stored during

simulation run-time were, besides the negative rewards, cumulative waiting

time and emissions (explained in subsection 5.1.1.3). For visualization pur-

poses, moving averages were used in the plots, with a windowsize = 5.

5.3.2.1 Reward Function

In relation to the reward function, a comparison between three strategies

(subsection 5.1.1.3) was conducted: the baseline reward (Equation 5.1),

which primarily focuses on reducing waiting times; the alternative reward

(Equation 5.3), which introduces a direct consideration of emissions with a

weighted approach, and a reward that only considers emissions (( emissions-

based). We explored the impact of these reward structures on waiting time

(as indicator of congestion) and emissions.

The alternative reward strategy was evaluated using two different weight

configurations:

✓ First alternative reward: weightwt = 0.6 and weightem = 0.4

Rt = 0.6 ∗∆ctwt+ 0.4 ∗ emissionst

✓ Second alternative reward with normalized values: weightwt = 0.6 and

weightem = 0.4

Rt = 0.6 ∗ norm(∆ctwt) + 0.4 ∗ norm(emissionst)

✓ Third alternative reward: weightwt = 0.2 and weightem = 0.8

Rt = 0.2 ∗∆ctwt+ 0.8 ∗ emissionst
8Find the value of a parameter that may lead to an improvement in the performance

of a model
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✓ Fourth alternative reward: emissionst
Rt = emissionst

Figure 5.7 presents the results for the different reward approaches, in this

case, with the moving averages (MA).

Figure 5.7. Reward-based comparison for the baseline and alternative

approaches

As seen in the figure, the emissions only-based reward, and the normalized

weighted reward presented the highest values for emissions and waiting time,

showing a bad performance for these two metric of interest, for which the

agent doesn’t seem to learn. For observation purposes, a similar plot is

included next, excluding the results of the simulation carried out with these

two reward functions.
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Figure 5.8. Reward-based comparison without emission only-based and

normalized reward function results

The graphic presented in Figure 5.8, reveals interesting insights. The

baseline strategy, which solely targets reducing waiting times, does achieve

reduction in both congestion and emissions. However, when the reward struc-

ture is modified to incorporate emissions directly, even with a intermediate

weight in the first alternative reward strategy (weightem = 0.4), there’s a

discernible improvement, showing a more effective management of both con-

gestion and emissions in terms of mean values and stability. However, con-

sidering the importance of emission reduction, the third approach was tested

(third alternative reward strategy), assigning a higher weight to cumulative

emissions: (weightwt = 0.8 and weightem = 0.2). This strategy showcases
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Figure 5.9. Zoom for the last 40 episodes of the reward-based comparison

the most promising results, since it not only reduces the waiting time more ef-

ficiently but also manages to keep emissions in check, with a lower standard

deviation and mean, translating in a more stable result during the train-

ing process for emissions and cumulative waiting time while converging as

episodes progress. The zoom of the comparison between the chosen reward

function and the baseline is shown in Figure 5.9.

This analysis suggests that a concerted effort to address congestion does

lead to a reduction in emissions, but a more comprehensive approach, where

emissions are also directly considered in the decision-making process, can

amplify these benefits. It’s important to note that while reducing congestion

is the primary goal, the interdependent relationship between congestion and

emissions implies that strategies targeting both can achieve better outcomes

for urban traffic management.
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5.3.2.2 State Representation

In our exploration of state representations, we compared four distinct con-

figurations:

✓ Baseline state: [speed, emissions, occupancy, traffic light phase]

✓ Alternative state 1: [vehicle count9, emissions, occupancy, traf-

fic light phase]

✓ Alternative state 2: [speed, vehicle count, emissions, occupancy, traf-

fic light phase]

✓ Alternative state 3: [waiting time, emissions, occupancy, traf-

fic light phase]

In this case, the possibility of having waiting time values was a starting

point to explore variables that were not initially considered in chapter 4, but

they are not far from what we got as our initial data, and its possible they

may be obtained 10. In this case, waiting times are given by our simulator.

After examining the visualizations, shown in Figure 5.10, for the four state

representations in our DQN model, some interesting insights were observed

regarding the behavior of rewards, waiting time and emissions.

Regarding reward, this metric provided further information into the effec-

tiveness of the learning process of each state representation. The third space

representation consistently showed lower mean rewards and emissions, while

waiting times values were only equal to the baseline’s. The trend of rewards

stabilizing as episodes advance was observed, further supporting the notion

of the DQN model’s learning capability.

Besides these remarks, the response of the third space representation in

high traffic scenarios was better than the others.

In relation to waiting time, data revealed that vehicles experienced the

longest average waiting times in certain episodes with the alternative state

1 and the alternative state 2, even in latter episodes, where those presented

9In the context of our work, Intensity
10Medellin city, in its plan for gathering data in different domains is building a public

repository called MEDATA. A dataset called ”Velocidad y tiempo de viaje” (speed and

travel time) was found there. In the end, it was not used since CITRA suggested that the

quality of the data is not as good as the data we have now, but it shows the possiblility

of obtaining other traffic variables [122].
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higher standard deviations. In contrast, state representation 3 along with

the baseline space representation presented the the lowest waiting times in

average along with lower standard deviations.

In relation to emissions, the state representation 3, presented the low-

est average value and standard deviation, when compared to the other ap-

proaches.

Figure 5.10. State-based comparison
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Considering the previous information, the alternative state 3 appears as

the best of the evaluated state representations, since it was the most sta-

ble, and presented the lowest emissions and waiting time values, achieving a

better performance. The comparison between the baseline approach and the

chosen state representation is shown in Figure 5.11.

Figure 5.11. State-based comparison. Baseline vs State representation 3
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5.3.2.3 Learning Rate

In Figure 5.12, we present the behavior of reward, emissions, and waiting

time, allowing for a visualization of how these key metrics evolve. During

our analysis, we performed a comparative evaluation of three learning rates,

namely, α = 0.001 (baseline), α = 0.0005 (second LR), and α = 0.1 (third

RL) This enabled us to understand how varying learning rates impact the

learning and decision-making capabilities of our DQN agent.

