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VIII

Resumen

En este trabajo de tesis doctoral se investiga tedricamente la estructura y fotodinamica rapida de los
polaritones moleculares utilizando para ello una secuencia de pulsos laser segin los protocolos de la
espectroscopia no lineal bidimensional. El sistema fisico en estudio es un colectivo de emisores molecu-
lares en interaccion fuerte con un modo de la radiacién cuantizada en una cavidad y sujeto a procesos
disipativos debidos al ambiente que lo rodea.

En el limite semi-impulsivo y con la aproximaciéon de onda rotante para los pulsos laser, se han obte-
nido férmulas conceptualmente simples y computacionalmente eficientes para el cdlculo de espectros
bidimensionales dentro de un enfoque perturbativo. Estas expresiones son ttiles para cualquier sistema
cudntico abierto caracterizado con un Liouvilliano. Excepto por la diagonalizaciéon de la matriz del
Liouvilliano, nuestro método es completamente general y analitico.

Se ha llevado a cabo un estudio detallado de espectros lineales y no lineales para un nimero finito de
moléculas emisoras confinadas en una cavidad. Cada molécula se trata como un sistema de dos niveles
electrénicos, sujeta a procesos de relajaciéon vibracional y la cavidad sufre pérdidas fotonicas. Estos
procesos disipativos se adicionan a la dinamica del Hamiltoniano, modelando un sistema cuantico
abierto cuya dindmica se ha resuelto a través de una ecuacién maestra para el operador densidad.
En escenarios de un colectivo de moléculas, la dinamica de la relajacién de los estados polariténicos
brillantes hacia los estados oscuros emerge como un factor crucial para explicar la asimetria observada
en las senales espectrales experimentales. Esta asimetria se pone de manifiesto tanto el los picos de
los espectros lineales de absorcién y emisién como en los picos diagonales y cruzados de los espectros
no lineales bidimensionales. La descripcion tedrica desarrollada en esta tesis resulta consistente con
resultados experimentales recientes realizados sobre J-agregados moleculares inmersos en cavidades.

Palabras clave:

Quimica polaritonica. Optica cuantica, Espectroscopias no lineales multidimensionales



IX

Abstract

In this doctoral thesis, the theoretical structure and fast photodynamics of molecular polaritons are
investigated by using a sequence of laser pulses according to protocols of two-dimensional nonlinear
spectroscopy. The physical system under study is an ensemble of molecular emitters in strong inter-
action with a mode of quantized radiation in a cavity and subject to dissipative processes due to the
surrounding environment.

In the semi-impulsive limit and within the rotating wave approximation for laser pulses, conceptually
simple and computationally efficient formulas have been obtained for calculating two-dimensional
spectra within a perturbative approach. These expressions are useful for any open quantum system
characterized by a Liouvillian. Except for the diagonalization of the Liouvillian matrix, our method is
entirely general and analytical.

A detailed study of linear and nonlinear spectra has been conducted for a finite number of emitter
molecules confined in a cavity. Each molecule is treated as a two-level electronic system, subject to
vibrational relaxation processes, and the cavity undergoes photon losses. These dissipative processes
are added to the dynamics of the Hamiltonian, modeling an open quantum system whose dynamics
is solved through a master equation for the density operator. For an ensemble of molecules, the rela-
xation dynamics of bright polariton states to dark states emerges as a crucial factor in explaining the
asymmetry observed in experimental spectral signals. This asymmetry is evident in both the peaks of
linear absorption and emission spectra and in the diagonal and cross peaks of two-dimensional nonli-
near spectra. The theoretical description developed in this thesis is consistent with recent experimental
results conducted on molecular J-aggregates immersed in cavities.

Keywords:
Polariton Chemistry, Quantum Optics, Nonlinear multidimensional spectroscopy.
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Introduction

This PhD work intends to shed light on the fast dynamics of radiative and nonradiative processes of
molecules immersed in optical cavities, subject to strong coupling with the cavity quantized radiation,
by using nonlinear multidimensional spectroscopy techniques. The theoretical understanding of the
many peaked signals (their intensity, position and broadening) that appear in the nonlinear spectra of
this kind of entangled quantum systems help in the elucidation of the inner mechanisms of excitation,
emission and dissipative relaxation of molecular polaritons. These field dressed states emerge from the
interaction between light and matter in the strong coupling regime inside cavities [1, 2]. In this regime
the molecular emitters coherently interact with the cavity and they emit and reabsorb cavity photons
to undergo Rabi oscillations between excited states and the ground state, with an associated process
of photon-matter hybridization.

Polaritons have proven to be effective in many photodynamics applications, for instance, they have
been used for modifying molecular chemical reactions [3, 4, 5, 6, 7, 8], even suppressing some reac-
tion pathways [9]. They have also been exploited to significantly enhance energy transport processes
[10, 11, 12, 13, 14, 15]. Other applications can be found in [16, 17]. The potential uses of polaritons to
modify chemical properties has given rise to the field of polaritonic chemistry [18, 19, 20, 21, 22, 23, 24],
which bridges two major fields of research: i) cavity quantum electrodynamics (cQED), which descri-
bes the quantum nature of electromagnetic (EM) fields confined in cavities, necessary for obtaining
polariton states, and ii) chemistry, which describes the material emitters (usually atoms or molecu-
les), the second ingredient necessary to forming polaritons. The confinement of EM fields in cavities is
what enables, in principle, achieving a strong coupling regime between matter and radiation, although
polaritons can also be formed without cavities (see e.g. the paper [25] for a discussion).

Each polaritonic component (radiation and matter) undergoes relaxation or decay processes [26, 27,
28, 29]. The EM field modes exhibit significant photon losses due to the imperfections of the cavities,
while the material emitters, in our case for electronic excitations, interact with vibrational baths and
undergo spontaneous emission and vibrational relaxation, among other phenomena. Achieving a com-
plete ab initio theoretical model of these systems would be impractical due to the computational cost
and complexity. To address these loss mechanisms, techniques from the formalism of open quantum
systems are extensively used [30].

The polariton states involving simultaneous excitation of the matter (excitons) and the EM field (pho-



tons) are stable enough to be monitored through spectroscopy techniques before their decay due to
the decoherence induced by the environment. Linear and nonlinear spectroscopy protocols make use
of short laser pulses in the weak field regime (where the pulses are represented by classical light, and
they excite the photons present inside the cavity in the form of polaritons). This weak field limit for
the laser pulses allows for a perturbative approach from the theoretical point of view. This is the main
goal of our study here, to understand in detail the structure and fast dynamics of molecular polaritons
upon linear and, more extensively, nonlinear response of these systems upon a number of perturbative
interactions in multidimensional spectroscopy.

In the near-infrared and infrared ranges, multidimensional spectroscopy has enabled the observation
of multi-polariton coherences in quantum wells coupled to semiconductor microcavities [31, 32] and
the examination and control of optical nonlinearities in vibrational polaritons [33, 34]. In the visible
spectrum, multidimensional spectroscopy has been employed to investigate broadening and relaxa-
tion mechanisms in strongly coupled exciton-plasmon (plexitonic) systems and to provide a detailed
understanding of the interaction between polaritons and the bath in a molecule-microcavity system
[35, 36, 37].

A recent experiment has employed two-dimensional electronic spectroscopy to probe the ultrafast dy-
namics of a polaritonic system involving molecular J-aggregates within optical cavities [38]. Motivated
by the asymmetric signals observed in the experimental spectra, we conduct a theoretical study of
coherent multidimensional spectroscopy of organic molecular polaritons. To provide a comprehensive
and clear framework, we initially examine the prototypical Jaynes-Cummings model for a single emit-
ter, and subsequently expand our analysis to the Tavis-Cummings model with multiple molecules. We
investigate the theoretical spectroscopic signals originating from open quantum systems governed by
these Hamiltonian models, subject to relaxation processes due to both molecular vibrational modes
and photonic losses of the cavity (see Fig. 0.1). Our simple models are intended for systems such as
dye molecules with weak exciton-phonon interactions, allowing a perturbative treatment of coupling
to molecular vibrations. Specifically, molecular J-aggregates used in [38] create delocalized collective
electronic states that exhibit weak coupling to vibrational modes. In this regard, our theoretical re-
sults capture some of the features observed in the experimental spectra from [38] and provide a deeper
understanding of the dynamics and asymmetries of the diagonal and cross spectral peaks, explained
by the critical role of dark states.

The polariton photodynamics of the Tavis-Cummings model has also been explored recently in the
context of pump-probe spectroscopies [39]. Additionally, recent research on two-dimensional electronic
spectroscopy beyond the Markovian approximation use quantum stochastic Liouville equations or the
Heisenberg-Langevin model to identify signatures of the polariton-polaron interaction and to charac-
terize the dynamics of population transfer [40, 41, 42].

In our attempt to simulate two-dimensional polaritonic spectra, we develop an efficient pseudo-analytic
procedure for computing the spectra within a perturbative framework, where the three pulses of the
spectroscopic protocol do not overlap (semi-impulsive limit). Our method, which involves solving the
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Fig. 0.1.: Schematic representation of our study problem: an open system of molecules embedded in
an optical cavity under strong interaction with the electromagnetic field. The single-mode
field is depicted as a harmonic oscillator with the cavity frequency, subject to photon losses.
Each molecule is represented as a two-electronic-level system coupled to a vibrational bath.
The strong interaction between the molecules and the quantum field generates polaritonic
states, which are hybridized states between radiation and matter. This polaritonic system
is subject to multidimensional nonlinear spectroscopy techniques. Specifically, in the case of
2D spectroscopy, the system interacts with three classical ultrashort laser pulses. Temporal
analysis of the signals collected in the 2D spectra allows us to probe the dynamics of the
formed polaritonic states, including their decay channels, population transfer, energy trans-

port, among others.

system dynamics analytically in the Liouville space, not only results in low computational time costs
but also enables an interpretation of the two-dimensional spectra by analyzing their formation at any
spectroscopic experimental stage: excitation, evolution, probing, and detection.

We extend our study to a Hamiltonian where molecules interact directly with each other, not just
through the cavity, as assumed in the Tavis-Cummings model. This approach allows us to observe
novel signals in the two-dimensional spectra, indicating the formation of new polaritonic states and
alternative decay pathways. Additionally, we analyze a simple donor-acceptor polariton model to ex-
plore many energy transport mechanisms. Other parallel research in this area has demonstrated that
energy cascades through a series of new electronic states generated by intermolecular coupling and
the distinct bandgaps of the donor and acceptor [43].

The development of the present research requires a series of concepts and methods, which are the
key ingredients in molecular polaritonics, namely i) the quantum nature of radiation: in contrast to



the typical radiation-matter interaction based on a semiclassical approach where light is treated clas-
sically, this scenario changes when matter is confined in optical cavities. ii) quantum emitters: let
them be atoms or molecules with a given internal structure. In the case of molecules, their electronic
and vibrational structure is mostly relevant in our study when they are confined in optical cavities
with modes resonant with electronic transitions. iii) Strong light-matter coupling: quantum radiation
and molecular emitters are strongly coupled to form new hybridized states (matter + light) called
polaritons, which display energy splittings proportional to the coupling strength, with respect to the
uncoupled state energies. These molecular polaritons are the main physical system under study in this
thesis. iv) Multidimensional spectroscopy: the appropriate tool to follow and understand the struc-
ture and fast inner photodynamics of molecular polaritons is their interaction with short laser pulses
using pump-probe protocols under a weak-field regime. In our case, multidimensional spectroscopy
is a well-developed technique that involves a series of sequential pulses separated by controlled time
intervals within a time window of femtoseconds, the natural time for excitation and decay of polaritons.

We briefly describe each separate ingredient in the following.

The EM field confined in cavities

For the generation of molecular polaritons, most experiments can be classified according to the use of
two types of cavities: optical Fabry-Perot and plasmonic nanocavities. A Fabry-Perot cavity consists
of two highly reflecting mirrors separated by a short distance. Between the mirrors, the standing waves
compatible with the cavity length can be tuned to a cavity mode frequency w.. Any cavity possess
its characteristic lifetime 7. = Q/w,. that indicates the average lifetime of a photon excitation, which
increases for high quality factors Q.

It is worth noting that the light-matter interaction strength for a single molecule (here ig) depends
inversely on the active volume of the cavity, i.e., g < 1/ V'V, which means that single molecules are
unable to reach the strong coupling regime in optical cavities. In fact, a large ensemble of N molecules
is required due to the enhancement scaling factor gv/N [44]. This situation is overcome in plasmonic
nanocavities produced when the light irradiates metallic nanostructures. The light induces electron
collective oscillations (plasmons) with a set of plasmonic modes. These kind of plasmonic cavities may
reach a strong-coupling regime even with a single molecule, although their drawback is to have large
dissipative losses, thus a poor quality factor Q.

The matter emitters: molecules

The other ingredient in the formation of polaritons are the quantum emitters. We describe the mo-
lecular emitters by using parametric models in which only two electronic states are considered. The
introduction of a two-level approximation for the structure of emitters can be justified by i) the theory
of frontier orbitals in molecular photo reactions, ii) the fact that these two states are coupled through
the largest transition dipole moment, and iii) the photon blockade effect once the molecular polaritons
are formed, which avoids higher matter excitations due to the strong anharmonicity of the polariton



energy spectrum along the series of excitation manifolds.

The molecules inside the cavities exhibit both radiative (r) and non radiative (nr) decay processes,
from spontaneous (r) emission to (nr) intramolecular vibrational relaxation due to energy exchange
with other molecules through collision processes.

The strong light-matter coupling

Our multidimensional spectroscopy study over molecular polaritons is always carried out in the strong-
coupling regime, characterized by i) the rapid exchange of energy between photons and excitons, that
induce Rabi oscillations with a frequency Qr = 2g. ii) the energy splitting h)r between the lower L
and the upper L polaritons, large enough to be detected experimentally but smaller than the energies
related to the natural frequency of the molecule wy and the cavity mode frequency w,. iii) decay rates x
for photon losses and vibrational relaxation rates v smaller or at the most comparable to the coupling
strength g.

Multidimensional spectroscopy

Multidimensional spectroscopy [45, 46, 47, 48, 49], a set of techniques widely utilized in the study of
molecular systems, offers insights into their structure and dynamics with high temporal and spectral
resolution. This tool, applied both at optical and at infrared frequencies and with femtosecond time
resolution, has been instrumental in investigating various physical and chemical processes such as in
charge transfer in donor-acceptor models [50], vibrational and electronic energy transfer, photoiso-
merization, and chemical reactions [51]. Specifically, two-dimensional spectra (2DS) provide valuable
information about vibrational and electronic motions, interactions, and relaxation channels. Recent
advancements have extended multidimensional spectroscopy to molecular-cavity (polaritonic) systems
[42, 41, 52, 37, 53, 40], enabling the study of vibrational [54, 55, 56, 57] and electronic [38] polariton
states dynamics. In a typical 2D spectroscopy experiment, the system interacts with three delayed
ultrashort classic pulses, and the resulting signal reflects the third-order nonlinear polarization. By
adjusting the delay times between pulses, it is possible to construct 2D maps at different times, faci-
litating the observation of fast processes involved in the system dynamics.

The experimental work [58] that launched the present study was performed using organic dye mole-
cules TDBC, which have a complex vibrational structure in addition to their electronic one. For these
organic molecules the absorption and fluorescence emission spectra lie in the visible and UV window
of frequencies, and the spectral lines show the fingerprint of electronic transitions with linewidths
broadened by the inner vibrational processes (vibronic bands). The mentioned experiment claim that
their dye polar molecules TDBC are in the form of J-aggregates, which are ensembles of molecules
clustered due to intermolecular forces, and their collective optical properties may differ from those of
the isolated molecules. J-aggregates show indeed rather small Stokes shifts (the difference in frequency
between the main absorption and emission bands) which reflects weak effects due to intramolecular
vibrational relaxation. This property may help in our model, since it means that the electronic and



vibrational degrees of freedom are weakly coupled in J-aggregates and, consequently, molecular rela-
xation can be treated within a perturbative approach without an explicit introduction of the complex
vibrational structure.

Structure of the thesis

This work is divided in four parts:
I. Introduction.

II. Theoretical framework.

III. Results and discussion, and
IV. Conclusions.

In this introduction we provide a general flavor of the research topic with its basic concepts, nomen-
clature and general considerations that serve to delimit the scope of the work.

Chapter 1: In part II, Theoretical framework, we provide in Chap. 1 a comprehensive description of
the radiation-matter interaction, starting from the minimal coupling Hamiltonian, then providing the
field quantization, and the Power-Zienau-Wooley transformation, that introduces the transversal part
of the polarization for the matter and the dipole length form f - E for the field-matter interaction.
Since the matter in our study is represented by molecules, we make a short account of the approxima-
tions that lead to our model that represents the system of molecular J-aggregates. We also introduce
the well-known collective Tavis-Cummings model in quantum optics, the concepts of excitation mani-
folds, bright and dark states and the general structure of polariton states up to the second excitation
manifold.

