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A B S T R A C T

In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data
into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or
task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We
describe a method with minimal selection bias to quantify algorithm performance using human resting state data.
These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test
different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally
partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we
then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared
the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was
able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound
on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts
and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best
mean anatomical discrimination (3.7 mm) compared with Minimum Norm/LORETA (6.0 mm) and Multiple
Sparse Priors (9.4 mm). This pattern was replicated in the second (conventional dataset) although with a
marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the
abundant resting state data now commonly available could be used to refine and validate MEG source recon-
struction methods and/or recording paradigms.
1. Introduction

Magnetoencephalography (MEG) detects electromagnetic fields at
sensors outside the head. The challenge for the researcher is to infer the
neuronal current distribution responsible for the observed data, despite a
much higher number of possible sources than sensors. The general
approach is to restrict the number of potential solutions through a priori
assumptions, including the temporal relationship between sources (i.e.
source co-variance) and/or the anatomical manifold that gives rise to this
function (e.g. the cortical mesh). These assumptions are continually
being refined and debated (Baillet, 2015; Baillet et al., 2001; Lin et al.,
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2006; Wipf and Nagarajan, 2009). Two recurring issues make it difficult
for the community to come to a consensus on optimal source recon-
struction methods - the first is the choice of test scenario, the second is
the lack of ground truth.

Firstly, the choice of task, or simulation set-up used to compare source
localisations will introduce a selection bias towards a specific temporal
pattern predominant in certain cortical areas, which will suit some
inversion assumptions but not others. Here we set out a framework which
utilises diverse spatio-temporal patterns and minimizes selection bias by
using a Hidden Markov model (Baker et al., 2014) to parcel endogenous
resting-state data into collections of self-similar and quasi-stationary time
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segments. Resting state data have been shown to arise from dynamic
spatio-temporal network state fluctuations occurring on the scale of
100–200ms (Baker et al., 2014; Koenig et al., 2002; Wackermann et al.,
1993; Woolrich et al., 2013) that include the rehearsal of the transient
dynamic patterns observed during task performance (O'Neill et al.,
2017). These networks predominate in all M/EEG recordings (even those
which are task based) and are key to healthy brain function (Barttfeld
et al., 2015; Kaiser et al., 2015; Lewis et al., 2009; Li et al., 2012; Peterson
et al., 2014; Philippi et al., 2015; Reineberg et al., 2015; Sheline and
Raichle, 2013; Tessitore et al., 2012; Venkataraman et al., 2012; Wu
et al., 2014; Wurina et al., 2012). We rely on these iterant dynamics,
rehearsing multiple task scenarios, to provide a varied and unbiased
spatio-temporal repertoire of the source reconstruction problems one
might expect from any dataset on which to then test our inversion
schemes.

The second problem then, having identified an appropriate and
representative real dataset (as opposed to simulated data), is the lack of
access to the ground truth with which to compare recording/inversion
techniques. Here we leverage new analytic techniques to quantify the
sensitivity of MEG source inversion schemes by progressively deforming
the anatomical models (Lopez et al., 2013; L�opez et al., 2017; Stevenson
et al., 2014). Specifically, we quantify how distortions in the
MRI-extracted cortical manifold (mesh) affect our ability to predict or
model the underlying current distribution (using cross validation error
and Free energy). The technique assumes that the MEG sensor level data
are due to current flow normal to the cortical surface but makes no as-
sumptions about how this current should be distributed. The rationale is
that the best MEG inversion scheme will be the most sensitive to subtle
distortions of the cortical anatomy (as we know that MEG data derives
from grey matter structure). This spatial distortion metric then provides a
principled basis for comparing different a priori inversion assumptions
(i.e. different algorithms) and recording techniques. We are aiming for a
generic method to provide a benchmark to refine inversion (or recording)
methods based on human electrophysiological data from multiple labs.