Figure 5.12. Learning rate-based comparison

As seen in the figure, the α = 0.1, presented the highest values for emis-

sions and waiting time. Although peaks may happen when an exploration

decision is taken, when compared to the baseline, we found that (α = 0.1),

reduces waiting time and emissions at first, while leading rewards towards
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Figure 5.13. Learning rate-based comparison

more positive values, but encountered setbacks in the learning process, where

it exhibited drops in the rewards in latter episodes and peaks in emissions

and waiting times. α = 0.001 (baseline) and α = 0.0005, displayed better

reward curves. In this case α = 0.0005 presented a better performance for

emissions and waiting times, with lower average values and standard devi-

ation. This may indicate that, for this application, a lower learning rate

could be beneficial during the learning process. For our specific case it lead

to more stable training and prevented large oscillations or a significantly di-

vergent behavior during training. A plot with α = 0.0005 and α = 0.001 is

shown in Figure 5.13.

According to this, the alternative 1 with an (α = 0.0005), seems to
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present the best performance for emissions and waiting times.

5.3.2.4 Replay Buffer Size

The varying of the replay buffer sizes was also revised, by comparing buffer

sizes of s = 10,000, s = 30,000, and s = 50,000.

Figure 5.14. Buffer size-based comparison

In terms of rewards, all buffer sizes display an upward trend as episodes



95 5.3. Experiment 1: Single Agent

progress, indicating the agent’s ability to learn over time. The s = 10,000

buffer size exhibits exhibits a reward behavior similar to the one presented

by the s = 30,000 in terms of mean and standard deviation, but performed

worst in waiting time. The rewards obtained with s = 50,000 didn’t present as

much fluctuations, and showed lower mean and standard deviation compared

to the other two.

By the other hand, in relation to emissions over the course of episodes,

the 50,000 buffer size shows more stability (less fluctuations), particularly in

the later episodes, in contrast to the other two sizes tested, which suggests

that it might be offering a more consistent learning experience. A similar

behavior was observed in the waiting time curve.

This led us to conclude that despite baseline buffer size also contributed to

improvement and learning as episodes progress, the 50,000 buffer size stands

out with an advantage, offering enhanced performance and stability when

evaluating our metrics of interest.

5.3.2.5 Discount factor

During our analysis, we also conducted a comparative assessment of discount

factors, specifically evaluating values of γ = 0.99, γ = 0.8, and γ = 0.7, to

evaluate the influence of different discount rates on the learning and decision-

making performance of our DQN agent.

In general, performance based on rewards was similar in terms of standard

deviation and mean value for all three values.

Regarding waiting times across episodes, we observed that the discount

factor in both alternatives γ = 0.99 and γ = 0.7, and very similar to the

γ = 0.8.

In terms of emissions, all three discount factors exhibit a downward trend

throughout the episodes, suggesting that the agent effectively learns to reduce

emissions over time.

Considering overall stability and balanced performance across all met-

rics, none of the discounts factor showed a significant improvement when

compared to the baseline γ = 0.8, since its values for the standard deviation

were biased by a specific peak. Keeping in mind the importance of balancing

long and short term response. This was the chosen value for this parameter,

since its an intermediate choice among the tested ones.
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5.3.2.6 Epsilon

Furthermore, we experimented with different ϵ values for ϵ-greedy explo-

ration, examining two calculation methods with factors of 1 and 1.5 applied

to the decay 1 − (current episode/total episodes) ∗ decay factor shown in

Table 5.4. This helped us determine the impact of exploration strategies on

the DQN’s learning process and overall performance.

When comparing the baseline decay factor (decay factor = 1) to a

decay factor = 1.5, the second displayed more effective learning and per-

formance at the beginning, getting faster to a higher reward. However, when

analyzing waiting times and emissions, it presented more flucturations. Be-

sides, decay factor = 1.5 presented really high emissions and waiting times

from ep. 160 (aprox.), which highly increased the mean value and standard

deviation. These results suggest that this model performs significantly worse

than the baseline model in terms of waiting time and emissions. The rewards

metric also indicates a lower performance for this epsilon model, with more

negative rewards on average and greater variability.

The drastic differences, especially in waiting time and emissions, may

suggest that the decay factor adjustment significantly impacts the model’s

ability to make efficient decisions. This could be due to the model exploring

less optimal actions more frequently or not converging to a stable policy as

effectively as the baseline model.

In the end, the baseline value was kept.

5.3.2.7 Batch size

Another comparison performed during the tuning process was for the batch

size11 parameter. In this case, in relation to the rewards, all batch

sizes present fluctuations observed along the simulation episodes, being the

batch size = 64 the one with a slighly higher mean, followed by batch size =

128. All three show an ascending curve for rewards, showing the tendency

to convergence.

Regarding waiting times across episodes, the batch size = 128 showed the

highest standard deviation, specifically due to the peaks observed aroung ep.

175, along the highest mean value. On the other hand, batch size = 64 and

11Refers to the number of samples that are passed to the neural network at once, before

the model’s internal parameters are updated [123]
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batch size = 256 showed similar behaviors, but the batch size = 256 had

bigger fluctuations, leading to a higher standard deviation.

In terms of emissions, batch size = 128 presented high peaks and the

highest mean, which derive in the worst performance, while the other two

sizes had similar measurements, where the batch size = 64 had slightly lower

mean and standard deviation.

Although three discount factors exhibit a downward trend throughout the

episodes. The batch size = 64 was kept since the values presented were the

best among the evaluated options, since the standard deviation and mean

were the lowest for waiting times and emissions, and the highest for the

reward.

After the tuning procedure that considered several parameters of the

DQN, the chosen values assign to what we’ll call the tuned model, are shown

in Table 5.5:

Table 5.5. Fine-tune parameters for the DQN agent

Component Parameter Value

Fully connected network Batch size 64

Fully connected network Learning rate (α) 0.0005

Fully connected network Training epochs 600

Fully connected network Width of layers 128

Fully connected network Number of layers 4

Fully connected network Replay buffer size Min: 600, Max: 50000

Traffic light Green light duration 15 seconds

Traffic light Yellow light duration 5 seconds

DQN Reward Alternative reward function (weightwt = 0.2

and weightem = 0.8)

DQN State representation [waiting time, emissions, occupancy, traf-

fic light phase]

Bellman’s update rule Discount factor (γ) 0.8

Bellman’s update rule Epsilon (ϵ) 1 - (current episode/total episodes)

5.3.2.8 Baseline vs Tuned Parameters Model

To compare the training curves between the baseline and the tuned model,

moving averages were plotted in Figure 5.15, using the same data for the

training process.
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Figure 5.15. Training process of the models with tuned vs baseline

parameters (moving averages)

In this case we can observe that the tuned model presents a better re-

sponse in high traffic situations; the peaks reached lower values, leading to a

higher mean and lower standard deviation for emissions and waiting times,

that also present a descending value-behavior.