Chapter 2: This chapter introduces the concepts and methods of open quantum systems. It is im-
portant to distinguish the representations in Hilbert and Liouville spaces of the density and other
operators. We arrive to the Liouville-von Neumann equation in terms of the Liouville superoperator.
We clarify the nature of quantum objects (states and operators) as represented in Hilbert space or
Liouville space. In fact, the master equation can be expressed in both spaces. We make a revision
of the theory of open quantum systems by introducing the master equations for the reduced density
operator of the quantum system surrounded by a coupled bath, the Born and Markov approximations,
the Bloch-Redfield master equation and its reduction to the Lindblad master equation after additional
approximations. In our work we have used the Bloch-Redfield formalism for the vibrational relaxation
but a Lindblad form for the photon loss.

Chapter 3: This chapter presents the core for the principles of coherent multidimensional spectroscopy,
assuming that the four lasers involved in the protocol represent a weak field interaction, which justifies
a perturbative approach. 2DS implies a four-wave mixing process with a chosen phase-matching condi-
tion for the wave vectors and their corresponding frequencies. A n-dimensional spectroscopy requires
the computation of the nth-order component of the density operator using nth-order perturbation



theory. The observed signal is proportional to the nth order polarization, built from the nth-order
density operator, which can be expressed in terms of the nth order response function convoluted by
the n laser field amplitudes. We focus on the third order response function, as required for 2D spectros-
copy, which can be expressed in terms of three-time correlation functions. An important approximation
in our work is to assume an impulsive limit for the external electric fields, i.e., they are instantaneous
sudden perturbations with a temporal shape provided by delta functions. This well-justified approxi-
mation is crucial to find analytical expressions of the 2D spectra and to shorten the computations by
orders of magnitude.

Previous to non-linear spectra we also study the theory of linear (absorption and emission) spectra,
with expressions related to two-time correlation functions. For 2D spectra it is mandatory to describe
the doubly sided Feynman diagrams with the different paths that contribute to the third order non-
linear response function, which represent the well-known processes GSB (ground state bleaching), SE
(stimulated emission) and ESA (excited state absorption). The experimental protocol of a non-linear
third-order (four-wave mixing, with heterodyne detection) optical spectroscopy is also described, with
the fundamental steps: 1) excitation process, with pulse 1 and pulse 2, separated by an excitation time
interval 7. 2) Waiting step with a time T' 3) detection process after the pulse 3; the system eventually
emits radiation at any time ¢ after the third pulse, a temporal interval named detection time. Among
the many choices for the phase matching conditions, we focus on the rephasing and non-rephasing
cases, since they correspond to the experimentally relevant case.

One of the major developments in this work is the derivation of an analytical expression for the third-
order nonlinear response in the time domain and, ultimately, after its Fourier transform a simple
formula for the construction of the 2D spectra in the frequency domain.

Part III deals with our computational results and discussions.

Chapter 4: We start with the comprehensive description of 2D spectroscopy applied to the polariton
structure of a dissipative Jaynes-Cummings model. It turns out that the Liouvillian matrix L,g s is
block diagonal in the basis of Hamiltonian eigenstates and these blocks (containing population and
coherence contributions) do not mix upon time evolution. The structure of this Liouvillian matrix ser-
ves to roughly understand the irreversibility of the dissipative decay processes and its set of complex
eigenvalues allows for a produce a hierarchy of states according to its decay width, with the ground
state being the only stationary state. It shows a larger decay width for the upper U polariton than
for the lower L polariton, from which an L — U asymmetry in the peak strengths in linear spectra
is expected. We also explain how other asymmetries in the diagonal L/L and U/U and cross peaks
L/U and U/L develop during the waiting time 7' (the main time window for decay). Chap. 4 includes
a very detailed analysis of the temporal buildup of the 2D spectrum for the prototype dissipative
Jaynes-Cummings model. We separate the contributions form the populations and the coherences in
the spectra, indicating that the coherence contribution carries most of the Rabi oscillations during
the waiting time 7. The Jaynes-Cummings model has no dark states at all, but asymmetries in 2D
spectra develop for waiting times 7" > 0, largely contributed by the SE, ESA and ESA’ components



of the spectrum, ultimately due to the different decay rates of lower and upper polaritons.

Chapter 5: We expand our study to an ensemble of molecules through the collective Tavis-Cummings
model with N emitters, subject to the same dissipative processes. Now N — 1 dark states are present
in the Hamiltonian eigenspectrum, and the polariton U has new decay channels in contrast to the
lower polariton L. We give a detailed separate analysis for each contributing Feynman path, stressing
the differences with the Jaynes-Cummings model and the role played by dark states. The study of an
ensemble of emitters allows us to see the variation in the robustness of signals in 2D spectra when
the number of molecules increases (and the number of dark states too). By analyzing the different
pathways GSB, GSR, SE, ESA and ESA’ we realize that GSB and GSR components require much
longer waiting times to cancel each other (an effect caused by the presence of dark states). In this
collective case we introduce temperature effects through the bath noise-power spectrum function and
we discuss how the 2D spectral signals are modified. Finally, to fulfill the major goal in this work
we use our method of solution to compare with a recent available experimental 2D spectrum with
molecular polaritons [38].

Chapter 6: In this last chapter we extend our study for an ensemble of polar molecules inside a cavity
that show an electrostatic dipole-dipole interaction among the emitters, thus representing a simple
model for the case of molecular J-aggregates. The ratio 7 = G/g between the dipole-dipole interaction
strength G and the emitter-cavity coupling strength g now dramatically determines the shape and
peak intensities of linear and non-linear spectra. In fact, the energy eigenspectrum of the Hamiltonian
displays a series of anticrossings (with the interchange of polariton characters) against the variation
of the ratio «. Finally we deal with energy transport phenomena in polaritons by separating the total
ensemble between molecular donors D and acceptors A, molecules with different natural frequencies
wp and w4 in strong coupling with a cavity mode of frequency w.. This system present new middle
polaritons and more than one set of degenerated dark states. By modifying the cavity mode frequency
we the nature of polariton states may change as associated to the donor, the acceptor or the cavity.
For instance, for a weighted cavity frequency w. = (wp + wa)/2 the lower polariton L involves the
acceptor group, the upper polariton U represents the donor group and the new middle polariton shows
a cavity character. A detailed study of the relevant energy transport paths serves to finish the content
of this PhD work.

Conclusions: We end up with a composition that includes the main conclusions derived from this
research work.



Part II.

Theoretical framework



1. Radiation-Matter Interaction

The strong light-matter coupling between molecules and confined electromagnetic (EM) field modes
enables novel photodynamical processes [59, 21, 20, 60]. The strong coupling regime can be achieved
by confining the EM field within cavities [22]. In this regime, the eigenstates of the system are called
polaritons: hybrids of quantum light and matter. Polaritons combine properties from both their consti-
tuents and they present significant alterations in the photophysics and photochemistry of the coupled
system [9, 8, 61]. The two isolated systems necessary to form polaritons, namely matter (often organic
dye molecules) and EM field modes (commonly confined in optical or nanocavities), exhibit conside-
rable complexity [1]. The study of each subsystem requires an entire field: chemistry and photonics,
respectively. Furthermore, the application of techniques from (cavity) quantum electrodynamics [62]
(cQED) and quantum optics [63] is necessary to accurately describe the quantized nature of EM fields
and their interaction with matter [64, 65, 66, 67]. Given the often high losses of EM modes in cavities,
these techniques typically need to be combined with those of open quantum systems. In this chapter,
we present some theoretical tools essential for addressing the radiation-matter interaction, describing
molecular structure, and modeling the dissipative processes of both systems within the framework of
open quantum systems [30]. Additionally, we introduce the approximations and quantum optical mo-
del Hamiltonians that will be employed in the subsequent sections of this thesis to investigate dynamic
processes of polaritons through two dimensional spectroscopy [45].

1.1. General Radiation-Matter interaction and confinement in cavities

In this section, we do not provide a detailed derivation of the quantization process of the Hamiltonian
associated with the radiation-matter interaction from QED. However, we qualitatively outline some of
the steps, transformations, and approximations required to obtain a general interaction Hamiltonian
(see [68] and [69] for details). Subsequently, we explore the confinement of EM field modes within
two types of cavities: optical and plasmonic cavities. These are the two most commonly used setups
in recent experiments of polaritonic physics [70, 1]. In optical cavities, that may have different sizes
and geometries [71] (a common case corresponding to Fabry-Pérot cavities of parallel flat mirrors),
the radiation-matter interaction is governed by transverse EM fields. On the other hand, in plasmo-
nic cavities [72], which are formed by a metallic structure, the “radiation modes” are characterized
by collective electronic excitations. Consequently, the coupling to matter is primarily mediated by
longitudinal (Coulomb) EM modes [4]. To gain insight into the nature of transverse and longitudinal
electric fields, we turn to the tools of classical electrodynamics in the following sections.
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1.1.1. Transverse and longitudinal electric fields

From classical electrodynamics, the electric field E and the magnetic field B satisfy Maxwell’s equa-
tions in the presence of an electric charge density p associated with an electric current J. The electric
and magnetic fields can be expressed in terms of a vector potential A and a scalar potential ¢, such
that E = —0,A — V¢ and B = V x A. Since Maxwell’s equations are invariant under electromagnetic
gauge transformations, the choice of a particular gauge does not alter the physical predictions. In a
nonrelativistic context, the Coulomb gauge, where the condition V - A = 0 is imposed, is useful as it
simplifies the wave equations, resulting in

1
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where ¢g and pg are the vacuum electric permittivity and magnetic permeability, respectively, and
¢ = 1/ /€ofio is the vacuum speed of light. According to Helmholtz’s theorem [73], it is possible to
decompose the electric field E = Ep + E;, and electric current J = Jp + J;, into a transverse part
and a longitudinal part. For an arbitrary field O, by definition, each part satisfies:

Transverse (Or): V-Or =0 Longitudinal (Opr): V x O, = 0.

Due to the condition imposed in the Coulomb gauge, the vector potential A is purely transverse.
Consequently, from the expression for the electric field in terms of A and ¢, we can conclude that

Er=-8,A, Ej=-V¢. (1.2)

The transverse electric field and the purely transverse magnetic field describe electromagnetic waves
in free space.

Transverse electric field: electromagnetic waves

Given the identification of both components of the electric field in Eq. (1.2), we can separate Eq. (1.1a)
into a transverse part and a longitudinal part. The transverse part corresponds to the equation satisfied
by the vector potential A (associated with the transverse electric field):

2

VQA - C%% = _MOJT- (13)
Eq. (1.3) indicates that the transverse electric field accounts for radiation and retarded interactions
via electromagnetic waves. This equation is valid even in the absence of charges, where p = J = 0.
In fact, by itself, neither the transverse nor the longitudinal fields fulfill retardation. The longitudinal
field is instantaneous everywhere in space since it just depends on the position of the charges. This
implies that the transverse field also has an instantaneous component that cancels the longitudinal
one at short times so that overall, retardation is fulfilled.
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Longitudinal electric field: Coulomb interaction

The longitudinal electric field defined in Eq. (1.2) satisfies the Poisson equation Eq. (1.1b), whose
solution corresponds to the instantaneous electrostatic Coulomb potential. For a system of particles,
each with charge ¢; and position vector r;, the scalar field corresponds to the Coulomb potential
generated by the charges, i.e., ¢(r Z gi/4meg|r — r;|. Consequently, the longitudinal electric field

arises from the Coulomb interactions among the charged particles.

1.1.2. Obtaining a general radiation-matter Hamiltonian
Minimal Coupling Hamiltonian and quantization

The interaction of a system of particles, each with charge ¢;, mass m; and momentum p; at position
vector r;, with an electromagnetic field characterized by the vector potential A is described by the
classical minimal coupling Hamiltonian [62]

Hoe =3 5 lpi — A + 47360 ; qu_qyw + é / Pr [GOE% + :032] | (1.4)
The first term contains the kinetic energy of the charged particles and the radiation-matter interac-
tion. The second term represents the usual instantaneous Coulomb interaction (we call it Vioulomn),
i.e., the energy of the longitudinal component of the electric field, and the third term describes the
total energy carried by the transverse electromagnetic field (Hgy) [73]. It is important to highlight
that in this Hamiltonian, no boundary conditions due to the confinement in a cavity have been imposed.

Below, we describe the steps to quantize the electromagnetic field Hgp:

= The vector potential can be written as a Fourier expansion of modes with associated wave vectors
k and polarizations A\ = {1, 2}.

_ 1 3 ik-r
Alr,t) = W/d k:%: [Qa(k. )™ Ty + ] (1.5)
Here w), are unitary orthogonal vectors representing the two only possible polarization directions
of the purely transverse field and Qy(k,t) can be determined from Eq. (1.3).

s We introduce the canonically conjugate momentum variables corresponding to each Fourier
component of A, namely Py (k,t) = egQx(k,1).

» The Eq. (1.5) is substituted on the left-hand side of Eq. (1.2) and in the original definition of
the vector potential, according to which B =V x A. Thus, the transverse electric field Ep and
the magnetic field B are obtained in terms of the functions Qy(k,t) and Py(k,t). Substituting
both expressions into the third term of Eq. (1.4) yields:

/dSkZ lPA (k. ?) %eo(ck)QQ?\(k:,t) . (1.6)
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» Since Q) (k,t) and Py(k,t) are canonically conjugate variables, i.e., they satisfy the canonical
Poisson bracket relations { QO (k,t), Py (k’,t)}poisson = dand(k — k'), they can be promoted to
operators which satisfy the quantum commutation relations [Qy(k,t), Py (k,t)] = ihdyyo(k —
k). On the other hand, note that Eq. (1.6) presents the form of harmonic oscillators. It is
convenient to define the ladder operator ay(k,t) as

ar(k,t) = [cowr O (K, t) + iPy(K, 1)), (1.7)

1
N
where the mode frequency is defined as wy = ck. This operator and its adjoint &T(k‘,t) satisfy
the commutation relation [a)(k,t), d;/(k', t)] = ok — k).

1
= After removing the vacuum energy term Ey = 3 / 3k Z hwi, to avoid the infinity in energy, we

obtain the Hamiltonian operator corresponding to the transverse electromagnetic field, which in
the absence of charges (in this case ay(k,t) = ax(k)e” '), takes the form

Hiong = /d3k S il (k), ax (k). (1.8)
A

The classical variables p; and A(r;) from Eq. (1.4) can also be promoted to operators: p; satisfies the
canonical commutation relation [fq, pjg] = 1hdij0ap (o and S run over z, y, z components) and A(r)
can be obtained from Eq. (1.5), given the operator Q A(k)!. Now the fully quantized minimal coupling

Hamiltonian can be written as

A 1
Hmc - Z 2ml-
7

[Di — G A()]* + Vooulomb + Hem- (1.9)

PZW transformation and the dipole approximation

In the Hamiltonian Eq. (1.9), the first term, which contains the interaction between the transverse
electromagnetic field and the charges, is described in terms of the vector potential operator A. However,
it is sometimes convenient to find an expression for the interaction in terms of the transverse electric

N A 1 N ~
field operator E7. The unitary transformation U = exp {'h / d*rP(r) - A(r)|, known as the Power-
wmJjv
Zienau-Woolley (PZW) transformation [74, 75, 76, 62], is useful for this purpose. The operator P(r)

'The operators A, Er y B are

A 1 h ~ i(k-r—wp
A = Gy / dS’“Z\/; (an()e =Ty, 1 hc)
A
) 1 3 hwr i(k-r—wit)
Br = Gy | 4 > 2, (@r (ke Yy —h.c.)
A
2 a h P i(k-r—w
B= oRE /dskz \/;(ak(k)e (ke =wrD [y yy] + hec.)
A
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refers to the polarization field of the matter, which in the dipole approximation (or long-wavelength
approximation, where the dependence of the fields with the coordinates is neglected) satisfies [77]

/d3rﬁ(r) Er(r) ~ i Er(0), (1.10)

where 1 = Zqiﬁ- is the total electric dipole moment of the charge distribution and the transverse

(2
electric field operator can be written in the Schréodinger picture as

Ep(r) = (2;)3/2/(13]@; 1/20:5(&,\(16)6176""11)\ + h.c.) (1.11)

The transformed PZW Hamiltonian is obtained through the operation UHnUT. Tt is important to
highlight that the kinetic energy and the Coulomb interaction terms are invariant under this operation.
After PZW transformation and the subsequent application of the dipole approximation, we write a
new radiation-matter Hamiltonian of the form [78, 69]

9

A D; ~ 1 / 3 52 ~ o

H = 1%, — | d°rP Hgn — -Epo. 1.12
% S + Vooulomb + 5eg rPi(r)+ Hpv — fo- Ep (1.12)

Rad Interaction

Matter

Here ﬁT(T) represents the transverse part of the polarization. The first three terms of the Hamiltonian
Eq. (1.12) describe operators from the material part of the system. Indeed, the third term is often
neglected as it only introduces a change in the energy levels. In this thesis, we omit it. The fourth
term represents the Hamiltonian of the transverse electromagnetic field (Eq. (1.8)), and the last term
accounts for the dipole interaction between matter and the transverse field.