The paper proceeds as follows: we first parcel resting state datasets
into brief epochs using a hidden Markov model (Baker et al., 2014). The
epochs for the four dominant networks were then amalgamated into four
network-specific datasets for each subject and taken forwards for inver-
sion. These datasets were then inverted onto a library of subject-specific
distorted meshes, for which we had control over the spatial detail
available in the forward model. For each of these meshes, and for each
inversion scheme, we quantified the model fit using cross validation and
Free energy metrics. As expected, we found that the greater the distortion
from the true cortical mesh, the poorer the model fit. We then used this
spatial quantification to compare different inversion schemes (imple-
mented as different co-variance prior assumptions). For these data, we
found that the beamformer-based priors (EBB) were the most sensitive to
small deviations from the true anatomy. In addition to distinguishing
between algorithms, here we also tested whether we could use the same
methods to distinguish between datasets collected with and without a
head-cast (Meyer et al., 2017a; Troebinger et al., 2014a; 2014b), where
the accuracy of forward model is more precisely known, and those
collected without and found marginal (but not significant) differences.

2. Methods

2.1. MRI

Subjects underwent two MRI scans using a Siemens Tim Trio 3 T
system (Erlangen, Germany). For the head-cast scan, the acquisition time
was 3min 42 s, in addition to 45 s for the localizer sequence. The
sequence implemented was a radiofrequency (RF) and gradient spoiled
T1 weighted 3D fast low angle shot (FLASH) sequence with image res-
olution 1mm3 (1mm slice thickness), field-of view set to 256, 256, and
192mm along the phase (A–P), read (H–F), and partition (R–L; second
3D phase encoding direction) directions respectively. A single shot, high
454
readout bandwidth (425 Hz/pixel) and minimum echo time (2.25ms)
was used. This sequence was optimized to preserve head and scalp
structure (as opposed to brain structure). Repetition time was set to
7.96ms and excitation flip angle set to 12� to ensure sufficient SNR. A
partial Fourier (factor 6/8) acquisition was used in each phase-encoded
direction to accelerate acquisition. For the anatomical scan later used
to construct the cortical model, multiple parameter maps (MPM) were
acquired to optimise spatial resolution of the brain image (to 0.8mm).
The sequence comprised three multi-echo 3D FLASH (fast low angle shot)
scans, one RF transmit field map and one static magnetic (B0) field map
scan (Weiskopf et al., 2013).

2.2. Head-cast construction

Scalp surfaces from the head-cast MRI data were extracted using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) by registering MRI images
to a tissue probability map which classified voxels according to tissue
makeup (e.g. skull, skin, grey matter etc.). The skin tissue probability
map was transformed into a surface using the ‘isosurface’ function in
MATLAB® and then into standard template library format with the
outlines of three fiducial coils digitally placed at conventional sites
(left/right pre-auricular and nasion). Next, a positive head model was
printed using a Zcorp 3D printer (600� 540 dots per inch resolution)
and this model placed inside a replica dewar-helmet with liquid resin
poured between the two, resulting in a flexible, subject specific, foam
head-cast with fiducial indentations in MRI-defined locations (Meyer
et al., 2017a).

2.3. MEG recording

Resting state data was acquired from 12 healthy subjects using head-
casts (age: 26.6 � 3.5 yrs (mean þ sd)) and 12 other healthy subjects
without head-casts (age: 25.2 � 6.6 yrs). All subjects were right handed,
had normal or corrected-to-normal vision, and had no history of neuro-
logical or psychiatric disease. Informed written consent was given by all
subjects and recordings were carried out after obtaining ethical approval
from the University College London ethics committee (ref. number 3090/
001).

All subjects underwent a 10min resting state scan with eyes kept
open and instructed to fixate on a central cross on a screen, using a CTF
275 Omega MEG system. The head was localised using the three head-
cast-embedded fiducials (head-cast subjects) or fiducials placed on the
nasion and left and right pre-auricular points (non-head-cast subjects).
Average range of absolute head movement within the 10min resting
state recording was 0.26� 0.06, 0.24� 0.05, 1.1� 0.54mm (X,Y,Z di-
rections; � SEM) for head-cast and 3.2� 0.5, 3.0� 0.5, 3.3� 0.2 (X,Y,Z
directions; � SEM) for non-head-cast data. The data were sampled at a
rate of 1200Hz, imported into SPM12 and filtered (4th order butter-
worth bandpass filter: 1–90Hz, 4th order butterworth bandstop filter
48–52Hz) and downsampled to 250Hz.