Regarding rewards, the tuned model presented lower values during the
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first episodes, but then they started to increase gradually, maintaining a

growing tendency.

After performing the training process for both models, 20 episodes of

testing were run with new simulation days. The results can be observed in

Figure 5.16. According to them, the tuned model appears to perform better

in terms of waiting times and emissions, indicating improved efficiency in

these aspects.

Figure 5.16. Testing episodes of the models with tuned vs baseline

parameters



100 5.3. Experiment 1: Single Agent

5.3.2.9 DQN vs no-DQN Simulations

In addition to comparing the tuned DQN model with the baseline, we also

conducted a separate comparison with a fixed time approach (no-DQN). For

this comparison, we ran simulations using the 110-second period-traffic light

static settings of Av. Ferrocarril - Calle 48, the road that we used for the

tuning, training, and testing procedures.

<tlLogic id="cluster 364144614 365473230 3663240788 3663240789"

type="static" programID="1" offset="0">

<phase duration="26" state="rrrrrrrrrrrGGGGGGrrrrrrGrGGGG"/>

<phase duration="6" state="rrrrrrrrrrryyyyyyrrrrrryryyyy"/>

<phase duration="6" state="rrrrrrrrrrrGGGGGGGGGGrrrrrrrr"/>

<phase duration="6" state="rrrrrrrrrrryyyyyyyyyyrrrrrrrr"/>

<phase duration="27" state="GGGGGrrrrrrrrrrrrrrrrGgggrrrr"/>

<phase duration="6" state="yyyyyrrrrrrrrrrrrrrrryyyyrrrr"/>

<phase duration="27" state="rrrGGGGGGGGrrrrrrrrrrrrrrrrrr"/>

<phase duration="6" state="rrryyyyyyyyrrrrrrrrrrrrrrrrrr"/>

</tlLogic>

In this case, the DQN approach significantly outperformed the fixed time

traffic light metrics, as shown in Figure 5.17.
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Figure 5.17. Testing episodes for the tuned model with proposed reward

vs no-DQN

5.4 Experiment 2: Multi-Agent

Within the scope of our research, as described in chapter 4, the LEZ we

are working with encompasses nine different roads. To address this, we have

adopted a multi-agent architecture, with each agent being a unique entity de-

veloped based on the attributes of the baseline agent, leveraging the insights

gained from the single-agent framework, described in section 5.3.

During the development of our multi-agent approach, a critical decision

was made regarding the architecture that agents should use for their learning

process. After an evaluation, we opted for a decentralized architecture for the

individual agents. In contrast to a centralized model, where all agents share

a single neural network, a decentralized approach minimizes the risk of com-

putational inefficiency, particularly when scaling the system to accommodate

more agents or adapting to changing environmental conditions. Moreover,

introducing a new agent or modifying the network structure in a centralized
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model could involve substantial computational overhead.

One significant aspect that influenced our choice of a decentralized archi-

tecture is the real-world nature of our scenario. In our real-world scenario,

traffic coming from nearby roads enters into the area of influence of a traffic

light, introducing noise and dynamic factors that also have to be consid-

ered in the training process. The decentralized architecture provides each

agent with its own neural network, enabling them to learn independently

and adapt to their specific conditions more effectively, which is crucial when

dealing with the unpredictable nature of traffic in a complex urban environ-

ment. This approach promotes a higher degree of autonomy among agents,

allowing them to respond to the environment’s dynamics without disrupting

the entire system. Thus, our choice of a decentralized architecture, shown

in Figure 5.18, reflects our goal of achieving a more adaptable, scalable, and

computationally efficient multi-agent learning framework customized to the

specific challenges of our real-world scenario-based environment.

Figure 5.18. Multi-agent architecture

5.4.1 Simulation Parameters

After tuning our single-agent Deep Q-Network (DQN) algorithm in sec-

tion 5.3, the fine-tuned parameters were taken as the setup for the agents

in our multi-agent DQN architecture with the reward function Rt = 0.2 ∗
∆ctwt+0.8∗emissionst. These parameters, shown in Table 5.5 have proven

effective in enhancing the performance of a single agent, and they serve as a

solid starting point for a multi-agent framework. In the following sections,
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results and discussion of how this framework behaves in terms of learning

process, waiting times, and emissions across different roads are shown, going

through different scenarios and loads of traffic (number of simulated routes,

thus, the number of vehicles). Simulations for two (subsection 5.4.2.1),

four (subsection 5.4.2.2), six (subsection 5.4.2.3), and nine roads (subsec-

tion 5.4.2.4) were run.

Considering the chosen architecture (Figure Figure 5.18) and the sim-

ulation parameters, the corresponding algorithm is designed and executed.

The pseudocode for the multi-agent approach for the DQN is presented in

Algorithm 2, implementing a multi-agent extension of the DQN framework

for traffic light control. The primary objective remains consistent: training

individual neural networks for each agent to select the optimal traffic light

actions based on specific states.

By allowing each intersection to optimize its traffic light control, the

system can adapt more effectively to local traffic conditions. Additionally,

this decentralized approach enables intersections to explore different strate-

gies independently, promoting a more diverse set of behaviors and decisions.

Furthermore, in a decentralized system where each intersection operates au-

tonomously, failures might remain localized, ensuring the overall system’s

operation. This is particularly crucial in dynamic environments where traffic

circumstances may be unpredictable.

On the other hand, a decentralized approach offers scalability advantages,

especially in real-world scenarios with large and complex traffic networks. As

the number of intersections increases, scalability becomes more manageable.

This scalability is essential for addressing the challenges posed by expanding

urban environments and growing traffic volumes. Despite this being the

chosen approach for the development of this work, multi-agent coordination is

still considered important and encouraged to evaluate its performance under

the case study scenario and test its response, and it is included as a future

research line in section 6.2.