1.1.3. Confinement in cavities and single-mode approximation

Given that the formation of polaritons requires strong interaction between radiation and matter, to
achieve this coupling regime requires confining the electromagnetic field in cavities. For the strong-
coupling regime, different scenarios are possible according to cavity nature. In the case of optical
cavities, a huge number of molecules is necessary at room temperature, where all transitions are
described by broad lines [79, 80, 81] (10° to 10'° molecules per cavity mode at optical frequencies,
when radiation couples with electronic excitations of matter). However, at extremely low temperatures
and with extremely good cavities, single-atom strong coupling in optical cavities is possible, with
a very small coupling but larger than the extremely small cavity losses. Conversely, in plasmonic
nanocavities, the strong-coupling regime can be attained with just a few molecules, or even a single
emitter [82, 83, 84]. Plasmonic “cavities” involve high electric fields in localized regions induced from
the resonant collective oscillations of free electrons present at the bulk and surface of conducting
materials or near conducting nanoparticles. Below, we describe the radiation-matter interaction in
these two types of cavities: optical and plasmonic cavities.
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Optical cavities

An optical cavity [71] can be made of parallel flat mirrors (the Fabry-Perot cavity is an example), can
be characterized with different cavity losses, according to the material from which they are constructed.
These reflectors can modify the boundary conditions of the system, forcing it to exhibit stationary
electromagnetic waves. The radiation-matter interaction is governed by the transverse EM field. In
this case, the wave vectors k associated with the field modes, which can take continuous values in
vacuum, become discrete within the cavity?. In fact, in a Fabry-Pérot cavity, only the modes with a
k direction normal to the mirrors becomes discrete, the others inside the cavity are still continuous.

On the other hand, the cavity energetics allows in practice that matter emitters only couple to a few
discrete modes k or even just to a single mode, since off-resonant modes do not considerably couple.
Within this single-mode approximation and after contracting the three matter terms in Eq. (1.12)
(in this case, matter refers to the molecular emitters inside the cavity) into a single term that we call

A

Hen, the radiation-matter Hamiltonian can be written as

H = B + hored + | 22 (4 a1 (2 - upy ), (1.13)
2¢0V
when the periodic boundary conditions of the cavity are imposed. Here ug, is an unitary vector in the
direction of the transverse electric field, w. is the single mode cavity frequency with ladder operators
a and a' and V is the effective volume of the cavity. In this expression, we have made use of the
representation of Ep in the Schrédinger picture, given in Eq. (1.11). The effect of including multiple
cavity modes can be reviewed in [85].

Plasmonic cavities and quasistatic approximation

For small plasmon-polariton and phonon-polariton nanoantennas and nanoresonators (nanocavities)
[86, 87, 88], it is possible to apply the quasistatic approximation, in which all distances in the
system are significantly smaller than the relevant wavelengths. Under this condition, the transverse
EM field is negligible [4], and the radiation-matter interaction is mediated by the longitudinal field.
This field represents the Coulomb interaction of the charges in the material medium of the nanocavity.
Thus, the minimal coupling Hamiltonian in Eq. (1.9) reduces to

2 R
H = ; 21,:;2 + VCoulombv (114)

since the terms containing A and Hgy in Eq. (1.9) describe the transverse fields. In this case, the
Coulomb potential VCoulomb contains not only the interaction between the charges of the molecular

A

emitters (Vem), but also between those of the material medium of the nanocavity (Hcay) and between

A

the emitters and the medium of the cavity (Hem-cav). The material of the cavity can be treated
macroscopically. This implies that it responds linearly to external fields. Consequently, it can be

7

2The discretization can be obtained by changing ; Pk = L Z, where V' is the effective volume of the
(27T)5/2 1% -

cavity.
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described as a collection of instantaneous plasmon modes [88], which satisfy bosonic statistics. In the
single-mode approximation, after removing the zero point energy, Heay = hweala, where we is the
frequency of the “cavity” plasmon mode and aT, a are its respective ladder operators. On the other
hand, the emitters-cavity interaction takes the form ﬁem_cav = Z qi®(r;), with i running over both

1
electrons and nuclei of all molecular emitters. The total radiation-matter Hamiltonian can be read as

H = Hep + hwea'a + Zqiqﬁ(ri), (1.15)
i
A p? N
where Hey = Z 277’1' + Vem. After the application of the dipole approximation and assuming that
(2

i
the molecules are uncharged and sufficiently localized, it is possible approximate the Hamiltonian in
Eq. (1.15) as

A /A
H = Hop + hwed'a + V(a+a*)(ﬂ-uEL). (1.16)

Here \/\/V represents a coupling constant, which is related to the (position-dependent) effective mode
volume V' of the quantized mode and ug, is an unitary vector in the direction of longitudinal electric
field of the cavity material.

Additional studies exploring the use of plasmonic cavities or surface lattice resonances on arrays of
plasmonic nanoparticles can be found for instance in [89, 90, 61, 91].

1.2. Description of molecular emitters

The development of the present work was inspired by an experiment where molecular J-aggregates
where introduced in an optical cavity and subject to a 2DS protocol [38]. A J-aggregate is a complex
molecular dye that tends to aggregate under the influence of solvent, another additive or just the
increase of concentration due to supramolecular self-organization. This means that we are dealing
with a molecular ensemble of complex organic molecules in special arrangements. In addition, the
experimental 2DS protocol made use of optical frequencies, thus inducing electronic excitations in
these molecules. An accurate theoretical description of the molecular electronic spectroscopy requires
a quantum method of solution to resolve the electronic, vibrational and rotational structure and dy-
namics of molecules. The high number of degrees of freedom in molecular dyes makes it impossible
to use full ab initio methods in quantum chemistry and a number of approximations are required to
have a starting point to model an ensemble of dye molecules within optical cavities.

The molecular Hamiltonian reads [92]
H=Ty+T.+Vyn +Ven + Vee =T + Hel (1.17)

that contains the kinetic energy of nuclei (vibrations and rotations) T'n, the kinetic energy of electrons
Te, plus the Coulomb interactions among nuclei VN ~ and electrons Vee and between electrons and nuclei
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Ven. To solve the Schrodinger equation associated to this Hamiltonian, even for simple molecules, is
a formidable task. A first usual step is to separate the electronic and nuclear motions, thanks to
the well-known Born-Oppenheimer approximation [92]. It amounts to solve the electronic motion
(with electronic coordinates {¢;}) for each fixed nuclear geometry (with parametric coordinates {qq})
through the electronic equation

Ao = B({aa))] ¥5({a:}: {aad), (1.18)

where the energy eigenvalues F;({q}) form a set of j potential energy surfaces for the electronic
ground state j = 0 and excited states j > 1. The latter electronic equation still represents a problem
with high computational cost, and many approximations and methods have been proposed along the
years to facilitate approximate solutions at a different stages of sophistication, from partially correlated
Hartree-Fock methods to highly correlated methods based on configuration interaction methods.

For our purposes in this work, we will keep the molecular structure description reduced to a minimum
and based on the Hartree-Fock solution [93] and the configuration interaction method. In the Hartree-
Fock method, the electronic wave function for NV electrons is built as the best variationally optimized
single Slater determinant for the ground state |¥g) = |p1¢2...¢n), built from a set of one-particle spin
orbitals {gbl}f\il These spin orbitals become solutions of a single-particle Hartree-Fock equation

F(i)$a(i) = atbali), (1.19)
where the Fock operator reads F'(i) = h(i) + Z Jp(i) — Z K3 (i), with the one-electron uncorrelated
b#a b#a

Hamiltonian h(i) = T (i) + Vin, the Coulomb potential .J, whose operation over each spin orbital is
Ti)bali) = [ / d:cjasz(j)éjqbb(j)] ), (1.20)
and the operation of exchange operator K} is non local
Ky (i)¢a (1) = l/ de¢Z(j);¢a(J’)] on(1). (1.21)

The introduction of a non-orthogonal basis set to expand the orbitals ¢, = ZCW@ZJu leads to
“w

the Roothaan equations [93], that involve a generalized eigenvalue problem for the Fock operator
FC = eSC. These Roothaan equations are solved in a recursive procedure, since the operators depend
upon the orbitals to be optimized. This procedure is performed through the so called self-consistent-
field. Once the density matrix or field potential is converged, the eigenvalues {g,} of the Fock operator
F' are the orbital energies. In the restricted Hartree-Fock case (closed-shell), the dimension M Ac[)/f2the

It

basis set {wu}ﬂil is chosen to be much larger than the number N/2 of occupied orbitals {¢q}, ]
results in a number of occupied orbitals e, (the highest occupation indicates the Fermi level of the

molecule) and a number of virtual unoccupied orbitals &, above the Fermi level.

Koopmans’ theorem [93] provides a physical meaning for these occupied ¢, and virtual &, orbital ener-
gies: the ionization potential of removing the electron represented by the orbital ¢, is approximately
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—¢g, and the electron affinity for an electron to be captured in ¢, is approximately —e,. From the se-
minal works of Fukui and Hoffman [94], one realizes that a rather good approximation to understand
photo reactivity consist of looking at the frontier orbitals HOMO and LUMO, the highest occupied
molecular orbital and the lowest unoccupied molecular orbital, respectively. This simplifies the mul-
tielectron excitation to a single active electron excitation from HOMO to LUMO at the equilibrium
geometry of the molecule. The more sophisticated configuration interaction (CI) method consist of
using a large expansion in terms of Slater determinants with all the possible orbital excitations (con-
figurations) considered from the ground state determinant, within the adopted orbital basis set [93].
The diagonalization of the CI matrix provides very accurate energies and wave functions not only for
the ground state but also for excited states. In this fully correlated CI method we restrict our des-
cription to the lowest two electronic states (ground and first excited). In many molecules the energy
difference between these two fully correlated states is similar to the HOMO-LUMO energy difference
due to an effect of compensation between electron correlation and orbital relaxation [93].

In conclusion we will adopt this CI picture of two fully correlated states to deal with the electronic
structure of the dye molecules, and the adoption of a two-state model for each dye-molecule is justified
by the fact that higher excited states are far in energy in all the considered molecular geometries.
The justification of the adopted two-state electronic model for molecules is already explained in the
introduction. We stress that when molecules interact strongly with quantum radiation in cavities, the
new light-matter states exhibit a high degree of anharmonicity. This means that the higher energy
states are difficult to excite with a fixed laser frequency, a phenomenon known as photon blockade. We
will not produce ab initio calculations of emitters in this work, the energy difference between the ground
g and first excited e state will be fully parameterized following the experiment, which eventually means
that we "have”’the complete CI energies. The fundamental models in quantum optics for strong field-
matter interaction (Jaynes-Cummings and Tavis-Cummings models) are based in two-state atoms or
molecules. Once the electronic structure is solved within the BO approximation, the molecular nuclear
motion is solved for the nuclei subject to the electronic potential energy surfaces E¢({gn})

[Tn + Ba({aa})] On({aa}) = B¥N({aa}), (1.22)

where Ux({g}) accounts for the vibrational and rotational motions. Molecular motions have diffe-
rent time scales; the motion of electrons occurs on a time scale of attoseconds, the vibrational motion
happens from ten to hundred of femtoseconds, while the rotational motion is slower, on the picosecond
time scale. Our study of 2D molecular spectroscopy implies ultrafast processes within a few femtose-
conds time scale, so that we can disregard the rotational motion in our approach.

A first approach to consider the vibrational motion is to include the vibrational states explicitly. In
the case of diatomic molecules one may assume a simple model where the potential energy curves
for the two electronic states g and e are modeled with simple harmonic oscillator potentials with a
bosonic Hamiltonian H,; = h(wg + we)lA)TlA). A more realistic model that considers anharmonicity and
dissociation is provided by Morse potentials, with approximate vibrational energy levels given by [92]

Ey = gy [(v+1/2) = Byre(v +1/2)?] (1.23)
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where wf is known as the anharmonicity constant.

A well known model that considers that explicit introduction of the vibrational states (phonons) with
the field-matter strong coupling along with electronic-vibration coupling is known as the Holstein-
Jaynes-Cummings model in the form [95, 7]

A

H = hw 6~ + hweata 4+ hg(6Fa+ 6~ al) + hw, (00 + X676~ (b + b+ \)) (1.24)

where the operators af, 61 and b are operators that create one cavity photon, one molecular exciton
and one vibrational quantum, respectively, and their adjoint operators annihilate the corresponding
excitations. Both @ and b are bosonic operators, while the ’s are transition operators between elec-

tronic states (67 = |e){g| and 6~ = (67T

)T). The last Holstein exciton-phonon term implies that the
electronic excitation couples to vibration, and its strength is characterized by the Huang-Rhys fac-
tor A, which is also related to the separation between the equilibrium distances of the two harmonic
potentials. This model can be extended to an ensemble of molecules, thus taking the name Holstein-
Tavis-Cummings. Upon photoexcitation of molecules by a laser pulse, the the band of vibrational
states reached in the electronic excited state is selected by the Franck-Condon overlap rule. However
the absorption peak and fluorescence peaks are usually separated by a Stokes frequency shift, with the
emission peak found at lower frequency. This Stokes shift is due to non-radiative vibrational relaxation
or dissipation to the ground vibrational state in the electronic excited state, which originates from

solvent or environment interaction and reorganization.

In this work, to avoid computational complexity we focus our 2DS study on vibrationless electronic
excitation and we do not include vibrational states explicitly. However, we include the vibrational
relaxation as a dephasing-like dissipation introduced by the environment to the system, This is modeled
with the theory of open quantum systems, and the vibrational matter dissipation in the excited state
will be introduced through a Bloch-Redfield term in the master equations.

1.3. Modeling Radiation-Matter interaction in cavities

In the single-mode approximation, the Hamiltonians that represent the interaction between material
emitters and a cavity mode (Eq. (1.13) for optical planar cavities and Eq. (1.16) for plasmonic cavities)
have a similar mathematical description. In both cases, the mode of the EM field (whether transverse
or longitudinal) can be seen as a harmonic oscillator with ladder operators a and al satisfying the
bosonic commutation relation [d, &T] = 1. On the other hand, when the Hamiltonian of each emitter
can be approximated to a two-level system, it is possible to make use of some quantum optical models
to describe the emitters-cavity interaction [63]. In particular we describe below the Tavis-Cummings
model. Some experimental realizations of the radiation-matter strong interaction for the formation of
polaritons can be found in [96, 97, 98, 80, 82, 81, 83, 84, 99, 100].
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1.3.1. Tavis-Cummings model

The Tavis-Cummings (TC) model [101, 102, 103] provides a parametric description of both emitters
and a single mode of the EM field confined in a cavity. Parametric models do not explicitly consider
the geometric profile of the EM field and they do not include the complexity of the potential energy
surfaces of the molecular emitters, with their dependence on all possible degrees of freedom. However,
these models capture many of the essential physical characteristics of the radiation-matter interaction
at reasonable computational cost [1].

Cavity mode and emitters operators

The eigenstates of the single mode cavity Hamiltonian flcav = thde, described as a harmonic os-
cillator (see section 1.1.3) with frequency we, represent excitations of the EM field named photons.
These eigenstates form a Fock basis, with the n-photon states {|n)} with n = 1,2, 3, ... (the O-photon
state |0) is often called the “vacuum”state). The energy of a state |n) is fiw.n. The action of the ladder
bosonic operators a and a' over Fock states is described in the table 1.1 [63].

On the other hand, we consider a collection of N identical non-interacting® molecular emitters, each
with two possible energy states: ground |g) and excited |e), with transition frequency w,. If the zero
point energy corresponds to the energy of |g), the Hamiltonian for each emitter is hw, |e) (e|]. We
introduce the transition molecular operators

s=lg)el, &' =le)(gl, (1.25)

which annihilate and create molecular electronic excitations, respectively and they satisfy the commu-
tation and anticommutation relations shown in Tab. 1.1. In terms of these operators, the Hamiltonian

N
describing the collection of N emitters is fAIem = Iw, Z 62 G, with ¢ running over all the emitters. The
i=1

N
total dipole operator can be written as 1 = uZ(&i + &;-r )u,,, where we have omitted the diagonal

dipole terms, and w,,; is a unitary vector in thezzﬁrection of the i-th emitter dipole. According to the
expressions Eq. (1.13) for planar optical cavities or Eq. (1.16) for plasmonic nanocavities, this operator
f1, together with the electric field operator (which is proportional to (& + a')) are responsible for the
interaction between the emitters and the cavity mode.