Traditional inverse problem solutions are based on the assumption
that the data are stationary during the period of inversion. However,
resting state data contains rapid dynamics that do not accord well with
this assumption (Woolrich et al., 2013). Therefore, in order to improve
stationarity within a given epoch, we parcellated the data into
self-similar periods that capture the resting state network transitions
(100–200ms) using a Hidden Markov Model (HMM) that could identify
the rapid formation and dissolution of recurring resting state networks
(Baker et al., 2014). With this, a ‘statepath’ was estimated for each
10min resting state block, which tracks the fine spatiotemporal dy-
namics and allocates each point in time to one of eight dominant network
states (Baker et al., 2014). For this statepath determination, a copy of
each subject's sensor level data was dimensionally reduced using prin-
ciple component analysis (PCA) to derive 40 components of unit variance
and mean (Woolrich et al., 2013). With these data, an 8 state Hidden
Markov model (HMM; www.fmrib.ox.ac.uk/~woolrich/HMMtoolbox)

http://www.fil.ion.ucl.ac.uk/spm/
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was then applied to derive the most probable state at all points in time
(the statepath) (Fig. 1A) (Baker et al., 2014). The continuous 600s of data
was then epoched into 200ms blocks/epochs (the average scale of in-
dividual state transitions (Baker et al., 2014) and each 200ms data epoch
allocated to a new dataset according to the state that was most dominant
during that time period. This resulted in 8 new datasets each with a
collection of epochs that corresponded to a distinct network state as
identified by the HMM. The four most dominant states for each indi-
vidual subject (as measured by most time spent in that state) was taken
forward for further analysis and spatial estimates averaged across those
four inversions for each subject. As the HMM was performed on indi-
vidual, rather than group concatenated data, state numbers did not
directly correspond across subjects. This however permits superior par-
titioning within subjects since it allows the model to optimally fit states
to the individual subjects, rather than fitting individual data to group
states that are (or are not) common across all subjects. This resulted in
815� 56.9 data segments per partitioned dataset - equivalent to 163s of
continuous data. Since the HMM selected periods of self-similarity within
the resting state, partial correlation maps were examined for all subjects
Fig. 1. MEG data and Hidden Markov Model network allocation. A. Top
panels show a selection of MEG sensor time series for head-cast subject 1.
Middle panel demonstrates the statepath as determined by the HMM, showing
rapid transitions between different states. Timecourses recorded from a random
subset of sensors is shown. Bottom panel shows a short (2s) period of data (MEG
channel labels e.g. MLF22 shown), expanded with the corresponding section of
the statepath (black line). Overlying the statepath trace (black) is the modal
statepath for each 200ms period (dash red line) and this modal statepath trace
was used to sort each 200ms data epoch into 1 of 8 states according to which
state was most frequent during that period. These epochs of data for each of
these states were aggregated together to form 8 new datasets. B. The statepath
traces for the four most dominant states here (1, 5, 6, 7) are shown correlated
against the time series amplitudes in all sensors to derive a map of activity (red,
greater positive correlation, blue, less positive correlation) associated with each
particular state. Data are shown in sensor space in order to check that differ-
ential network parcellation had indeed occurred according to the statepath
detection method and was not artefactual (e.g. that the topography resembles
that expected for an eye blink). In the example shown here – state 5 is the most
common state – corresponding to the posterior alpha rhythm.
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to check that segregation into separate networks had occurred and this
segregation did not relate to eye blinks, muscle artefacts or cardiac
interference (Fig. 1B).

2.4. Subject-specific cortical mesh libraries

To extract the cortical pial mesh surface, we used Freesurfer software
optimized for MPM scans by using PD and T1 volumes as inputs. A
detailed description of these methods of cortical surface reconstruction
and optimization can be found in earlier work (Carey et al., 2017; Lutti
et al., 2014). Then, for each individual subject, the pial cortical mesh was
taken and deformed using a 3D weighted Fourier analysis that effectively
decomposes the original 3D mesh structure into spatial harmonic com-
ponents (Chung et al., 2007). These are then sequentially combined to
form a set of meshes of progressively increasing spatial detail (Fig. 2B)
(Stevenson et al., 2014). These meshes are called the Weighted Fourier
Series (WFS) and result in a library of meshes for each subject with
different levels of spatial detail, from a completely smooth pair of ovoid
surfaces (mesh 1) up to a mesh which is very similar to that extracted
from the MRI of the subject's brain (mesh 50) (see Fig. 2B). The WFS can
be expressed as follows:

Fk
σ ½f �ðωÞ ¼

XL

l¼0

Xl

m¼�1

e�lðlþ1ÞflmSlmðwÞ

where σ is the bandwidth of the smoothing kernel (set at 0.0001), L is the
harmonic order of the surface, Slm is the spherical harmonic of degree l
and order m, and the Fourier coefficients are given by <flm¼f, Slm>,
where f is determined by solving a system of linear equations (Chung
et al., 2007). All meshes, including the true mesh, were downsampled by
a factor of 10 in Freesurfer, to ~33,000 vertices per mesh to aid
computational efficiency. This resulted in a mean vertex distance to
nearest neighbour of 1.7mm (mean within-subject 5 & 95 percentiles
0.8–2.6mm).