To implement the described proposal, in this case, an agent-specific ini-

tialization is needed before the simulation begins, where the simulation pa-

rameters shared across all agents are set. These might include general settings

for the SUMO environment, traffic configurations, and the tuned simulation

parameters. For this purpose, the algorithm has an adaptable structure

where the number of roads to simulate in used as an input. With this

parameter, the main simulation script identifies the number of route files,
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Algorithm 2: Pseudocode for the DQN multi-agent simulation
Data: Input routes, number of roads/agents (same as edges), and tuned training parameters

1 Function main():

2 Initialize simulation parameters;

3 foreach agent do

4 Initialize agent-specific simulation memory;

5 Initialize agent-specific neural network model with corresponding output size (action

state);

6 for each episode do

7 Initialize simulation;

8 while multi-agent simulation is active do

9 Simulate time step;

10 foreach agent do

11 Collect state information;

12 Choose action for traffic light (ϵ-greedy);

13 Execute traffic light actions;

14 Calculate rewards;

15 Add sample to agent-specific memory;

16 foreach agent do

17 Train agent-specific model using memory replay;

18 Save episode statistics;

19 Save data and visualize results;

20 Function replay(model, agent-specific memory):

21 Retrieve a group of samples from agent-specific memory;

22 Update Q-values using the learning equation;

23 Train the neural network model;

models, and memories that it should create. Following this, for each agent,

specific simulation memory is initialized, as well as the agent-specific neural

network models. The size of the neural network’s output layer is configured

to match the action state of that particular agent. This is achieved by using

a model config dictionary, with the specific number of phases of each traffic

light.

After running the episodes and gathering data, each agent’s neural net-

work model is trained using experiences from its own replay buffer. The

training process involves updating the Q-values based on Bellman’s rule

(Equation 5.5).

This multi-agent setup helps each agent to operate within its specific

environment and learns from its own experiences, considering traffic that may

come from other roads. It allows for a more decentralized approach where

each agent can potentially tackle different traffic scenarios or intersections
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independently.

5.4.2 Results

In the analysis of multiple road scenarios, we will use the sum for metrics

such as emissions, rewards, and waiting times, aggregating values across all

roads for each episode. This approach enables us to estimate the total cu-

mulative impact across all roads and episodes, offering a comprehensive view

of the overall performance and environmental impact. In addition, test sim-

ulations are shown for the four-road and six-road scenarios, which represent

intermediate traffic scenarios among the one (already presented in subsection

5.3.2.9 two, four, six, and nine roads.

5.4.2.1 Two-Road Scenario

Considering Figure 5.19, Av. Ferrocarril - Colombia tends to have higher

emissions compared to Av. Ferrocarril - Calle 48. This indicates potentially

heavier or more challenging traffic scenarios at the first one.

In relation to rewards, Av. Ferrocarril - Colombia shows more pronounced

fluctuations, when compared to Av. Ferrocarril - Calle 48, which presented

lower peaks.

Regarding waiting time, Av. Ferrocarril - Colombia presents two signifi-

cant peaks, but the behavior is decreasing with the progression of episodes,

where it finally meets values similar to those presented by the other road.

Emissions also show a decreasing tendency, with peaks along the process,

which may be an indication of exploration actions carried out during the

training episodes, accompanied in some cases by higher traffic situations.

5.4.2.1.1 DQN vs no-DQN in a two-road scenario

To observe the behavior of the trained model, 30 episodes of testing were

run with emissions and waiting time data that had not been used during

the training process (same data for both approaches). Test and no-DQN

simulations were run for both roads simultaneously. Results are shown in

Figure 5.20.

The DQN model outperforms the static model with a significant reduction

in both emissions and waiting times in both roads. This suggests that the

DQN model is better suited for dynamic traffic conditions.
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Figure 5.19. Multi-agent simulation training process for two roads

5.4.2.2 Four-Road Scenario

Considering the combined performance of the Deep Q-Network (DQN) across

four roads (plotted in Figure 5.21), several insights emerge:

In terms of emissions, Av. Ferrocarril - Calle 48 shows higher emissions

compared to other roads, suggesting more challenging traffic conditions or

heavier traffic flow. The curves for all plots suggest a decreasing behavior

in emissions and waiting times, aligned with the rewards obtained during

the process. However, this is consistent until episode 150 approximately (see

sum lines), as shown in Figure 5.22.

Episodes around 150 and 175 show high peaks for Av. Ferrocarril - Calle

48 and Av. Ferrocarril - Colombia. This reflects heavy traffic conditions that

represented a challenging scenario where the response of the model might

have been exceeded. However, it is noteworthy that these peaks were not
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Figure 5.20. Testing episodesfor the DQN vs no-DQN (fixed time)

approaches in the two-road scenario
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Figure 5.21. Multi-agent simulation training process for four of the Low

Emission Zone’s roads

persistent since subsequent episodes demonstrated a return to more man-

ageable levels of traffic, indicating the adaptability and effectiveness of the

model in navigating through fluctuating traffic scenarios.

When analyzing rewards, both Av. Oriental roads demonstrate signifi-

cant fluctuations, with some episodes yielding lower rewards, that considering

subsequent episodes, tended to increase

Regarding waiting times, Av. Ferrocarril - Colombia again presented

higher values, suggesting longer waiting periods which could be contributing

to its higher emissions. The summed waiting times across all roads provide an

overview of the DQN’s impact on reducing congestion and improving traffic

flow.
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Figure 5.22. Multi-agent simulation training process for four of the Low

Emission Zone’s roads - Episodes 0 to 150

5.4.2.2.1 DQN vs no-DQN in a four road scenario

To observe the behavior of the trained model, 30 episodes of testing were

run with emissions and waiting time data that had not been used during

the training process (same data for both approaches). Test and no-DQN

simulations were run for all four roads simultaneously. The results are shown

in Figure 5.23.

The DQN simulation in this scenario demonstrated significantly lower

emission values compared to the static approach, indicating its potential as

a more eco-friendly solution. The DQN approach also led to shorter waiting

times, contributing to improved traffic flow. Overall, for both variables, the

DQN approach appears to offer benefits in terms of traffic flow and pollution
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Figure 5.23. Testing episodes for the DQN vs no-DQN (fixed time)

approaches in the four-road scenario
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reduction over the static approach.