Cavity-emitters interaction Hamiltonian

By replacing the expressions for H. and [ in any of the interaction Hamiltonians Eq. (1.13) or
hw,

Eq. (1.16), and after parameterizing the cavity-emitters coupling strength with the term hg = eV
€0

puy

3This is possible if the emitters are sufficiently distant or if their dipole interaction is weak. They only interact collectively
trough the cavity mode.
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Subsystem Operator ‘ Action ‘ Algebra
Annihilation: @ | a|n) = vn|n —1), al0) =0
Cavity Creation: a' atln) =vn+1|n+1) [a,a'] =1
Number: a'a ata|n) = nin)
‘b Exnitter Anmhﬂgtion:fi a—; lg;) =0, 6 |eTi) —lg) | {61,061} = 1} (64, aj]' - (6] 7 511=0
Creation: &, 6] |g:) = lei), 6} les) =0 6i,6;] =0 (if i # j)

Tab. 1.1.: Description of cavity and emitter operators and their action on Fock states {|n)} and elec-
tronic states {|g;),|e;)} of the ith molecule, respectively. Here, the brackets [, ] represent
commutators and the braces {-, -} represent anticommutators.

ug,) (for planar optical cavities), we obtain the Hamiltonian

N N
HAp = hwedla+ hwe Y 616: + kg (af +a) (6 + &), (1.26)

i=1 =1

where we have fixed the zero point energy in the energy of |g) plus the energy of the vacuum Fock
state (fuw./2). This is the named Dicke model for an ensemble of emitters [104, 105] and for the
particular case of one emitter (N = 1) is refereed as the Rabi model [106]. In the interaction picture,
the interaction term in the Hamiltonian contains terms that oscillate in time with the frequency w.+w,
and others that oscillate with the frequency A = w, — we, which is named the detuning. In the strong
coupling regime (not ultra-strong [107]), the non-conserving energy terms with the fast frequency are
negligible and can be removed. This is known as the rotating wave approximation (RWA) and in this
case the Hamiltonian Eq. (1.26) becomes

N N
Are = hwedla + hwe Y616, +1g Y _(al6; + 6la), (1.27)
i=1 i=1
which is known as the Tavis-Cummings (TC) Hamiltonian, which for a single emitter is known as the
Jaynes-Cummings (JC) Hamiltonian [108].

1.3.2. Polariton states

The eigenstates of the TC model represent hybrid excitations between radiation and matter and they
are known as polariton states (see Fig. 1.1). Some of them are bright and can be accessed via dipole
transition with the radiation from a laser pulse from the ground state, while others are called dark
states [109, 110, 111]. Dark states represent excitations of the material emitters while the radiation
field remain unexcited. Consequently, they do not exhibit dipole radiative transitions from the ground
state and they do not display visible peaks in the linear absorption spectra. We can label the bare
basis (eigenstates of the non interacting Hamiltonian i.e., with ¢ = 0 in Eq. (1.27)) as

|’I’l,€1762,"'€N>,
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—|U2)
12) 4 Az
w —— |L2)
¢ —U)
i ) < 2
we A—o lw ) L)
C — e
10) g g) — —IG) } Ao
Cavity <— Emitter Polariton

Fig. 1.1.: Scheme of energies of a polariton JC system with detuning A = w, — we = 0.

where the first label corresponds to the number of photonic excitations in the cavity, denoted by
n=20,1,2,---, and the label e¢;, with i = 1,--- , N, corresponds to excitations of the ith emitter, i.e.,
e; = 0,1. In this notation, e; = 0 indicates the electronic state |g) of the ith molecule, and e; = 1
indicates its respective excited state |e). The total number of excitations k in a state (both photon
and matter excitations) is determined by the action of the operator A =ata+ Z&Z G, such that

K
Aln,er,e,--en) = Ay n,er ez, en), with k =n+ ) e

The polariton states with the same number k£ of excitaztions form the excitation manifold Aj;. The
operator A commutes with the polariton Hamiltonian Hrc. Consequently, this Hamiltonian can be
diagonalized in each excitation manifold independently, and each of them represents a Hilbert subspace.
The number of polariton states in each excitation manifold is then equivalent to the number of bare
states in the corresponding manifold. If the N material emitters are identical, we can use a more
compact notation for all states with the same number of electronic excitations in the form |n,e),
where e = Zei represents the total purely electronic excitation. We describe below the properties

(2
and the dimension of the excitation manifolds Ay, A1, and As, which are those of our interest for the

study of 2D spectroscopy applied to polariton systems in the second part of this thesis.

Ay : Corresponds to states without excitations in any of the subsystems (neither in the quantum
radiation nor in the material emitters). Only the polariton (which is also the bare) ground state
|G) = 10,0) forms this manifold. The dimension dimg of the excitation manifold Ag is therefore
dimo =1.

A1 : Represents combinations between bare states of the form |0,1) and/or |1,0), where only one of
the subsystems is excited. For N material emitters plus the cavity, there are a total of N + 1
possible states that make up the first excitation manifold, namely dim; = N + 1. We can identify
two type of polariton states in Aj:

Polaritons from bright emitter states coupled to the cavity: The state of higher energy in
A is called the upper polariton |U) and the one of lower energy is the lower polariton |L).
With detuning A = 0, they are polariton states of the form (in the compact bare states

notation)

1) = —=(L.0) = 0, 1), U} = —=(11,0)+ [0, 1), (1.28)
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Name Number of Dimension of
degenerated states the manifold
[ |Uz2)—— 1
|B,) N—-1, N>3
1
A2< |M2>_ 1+ N(N-3)/2, N>3 §N(N+1)+1
| Az) N-1, N>3
| Lg)—— 1
U) —— 1
A< |D) IQR N-1 N+1
L) —— !
Ao |G) 1 1
Fig. 1.2.: Polariton states up to Ag with detuning A = 0.
Dark emitter states not coupled to the cavity: The remaining N — 1 states in Ay are dark
states | D), which represent superpositions of bare states fulfilling the compact form |0, 1),
which do not contain photon excitations of the cavity. They are all degenerated in energy.
A2 : Contains superpositions of bare states of the compact form |2,0), |0,2) and/or |1,1). There is

only one bare state of the form |2,0), but due to the combinatorial arrangement among the N

1 N! 1
SN2 = §N(N — 1) states of the form |0,2) and N states of the form

1
|1,1). Consequently, we can establish dimy, = §N (N 4 1) + 1. The polariton state of highest

emitters, there are

energy in Ag is denoted by |Us) and the one of lowest energy by |Lo). Additionally, for detuning
A = 0, there is a degenerate intermediate level with N (N — 3)/2 dark states in Ay. We denote
all these intermediate states by |Ms). Furthermore, there is a N — 1 degenerate energy level
denoted by |As2), below the |Mbs) states, and another N — 1 degenerate energy level denoted by
|B2), above the |Ms) states. Fig. 1.2 provides a compilation of all polariton states up to As.

The frequency difference between the states |U) and |L) within the first excitation manifold is defined
as the Rabi frequency (1.
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As discussed in the previous chapter, polaritonic systems are composed of two main subsystems: EM
fields confined in cavities and material emitters. Each of these constituents undergoes relaxation or
decay processes [26, 27, 28, 29]. The modes of the electromagnetic field exhibit a high-loss nature, and
the material emitters, which in our case represent molecular electronic excitations [112], are subject to
coupling with vibrational baths (which can induce dephasing and nonradiative decay between states)
and may exhibit spontaneous emission, among others. A complete ab initio theoretical modeling of
these systems is impossible without a large number of approximations to reduce the computational cost.
Furthermore, even if a microscopic approach were feasible in practice, the solution to the microscopic
equations would correspond to a “numerical experiment” that contains all the relevant physics, but
does not necessarily give direct insight into the main processes at play. To address these loss processes,
we employ techniques from the formalism of open quantum systems [30]. The theory of open quantum
systems plays a crucial role in various applications of quantum physics where achieving a complete
microscopic description or control of environmental degrees of freedom is either impossible or only
partially achievable.

2.1. Quantum dynamics in Hilbert and Liouville space

When the dynamical evolution of a quantum system includes loss processes, the quantum state of the
system cannot be characterized by a ket state vector or wave function; it must be represented by a
density operator.

2.1.1. The density operator

The density operator p(t) represents a more general quantum state, which may or may not be repre-
sented by a ket vector from the Hilbert space. When it is possible to assign a ket vector |¢(t)), the
quantum state is named pure, and its corresponding density operator is defined as

p(t) = [(1)) (Y ()] (2.1)

On the other hand, when it is not possible to assign a unique ket vector, the state is said to be mixed
(as is the case for systems subject to losses). A mixed state can be understood as a statistical mixture
or superposition of a set of NV pure density operator states or projectors {|i(t)) (vx(t)|}, each with
probability P, > 0. The density operator for a mixed state can be written as

N
p(t) =D Plvn(t)) (We(t)], (2.2)
k=1
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N
where Z P, = 1. If the system is in a pure state, all P, = 0, except for one. The density operator

k=1
satisfies the following properties for both pure and mixed states:

» It is an hermitian operator: p = ﬁT.
» It has unit trace: Tr(p) = 1.
= [ts eigenvalues are non negative: A\ > 0.

» The purity of a state is determined by the trace of the squared operator p?, with the value
Tr(p%) = 1 for a pure state and Tr(p%) < 1 for a mixed state.

Expectation value: For an arbitrary operator A, its expected value in the state described by the
density operator p(t) is obtained as

(A) = Te[Ap(6)] = D Pelwnel Al). (2.3)
k

2.1.2. Time evolution in Hilbert space
The time evolution of a pure state |¢)(¢)) is governed by the time dependent Schrédinger equation

S Iw(0) = T H19(0), (24)

dt
where H is the Hamiltonian operator of the system. Taking the adjoint of the Schrodinger equation and
using the definition of the general density operator in Eq. (2.2), we obtain the Liouville-von Neumann

equation
dp(t (AP
—— = ——|H,p(t)] 2.
P = [, p(t) (2.5)

The formal integral solution to the differential equation Eq. (2.5) is

~—

pt) = Ut  to)p(to)UT (¢, to), (2.6)

where U (t,to) represents the time evolution operator (propagator) from an initial time ¢y to a posterior
time f.

Time independent Hamiltonian: If the system Hamiltonian does not explicitly depend on time,
Ut to) = exp {—;ﬁ(t - to)} . (2.7)

Time dependent Hamiltonian: In optical spectroscopy, it is common to find Hamiltonian operators
composed of two parts: the Hamiltonian Hy of the system under study and the Hamiltonian H '(t)
associated with the interaction between the system and EM fields. In these cases, Hy does not explicitly
depend on time, while the interaction H '(t) does. When the coupling between the system and the fields
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is weak, it is possible to perform a perturbative expansion of the propagator U (t,tp) in powers of A
as follows [113]:

Tn T2

. . s I\ [t
U (t,tg) = Up (t,tg) + <—) / dry, dTp—1--- dr
(ht0) = Lol 10 nzz:l h) St Ve (2.8)

Uo (t,70) H' (10) Uo (T Tn1) H' (Tn—1) -+ U (12, 71) H' (11) Up (71, %0) ,
which can be written in a compact form as:

—_— -
—2 [ ar (v t0) B ()T (, to)} . (2.9)
to

U(t,to) = Uy (t, to) exp.,. -

The subscript + denotes positive time ordering exponential operator, ensuring that the operators are
ordered according to their chronological times. Here Uo (t,to) is the propagator associated to the time
independent Hamiltonian Hy.

2.1.3. Representations in Hilbert space and the Liouvillian superoperator

Density operator: Note that in the Hilbert space (HS), the density operator, although representing
the state of the system, does not have a vector character (like ket states). It has a matrix character
because it is an operator. For example, if the ket state |¢(t)) is expanded in a basis {|a)} of the HS,

[W(t) = calt) ), (2.10)
«
with ¢ (t) = (a|t(t)), then its corresponding density operator is a matrix of the form
p(t) = pas(t) o) (B, (2.11)
af
with matrix elements pg(t) = ¢, (t)cs(t).

Dynamic equation and the Liouville superoperator: On the other hand, the representation of the
Liouville-von Neumann equation Eq. (2.5) in a basis of the HS takes the form

<a % 5> _ _%(<a\ﬁﬁ!ﬁ> ~ (alpH|B))
dpaﬁ _ i ] 5 ) |
fog _ 1 %<<Q|H|e><e|p|¢><¢ | B) = (| 0)(017le) (@I H|B)) (2.12)

1
= _ﬁ (Ha05,8¢> — 60‘0HE¢> Po¢p-
0¢
We have used the completeness and orthonormality relations of the HS basis (dp is the Kronecker
delta). At this point, it is convenient to write compactly

dpag i
__Iyg, , 2.13
ettt % 8,00 POy (2.13)
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where £,50¢ = Hapops — 6a9HE¢ represents the tetradric “matrix” element of a superoperator Iy (it is
an object that acts on the operators of HS, in particular on the density operator). It is known in the
literature as the Liouvillian superoperator [77, 30]. To simplify the notation in this thesis, a procedure

i
which is also common in the literature, we introduce the factor ~7 in the expression of the Liouvillian
such that

7: *
Lap0p = —7 (Haodsp — daoHs). (2.14)
dpaﬁ . Z ¢ (2 15)
i aB,0¢ Php- .
0
In operator and superoperator form, the Liouville-von Neumann equation can finally be written as

dp(t .

0 _ g (2.16)

The action of £ on the operator p should be understood as a functional in the form

8lj) = 1.4l (2.17)

Eq. (2.16) is formally identical to the Schrodinger equation Eq. (2.4), but the objects involved have
different mathematical nature. In the Schrédinger equation, the states |¢)(¢)) are vectors, while in the
Liouville equation, the states p(t) are matrix operators. In the Schrédinger equation, the Hamiltonian
H is an operator (it has a two-index matrix representation), while in the Liouville equation, the
Liouvillian £ is a superoperator (it has a four-index representation). Since the states of open quantum
systems must necessarily be characterized by density operators, it is convenient to define a new space
in which these operators can be treated as vectors and the superoperators (for example the Liouvillian)
can be treated as matrix operators. This space is called Liouville space (LS) [77].

2.1.4. Quantum objects in Liouville space

Since the density operator p and any arbitrary operator A acting on the HS are vectors in the LS, we
could represent them as kets in the form |p) and |A), respectively. However, to distinguish them from
kets in the HS, we use the notation of double ket

p<1p))- (2.18)

The left-hand side in this equation represents the object in the HS, and the right-hand side, its
equivalent in the LS. Of course, this correspondence is valid for any arbitrary operator A < |A)).

Basis of LS

In HS, the density operator can be represented in a basis {|a)} as expressed in Eq. (2.11). Each object
|a) (8] that appears in this representation is an operator in HS, which we represent in LS as a vector

@) (B] ¢ [aB)) = [m)). (2.19)
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Here we introduce the single-index notation (with Latin letters instead of Greek letters), which is more
useful for representing vectors in the LS. The matrix representation in HS and the vector representation
in LS of the object in Eq. (2.19) are related with the following index correspondence (for a matrix M
with dimension N x N we have a vector V with dimension N?):

Mij = Vii—1)N+js (2.20)

where 7,7 = 1,2,--- N. Now, the vectors |a3)) or |m)) form the basis of the LS. Note that each index
« and [ runs over the dimension of the HS basis dimy, while the single index m runs over diqu. This
means that the dimension of the LS is

dimy, = dim?%. (2.21)

The completeness relation in the LS is established as

=) laB){(asl = [m)){(ml, (2.22)
af m

where the double-bra represents a state in the dual space

(la) (BDT ¢ laB))t = ({af], (2.23)

and the orthogonality relation can be written as
((aBl0¢)) = 0apdps oOr ((Mm|n)) = mn- (2.24)

Inner product

Note that the counterpart of ((3|0¢)) in Eq. (2.24) is in the HS (|a) (8])T-(|6) (#|), where the product
- should represent a type of inner product between operators, such that the result is the scalar d,03¢.
This product in HS is defined as

(o) (BN - (16) (#]) = T [ () (B))T(16) (6])] = dandpo- (2.25)

In general, for two operators A and B acting on the HS, we define their inner product and its coun-
terpart in the LS as follows

AT B=Te[ATB] & ((A|B)). (2.26)
Since the result is a scalar, we can simply write

((A]B)) = Tr [ATB]. (2.27)

Expectation value: Note that the expectation value of an operator A can be understood in LS as an

inner product

() =Tx [4p] & ((ATlp)) = ((p14)). (2.28)
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Representations in Liouville space

As previously stated, for any matrix operator A in HS there is a corresponding vector |A)) in LS, and
it can be represented as en expansion in both spaces as

A=Y Aasla) (B & |4)) = 3 AaslaB)), (2.29)
af aB
with
Aag = (al A|B) & ((aB|A)) = Tr [|B) (o] 4] . (2.30)

In particular, the state vector |p)) in LS can be expanded as

) = palaB)), (2.31)
of

with pas = ((a8]p)). On the other hand, a superoperator A acting on operators in the HS, which can
be understood as a matrix operator Ain LS (we use calligraphic letters to distinguish from operators
in the HS), expands as
A='S AupsolaB))((66], (2.32)
aB,0¢
with Asgee = ((af |A|6¢)). In particular, for the Liouvillian superoperator with matrix elements
defined in Eq. (2.14),
£=3" LapaoloB))((04]. (2.33)
aB,0¢
To avoid confusion, Tab. 2.1 clarifies the notation we use in each vector space. The special Liouvillian
superoperator is denoted with another calligraphic font.

Hilbert Space (HS) ‘ Liouville space (LS) ‘
Operator A (double-index matrix) Vector |A)) (single-index vector)

Superoperator A (tetra-index matrix) | Operator A (double-index matrix)

Tab. 2.1.: Notation for quantum objects in Hilbert and Liouville spaces.