2.5. Source reconstruction

We used SPM12 which implements multiple different inversion
schemes within a common empirical Bayesian pipeline, whereby all
processing steps, besides the choice of prior source co-variancematrix are
held constant (Friston et al., 2008; L�opez et al., 2014). The choices of
prior source covariance matrices used embody four popular inversion
algorithms: The traditional unweighted Minimum norm (MMN) in which
the source covariance is a diagonal (IID) matrix (H€am€al€ainen and Ilmo-
niemi, 1994). An (unweighted) LORETA-like solution (Pascual-Marqui,
2002) based on a surface (rather than volumetric) smoothing using
Green's function (Harrison et al., 2007) (LOR). An Empirical Bayesian
Beamformer (EBB) inversion (Belardinelli et al., 2012) in which a direct
estimate of prior source co-variance is made based on the sensor-level
data (and zero regularization). The main difference between the EBB
scheme and the classic linearly constrained minimum variance (LCMV)
(Van Veen et al., 1997) scheme is that the EBB attempts to fit the
measured data (by optimizing model evidence). This has the advantage
that EBB attempts to explain the measured data and can therefore pro-
vide a direct model evidence metric (which can then be compared to
other linear inversion algorithms); but the disadvantage is that if there is
external noise in the measured data the Bayesian scheme will still
attempt to fit it (unless appropriately modelled) whereas the LCMV
(spatially filtered) solution will be unaffected. The multiple sparse priors
algorithm (MSP) (Friston et al., 2008) uses an optimized search to select
mixtures of source covariance matrices each describing the activity of
separate patches of cortex. For each of the different algorithms, the
source level estimates were weighted against a diagonal sensor noise
covariance matrix (effectively regularizing the solution) within the same
empirical Bayes framework. For more details on each of these methods
and the empirical Bayesian optimization please see (Belardinelli et al.,



Fig. 2. Relative Cross Validation and Free energy
results for a library of different meshes for head-
cast resting data using EBB inversion. A.
Increasing cross validation data explained (ΔCV) and
relative Free energy ΔF with improving spatial reso-
lution of harmonic meshes (from left to right). Top
plots show individual subject ΔCV (left) and ΔF
(right) values with superimposed mean value (dashed
black line). Lower panels show the group level sta-
tistical significance using t-test (ΔCV) and Bayesian
model comparison (ΔF) for cross validation and Free
energy respectively. B. Example selection of meshes
from subject 1 showing different levels of distortion,
from smooth ovoid surfaces (WFS mesh 1) up to the
real mesh.
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2012; Friston et al., 2008; L�opez et al., 2014).
The HMM parcellated datasets originally contained 272 channels and

50 time samples (3 channels were damaged and excluded from the data).
As part of the cross validation procedure, we excluded 10% of these
channels from the inversion stage, leaving 245 channels of data. This
procedure left 27 unused channels out of the inversion, the data from
which were then predicted based on the source estimates and compared
to the real sensor data. For each of the ten cross-validation folds (each
time a random 10% of channels were selected to be left out), the
remaining (245 channels of) data were temporally decomposed into 16
orthogonal temporal modes and inverted onto each surface from the li-
brary of individualised and distorted cortical meshes (WFS) for each
subject. Each inversion provided 10 cross-validation scores (the predic-
tion of the hidden channels) which were then converted to a percentage
of source data explained (more positive¼ better model fit) and averaged
across the 10 folds and across the four state datasets inverted per subject.

Both cross validation and Free energy provide metrics which can be
used to directly compare different models of the same data, with different
independent methods of preventing over-fitting (Bonaiuto et al., 2018;
Henson et al., 2009). Whilst the Free energy provides a useful relative
model fit metric for any given dataset, the absolute value is data
dependent and therefore cannot be used to compare between datasets. In
contrast, the cross validation gives a meaningful quantification of the
total amount of data explained and can be used to compare across the
different groups (e.g. head-cast versus non head-cast). After converting
cross validation error to the percentage of total data explained by the
model, both the CV % data explained and the Free energy increase with
improving model fit.