Figure 5.24 displays the comparison between DQN and the static ap-

proach during the same episode of simulation, at the same step, using as

input the same set of traffic data.

Figure 5.24. Comparison of the same intersection, DQN vs Static

approach (4 roads - step 500 of simulation)

5.4.2.2.2 DQN vs no-DQN in a four-road scenario during week-

days

To test how well the model performs in an hourly basis, a simulation with

this scenario (4 roads) was executed, extracting the information from the

data analysis process. The four-road setup was chosen since its performance

represents an intermediate point among the models (one, two, four, six, and

nine).

The scenario was simulated between 6:00 am and 10:00 pm (22:00), and

the available traffic data (trips) are shown in Figure 5.25. Next, tests were

carried out using the static and the trained model, as shown in Figure 5.26.

These results showed that, despite having a daily granularity for training

our models, the hourly performance is really good, and as expected, the DQN

approach outperforms the static one.

We can also see that, as in the daily basis simulations, Av. Ferrocarril -

Colombia, and Av. Oriental - Calle 57 represent the highest contributions
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Figure 5.25. Data for the four-road scenario - Wednesday 06/04/2022

Figure 5.26. Grid plot - Test for the DQN vs no-DQN (fixed time)

approach in the four-road scenario - Wednesday 06/04/2022

to waiting times and emissions.
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5.4.2.3 Six-Road Scenario

An assessment of the DQN’s operation across the six-road scenario, shown

in Figure 5.27, gave us some insights:

The fluctuations in total emissions across the entire six-road network re-

flect the DQN’s ongoing attempts to regulate traffic emissions. Yet, these

fluctuations also point to a lack of consistent and effective control over emis-

sion levels.

Figure 5.27. Multi-agent simulation training process for six of the Low

Emission Zone’s roads

Certain roads like Av. Ferrocarril - Calle 57 and Av. Ferrocarril - Colom-

bia stand out for their substantial contribution to overall emissions.

In terms of rewards, some roads show significantly higher negative re-

wards, signaling episodes of suboptimal traffic management. This is partic-
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ularly evident on roads like Av. Oriental - Sucre and Av. Oriental - Calle

52, specially around episode 175 and subsequent.

When examining waiting times, the scenario is similar, with Av. Oriental

- Calle 57 experiences more elevated waiting times, indicative of serious con-

gestion issues. The performance in waiting times is similar to the observed for

emissions, in relation to the overall behavior along the simularion episodes.

This contrast in waiting times across the roads further illustrates the diverse

challenges encountered by the DQN in managing traffic flow effectively.

After performing these simulations, we can observe that roads like Av.

Ferrocarril - Calle Colombia, and Av. Oriental - Calle 57 represent focal

points due to their significant contributions to emissions and waiting times.

Additionally, it’s important to note that depending on the roads (thus

agents) working within the DQN, the behavior of traffic across the road

might present variations. For example, when comparing this scenario with

the four-road and the nine-road scenario (shown next), the number of traffic

lights operating with the DQN approach is different. This variation in the

number of agents (traffic lights) can lead to differing traffic dynamics. In

some cases, traffic might be alleviated in certain areas due to more efficient

light coordination, but this could inadvertently lead to increased congestion

in others if the network is not holistically balanced.

Also, the behavior observed around specific episodes like those between

175 and 200, where emissions and waiting times presented high values, could

be due to the agent encountering and learning to respond to heavy traffic

scenarios, and exploration-oriented decisions that could potentially lead to

increasing waiting times.

The DQN’s learning curve (rewards) and adaptability are shown progres-

sively along the episodes up to episode 170 approximately (see Figure 5.28,

since its tendency goes up and emissions and waiting time levels are ”stable”.

However, the varying performance across different roads highlights the need

for more road-specific strategies and potential areas for algorithmic improve-

ment.

This phenomenon underscores the complexity of traffic management,

where interventions in one part of the network can have ripple effects else-

where, showing the need for a comprehensive approach to ensure overall

traffic optimization.
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Figure 5.28. Multi-agent simulation training process for six of the Low

Emission Zone’s roads - Episodes 0 to 120

5.4.2.3.1 DQN vs no-DQN in a six-road scenario

To observe the behavior of the trained model in comparison to the fixed

approach, as performed in the four-road scenario, 30 episodes of testing were

run with emissions and waiting time data. The results for both approaches

are shown in Figure 5.29.

According to the results, we observed significant differences between the

static (no-DQN) approach and the DQN simulation. The static approach

exhibited notably high emission values, specially in roads like Av. Oriental

- Calle 57 and Av. Ferrocarril - Colombia, which were also challenging

during the training process. Additionally, Av. Oriental - Calle 57 displayed

longer waiting times. On the other hand, the DQN simulation demonstrated
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Figure 5.29. Testing episodes for the DQN vs no-DQN (fixed time)

approaches in the six-road scenario

lower emissions and more efficient management of traffic during simulation

episodes.

These results imply that the DQN approach might offer advantages in

terms of traffic flow and pollutant levels over the no-DQN approach.

These findings are consistent with those in the four-road scenario, rein-

forcing the potential advantages of the DQN approach.
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5.4.2.4 Nine-Road Scenario

Considering the performance of the DQN across the nine roads, a compre-

hensive analysis, based on Figure 5.30, gives diverse insights:

Emissions vary across the roads, but during the first 100 episodes, values

range within an interval not exceeding 2000 mg/s, in the case of Avenida

Oriental - Calle 57 and Av. Ferrocarril - Colombia, that exhibit the highest

levels (see Figure 5.31).

Figure 5.30. Multi-agent simulation training process for nine of the Low

Emission Zone’s roads

The summed emissions across all roads display fluctuations, indicative of

the DQN’s work in managing traffic emissions. However, this also indicates
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Figure 5.31. Multi-agent simulation training process for nine of the Low

Emission Zone’s roads - Episodes 0 to 120

that emissions are not being handled properly and consistenly. Notably, the

pronounced contributions of certain roads to the total emissions highlight

the variability in the DQN’s impact across different locations.

Waiting times present a similar picture, with Avenida Oriental - Calle 57

experiencing the highest values.