2.1.5. Time evolution in Liouville space

The Liouville-von Neumann equation Eq. (2.16), written in LS, takes the form

= Llp(1))), (2.34)

with formal solution

A

(1)) = U (¢, 10) [p (t0)))- (2.35)

Here we introduce the LS propagator between times tg and ¢, U (to,t). The counterpart of this equation
in the HS is Eq. (2.6).
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Time independent Liouvillian: If the system Liouvillian does not explicitly depend on time, the time

propagator reads
U(t,to) = exp [£(t — to)] (2.36)

Time dependent Liouvillian: As discussed in Subsec. 2.1.2, in optical spectroscopy applications, it is
common to find Liouvillian operators of the form

2(t) = Lo+ &'(1), (2.37)

with a time independent part £ and a time dependent interaction fl'(t). In analogy to to Eq. (2.8),
the time propagator in the LS can be expanded perturbatively in powers of the interaction as

A

R 0 t Tn T
U(t,to) :Z/fo (t,to) + g / dTn dTnfl dTl
n—=1"to to to (2.38)

Uo (t, ) & (1) Uo (T Ta1) & (Tn1) - -Uo (72, 71) & (1) U (11, 10)

where U (t,tp) is the LS propagator for the time independent Liouvillian part £o.

2.1.6. Eigenvalues and eigenvectors of the Liouvillian

Let us consider a general Hamiltonian H, with corresponding Liouvillian superoperator £ in the form
of Eq. (2.17), that can be generalized to the action over any operator O as
. i

£[0] = -

If {|a)} is the eigenbasis of this Hamiltonian, such that

[H,0). (2.39)

H o) = hwq o), (2.40)

then, the set of states in LS with the form {|a3))} correspond to the eigenbasis of £, with an eigenvalue
equation that reads

&1aB)) = —iwas laB)), (2.41)
with wap = wa — wg. This can be shown using Eq. (2.14) with Hug = Hy 3 = hwalags

Lapos = —% (Hada0 — 000 H5,)

= —i(wadasdss — Wpdandps) (242)
= i (Wa = wp) dasdpe-
Then, the operator £ in LS admits a spectral representation (see Eq. (2.33)) in the form
L= ) —iwagdaodaglaB)) (0]
ap,0¢
g= Zﬂ: —iwaglaf)) ((apl, (2.43)

which is diagonal in the Hamiltonian eigenbasis. Now, Eq. (2.41) can be easily evaluated and verified.
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Time propagator

For a time independent Liouvillian, the time propagator in Eq. (2.36) can be easily represented in the
Liouvillian (and Hamiltonian) eigenbasis as

U(t,to) = exp |£(t — to)| = 3 expl—iwas(t — to)][aB)){(af]. (2.44)
aB

2.1.7. Beyond Hamiltonian dynamics

The Liouvillian we have constructed in the form of Eq. (2.39) is associated with a Hamiltonian. The
dynamical evolution subject to that Liouvillian (or its respective Hamiltonian) is named coherent.
However, when a quantum system is considered open, its Liouvillian does not necessarily have an
associated Hamiltonian. A more general form of the Liouvillian in the context of optical spectroscopy
for an open quantum system can be written as

L= Luy +Lp+ L5, (1), (2.45)

where £, (with the form in Eq. (2.39)) is the part of the Liouvillian associated to the system Ha-
miltonian I:IO; £p represents decay or loss processes, resulting from the coupling of the open quantum
system to a bath. These processes usually do not have a counterpart Hamiltonian and they lead to
incoherent dynamics of the system [30, 114]. These two parts of the Liouvillian are usually time
independent. Finally, ,AQHM (t) represents the interaction of the system with time dependent EM fields,
widely used in spectroscopic methods [77], as discussed later in Chap. 3. This last part has an associa-
ted Hamiltonian fIint. Unlike f)D, the other two parts of the Liouvillian are responsible for coherent
dynamics of the system.

The equations we have developed in Subsec. 2.1.4 and Subsec. 2.1.5 are entirely general for any form
of the Liouvillian and they are not restricted to the form in Eq. (2.39) that gives rise to the matrix
elements Eq. (2.14) and to the equations from Subsec. 2.1.6.

At this point, we can appreciate the importance of introducing the Liouvillian superoperator, the
density operator, and their representations in the LS. In the Liouvillian formalism, it is possible to
account for these incoherent processes that generally cannot be represented by a Hamiltonian. Only in
some cases is it possible to find a non-Hermitian effective Hamiltonian to account for the incoherent
dynamics. Similarly, the states of an open system, subject to incoherent dynamics, are mixed states
and cannot be represented as vectors in the HS, requiring their representation as density operators or
vectors in the LS. In the following section, we discuss two forms that the part £p can take, depending
on the incoherent processes that must be taken into account in the dynamic evolution of the open
quantum system.

2.2. Master equations for incoherent dynamics

Let us consider a quantum system (characterized by states in the Hilbert space Hg) coupled to a bath,
reservoir, or environment (represented in the Hilbert space Hp). The Hilbert space of the composite
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system (system S + bath B) is obtained from the direct or tensor product H = Hg ® Hp. If this
composite system is treated from a coherent (closed) dynamics approach, we must consider the total

Hamiltonian
ﬁ = ﬁs + ﬁB + ﬂ—inta (246)

where H. g and ﬁB are the system and bath Hamiltonian respectively and I:Imt is an interaction Hamil-
tonian between both parts. The operators associated with a subsystem (S or B) in Eq. (2.46) should
be understood as a direct product between the respective operator and the identity operator of the
other subsystem: PAIS = I:Is @ 1p and Hg = Hg @ 1g. In this coherent approach the dynamics of the
density operator of the composite system p(t) is governed by the Liouvillian Eq. (2.17). However, the
bath is often a complex quantum system with numerous degrees of freedom, and considering it expli-
citly in the Hamiltonian turns out to be a difficult or in some cases impossible task due to the huge
computational cost. Since S is often the subsystem of interest and not the composite S+B system, it
is convenient to focus only on the reduced density operator of the system, which is obtained as

ps(t) = Trg [5(2)] (2.47)

where Trg denotes the partial trace over the degrees of freedom of the bath. This represents a map
from the LS associated to H (where j(t) lies) to the LS associated to Hg (where pg(t) lies). The state pg
is now a mixed state, and its dynamics is governed by a Liouvillian of the form in Eq. (2.45). Without
the external interaction with time dependent EM fields (this interaction is included in Chap. 3 for

multidimensional spectroscopy), it reads in the LS of the system as’

L=2y 4 £p. (2.48)

This is an incoherent dynamics approach, where S is treated as an open quantum system (with
coherent dynamics governed by @HS), coupled to a phenomenological bath represented by £p that
leads to incoherent dynamics.

2.2.1. Born-Markov master equation

To determine the form of the incoherent part of the Liouvillian £p (which is a superoperator in the
Hilbert space Hg), we start from the Liouville-von Neumann equation Eq. (2.5) satisfied by the density
operator of the composite system p(¢) in the Hilbert space H. In the interaction picture, this equation
takes the form? (the left-hand side of the arrows in the following expressions represents objects in the

composite HS, while the right-hand side represents their respective representation in the composite
LS)
dp(t) g dlp(t))) _ A

O = (1), 0] & S22 = B (1) 5(0))) (2.49)

For any operator Ain HS, the interaction picture transformation is

O(t) = U (t, t0)OTp (1, tg) = e FsHHB)/1 G i Hs+ Hn)i/h (2.50)

In the previous section we denote 2 Hg as QHOA We assume this a time independent Hamiltonian.
>To facilitate the notation, in this section we use a tilde instead of the subscript I to indicate that the operators are
represented in the interaction picture.
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Here Uo(t, to) is the time propagator associated to the free interaction Hamiltonian Hg + Hg. When
substituting the integral form of Eq. (2.49) into itself, we obtain for the reduced density operator of
the system (after taking the partial trace over the degrees of freedom of the bath) and assuming that
at time zero there are no correlations between S and B,

d@f)Z‘QéAZ”Tm{u%Mwﬁimﬁ%ﬁﬂH}

. d|ﬁz§f>>> _ /Ot dq-;<<bb|§int(t)§int(7') 16(T))),

(2.51)

where ((bb| in the LS representation is equivalent to |b) (b| in the HS of the bath Hp and {|b)} is a
basis set of Hp. The operation Z((bb\ is a projection onto the “diagonal elements” of the bath LS

basis, which is equivalent to the gartial trace over the degrees of freedom of B. In this equation, the
left-hand side of the arrow is now an object represented in Hg, and the right-hand side is its respective
representation in the associated LS. Below, we outline two approximations that we use to derive the
master equations employed throughout this thesis.

Born approximation

We assume that the coupling between S and B is weak and that the correlations between them are
not significant, such that at any time instant, the global state is separable (p(t) = ps(t) ®@ pg(t)).
Additionally, we consider the bath to be much larger than the system, and consequently, the influence
of the system on the bath is negligible. Thus, the state of the bath remains unaltered, in some reference
state pp, during the timescale over which the system dynamics unfold. It means

3t) = ps(t) @ ps. (2.52)

Markov approximation

We assume that the timescales over which the bath correlation functions decay are much shorter than
the timescales of system evolution. Consequently, we can neglect memory effects in the dynamics of
the reduced system. Note that in Eq. (2.51), there is a dependence of p(7) for all times 7 € [0,1].
Under the Markov approximation, by eliminating these memory effects for times prior to the current
time t, we can replace p(7) with p(t). With this substitution, we obtain a time-local equation (Red-
field equation), which still depends on the choice for the preparation of the initial state at ¢ = 0. To
eliminate this dependence and obtain a Markovian equation, we must change 7 in the integral to t — 7
and extend the upper limit of the integral to infinity.

Under Born and Markov approximations we obtain the Born-Markov master equation [30, 68]

dﬁ; t(t) L /0°° arTe {[Hu (1), [Hiun(t — 7). ps(t) @ pul])
dlpst))) [ s s i (2.53)
T a /0 dr Y ((0b] Lint () Line (t —7) (|7s(1))) © [pB))) -

b
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2.2.2. Bloch-Redfield master equation

The Bloch-Redfield formalism [115, 116] provides a framework to account for dissipation of the reduced
density operator of the system, where the bath is modeled as a continuum of oscillators in the thermal
equilibrium state. In the Born-Markov master equation, we assume that the interaction Hamiltonian
between the system and the bath can be written in the composite HS as

ﬁint = ZQk & élﬁ (254)
k

where Qk are operators acting on ’HS and R}, on HB. In the interaction picture this reads as

Now, by inserting the Eq. (2.55) in the Born-Markov master equation Eq. (2.53) in the representation
of HS, we obtain

dﬁst(t) _ _};%/0“ dr {[@;(0), Qut — )ps(8)] Sju(~7) +he}, (2.56)

where we have assumed that the system operators Q(t) are Hermitian.

Bath correlation functions

In the previous equation we have introduced the correlation functions S for bath operators. These
are defined in Hp as follows

S (—7) = (By (Rt~ 7))y = (B (0)Ri(~7))py = Tr { Ry (O Ru(t — 7)in } (2.57)
and
e (=T) = (Ri(t = 1) R;j(t)) o, = (Bi(=7)R;(0)) g (2.58)
In the frequency domain, we define
w) = / drSji(T)e™T. (2.59)
0
The complex-valued correlation functions can also be written as
Sjk(w) = vjk(w) + ixjk(w), (2.60)
with 1 1 poo
k() = 3 [Si0(w) + SN = 5 [ drSi(DET, i) = (@) (2.61)
— 1 *
Xjk(w) = Z[Sjk(w) - Skj(w)]- (2.62)

The coefficients xji(w) form a Hermitian matrix that leads to coherent dynamics. They represent a
shift in the energy levels of the system due to its coupling with the bath, known as the Lamb shift
[30]. On the other hand, the coefficients ~;,(w) form a positive-definite matrix and, consequently, the
matrix v formed by them can always be diagonalized.
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Returning to the Schrédinger picture

In the Schrodinger picture, Eq. (2.56) transforms into

dﬁs(t) _ T 1 o A fiIA{ST/h A iHST/hA
5 = Hs ps(0)] = 55 %/0 dr [Qg:e Qre Ps(t)} Sjk(=7) + h.c., (2.63)
where e~ iHsT/h — US(T) is the time propagator in Hg.

We can now identify that the first term in the right-hand side of Eq. (2.63) accounts for the coherent
dynamics of the system. This is equivalent to £54[ps(t)]. On the other hand, the second term (which
actually includes four terms upon expanding the commutator and the respective Hermitian conjugate)
represents the incoherent dynamics (if we neglect the Lamb shift that arises when we develop the
integrals in 7) and can be interpreted as the HS dissipative superoperator £pin Eq. (2.47). Then, we
can write

v

Eplps(t)] = — h2z / dr [Q, e 5/ Quet 57 ps (1)] Sy () + e (2.64)

Representation in the system Hamiltonian eigenbasis

If we consider the LS basis {|a/3))}, constructed from the eigenstates {|a)} of Hg in HS, such that
Hg o) = hw, |, it can be shown from Eq. (2.64) that the LS matrix elements of £p are [68]

£Da6,e¢ = <<04/8"§:D 10¢))

1 > j —iWwegT | —iWaeT
=73 Z/O dr { (%ﬁZQngfee O — QugQlpe ) Sik(=7)
ik £

(2.65)

+ (5a9 > QbeQlpe "o — Q1 Qe " T) S;k(—T)} :
¢

which, unlike the Liouvillian associated with coherent dynamics (see Eq. (2.42)), is not diagonal in the
Hamiltonian basis. Note that when expanding the integrals over 7, expressions of the form in Eq. (2.59)
arise, which we can express in terms of the bath correlation functions in the frequency domain. At this
point we take Sji(w) = v;jx(w). This means that we disregard the Lamb shift resulting from including
Xjk(w) in Eq. (2.60). Then, we obtain the Bloch-Redfield superoperator £p = B (operator B in LS),
whose matrix elements in the eigenbasis of Hg are of the form

Basoe = ((BB|0¢))

1 : '
-5 %; {65¢ %: Q) Qi (wen) — QRoQsvjk (wan) (2.66)

= Q&nggﬁk (wee) — szngg’Y}kk (‘%B)} :
1
The Bloch-Redfield superoperator in HS can be finally reorganized as

= h2ZZQ [Qjala (Bl a(t )]’ij:(waﬁ)—l-h.c., (2.67)

Jjk aB
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if the operators Qk are Hermitian. We have omitted the subscript S for the reduced density operator
of the system. Note that it is necessary to define the system Hermitian operators Qk involved in the
coupling to the bath and the bath correlation functions Sji(w) to fully evaluate the Bloch-Redfield
superoperator. If the bath coupling operators Ry, are uncorrelated, meaning that the functions v;;(w)
are zero when j # k and they are vy(w) for j = k, for each system operator Q, we can write

BQ)la(t)] = hQZQa/a[ ) (81 5(t)] ¥(was) + bec.. (2.68)

With this functional for the bath interaction, the Bloch-Redfield master equation is then defined in
HS as

PO _ gy (0] + 3 BQWH(0) (2.69)

2.2.3. Lindblad master equation

The Bloch-Redfield equation, although it allows for the consistent inclusion of the bath through
its correlation function, does not guarantee complete positivity from its mathematical form. When
additional considerations are assumed (described below), a new dissipative superoperator £p=Lis
obtained, named the Lindblad superoperator. This is the Markovian most general form of a completely
positive and trace-preserving map from the composite L+B Liouville space to S Liouville space [117,
118].

Secular approximation

If the time scales of the intrinsic evolution of the closed system S (these scales are of the order of
lw — /|7, where w # W' are transition frequencies between eigenstates of ﬁs) are much larger than
the relaxation scales of S (when considered open), then the non-secular terms, i.e., those in which
w # w', can be neglected as they oscillate very rapidly during the relaxation times of the open system.
This approximation is another type of RWA. To apply the secular approximation, we use the basis
{|a)} of Hg and define the operators

Ak(waﬁ) = QZ,B ) (B, A (Waﬂ) Qﬂa 18) (o] = ( Wozﬁ)v (2.70)

where we assume that Qj are Hermitian operators. Note that in the LS, the states |Ag(wag))) are
eigenstates of f)HS with eigenvalues —iw,g and they form a basis set. In the interaction picture,

Ap(Wap) = €908 Ay (wap), Al(wap) = e et Al (wap), (2.71)
With these basis operators we can expand ék (t) as

Qu(t) =Y et Ay (wap) = 3 e st Al (wap). (2.72)
af af

By using these expansions in Eq. (2.56), which is still written in the interaction picture, we obtain

d 2 o —lwesT
ps = Z D ellnsmwas)t [A (wap), Ak(wewps(t)}/o dre "7 S(—7) +h.e.  (2.73)
jk apBbo
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In the secular approximation, we omit the oscillating terms that arise when wag # wgge, thus, the
previous expression reduces to

dﬁst(t) ) ZZ [AT wap); Ak (wap)ps (t )} Vik(wap) + hec., (2.74)

jk aB

where we have used the bath correlation functions in the frequency domain, neglecting the Lamb
shift. Returning to the Schrédinger picture, we obtain an additional term associated with the cohe-
rent evolution of the system and we can identify that the dissipative Liouvillian part, in the secular
approximation, takes the form

| ZZ [ (Wag)s Ar( wa[g)ﬁ(t)} Yik(wap) + h.c.
e (2.75)
3 ST QR @, (1) (8], 0} 8] 5] jk(was) + hec.,
jk ap

which is similar to the non-secular Bloch-Redfield superoperator in Eq. (2.67), but in the expansion
of Q; we only consider the transition operators |a) (8] in the secular approximation. Expanding the
commutator in the upper expression of Eq. (2.75) and exchanging the subscripts j and k in the h.c.
part, considering that v} (w) = vkj(w) (see Eq. (2.61)), we obtain

Eplp(t)] hQZZm (wap) (24k(wap)p(t) Al (wap) = { Al (wap) Ak(wap) PO }),  (2.76)
jk af

where {A, B} = AB + BA represents the anticommutator.