Here we performed these inversions using our subject specific li-
braries of anatomically degraded meshes from the WFS with different
levels of distortion and compared them to an inversion performed using
the real mesh for each subject. We constrained the source estimates to lie
on the cortical surface and normal to that surface (Phillips et al., 2002). In
order to facilitate comparisons of how the anatomical distortion affected
the inversions for different subjects with different baseline measures of
model fit to their real brain meshes, we normalised the cross validation
percentage data explained and Free energy metrics by subtracting the
values for the real mesh to derive a relative measure (ΔCV and ΔF). As
such, a worse fit gives a negative value of ΔCV (and ΔF) and we would
predict that as the anatomical complexity of the mesh increases (mesh is
less distorted) and approaches that of the real mesh – the quality of the
model should improve and the ΔCV and ΔF values should approach zero.
Across our group of subjects, we determined the level of distortion
(harmonic) at which this first becomes statistically distinguishable from
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the real mesh using a t-test of ΔCV values for each harmonic compared to
zero. Similarly for ΔF, we use Bayesian model comparison to find out
how much distortion is needed to make two meshes distinct. For
example, using algorithm A we may find that inversions are not much
worse (ΔCV and ΔF not significantly different from zero at the group
level) using very distorted meshes all the way down to quite a smooth
mesh harmonic (e.g. <10) i.e. the inversion algorithm is very insensitive
to changes in the mesh shape. Alternatively, using algorithm B, we find
that even with very subtle distortions of the mesh, that the inversion fit
deteriorates substantially, so down at just harmonic 40 (which looks to
the naked eye to be very similar to real mesh) the ΔCV and ΔF values are
significantly below zero at the group level. This point (10 and 40 in this
example), labelled the highest distinguishable harmonic (HDH), iden-
tifies the minimum amount of mesh distortion that can be reliably
distinguished from the real mesh by inversion and can be converted into
a conventional spatial metric (mms) by comparing vertex distances. The
three dimensional Euclidean distance between every vertex from the
HDH and the corresponding vertex on the true mesh was therefore
calculated to give a distribution of 33,000 distances between the real
mesh and the first mesh that can be distinguished from it statistically by
inversion. We then took the upper, 95th percentile as an estimate of the
distance between the twomeshes. In addition to using the 95th percentile
rather than the mean, this method is more conservative than that pre-
viously employed (Stevenson et al., 2014), as this directly matches cor-
responding vertices and therefore reduces the underestimation that could
result if, following harmonic distortion, a vertex now lies closer to a
non-corresponding other vertex. This distance therefore represents an
upper bound on the spatial discriminability of both head-cast and
non-head-cast resting state data.

2.6. Control analyses

In order to verify our findings, we performed a number of control
analyses. Firstly, we used the same data but destroyed its correspondence
with the MEG sensor locations by randomly shuffling the MEG channels
labels and repeated the analysis above 10 times for each subject and
averaged over theΔCV for these different shuffled dataset inversions. It is
worth noting that sensor shuffling also removes all the (real) spatial
correlations between sensors, however since they are not independent,
they are not perfectly exchangeable and thus we also performed a sec-
ondary control analysis. For this, we used the correct sensor labels but
instead degraded our data by introducing different amounts of uncorre-
lated scaled white noise at the sensor level to change the signal-to-noise
ratio of the sensor level data (5 dB to - 20 dB) (Troebinger et al., 2014a).
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In both cases (sensor shuffling and noise addition), one would expect the
ability to discriminate the true generative model from distorted ones to
decrease.

3. Results

3.1. Anatomical cortical model

In order to determine the sensitivity of the inversion to the level of
detail in the underlying anatomical mesh model we calculated the ΔCV
and ΔF for each subject in the head-cast dataset across their subject-
specific library of distorted meshes (Fig. 2). This showed increasing
cross validation sensor data explained (ΔCV; reduced error) and
increasing Free energy (ΔF) for all subjects. Statistical group level testing
revealed that meshes lower (more deformed) than the 35 harmonic could
be distinguished from the real mesh by ΔCV (HDH 35; t11¼�2.49,
p¼ 0.03) and lower than 31 by ΔF (BMC, exceedance p¼ 0.046; Fig. 2).
Having confirmed our results using the two metrics – we proceeded with
the ΔCV metric which can be compared across subjects and recording
methods.