In terms of rewards, roads like Av. Oriental - Calle 52 and Cra 55 -

Avenida Oriental demonstrate significantly higher negative rewards, indicat-

ing episodes of less successful traffic management.

The DQN’s learning curve and adaptability are observed progressively

across episodes with an upward treng, but the divergent performance on dif-
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ferent roads, specially towards latter episodes (120¿) highlights that there is

room for improvement and exploration of other techniques when approaching

these kind of scenarios (complex and big).

5.4.2.4.1 DQN vs no-DQN in a nine-road scenario

To observe the behavior of the trained model in comparison to the fixed

approach, as performed with the other scenarios, 30 episodes of testing were

run with emissions and waiting time data. The moving averages for both

simulations are shown in Figure 5.32. The utilized road was Av. Ferrocarril

- Calle 48.

Figure 5.32. Testing episodes for the DQN vs no-DQN (fixed time)

approaches in the nine-road scenario
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According to the results, we observed significant differences between the

static (no-DQN) approach and the DQN simulation. The static approach

exhibited notably high emission values, contributing to a higher mean and

standard deviation. Additionally, it showed longer waiting times on average.

On the other hand, the DQN simulation demonstrated lower emissions and

more efficient waiting times on the same days.

In terms of waiting times, the DQN approach initially (between 15th and

21th episodes) showed some values rise to levels similar to those of the static

approach but then decreased again. This suggests the agent’s adaptive ca-

pability. These results imply that the DQN approach might offer advantages

in terms of traffic flow and pollutant levels over the no-DQN approach.

These findings are consistent with those from the four-road and six-road

scenarios, reinforcing the potential advantages of the DQN approach.

After performing this simulations, it’s clear that roads Cra 55 - Avenida

Oriental, Av. Ferrocarril - Colombia, and Av. Oriental - Calle 57 rep-

resent focal points due to their significant contributions to emissions and

waiting times. This leads us to believe that all the road segments that com-

pose Avenida Oriental (Figure 5.33) should be addressed with more intensive

traffic management mechanisms, as, according to the simulation results, this

road is one of the most critical in terms of congestion, (followed by Av. Fer-

rocarril) thus, emissions in the Low Emission Zone.

As a remark, it’s important to consider that the DQN positively affects

traffic flow, but so far it only focuses on the traffic lights for the specific road

segments analyzed. It’s plausible that some static lights within the simulation

environment may contribute to additional delays, indicating a broader scope

for optimization and coordination in traffic light management.
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Figure 5.33. Avenida Oriental road in Medellin’s Low Emission Zone

5.5 System Performance Analysis

In this section, we go through the hardware specifications of the computa-

tional platform utilized in our research, as well as the resulting execution

times and memory management.

5.5.1 Hardware Resources

Our computational work was carried out on a DELL workstation. The sys-

tem features a Core i9 12900 processor with an Intel architecture. With a

substantial 128GB of DDR5 ECC RAM, this computer boasts significant

memory capacity, complemented by a hybrid storage solution. A NVIDIA

RTX A4000 graphics card with 16GB DDR6 memory enhances the system’s

processing capabilities and supports CUDA. This combination of hardware

and software capabilities helped speed up training tasks in TensorFlow frame-

work [124] along with the SUMO scenario simulation. Table 5.6 summarizes

the workstation features.
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Table 5.6. Workstation Features

Feature Value

Format Workstation

Processor Intel Core i9 12900

RAM 128GB DDR5 ECC

Hard Drive 1 TB SSD PCIe + 2TB SATA 7.2K RPM

Video Card NVIDIA RTX A4000 16GB DDR6

Operating System Ubuntu 22.04

5.5.2 Simulation Execution Times

Since the implementation of the proposed DQN architecture required the

training of several neural networks and higher-traffic scenarios, despite traf-

fic being simulated simultaneously, the execution times were affected when

increasing the number of simulated roads. Figure 5.34 shows the execution

times for the simulation and training processes of the DQN framework with

different numbers of roads.

Figure 5.34. Number of roads vs execution times for the Low Emissions

Zone’s simulations

In Figure 5.34, the number of simulated roads and their respective ex-

ecution times reveals a clear trend: as the complexity of the simulation,

represented by the number of roads, increases, the average execution time

also rises. This suggests a positive correlation between these two variables

which appears to be linear, indicating that each additional road leads to a

consistent increase in execution time. Consequently, resource-intensive com-

putational requirements could pose challenges, especially when dealing with
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larger scenarios. For this, techniques like transfer learning [125] or shared

experience replay [126] could be explored to be more data-efficient and learn

policies for diverse road conditions.

Also, to address these computational challenges and optimize the system,

strategies like multi-GPU systems for parallel execution of neural network

training can be explored. With this, execution times for traffic scenario

simulations could be reduced. Additionally, employing parallel processing

techniques, like distributing neural network training across GPUs may lead

to efficiency gains.

5.5.3 Checkpoints and Memory Usage

For the execution of the DQN algorithm, a checkpoint system was imple-

mented, which involved saving and loading the neural networks model files

and their weights during the training process for two key reasons: first, the

checkpoints acted as a safety net against potential disruptions, such as energy

interruptions or unexpected external factors. In the event of an interruption,

the saved checkpoints enabled to resume the training process from the last

point where it saved the model’s weights. This approach was facilitated by

the creation of a bash script that executed the training process, specify-

ing initial and final episode ranges for each checkpoint. Depending on the

episode reached, by using a parameter the script determined whether to ini-

tialize a new model or load an existing one, ensuring training continuity and

robustness. Second, even though our workstation has high computational

resources, the process of training and saving DQN models in memory was

still a resource-intensive task, that got even more intense by increasing the

number of simulated roads. By using checkpoints, it could effectively man-

age and lighten the computational load, allowing the training to continue

without overburdening the system.

5.5.4 Applicability and Scenario Complexity

In the process of understanding system performance, we can discuss the

applicability of the DQN model within real-world traffic scenarios. Unlike

controlled environments (like SUMO’s), the real-world often come with chal-

lenges and complexities that extend beyond hardware scalability. These

challenges can significantly affect the model’s effectiveness and scalability

in deployment.
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For example, in our simulation, we acknowledge that certain elements,

such as traffic light IDs and origin-destination points (subsubsection 5.2.1.2),

were established manually. This manual setup not only highlights the need

for human intervention but also emphasizes the importance of realistic sce-

nario design. In real-world applications, such manual setups can be both

time-consuming and error-prone, especially when dealing with large urban

areas or complex road networks. Scalability, therefore, depends on the ability

to automate and generalize this scenario design process, ensuring that the

model can adapt to various urban scenarios and traffic conditions.