Diagonal form

Since the coefficients 7, (w) define a positive-semidefinite (PSD) matrix, we can find a unitary trans-
formation W such that W4 (w)WT (we denote these objects with a hat since they are matrices in HS)
is a diagonal matrix with elements A; on its diagonal. We define v; = 2); to obtain

Lolp(0] = g3 o) (o0l ens) = 5 {Ellwon)iens.0}) . 70

where
f/i(wa/g) = Z Wkiﬁi(waﬁ)- (2.78)
k
In general, the Eq. (2.76) can be written in the diagonal form Eq. (2.77) if and only if there exists the
invertible matrix W such that W#4(w)W is diagonal with nonnegative eigenvalues [119]. The Eq. (2.77)
is named the Lindblad-Gorini-Kossakowski-Sudarshan superoperator [30]. In the case where only one
frequency is relevant, it is obtained for each operator L the named Lindblad term

v A

E(L)p(e) = Lo - 5 {E1L.0) (2.79)
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and the Lindblad master equation [120] can be written as®
ap(t) « .. 1 Soa
O By [o(0) + 1 S (L) (2.80)

The Lindblad master equation can be also derived if it is assumed that the bath correlation functions
decay rapidly, so that

Sik(T) = Yjd(T). (2.81)
Using this approximation in Eq. (2.64) leads also to Eq. (2.80) [68].

The advantage of the Lindblad master equation over the Bloch-Redfield equation is that it preserves
the positivity and trace of the density matrix, but the bath must be phenomenologically considered
through the decay rates ~;.

Matrix elements

Using the LS basis {|a3))}, constructed from the eigenstates {|a)} of Hs it can be shown that the
Lindblad term in LS has the matrix elements

Lagos = ((aBIL109)) = LaoLs — (LTL)apdps — (LTL)yp800- (2.82)

2.3. Incoherent processes for polariton systems

In the specific case of polariton systems described by parametric models such as the TC (see Sec. 1.3),
incoherent processes can be considered through the Bloch-Redfield or Lindblad superoperators [121,
122, 26, 123]. Other techniques are studied in [124, 114, 125]. In the second part of this thesis we
consider the processes described below.

2.3.1. Molecular relaxation due to vibrational bath

When a single molecule is described by a parametric Hamiltonian hweolo (considering only two elec-
tronic levels), the coupling between the electronic transition and a set of k vibrational modes can be
described by the interaction Hamiltonian

[:[int = O’TO' & Z h)\k(l;k + BL), (2.83)
k
where lA)k(lA)J,L) are the bosonic annihilation (creation) operators associated with each k vibrational mode.
We want to treat these vibrational modes as a bath for the electronic transition within the framework
of open quantum systems. By comparing with Eq. (2.54), we observe that there is only one system
and one bath operator involved in the coupling, and they are of the form

A

Q=clo, R=Y (b +0}). (2.84)
k

®In the literature, it is common to define the correlation function of bath operators Sjx(w) as Sjr(w) =
1 [ ; 1
72 drS;,(T)e"™ ™, such that the factor 72 does not appear in the Lindblad master equation.
0
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For this bath operator, the correlation function in the frequency domain (Eq. (2.59)) takes the form
[68]
S(w) =Y WA (n(wr)d(w + wi) + [1+ n(wp)]d(w — wi)) (2.85)
k

where n(w) is the Bose-Einstein distribution function at certain temperature 7"

n(w) = [ehw/kBT - 1}71 : (2.86)

This result is obtained by considering the time correlation function S(t) as the average over all vibra-
tional modes in thermal equilibrium with an environment at temperature 7. To include broadening
for the vibrational modes, we generalize the bath noise-power spectrum function S(w) in the form [95]

S(w) =

{[1 +nw)]J(w) w>0 (2.87)

n(—w)J(—w) w <0,

with J(w) being a broadening spectral density function. In fact, J(w) is a compact way to write the
discrete distribution Zh2A26 (w — wg), but it can be approximated as being a continuous function

k
if there is enough density of modes (and they are broadened by their interaction with the solvent or
environment). Examples of J(w) functions are plotted in Chap. 4. The vibrational bath for a single
molecule can then be included as a Bloch-Redfield superoperator of the form (see Eq. (2.68))

~

B0 =~ Y (618)as [616, 1) (61 5(1)] Sleias) + e (2.88)
af

Remember that the indices a and 8 run over the eigenstates of the molecular electronic Hamiltonian.
The matter dephasing operator 616 is in this work introduced using the Bloch-Redfield, which is not
equivalent to a Lindblad term with the same operator. The reasons for this are discussed in Sec. 4.2.

2.3.2. Cavity photon losses

Cavities, whether optical or plasmonic, exhibit photon excitations losses. They are characterized by
the cavity quality factor Q, defined as the ratio between the cavity mode frequency w. and its decay
rate k. Cavity lifetimes are typically on the order of 10 fs for Fabry-Perot cavities constructed with thin
metallic mirrors. Distributed Bragg reflectors (DBRs) [126, 127], which consist of alternating layers of
dielectric materials with different refractive indices, can be fabricated with relatively high reflectivity
and low losses, resulting in quality factors on the order of Q@ = 1000 and cavity mode lifetimes on the
picosecond scale [1]. On the other hand, plasmonic nanocavity modes have shorter lifetimes, typically
below 10 fs, due to the intrinsic losses present in metals [128].

Cavity losses can be included in the Liouvillian of the polaritonic system as a Lindblad term for the
photon annihilation operator a, with a decay rate x (see Eq. (2.80)):

wL(@)[p(1)] = rap)a’ — 2 {ata, p(t)} . (2.89)
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2.3.3. Additional incoherent processes

Within the Lindblad formalism, other incoherent polaritonic processes could be included that we do
not discuss in the second part of this thesis. Some examples are described below.

s The decay of electronic excitations, characterized by a Lindblad term for the operator . This
would account for other processes such as spontaneous emission, which occur on timescales much
longer than the cavity (and hence the polaritons) lifetimes. For this reason, we do not include
them in our calculations in the second part of this thesis.

s Incoherent pumping or electronic excitations, characterized by a Lindblad term for the operator
&7, This could be the return of an excitation from the bath to the system as a result of its finite
temperature, and is not included because it is negligible at room temperature (where kg1 = 26
meV) for typical electronic excitation energies of a few eV.

= Simultaneous processes of the cavity and the molecular emitters, characterized by Lindblad terms
associated with operators like ag, d&T, a'6, that represent processes not present in our systems.



3. Coherent Multidimensional Spectroscopy

Multidimensional spectroscopy [46, 49] is a widely used tool for the study of structure and dynamics of
molecular systems in optical or infrared frequencies and femtosecond time resolution [129, 130, 131]. It
is useful to understand physical-chemical processes such as charge transfer in donor-acceptor models
[50], vibrational and electronic energy transfer, photoisomerization, and chemical reactions [51]. In par-
ticular, two-dimensional spectra (2DS) provide information about vibrational and electronic motions,
interactions, and relaxation channels [132, 133, 134, 135]. Recently, multidimensional spectroscopy
has been implemented in molecular-cavity systems to track the dynamics of vibrational and electronic
polariton states [38, 41, 32, 136, 56, 33, 137, 54]. In a 2D spectroscopy experiment [47, 138, 77, 48],
the system under study interacts with three delayed ultrashort classic pulses. The system response
signal is proportional to the third-order nonlinear polarization. By varying the delay times between
the three pulses, it is possible to construct 2D maps at different times, allowing the tracking of the
fast processes involved in the dynamics of the system. Below, we describe the theoretical concepts
necessary to explain in detail the construction and interpretation of 2DS.

3.1. General Optical Spectroscopy protocols

In a semiclassical approach, a general protocol in optical spectroscopy can be represented as the
interaction of a quantum system (the system under study) with a classical transverse electric field
[77]. This electric field could be generated from a pulsed or continuous laser or even a sequence of
pulses. The signal emitted after the interaction allows for extracting information about the structure
and dynamics of the system.

3.1.1. Parametric semiclassical interaction

Usually, the system under study is a material (atoms, dimmers, polyatomic molecules, clusters, etc.).
However, in this work, our quantum system of interest is composed of matter emitters embedded in a
cavity (either optical or plasmonic), meaning the system under study is (matter + cavity). When the
system is only material, the property that couples to EM external classical field is the polarization
[77, 48]. This can be seen for example in Eq. (1.10), where the polarization P is related to the matter
transition dipole i in the dipole approximation. Fig. 3.1 qualitatively illustrates this point. In this
case, having a comprehensive understanding of the optical polarization is crucial for interpreting spec-
troscopic measurements in both the time and frequency domains. Electronic and nuclear motions, as
well as relaxation processes, manifest in optical measurements through their impact on the polariza-
tion [77, 139, 140, 138]. On the other hand, if the system is composed by matter emitters + cavity, in
recent spectroscopy experiments with such polariton systems, the external classical field only directly
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Classical external Quantum system Response sional
transverse field under study p &
Matter >
Er X .
Hiy = —/d3rP(r) - Ep(r)
~—p- Er
Matter
G I >
+ Cavity
Er

Hie ~ —Er)p, - Er

Fig. 3.1.: Schematic representation of an optical spectroscopy protocol, where an external transverse
EM field (treated classically) interacts with a system under study (treated quantum me-
chanically) and a response signal is emitted. When the system under study is material (top
panel), the property that couples to the external field is the material polarization P. In the
dipole approximation, the interaction is mediated by the material transition dipole fi. When
the system under study is material + cavity (bottom panel), the classical external field Er
couples with the quantum field confined in the cavity Ep (for optical cavities) or E; (for

plasmonic cavities).

interacts with the cavity [141]. In that case, the coupling can be understood as Hipe ~ ET/ .- Ep,
where E7p is the quantum operator of the transverse field (used if the cavity is optical) and Ep, is the
operator of the longitudinal field (used if the cavity is plasmonic). Fig. 3.1 shows the differentiation
between both matter and (matter + cavity) systems.

In Sec. 1.3 we discussed that the dipole operator fi can be expressed as proportional to the sum of
the operators & + 67 (ladder fermionic operators) when the material system can be described as a
two-level system. Similarly, it was discussed that in the single mode approximation, the electric field
operator, whether transverse or longitudinal, can be written as proportional to the sum of the operators
aal (ladder bosonic operators). Then, parametrically, we can define a generalized transition “dipole”

operator V as
V= v(V_ + V+)uv = oVuy, (3.1)

with v a parametric constant representing the magnitude of transition dipole, V=V 4Vt (a
dimensionless transition dipole operator) and wy an unitary vector in the direction of V. Of course,
V= (V) = 6(67) for a matter system or V~(VT) = a(al) for matter + cavity system. In general,
V= (V) produces deexcitations (excitations) in the respective system, either matter (of electronic
nature) or matter + cavity (of photonic nature). In terms of this operator V we can introduce a
generalized “polarization” P(t) in the dipole approximation as

P(t) = (V) = Tx[Vp(t)] = ((V]p(1)))- (3.2)

Here we have used Eq. (2.28), with V hermitian, to calculate the expected value as an inner product
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in LS. The interaction between the system under study and the external EM field of the spectroscopic
protocol is now, in the dipole approximation

Hi(t) = -V - E(r,t) = —0VE(r,t)(uy - ug), (3.3)

where ug is an unitary vector in the direction of the external electric field. In the case of a matter +
cavity system, although the external electric field only directly couples with the cavity mode (acting as
a pump), due to the coupling between the material emitters and the cavity, the spectroscopic protocol
accounts for both systems (emitters and cavity) and their interaction. More specifically, the spectros-
copy of the matter + cavity system (in the emitters-cavity strong coupling regime) allows to probe the
polariton states formation and to track their dynamical processes including the relaxation mechanisms.

3.1.2. Weak field approach

Since the interaction of the system under study with the classical external field of the spectroscopic
protocol is mediated by the generalized polarization®, we can classify spectroscopic measurements
in terms of this polarization. We begin by introducing the weak field approach, according to which
we assume that the classical external fields are weak enough to allow for a perturbative expansion,
order by order, of the response functions in terms of the fields. Such expansion is appropriate for
experiments involving radiation fields that are not too strong, so that the expansion can be trunca-
ted at some low power of the field. This approximation is valid even for fields from powerful lasers
since their intensities are often much weaker than the internal electric fields of the system under study.

In this perturbative approach the response of the system to the interaction with the classical external
electric fields can be classified according to the power-law dependence on the field. Each component
or nth order polarization (which in the optical response accompanies the nth power of the field) is
denoted as P and we can expand the total polarization to contributions from different orders

P = P(l) + P(2) + P(3) + .. (3.4)

The components at each order of polarization can be directly computed using perturbation theory
when the weak field limit is valid. This is the method we will describe in the following sections and
the one we employ throughout this thesis. However, these components can also be computed using a
more general method [142, 50], where each of them is extracted from the total polarization obtained
from the full non-perturbative solution of the quantum dynamic equations. Both methods yield the
same result in the weak-field limit, but the perturbative method proves to be much more efficient than
the non-perturbative one.

Linear and nonlinear polarization

The linear optical response, which is present in processes such as absorption, emission, among others,
dominates when the coupling to classical radiation is very weak. This linear response is described

From now on, we use the terms “polarization” and “generalized polarization” to refer to the generalized polarization.
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by the first order polarization P, Any nonlinear process is governed by the nonlinear polarization

3.1.3. Multiwave mixing

The most common techniques involving nonlinear polarization are those related to multiwave mixing
[77, 140, 143, 142]. An (n+ 1)-wave mixing process consists of the interaction of the system under

study with n laser pulses with wave vectors k1, ko, ..., k, and frequencies wy,wo, . .., wy,, respectively.
A coherent signal can be detected if the mixed incoming wave vector satisfies one of the following
relationships:

k=+k tko...+k,, (3.5)
with the corresponding frequency

w=TFwi Fwy...TFwp,. (3.6)

Phase matching condition

Each combination of signs in Eq. (3.5) and Eq. (3.6) represents a phase matching condition. The
resulting wave vectors are the regions where coherent signals with appreciable intensity are observed.
In the most general configuration, the system response signal k does not necessarily coincide with any
of the incident wave vectors. As a result, this signal does not present a significant background. This
is an advantage of wave mixing techniques compared to other spectroscopy techniques.

Heterodyne detection

Despite the advantage of having low background in a wave mixing process, the nonlinear polariza-
tion and response signals are often weak. To increase sensitivity and the ratio between signal and
noise, heterodyne detection is commonly used [144, 138]. In this configuration a new field denoted
the local oscillator LO is added. This field E;o has the same wave vector as the response signal
Enp and it is located in the receiver of the signal. After the nonlinear process is over, the superpo-
sition of the local oscillator field and the signal field is detected, i.e., Ep = Ero + Enp, such that
|Ep|* = |Ero|*+2Re(EroEnL)+|Enr|?. Usually the response signal is much weaker than the applied
local oscillator field (2Re(EroEnr) > |Ent|® if |ELo| > |Enr|), and under this approximation the
resulting heterodyne signal contains the information of the response, amplified by the intensity of the
local oscillator (in fact it corresponds to an interference between both). Heterodyne signals are much
stronger and easier to detect than pure response signals.

When the signal field is generated along the direction of one of the incoming beams, we have an
intrinsic heterodyne detection. Examples are pump-probe, linear absorption, stimulated Raman, and
the accumulated photon echo. Furthermore, the signal has the same frequency of the carrier wave and
the local oscillator field is one of the incoming fields.
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3.2. Perturbative computation of nonlinear polarization

To determine each order of polarization in the weak field approach, we must compute its perturbati-
ve expansion. We start with the interaction Hamiltonian between the classical EM field used in the
spectroscopic protocol and the system under study. Under the dipolar approximation, and using a
parametric model of the quantum system, this Hamiltonian is of the form in Eq. (3.3). In a standard
nonlinear optical measurement, the electric field E(r,t) can be expressed as a combination of multiple
incoming modes, whether they are pulsed or continuous. The different nonlinear optical spectroscopies
vary based on the timing, detuning, and direction of these modes. Currently, we maintain a general
description of the radiation field.