3.2. Inversion algorithms/source covariance priors

The effect of source co-variance prior assumptions was then assessed
by repeating the process for three other commonly implemented inver-
sion algorithms (MMN, LOR, MSP) on our head-cast dataset. These
showed lower anatomical mesh discriminability for all alternative algo-
rithms with an HDH for MMN of 25 (t11¼�1.80 -, p¼ 0.036), an HDH of
25 (t11¼�1.79; p¼ 0.039) for LOR and an HDH of 17 for MSP
(t11¼�2.55; p¼ 0.027) (Fig. 3A).

The mean distance between vertices on these meshes and corre-
sponding vertices on the real (MRI-extracted) mesh was then calculated
for each subject. These were then averaged to give a spatial measure of
anatomical discriminability (Fig. 3A), under the different prior covari-
ance assumptions as implemented in the different inversion algorithms.
This ranged from 3.7mm for EBB to 6.0mm for MNN/LOR and 9.4mm
for MSP (Fig. 3B). Directly comparing the amount of data explained
through cross validation across inversion conditions (using the real
mesh) demonstrated a significant difference between EBB and the other 3
algorithms (EBB/MMN; paired t-test – t11¼ 7.6,p< 0.001; EBB/LOR;
paired t-test – t11¼ 7.6,p< 0.001; EBB/MSP; paired t-test –

t11¼ 14.4,p< 0.001).
A 2-factor within-subject ANOVA of % cross validation data explained

with factors – inversion type (EBB, MMN, MSP) and mesh smoothness
(harmonic 1 and harmonic 50) showed a significant interaction between
inversion type andmesh harmonic level (F2¼ 29.9, p< 0.0001). Post hoc
examination showed that this was driven by a stronger effect of mesh
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distortion on the MSP inversion algorithm than EBB or MMN.

3.3. Head-cast versus conventional MEG

The EBB algorithm was therefore taken forwards for a comparison of
head-cast versus non-head-cast datasets (Fig. 4). We found that the HDH
was higher for the head-cast recorded dataset at 35 (3.7mm; t11¼�2.49,
p¼ 0.03) than for the non-head-cast related dataset at 29 (5.0mm,
t11¼�2.70, p¼ 0.021). Furthermore, the absolute (non-normalised)
amount of data explained through cross validation (CV) was higher in the
head-cast (83.2� 0.71%) than in the conventional recordings
(79.7� 1.79%) although this difference was not significant (mixed
ANOVA; main effect of hcMEG versus cMEG, F¼ 3.06; p¼ 0.09).

3.4. Control analyses

Finally, we checked our analyses by repeating our inversions (Head-
cast dataset, EBB algorithm) but after degrading the consistent rela-
tionship between our sensor positions and sources by shuffling the sensor
labels. As expected, this resulted in a breakdown of the previously shown
relationship between cross validation and Free energy with mesh
distortion. Notably we found that lower harmonics (smoother) meshes
now showed higher ΔCV (Fig. 5A) (smoother surfaces superior when
sensors shuffled). Thereafter we degraded our data (without sensor
shuffling) by the addition of varying levels of Gaussian white noise (5 to
�20 dB) and again repeated our analysis (Fig. 5B). This demonstrated
that with increasing levels of noise (decreasing SNR), the curve
describing the relationship between cross validation and harmonic mesh
function flattened and the crossing point (HDH) reduced, indicating that
the inversion was no longer able to statistically distinguish the more
complex meshes from the real mesh, as would be expected if the data are
primarily noise.

4. Discussion

Resting state data is dynamic, emulates task induced network
changes, is predictive of behaviour and is simple to acquire in both
control and patient populations (Baker et al., 2014; Larson-Prior et al.,
2013; Niso et al., 2016; O'Neill et al., 2017; Philippi et al., 2015; Taylor
et al., 2017). Here we show that it can provide a ready substrate for
principled testing of MEG recording methods and inversion assumptions
including anatomical forward modelling and functional (co-variance)
priors.