In terms of roads, the scalability of our DQN model relies on its ability to

generalize across different geographic regions and coverage areas. A model

designed for a specific road network may not readily adapt to a completely

different urban area, the model should be able to transfer knowledge and

adapt its policies across various regions and traffic scenarios.

Data is another crucial factor in real-world applications, because the dy-

namic nature of traffic conditions and the availability of real-time data play

an important role. Keeping this in mind, there should be availability and a

processing capability of ingesting data and adapting to this dynamic infor-

mation.

On the other hand, there are some ethical and regulatory considerations.

As autonomous systems become more prevalent on the road, regulations and

safety standards will play an important role in determining the scalability

and deployment of such models.
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Conclusion and Future Work

6.1 Conclusion

In response to the research question, ”How can a Machine Learning-based

model approach be effectively applied in urban traffic management to enhance

traffic efficiency and reduce emissions within a Low Emission Zone?”, this

study has made notable efforts to address the intricacies and dynamics of

urban traffic management. The findings presented throughout this research

affirm that Machine Learning approaches, particularly Deep Reinforcement

Learning, hold immense promise for the enhancement of traffic efficiency

and emissions reduction within urban settings, particularly in the context

of Low Emission Zones. The combination of SUMO, TraCI, and Python

enabled us to conduct parameterized experiments and run-time evaluations of

traffic control strategies, facilitating the optimization of traffic management

policies and the improvement of efficiency in simulated road networks. An

integral part of this journey was the discovery of the significance of model

tuning, where our selection of state variables was adapted based on empirical

data, with Intensity emerging as a significant contributor to improved model

performance. This iterative methodology extends beyond the refinement

of DQN elements, to encompass the optimization of specific components

within the neural networks. This underscores the adaptive nature of model

development, resulting in a more efficient DQN model.

The exploration of reward models played a significant role in achieving our

project’s goal: reducing congestion and evaluating their impact on emissions.

This underscores the fundamental connection between congestion reduction

and emissions control, while highlighting the ongoing need for adaptability

125
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and refinement of the DQN to optimize traffic management effectively.

As highlighted in subsection 5.4.2, the analyses showed a varied impact

of the DQN across different locations, revealing disparities in effectiveness

among road segments. This underlines the importance of continuous adapta-

tion, and improvement of the DQN to enhance traffic management strategies.

While this research illustrates the potential of reinforcement learning in

vehicular traffic management, it also presents some challenges that need to

be addressed before these strategies can be effectively deployed in the real

world. Despite reinforcement learning models have shown promise in opti-

mizing traffic management, the transition from simulated environments to

real-world scenarios presents complexities. The need for good quality real-

world data and significant interaction of the agents with the environment to

learn effective policies, coupled with ensuring citizen safety and data security,

remains a critical concern. As these systems become integral to urban traffic

management, safeguarding both the well-being of citizens and the integrity

of data is essencial.

Furthermore, the successful implementation of these systems in real-time

urban environments calls for a robust and reliable infrastructure. This in-

cludes addressing the challenges of integrating these technologies with ex-

isting traffic management systems, securing real-time data transmission,

and ensuring that the systems can operate under unpredictable urban and

weather conditions. Additionally, the computational capacity required to

handle the complexities of real-world traffic scenarios, where countless vari-

ables are at play, presents a huge challenge, however, the potential contribu-

tion of machine learning techniques to improve traffic efficiency and reduce

emissions in urban environments should not be ignored.

6.2 Future Work

In this section, we present potential paths for future research and develop-

ment. These directions aim to enhance the effectiveness of traffic manage-

ment and emissions reduction efforts, building on the findings of this study.

✓ Hourly analyses and data input enhancement: Consider conducting

hourly or time-of-day-specific analyses to account for temporal varia-

tions in traffic patterns and emissions. Enhance the simulation envi-

ronment by incorporating real-time data input, enabling the model to
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adapt to changing conditions throughout the day.

✓ Validation of the obtained test values for air quality (emissions) and

waiting times, to check whether they are within accepted ranges for the

Air Quality Index, and other national or international considerations

regarding this matter.

✓ Customization for road-specific strategies: Implement a higher degree

of customization for each road or intersection within the urban area;

adapt traffic management strategies to the specific characteristics and

demands of individual roads, thereby optimizing traffic flow and emis-

sions control in a more granular manner.

✓ Exploration of multi-agent coordination techniques: Investigate ad-

vanced multi-agent coordination techniques to enhance the overall ef-

ficiency of traffic management in urban areas, considering the interac-

tions between various agents within a Low Emission Zone. This must

be implemented carefully, since challenges such as scenario complexity,

computational demand might be present. besides, there could be bi-

ases towards local optimum values found by individual agents who are

trying to maximize their own rewards [127]. Also, in strategies such as

sequential decision making [84], scalability could present issues, due to

the exponentially growing action space.

✓ Exploration of alternative state representations: Extend the research

by exploring different state representations to capture a more compre-

hensive view of the urban traffic environment. This may involve incor-

porating additional variables or alternative data sources to improve the

model’s decision-making capabilities. Also, if the infrastructure of the

traffic light network allows it, communication schemes among agents,

wireless sensor networks, or V2I [7] could be involved to improve deci-

sion taking [128].

✓ Implementation of additional training episodes and supplemental data:

Explore the potential benefits of incorporating additional training

episodes supported by supplemental data provided by CITRA. This

approach holds promise for enhancing the model’s performance in real-

world applications, providing an optional avenue for improvement.
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Económica, vol. XLVI, no. 16, p. 32, 2016. [Online]. Available: http:

//dx.doi.org/10.2139/ssrn.2827118.

[14] D. E. Betancur Cardona, Congestión vehicular y poĺıticas públicas,
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[66] IBM. “¿qué son las redes neuronales recurrentes?” Consultado en el

sitio web de IBM, sin fecha. (), [Online]. Available: https://www.

ibm.com/es-es/topics/recurrent-neural-networks.