In general, both the electric field E(r,t) and the dipole operator V are vectors, and Eq. (3.3) involves
their scalar product. Consequently, the optical response functions to be introduced below are high
rank tensors. The vector nature becomes particularly significant for the optical response of anisotropic
media, such as crystals or multilayers, or in polarization spectroscopy. For the sake of clarity, we avoid
specifying the components of these vector quantities. With this consideration, the (time dependent)
interaction Liouvillian between the system and the external electric field can be written using the
Eq. (2.39) for the interaction Hamiltonian Eq. (3.3) as (in HS notation)

v

8 (D[0] = —%[ﬁim, O] = —vB(r, 1)V, (3.7)

where we have introduced the generalized (dimensionless) dipole superoperator

~

V0] =

i

h[f/, 0. (3.8)

To compute the optical generalized polarization, we begin at time ¢t = ¢y and assume that the system is
in the steady state with respect to its Liouvillian. As discussed in Subsec. 2.1.7, the (time independent)
Liouvillian of the system can be written as

QS = QHO + ED, (3.9)

where QHO and £p stand for coherent and incoherent dynamics respectively. Typically, the steady
state

p(t0))) = [p(=00))) (3.10)

corresponds to the ground state of the system, due to the decay processes included in the term £p.
3.2.1. Perturbative expansion of the density operator
Since the total Liouvillian of the spectroscopic protocol has the form (in LS)

L(t) = £, + Line (1), (3.11)

which is completely analogous to Eq. (2.37), in the weak field approach we can make use of the
perturbative expansion Eq. (2.38) for the temporal propagator in the LS. Using this expansion in
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— Interaction
— Free time evolution

Fig. 3.2.: Schematic representation of times in the perturbative expansion of the density operator.

Eq. (2.35), we obtain

o0

Z U™ (t,t0)|p(to)) Z o™ (t) (3.12)

with 2O (¢, t9) = Us(t, o) the propagator associated to the Liouvillian £, of the (time-independent)
system under study, which is computed from Eq. (2.36). We can identify that [p™ (£))) = U™ (¢, t0)|p(t0)))
for n > 0 has the following form

Tn T2

t
M (¢ :/ dr, drp—1--- dr
‘p ( )>> to to ! to ' (313)

A A

Z/A{s (t, Tn) Qint (Tn) Us (Tny Tn—l) féint (Tn—l) < Uy (7—27 Tl) féint (Tl) Z/A{s (7_17 tO) ’p(t0)>>a

where 7, which satisfy the chronological ordering, ¢ > 7,,--- > 7 > 79, represent the actual times of

the interactions.

Physical interpretation

The expansion in Eq. (3.13) can be interpreted as follows: At nth order the system interacts n times
with the external electric field, at time 7, ..., 7,. The system first propagates freely from time ¢y to
Ty, then interacts with the external field at time 71, then propagates from time 71 to 79, then interacts
with the field at time 7o, and so forth, until the last interaction at 7,, followed by a free propagation
(see Fig. 3.2). The time arguments are chronologically ordered, but apart from this constraint, they
can assume any value. The n fold integration runs over all possible intermediate times. Note that as
we assume |p(tg))) is the steady state of the system,

Us(71, t0)|p(to))) = |p(11))) = [p(to)))- (3.14)

By inserting Eq. (3.7) and Eq. (3.14) in Eq. (3.13), we obtain

t Tn T
1M (1)) = (—v)"/ dr, drp_1--- ’ drE(r, ) E(r, mn_1) - E(r, 1)
to to to (3.15)

Us (t,70) Vs (T, T—1) V- Us (12,1) Vlp(to))),

which is an expression in terms of the commutators V for the interactions.
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Green'’s function

To account for the temporal ordering, we introduce the Green’s function of the system (in the absence
of interaction) as

Gs(t —to) = O(t — to)U(t, o), (3.16)

where ©(t — tg) is the Heaviside function (O(t —ty) = 0 if t < tg and O(t — tg) = 1 if t > ty). The
Green’s function has a more physical meaning as it depends on the time evolution interval ¢t —tg rather
than specific times ¢ and ¢g.

Now we change the time variables in expression Eq. (3.15) from absolute times 71, 79, - -, 7, to time
intervals

t1=T0—T1, tlo=T7T3—T2, '~ lp=1—"Tp,

as shown in Fig. 3.2. In terms of the Green’s function, using the time interval variables and by setting
tg — —oo we arrive at

o0 = (<o) [t [ dtucs [ Gt VGt )P Gut) Vo)
X E(r,t —tn)E(r,t —tn — tn_1)E(r,t —ty —tp_1-- —t1).

(3.17)

3.2.2. n-th order polarization and response function

The polarization in Eq. (3.2) can now be expanded (omitting its vector character) as

P(t) = P"(t) = o) (Vo™ (@), (3.18)

with P (t) = o((V|p™ (¢))). From Eq. (3.17) we can identify, with its explicit position and time
dependence, the nth order polarization (n > 0) due to the external field E(r,t) applied at different
times

PO (1) = (—1)"™H /OOO dt, /OOO dtn_l---/ooo dt1 (V|G (b)) Vs (tn1)V - - - Co(t1) V] (ko))

X E(r t —t))E(rt —ty —ty 1) E(r,t —ty —ty_1--- —ty).

(3.19)

We assume that the polarization vanishes at thermal equilibrium or steady state, so that PO = 0. Note
that P(™ contains products of n + 1 dipole operator factors. As discussed in Subsec. 3.1.2, each order
in this expansion represents a different class of optical measurements. The linear polarization PO g
responsible for linear optics, P® represents second order nonlinear processes such as sum frequency
generation, and P®) is the third order polarization that enters in a broad variety of techniques including
four wave mixing, pump-probe spectroscopy and the specific two-dimensional spectroscopy [49, 47] that
we use in this work. In general, a response function contribution P?" with even order [145], disappears
in an isotropic medium due to symmetry.
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Response function in the Schrddinger picture

The nth order polarization can be written in terms of the system nth order response function S(”),
defined as follows [77, 135, 48]

Sty b1, 1) = (=)0 (V]G (80)VGs (bn1)V - Gs(81) VI (to))), (3.20)

such that - ~ -
PM(r, 1) :/ dtn/ dtn_lm/ dt1S™ (b, tp_1, - ,t1)
0 0 0

X E(r,t —tp)E(r,t —ty, —th—1)E(r,t —ty —tp—1--- —t1).

(3.21)

Note that the response function only depends on properties of the system, whereas in the polarization,
the form of the external electric field at different times of interaction is already taken into account.
In fact, the nth order response function needs to be convolved with the electric field at the respective
times, to find the nth order polarization. Such convolution is different for each spectroscopy technique.
The nth order response function carries the complete microscopic information necessary for the cal-
culation of optical measurements. Note also that this function vanishes if any of its time arguments t;
become negative (by the Heaviside function incorporated in the Green’s propagator). This reflects the
principle of causality. Consequently, the lower time limit of integrals in Eq. (3.21) could be changed
to —oo.

Response function in the Interaction picture

We can introduce the representation in the interaction picture of the dipole operator both in the LS
and in the HS, as follows

A

Vi(t) = UT()VU(t),  Vi(t) = Ul)VU () (3.22)

with U (t) = Us(t,0) and Uy(t) = U,(t,0) being the respective time propagator of the system in each
Liouville and Hilbert spaces. We note that in HS

]\}I[OA] = _ﬁ[‘/l(t)aé]v (323)
whereas in the LS representation
Uit [vy) = [Va(t)))- (3.24)

With these definitions we can write the nth order response function in the interaction picture within
the LS representation as follows

St tnet, -+ o t1) = (—=1)"0" 1 O(tn)O(tn_1) - - - O(t1)

X R (3.25)
x (Viltn + - +t)Vitn-1 + - + 1) - Vi(t)Vi(0)[p(t0))) -

3.3. Using time correlation functions

The nonlinear response function S (") contains the Liouville space dipole operator to nth order. Since
each represents a commutator in Hilbert space (see Eq. (3.8)), which can act either from the left or
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from the right, S (") contains 2" terms once these commutators are evaluated. In practice only half of
the 2" terms are independent, and need to be considered. The contribution of the other half is simply
the complex conjugate of the former. The overall sign of each term is determined by simply counting
the number of times it acts from the right, since there is a (-) factor associated with each “right”. The
resulting 2" terms, are named in literature as Liouville space pathways.

3.3.1. Linear response function

For the specific case of the linear response function, in LS Schrédinger picture we have from Eq. (3.20),
SW (k) = v (V] Gs(t1)V [p(t0))), (3.26)

and in the LS interaction picture, from Eq. (3.25),
SW(t1) = =0 (t1){(Vi(t1)| V1(0) |p(to)))- (3.27)

In HS, the last equation reads as (see Subsec. 2.1.4)

S (t1) = —v20(t1) (—;) Tr [‘71(t1)[‘71(0)7/3(t0)” :

where we have used the relations Eq. (2.27) and Eq. (3.23). Expanding the commutator and applying
the cyclic permutation invariance of the trace, we can obtain

S (1) = 10T [[Vi(n), Ti(0)p(to)]

and from Eq. (2.3) we can conclude that

S0 (1) = +0*0()([Vi(tr), Ti(O)]). (3.25)

taking into account that the expected value must be calculated in the steady state p(tg), which usually
is the ground state.

One-time correlation function

Finally we introduce the one-time correlation function J;(¢1) (in the time domain) for the interaction
HS dipole operator as
Ji(ty) = (i(t)Vi(0)),  Ji(ta) = (Vi(0)Vi(ta)). (3.29)

If we use Eq. (2.28), this correlation function can be computed in LS as

Ji(t1) = ((Vi(t1)Vi(0) [po)) (3.30)

The linear response function then reads
(1) _ 1 2 _gx
S7(t) =z O(t) [i(t) = Ji ()] (3.31)

The two terms appearing in Eq. (3.31) are the named Liouvillian space pathways.
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3.3.2. Third-order response function

Of particular interest to us is the third-order response function [146, 147, 148, 149], which controls
the 2D spectroscopy process we study in the second part of this thesis. Analogously to the procedure
carried out for the linear response function, we can obtain the following two expressions for the third
order S©). In the Schrédinger picture within the LS representation

SO (ts, ta,t1) = —v (V| Gu(t3)VGs(t2) VGs(t1)V |p(t0)))- (3.32)

Three-time correlation functions

On the other hand, in terms of three-time correlation functions Ry (s, to,t1),

.\ 3 4
7
SG) (g, t9,11) = <h> v1O(t3)0 t1) Y [Ri(ts,t2,t1) — Ri(ts, t2,11)] (3.33)
k=1

with (in the HS interaction picture)

Ri(t3, ta, t1) = (Vi(ty + to + t3)Vilts + t2)Vi(t1)Vi(0))
Ro(ts, ta, t1) = (Vi(t1)Vi(ty + t2)Vi(ty + ta + t3)V1(0))
R3(t3, ta, t1) = (VI(0)Vi(ty + t2)Vi(ty + to + t3)Vi(t))
Ry(ts, ta, t1) = (VI(O)Vi(t1)Vi(ty + to + t3)Vi(t1 + t2)).

(3.34)

Correlation functions provide a natural link between theory and experiment and they can be formally
defined without alluding to a particular spectroscopy technique.

3.4. Additional approximations

Now that we have detailed the linear and third-order nonlinear response functions, we can specifically
compute the polarization at these two orders. Remember from Eq. (3.21) that each nth order polari-

zation is obtained from the convolution of the respective nth order response function with the external
field.

3.4.1. Semi-impulsive limit

In a general experimental setup to measure the nth order polarization, the external electric field E(r, t)
is usually generated with a different laser pulse E; in each interaction time 7;, i.e.,

E(’l",t —tn —lp-1-— tj) = E(raTj) = Ej(’l",Tj). (335)

In an ideal time-domain optical process, all the incident laser pulses are short compared to any time-
scale of the system, but long compared to the oscillation period of the light field. In this case, we
say that we are in the semi-impulsive limit, in which the envelopes of the pulses are approximated by
Dirac § functions

Ej(r,t) = E;0(t — 1) exp [Fiw;t £ ik; - 7], (3.36)
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with E;, w; and k; are the field amplitude, frequency and wave vector respectively of pulse jth and
the signs + depend on the phase matching condition chosen to detect the system response signal
ks = +ky + ky--- £ k,,. Using the form of the field under this semi-impulsive limit in Eq. (3.21), we
obtain

P(n) (T, t) :S(n) (tn, tn_l, ce ,tl) EnEn—l cee E1

x eIiwn(tftn)iik:n-re$iwn_1(tftnftn_l)iik:n_l-r L e$iw1(t7tn---7t1)iik1-r (3’37)
where t; = 741 —7;,7=1,...,n—1, and ¢, = t —7,. The nonlinear polarization is in this case directly
proportional to the nonlinear response function, with the time arguments being the delays between
successive pulses. In the semi-impulsive limit, the n + 1-wave mixing signal is proportional to [77]

(3.38)

I ~ )S(n) (tnytn—1,--- ,tl)‘Q

Heterodyne detection

When heterodyne detection is used, if the additional pulse (local oscillator) also satisfies the semi-
impulse limit, the detected signal is proportional to [77, 140]

I~ S™ (ty tn1, ... ). (3.39)

Thus, under this approximation, we are directly measuring the n-order response of the system. Times
ti, - -+, t, are the delay times between the n + 1 laser pulses (the last one is the local oscillator) that
are directly controlled by the experiment. In addition, the phase of the emitted polarization is also
measured.

3.4.2. Rotating wave approximation

By inserting Eq. (3.20) into Eq. (3.37), we arrive at the expression

pm (r,t) :(_1)nvn+1<<V|gA8(tn)]>gAS(tnfl)f} T gAS(tl)mp(tO)»EnEnfl B
% e:Fiw" (t—tn):tikn~1’e:|:iwn71(t—tn—tnfl)ﬂ:iknfyr L. e:Fiwl (t—tn-“—tl)ﬂ:ikr’l‘.

Note that at each time 7; where the jth pulse interacts with the system, the LS dipole operator
V appearing in S™ must be multiplied by the respective field factor Ejeﬂ“’f (t=tn-—t) ks T i) the
expression for P(™. Remember from our definition of the dimensionless dipole operator in Eq. (3.1)
implies that V = V™ + V¥ can be written in terms of deexcitation (V7) and excitation (V*) operators.
Consequently, the jth field-system interaction can be written as

(f}— + ]}—&-) > Ejeq:iwj(t—tn~~-—tj):|:ikj~r

~ VT x Ejexiwj(t—tnm—tj)iz‘kj-r_ (3'40)
The last line in the above equation corresponds to the rotating wave approximation (RWA). We select
only resonant terms in S (") where the optical frequency is essentially cancelled by a system frequency of
opposite sign, and neglect terms that oscillate at faster optical frequencies. Depending on the choice of
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ks, and the particular spectroscopic technique, we should therefore use in Eq. (3.33) only the few terms
in ™ that survive under the RWA. This, of course, simplifies the calculation and the interpretation
of time domain measurements since they require fewer contributions. Within the RWA, reorganizing
the exponential factors we obtain for the nth order polarization

P (7, t) :(_1)n”n+1<<V+|QAS(tN)]>igAS(tn—l)]>i o 'gAS(tl)vi‘P(tO)»EnEn—l By
X exp [i(Fwr Fwa -+ Fwp)t] - exp [i(Fwi F wa)ta] exp [i(Fw1)t1] expliks - 7r].

Note that now the inner product is performed with ((V*| instead of ((V/|. This corresponds to the
expectation value of V' ~. With this restriction we ensure that interaction of the emitted signal with
the local oscillator detection pulse must be one of deexcitation. It is useful for the computation of
absorption spectra, where we require that both signals interfere destructively on the detector. As a
result, the amount of light that the detector collects is less than without the system, which is consis-
tent with the light being absorbed by the system. On the other hand, for emission spectra we need to
calculate the expectation value of V* as we do it in Subsec. 3.5.2.

If the polarization is measured at r = ks, for a given phase matching condition (PM), we finally obtain

1) =8 (tpitn1--t1)EnEn_1--- Eyexp liwst
() =Spag( 1o t) 1+ By exp [iwst] (3.41)

X exp [i(Fwi Fwa -+ F wnp—1)tn—1] - exp [i(Fwi F wa)t] exp [i(Fwi)t1],

(n)
Ppyg

where the nonlinear response function is defined as
Sy (bt -+ 1) = (1" GtV Galtam)VF - Gult) V¥ (), (3.42)

inherits the respective + signs of the pulse wave vectors for the selected PM, and they oppose the
respective signs of w;; and w; is the frequency of the response signal as in Eq. (3.6).

3.5. Linear spectra

A linear optical spectroscopy process can be understood as a 2-wave mixing process, where the system
interacts with a laser pulse of wave vector k;. To satisfy a PM condition, the wave vector of the system
response signal k; is taken as ks = k;. In this case, for absorption, the direction of the emitted signal
coincides with the wave vector of the input pulse, thus leading to intrinsic heterodyne detection (or
homodyne detection), where the incident pulse itself acts as the local oscillator (see Fig. 3.3).

Within the semi-impulsive limit, the detected signal is proportional to S (¢) as Eq. (3.39) shows

(here we change the notation used in last section and we set ¢t = t1). Under the RWA, Eq. (3.28) now
takes the form

= 20?0(t) (- OV (0)) = (VF (0)V; (1)) (3.43)



54 3 Coherent Multidimensional Spectroscopy

The subscript [+] is the PM condition. Note that <f/1+ (O)XA/I* (t)) = 0 for the expected value calculated
at the equilibrium state of the system, particularly when this state corresponds to the ground state
|g), since V™~ |g) = 0.