We showed that in moving the cortical surface from a heavily dis-
torted version to the true anatomy, a significant and monotonic
improvement occurred in model fit. This improvement saturated for
some inversion schemes before others, with the beamformer based
Fig. 3. Effect of different inversion schemes on
head-cast resting state resolution. A. Relative cross
validation data explained (ΔCV) for head-cast MEG
dataset (averaged across 12 subjects), shown for 4
different inversion types (EBB, MMN, LOR & MSP)
according to mean distance of the distorted mesh (x
axis) from the real mesh. Lower panel shows the
group level statistical significance by t-testing (note
MMN (red) and LOR (grey) have very similar values
and therefore lines are closely overlapping). B. Mean
distance of vertices from highest significant mesh
identified in the left hand panel and the real mesh.
Error bars show SEM of this distance across subjects
using their individualised meshes and group level
HDH.



Fig. 4. Comparison of head-cast versus conven-
tional MEG cross validation accuracy. A. Compar-
ison of ΔCV for different recording methodologies
with head-cast (hcMEG) data showing higher
discrimination (3.7 mm) than conventional MEG
(cMEG) data (5.0 mm). B. Absolute cross validation
data explained is also higher in the head-cast versus
the conventional MEG. Note that this holds for all
inversion types and for all levels of mesh distortion,
but was not significantly different (F¼ 3.06,
p¼ 0.09).

Fig. 5. Effects of shuffling sensors (A) and replacing data with varying
levels of Gaussian White noise (B). A. The relationship between the per-
centage of data explained through cross validation (ΔCV) of inversion (nor-
malised to the real mesh) and increasing harmonic mesh after random shuffling
of sensor labels. Note the decreasing cross validation fit with increasing mesh
harmonic (increasing mesh detail) with the dashed line showing the average
across all subjects. B. The relationship between (mean of all 12 subjects) ΔCV of
inversion and increasing harmonic mesh after addition of Gaussian white noise
across a range of noise additions (from SNR 5 to SNR -20 in decibels (dB)).
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algorithms (closely followed by Minimum norm) continuing to improve
up until the cortical surface deviated by, on average, <4mm from the
ground-truth. Critically, rather than compare methods through simula-
tion or a limited task set (with ground truth from another modality), we
have presented a method to optimise MEG forward and inverse models
whilst minimizing selection bias and based on a plentiful supply of non-
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invasive human data. The HMM constrained the source estimates to
select out self-similar and stationary epochs – under the assumption that
this would also lead to a clearer picture of the underlying source distri-
butions (essentially segmenting multiple overlapping source distribu-
tions into different temporal parcels and therefore simplifying the source
reconstruction problem). We tested whether this step was justified by
comparing the resolution estimates from the HMM parcelled data with
arbitrary mixtures of parcels (supplementary Fig. S1). We found that the
HMM approach demonstrated a significantly higher resolution in each
subject compared to the non-HMM dataset (t11¼ 3.18, p< 0.009). An
alternative scheme, avoiding both resting state and the HMM, would be
to define stationary periods of time around a common battery of tasks/
stimuli to be used (but first agreed upon) universally; however, the
concern would be that the ensuing cortical responses might still only
occupy a small portion of the possible spatio-temporal solution space.

We then compared algorithms in two ways: by the model fit (or
amount of data predicted), and by the sensitivity of each algorithm to the
true anatomy. These two tests need not necessarily have been in accord.
For example, had we used a bunny-shaped blancmange mould instead of
a cortical surface, we would still have been able to rank the algorithms
based on the amount of data predicted; but we would not have expected
any monotonic improvement as features were added to the bunny. A
related control analysis (Fig. 5) is that when we used the same data but
with shuffled lead-fields (destroying the link between the sensors and the
anatomy) the amount of data we are able to predict actually decreases as
the cortical model approaches the truth. It is therefore striking that the
models that benefitted most from the true cortical manifold were also
those that predicted the most data. This adds anatomical validity, con-
firming that the data being described is indeed generated by pyramidal
cell populations normal to the cortical surface. Furthermore however, it
also allows us to quantify algorithm performance in millimetres without
being restricted to or dependent on using a particular processing
framework (e.g. SPM) or cost function (e.g Free energy or cross valida-
tion) (Stevenson et al., 2014).