[67] P. Mahajan. “Fully connected vs convolutional neural networks.”

(2020), [Online]. Available: https : / / medium . com / swlh / fully -

connected-vs-convolutional-neural-networks-813ca7bc6ee5.

[68] Dive into Deep Learning (D2L). “Stochastic gradient descent.” (),

[Online]. Available: http://www.d2l.ai/chapter_optimization/

sgd.html.

[69] Dive into Deep Learning (D2L). “Adam.” (), [Online]. Available:

http://www.d2l.ai/chapter_optimization/adam.html.

[70] S. Lang, N. Lanzerath, T. Reggelin, M. Müller, and F. Behrendt, “In-

tegration of deep reinforcement learning and discrete-event simulation

for real-time scheduling of a flexible job shop production,” Dec. 2020.

doi: 10.1109/WSC48552.2020.9383997.

[71] D. Karunakaran. “Deep q network (dqn) - applying neural network as

a functional approximation in q-learning.” Retrieved from Medium.

(2020), [Online]. Available: https : / / medium . com / intro - to -

artificial - intelligence / deep - q - network - dqn - applying -

neural - network - as - a - functional - approximation - in - q -

learning-6ffe3b0a9062.

[72] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, Adaptive Traffic

Signal Control: Deep Reinforcement Learning Algorithm with Experi-

ence Replay and Target Network, en, arXiv:1705.02755 [cs], May 2017.

[Online]. Available: http://arxiv.org/abs/1705.02755 (visited on

05/19/2023).

[73] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade

learning environment: An evaluation platform for general agents,”

Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

https://doi.org/https://doi.org/10.1016/j.imavis.2019.06.005
https://www.sciencedirect.com/science/article/pii/S0262885619300885
https://www.sciencedirect.com/science/article/pii/S0262885619300885
https://www.ibm.com/es-es/topics/recurrent-neural-networks
https://www.ibm.com/es-es/topics/recurrent-neural-networks
https://medium.com/swlh/fully-connected-vs-convolutional-neural-networks-813ca7bc6ee5
https://medium.com/swlh/fully-connected-vs-convolutional-neural-networks-813ca7bc6ee5
http://www.d2l.ai/chapter_optimization/sgd.html
http://www.d2l.ai/chapter_optimization/sgd.html
http://www.d2l.ai/chapter_optimization/adam.html
https://doi.org/10.1109/WSC48552.2020.9383997
https://medium.com/intro-to-artificial-intelligence/deep-q-network-dqn-applying-neural-network-as-a-functional-approximation-in-q-learning-6ffe3b0a9062
https://medium.com/intro-to-artificial-intelligence/deep-q-network-dqn-applying-neural-network-as-a-functional-approximation-in-q-learning-6ffe3b0a9062
https://medium.com/intro-to-artificial-intelligence/deep-q-network-dqn-applying-neural-network-as-a-functional-approximation-in-q-learning-6ffe3b0a9062
https://medium.com/intro-to-artificial-intelligence/deep-q-network-dqn-applying-neural-network-as-a-functional-approximation-in-q-learning-6ffe3b0a9062
http://arxiv.org/abs/1705.02755


137 Bibliography

[74] M. V. del Moral, “Algoritmo deep q-learning para el aprendizaje por

refuerzo de una estrategia de conducción en 2d,” 2021.

[75] H. Chen, “A dqn-based recommender system for item-list recommen-

dation,” in 2021 IEEE International Conference on Big Data (Big

Data), 2021, pp. 5699–5702. doi: 10.1109/BigData52589.2021.

9671947.

[76] V. Mnih, A. P. Badia, M. Mirza, et al., Asynchronous methods for

deep reinforcement learning, 2016. arXiv: 1602.01783 [cs.LG].

[77] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

Proximal policy optimization algorithms, 2017. arXiv: 1707.06347

[cs.LG].

[78] J. Fan, A review for deep reinforcement learning in atari:benchmarks,

challenges, and solutions, 2023. arXiv: 2112.04145 [cs.AI].

[79] R. Frank and M. Forster, “Demo: A recommendation based driver

assistance system to mitigate vehicular traffic shock waves,” in 2014

IEEE Vehicular Networking Conference (VNC), 2014, pp. 125–126.

doi: 10.1109/VNC.2014.7013327.

[80] H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A Reinforcement

Learning Approach for Intelligent Traffic Light Control,” in Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, London United Kingdom: ACM,

Jul. 2018, pp. 2496–2505, isbn: 978-1-4503-5552-0. doi: 10.1145/

3219819.3220096. [Online]. Available: https://dl.acm.org/doi/

10.1145/3219819.3220096 (visited on 09/01/2022).

[81] S. Aradi, “Survey of deep reinforcement learning for motion planning

of autonomous vehicles,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 23, no. 2, pp. 740–759, 2022. doi: 10.1109/

TITS.2020.3024655.

[82] R. Hussain and S. Zeadally, “Autonomous cars: Research results, is-

sues, and future challenges,” IEEE Communications Surveys & Tuto-

rials, vol. 21, no. 2, pp. 1275–1313, 2019. doi: 10.1109/COMST.2018.

2869360.

https://doi.org/10.1109/BigData52589.2021.9671947
https://doi.org/10.1109/BigData52589.2021.9671947
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2112.04145
https://doi.org/10.1109/VNC.2014.7013327
https://doi.org/10.1145/3219819.3220096
https://doi.org/10.1145/3219819.3220096
https://dl.acm.org/doi/10.1145/3219819.3220096
https://dl.acm.org/doi/10.1145/3219819.3220096
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.1109/COMST.2018.2869360
https://doi.org/10.1109/COMST.2018.2869360


138 Bibliography

[83] “Traffic signal timing manual: Chapter 4.” Office of Operations, Fed-

eral Highway Administration. (2021), [Online]. Available: https :

//ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.

htm# : ~ : text = A % 20traffic % 20phase % 20is % 20defined , all %

20movements%20at%20an%20intersection.

[84] E. V. der Pol, Deep reinforcement learning for coordination in traffic

light control, 2016.
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[Online]. Available: https://www.medellin.gov.co/SIMM/apoyo-

a-la-red-semaf%C3%B3rica.

[90] “Sistema inteligente de movilidad de medelĺın (simm).” Retrieved 11
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