Across anatomy (Fig. 2) and inversion assumptions (Fig. 3), the
parametric (Free energy from empirical Bayes) and non-parametric
(cross-validation) metrics of model fit were in accordance. This helps
build confidence in the parametric Free energy metric which is consid-
erably faster, makes use of all the available data, and has a direct prob-
abilistic interpretation (i.e. how much more likely is one model than
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another?). The Bayesian formalism is however predicated on comparing
how different models explain the same data; the use of cross-validation,
which provides an absolute quantitative measure of data predicted, also
allowed us to compare between different datasets (head-cast versus non-
head-cast). We confirm here earlier reports that within-session head
movements are reduced for head-cast versus non-head-cast MEG
(Bonaiuto et al., 2017; Liuzzi et al., 2017; Meyer et al., 2017a; 2017b).
We were surprised that the head-cast and non-head-cast data were sta-
tistically indistinguishable in terms of spatial resolution (mixed ANOVA;
main effect of hcMEG versus cMEG, F¼ 3.06; p¼ 0.09). However, we
believe that the comparison was particularly conservative in that the
non-headcast group showed very little average head movement (3mm),
comparable to the average mesh vertex spacing (1.7mm). Another lim-
itation could be that the models we are using do not sufficiently capture
the physics or physiology of the generators of the measured magnetic
fields; and that the resolution is constrained by the models and not the
recording. This could include for example, un-modelled noise sources
such as the heartbeat, eye-blinks and other sources of noise. Although the
HMM states we used were visually inspected to avoid common artefacts
such as eye-blinks, it is possible that some of the modelling deficiencies
come from failure to explain data that does not arise from the cortex (e.g.
heart-beats). Finally, the head-cast and non-head-cast cohorts did not
overlap and a more sensitive analysis would have been to perform a
within-subject comparison.

Here we used individualised meshes with current flow constrained to
be normal to the cortical surface. These normal constraints, based on the
MRI surface extraction, will themselves have some noise (which will be
attenuated by smoothing in the lower harmonic orders) and could be one
of the limiting factors in our spatial resolution estimates. One further
consideration was that our estimates of resolution might have been
confounded by absolute levels of signal power. We found no evidence for
this in any frequency band (supplementary Fig. S2). We did, however,
find that our subject group was divided into subjects showing a dominant
theta/delta peak and those showing a peak in the alpha range (supple-
mentary Fig. S2). We found that consistent with previous (MEG within-
subject) findings (Stevenson et al., 2014), we achieved a greater sensi-
tivity to spatial distortion in the subjects with a peak in a higher fre-
quency range (p< 0.002). This is consistent with invasive observations
that higher frequency oscillations tend to have smaller spatial coherence
domains (Leopold et al., 2003). We should note however that the theta
cycle is close to our chosen window length (200ms) and this could be
another reason for the lower spatial resolution estimates in those subjects
dominated by lower frequencies.

We found that the Multiple Sparse Priors algorithm had the least
dependence on the true anatomy and also explained the least data. We
should note however that the MSP-based analyses implemented here
were generic and constructed from a limited set of 512 patches (or priors)
placed at approximately evenly spaced vertices. The MSP algorithm,
although perhaps themost elegant and comprehensive methodwe tested,
is also computationally disadvantaged by the need to search over a large
space of possible patch/prior combinations and the inherent pitfalls of
local extrema in this optimization. A more robust way to implement this
algorithm would have been to select the best model from many random
patch choices (Troebinger et al., 2014b). Moreover, the relationship
between sparsity assumed by the algorithm, and resting state networks
used here for analysis, is beyond the scope of this study. We should note
that the implementations of all the algorithms we tested were generic and
not individually optimized. For example, had we used an optimized MNE
framework (Gramfort et al., 2014) then no doubt its relative sensitivity
would have improved. Here we focus on developing the benchmark and
showing its application, rather than an exhaustive comparison of
algorithms.

This study was analysed using broadband (1–90 Hz) resting state
data. Therefore, whether a similar level of spatial discriminability at the
mm scale can be demonstrated when more selective data is used (e.g.
frequency filtered or spatially restricted) remains to be shown. For
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example, future work might test different frequency bands (eg <30 Hz,
>30 Hz) against different anatomy for example infra/supra granular
cortical surfaces (Arnal and Giraud, 2012; Bastos et al., 2012; Bonaiuto
et al., 2018, 2017).

Overall, we have here demonstrated and validated a robust and un-
biased method for the comparison of inversion and MEG recording
methods that can in future be used to evaluate and optimise future
techniques.
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