3.5.1. Linear absorption

The respective linear response function can be calculated in the frequency domain by performing a
Fourier transform as follows [150]

SOy = L2 [T ae 60 (o)) (3.44)

[+] o I I :

When the signal emitted by the system and the incident field are collected (see Fig. 3.3), the detector
records an intensity that contains an interference term between them. This term accounts for the
absorption spectrum of the system and it is proportional to the linear response. The linear absorption
spectrum can be calculated as

S (w) = 2R {=iS{)(w)}

= o [T i v e}

We use this expression to compute the linear absorption spectrum of polariton systems in the second

(3.45)

part of this thesis, with Vo =aand V' = a', the ladder operators of the quantum radiation field
confined in a cavity. As an example, the linear absorption spectrum for an anharmonic oscillator is
presented later in Fig. 3.4.

3.5.2. Linear emission

The measure of the linear emission spectrum [150] of the system involves keeping the system interacting
with a continuous-wave laser of frequency wy. Under the RWA and the dipole approximation, the new
system + pumping laser Hamiltonian is given by

H(t) = Hy+ hQu(V Lt 4 ytemiwrty, (3.46)

with Qg a parametric coupling constant. In this context, the continuous-wave pumping laser is not
treated within the perturbation theory; its interaction is directly included in the Hamiltonian and this
composed system is the new “system under study”.

System
Collector

ks
=) s

>
>

kq

t Time

Fig. 3.3.: Schematic representation of a linear optical spectroscopy protocol for absorption. Under the
semi-impulsive limit the signal collected in the detector is proportional to the linear response
function.
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Rotating frame

To obtain a time independent Hamiltonian, we can perform a transformation to a rotating frame by
using the unitary operator

O(t) = exp [—;Ot] , (3.47)

where O is an arbitrary time independent operator. The density operator transforms as p(t) =
Ut (t)p(t)U(t). We define the rotating frame Hamiltonian Hpp such that the Liouville-von Neumann
equation

d/%(t) TS 2
—— =——|H t 3.48
dt h[ rF, p(t)] (3.48)
is satisfied. It can be shown [68] that
Hpp =UN)H®)U () - O. (3.49)

For an appropriate choice of the operator 0, it is possible to obtain a rotating frame Hamiltonian
independent of time. For example, in the case of a polariton system composed of a two-level molecule
interacting with a cavity, where Hy = H ¢ (see Chap. 1) and V™ (V') = a(al), the operator

O = hwr(afa + 616) (3.50)
makes Hgpp time independent. Now it takes the form
Hpp = Hyo — O + hwy(a + al). (3.51)

This transformation is used in the second part of this thesis to compute the linear emission of the
open JC model. In the rotating frame, we can calculate the steady state of the new system, which is
no longer the ground state as is usual in experimental protocols for absorption spectrum, but rather
some excited state resonant with the frequency wy, of the pumping laser.

Linear emission spectrum

For emission processes, the expected value taken at the final time of the computation of S™ is not
that of V~ (as in the case of absorption spectra) but that of V. Now, the relevant PM condition in
the calculation corresponds to ks = —kj. Under the RWA, Eq. (3.28) becomes

SU(0) = 12O (777 (1), % (0)]),
= 2000 (G (0T (0) = (V- (07 (1)) (3.52)

Note that (VI_(O)VI+ (t)) corresponds to a second order process for the expectation value calculated in
an excited state |e) of the system, since V1 |e) leads to a two-excitation state. Now in the frequency
domain

5(w) = 107 0°° dt [(V (&) V7 (0)) = limy oo (Vi ()97 (0))] €7, (3.53)
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where we have extracted the constant asymptotic value of the correlation function at infinite time.
This corresponds to Rayleigh scattering, i.e., coherent oscillation at the frequency of the driving laser.
The sign of the exponential in the Fourier transform inherits the sign of the PM condition to ensure
that the spectrum can be observed at positive frequencies. We can finally define the linear emission
spectrum as

Sg)(w;wL) =2R {—ZSQ (w)}

v 00 N . . , (3.54)
- om { /0 dt [(V (507 (0)) — limy oo (V)95 (0))] e—wt} :

h

3.5.3. Double-sided Feynman diagrams

The time correlation functions appearing in the linear and nonlinear response functions of the system
can be represented as double-sided Feynman diagrams [77, 140, 138, 55]. These diagrams are introduced
by the following rules:

= The density operator is represented by two vertical lines. The line on the left represents the ket
and the line on the right represents the bra.

= Time is running from the bottom to the top.

= An interaction with the radiation field is represented by a red solid arrow. An arrow pointing to
the right represents a contribution of E;exp[—iw;7; + ik; - 7| to the polarization. In the RWA
this means an interaction with V. An arrow pointing to the left represents a contribution of
Ej expliwjTj — ik; - 7] or an interaction with V™.

= In the RWA, an arrow pointing into the diagram indicates an excitation on the respective side it
acts upon. An arrow pointing out of the diagram indicates a deexcitation of the respective side it
acts upon. For absorption processes, the last (black dashed) arrow, representing the interaction
with the local oscillator pulse, must act from the left and induce a deexcitation. For the diagram
to have a non-zero contribution, the final state must be of population (|a) («|).

» Fach diagram has an overall sign of (—1)", where n is the number of interactions from the right
(bra). This is because each time an interaction V* acts from the right in a commutator, it carries
a minus sign.

As an example, let us consider the case of an anharmonic oscillator whose energy? scheme is depicted
in the left panel of Fig. 3.4. Under RWA, for absorption process, only one time correlation function
<‘A/I* (t)YA/I+(O)> appears in the linear response in Eq. (3.43). This correlation function is represented in
the Feynman diagram of Fig. 3.4 and the respective normalized linear absorption spectrum, calculated
with Eq. (3.45) is shown in the right panel of the figure. In this case, we have taken the system ground
state as the initial state for the spectroscopic absorption process. We use V= = [0) (1| + v/2 1) (2|
and VT = (V7)!. A dissipative Lindblad term £p = x£(V ™) is included in the system Liouvillian.

2Th]roughout this thesis, especially in some figures, we may refer to energies or frequencies interchangeably. When this
happens, we should understand that the energy associated with a frequency w is hAw.
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Fig. 3.4.: Left panel: Energy scheme of a system represented as an anharmonic oscillator. Middle
panel: Double-sided Feynman diagram associated to the linear response function of the
system. Right panel: Normalized linear absorption spectrum of the system, calculated with
Eq. (3.45) with V™ = [0) (1] + v2|1) (2| and V* = (V7)!. A dissipative Lindblad term for
the operator V™ is included in the Liouvillian, with decay rate %, which has its fingerprint
in the spectral width.

Clearly, from the ground state, we can only probe one-excitation states using linear spectroscopy. The
absorption spectrum in our example is maximum at the transition frequency wig = w1 — wg between
the oscillator ground state |0) and the first excited state |1). The full width at half maximum of the
spectrum accounts for the decay rate |1) 4 |0) occurring during the system temporal evolution at
time t. In our example, it corresponds to a rate of 2k.

3.6. 2D coherent spectroscopy

The 2D spectroscopy process implemented for the study of polariton systems in the second part of this
thesis (see also [42, 52]), requires the computation of third-order nonlinear response function under the
RWA and semi-impulsive limit. In this section, we outline the experimental protocol for measuring this
response function and discuss the physical processes that can be studied using this 2D spectroscopic
technique.

3.6.1. Experimental 2D spectroscopy protocol

As discussed in previous sections, the experimental protocol for measuring the third-order nonlinear
response function requires the interaction of the system with three delayed laser pulses and an additio-
nal local oscillator pulse for heterodyne detection, leading to a four-wave mixing process. This protocol
is illustrated in Fig. 3.5. We change the notation used in last sections and set 7 = t; (excitation time),
T =ty (waiting time) and t = t3 (detection time). These names for the temporal delay between suc-
cessive pulses are discussed in Subsec. 3.6.2. Under the semi-impulsive limit, the heterodyned signal
is proportional to the third-order non linear response of the system SG) (1,T,t). We are particularly
interested in two PM conditions that are named [140]

Non Rephasing (NR) ks = +k; — k2 + k3, and

(3.55)
Rephasing (R) ks = —k1 + ko + ks.
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For the computation of $©) (1,T,t) in both PM conditions under RWA, we prefer Eq. (3.42), which is
written in the Liouville space (LS), from which we obtain (note that the PM signs for NR and R are
carried by the interaction operator f)i)

Sk (7 T t) = —v ((VH|G(1)VF Gu(T)VF Ga(r) V¥ (t0)))- (3.56)

3.6.2. Feynman diagrams contributing to non rephasing and rephasing

It is convenient to write the expression resulting in the interaction picture in Hilbert space (HS) to
analyze the double-sided Feynman diagrams that contribute to both NR and R PM conditions. In
Eq. (3.34), we find the total three-time correlation functions Ry that contribute to S (7, T, ) (their
complex conjugate are also relevant as shown in Eq. (3.33)). Within the semi-impulsive limit, each
interaction V' comes from a single pulse used in the spectroscopic protocol. Thus, to simplify the
notation, we denote

Vi(0)= W4
Vi(t1) = Vi(r) = Va (3.57)
Vilti +t) =Vi(r+T) = Vs ’
) =W

V(t1+t2+t3 ( T—i—t)EVLo,

where each number label represents the respective pulse (ordered by their respective time interaction)
and the last Vi,o represents the interaction with the local oscillator pulse for heterodyne detection (see
Fig. 3.5). Before constructing the Feynman diagrams associated with each correlation function Ry, we

kLO - - - -
< i i : Collector
Time — v, to
t T 1
Detection ‘ Excitation
Waiting

Fig. 3.5.: Schematic representation of a nonlinear third-order (four-wave mixing) optical spectroscopy
protocol with heterodyne detection. Under the semi-impulsive limit, the combined emitted
and local oscillator signals collected in the detector is proportional to the third-order non-

linear response of the system.
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can rewrite these functions as follows

Ry = (Vi,oV3VaVi) = Tr :VLngVz%ﬁ(O): , Ry = (MVaV3Vio) = Tr :VLO/;(O)VlVQV?;:
Ry = (VaVsVioVi) = Tx ;me(om%;, R} = (ViVioVsVh) = Tr ;VLO%VQ/%O)V{ 559
Ry = (MV3VioVa) = Tr \VioVap(0)ViVs |, Ry = (VaVioVsVi) = Tr | VioVsVip(0)V
Ry = (VaVioVh) = Tr :VLo%ﬁ(O)fGVz: , Rj=(V3VioVeVh) = Tr :VLngVlﬁ(O)%:

Now it is easy to identify whether each interaction acts on the right side or the left side of the density
operator in each respective correlation function. For the NR PM condition, where we choose the
positive wave vector +k; for the first pulse, within the RWA we know that this corresponds to an
interaction with ‘A/f“. Note that if p(0) corresponds to the ground state of the system, ‘71+ p(0) produces
an excitation on the left side (ket) of the density operator (as discussed in the rules for constructing
double-sided Feynman diagrams in Subsec. 3.5.3). However, p(0)V;" = 0 since the interaction acts
from the right side of the density operator, then Vﬁ produces a deexcitation on the right side (bra),
which cancels out when applied to the ground state. For this reason, the contributions Ry or Rj, that
contain p(0)V; (with the first interaction acting from the right) are null in the NR PM. The same
reasoning applies for the R PM condition, where the contributions that cancel out in this case are
those containing V; p(0) (the first interaction acting from the left), since for the R PM, the first pulse
goes with the negative wave vector, —k;, corresponding to an interaction with ‘71_- On the other hand,
for the NR PM condition, the contribution RZ[NR] =Tr [VL_OVQ_ Vi ﬁ(O)V;} vanishes because after the
interaction with the first two pulses (acting from the left), the third pulse, representing an interaction
with V7, acts from the right (bra) of the ground state, i.e., (g| VT, resulting in zero, as we have
already mentioned. Similarly, for the R PM condition, the contribution RI[R] =Tr {VEO ;3(0)‘717 V;V;}
vanishes because it represents the excitation of the ground state bra (with the first pulse), followed
by the deexcitation (with the second pulse), bringing it back to (g|, and followed by the action of
the third pulse on the right (g| V+t = 0. The explicit nonzero contributions to each NR and R PM
conditions are shown below within the RWA

Ripngy = T [Vio Vs Vs V5(0)|  Rumy = T [V Vst a(0) ¥ V5|
Ropry = Tr [Vio Vit p(0) V5 W5 | Rygry = T [V Vs p(0) V7 V5| (3.59)
Ryng) = Tr [VLB‘A/:;VTI/)(O)V{] Ry = Tr [VL_O‘%JFV;ﬁ(O)Vf]

Here we recall that each interaction V] appearing in the correlation functions in Eq. (3.59) actually
represents the generalized dipole operator in the interaction picture in HS, and they are propagated
at different time intervals, as indicated by Eq. (3.57). These temporal propagations are reflected in
the respective double-sided Feynman diagrams shown in Fig. 3.6 for both NR and R PM conditions
using the anharmonic oscillator of Fig. 3.4 and with the ground state as initial state at ¢ty = 0.

Depending on the incoherent processes involved in the dynamic evolution of the system, it is possi-
ble that new states emerge in these Feynman diagrams during the 7, T', and t temporal evolution.
This leads to new Feynman diagrams. In the second part of this thesis, we study polariton systems in
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Fig. 3.6.: Nonzero double-sided Feynman diagrams contributing to the third-order nonlinear response
function ) (1,T,t) for the NR and R PM conditions under semi-impulsive limit and RWA.

which two new diagrams arise due to the presence of dissipation during the temporal intervals T and ¢.

Some systems, like polaritons, exhibit varieties of multi-state excitations (see, for example, the TC
model studied in Chap. 1). In those cases, the ket states |1) or bra states (1| appearing in the Feyn-
man diagrams represent any of the single-excitation states (connected by dipolar interaction with the
ground state), and the ket |2) represents any of the two-excitation states (connected by dipolar inter-
action with the single-excitation states).

The visualization of the Feynman diagrams in Fig. 3.6 allows us to understand the physical processes
that occur simultaneously during the spectroscopic protocol for each PM condition. In both NR and R
signals, the action of the first pulse takes the ground state |0) (0| to a coherence state |1) (0| (for NR)
and |0) (1| (for R). Subsequently, this state evolves with the system propagator during the time inter-
val 7. Then, the interaction with the second pulse generates a population state that can be |0) (0| or
|1) (1]. As the interaction with the first two pulses is required to generate a population state, it is named

Excitation process: Interaction with pulse 1 + 7 evolution + Interaction with pulse 2.

Now it is understood that the time interval 7 is referred to as the excitation time. The excitation pro-
cess is highlighted in the shaded gray area in the Feynman diagrams plotted in Fig. 3.6. It is during
this stage where the R and NR PM conditions differ. From this point onward, the Feynman pathways
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are the same for both PM conditions. The population state obtained during the excitation process
evolves with the system propagator during the interval 1. This time is called the waiting time:

Waiting: T' evolution.

This waiting time is used as a parameter to analyze the fast dynamics of the excited system from the
temporal changes in the 2D spectra, as discussed later in Subsec. 3.6.4. The evolved state during the
waiting time then interacts with the third pulse, which brings it back to a coherent state, which in our
example of the anharmonic oscillator can be [1) (0] or |2) (1]. This state propagates during the time
interval ¢ in which the system emits a signal, that eventually may combine with the local oscillator
detection pulse. This signal is produced with a deexcitation on the left (ket) side of the density ope-
rator leading to a population state. The combined process is called

Detection process: Interaction with pulse 3 + ¢ evolution

Of course the time ¢ is called the detection time. With the detection process, it is possible to probe the
states that were formed during the excitation process and during their respective dynamic evolution
in the waiting time 7.

3.6.3. Physical processes: GSB, SE, ESA

The three Feynman diagrams contributing to each NR and R PM conditions also reveal three different
physical processes, which we explain below.

Ground State Bleaching (GSB)

The contributions Ryng) and RyR) are labeled in Fig. 3.6 as GSB because they represent the named
ground state bleaching physical process. This means that after the excitation process the system
returns to the ground state, from which the second and third steps of the spectroscopic protocol
follow. Note that in fact, in these two Feynman pathways Rng) and Ry, the state |0) (0] is obtained
after the excitation process. If we compare the GSB diagrams in Fig. 3.6 with the linear absorption
Feynman diagram in Fig. 3.4, we observe that a GSB diagram represents a double linear absorption
process. Except for some normalization factor, any cut of the 2D GSB spectrum (shown later in
Subsec. 3.6.4) matches the linear absorption spectrum shown in the right panel of Fig. 3.4. In this
sense, GSB spectra allow for the test of single-excitation states and the extraction of their respective
decay rates towards the ground state of the system. The GSB spectra do not vary with the waiting
time T', as expected, since during this time interval T, the state remains in the ground state.

Stimulated Emission (SE)

The contributions Ryng) and Rz are labeled in Fig. 3.6 as SE because they represent the named
stimulated emission physical process. This means that after the excitation process, a population is
obtained in single-excitation states |1) (1] of the system (those connected by dipolar interaction with
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the ground state). However, this population undergoes stimulated emission after the interaction with
the third pulse at a given detection time ¢, ultimately returning to the ground state |0) (0]. The SE
spectra allow for tracking the dynamic evolution during the waiting time T of the population in
states from single-excitation manifold. Additionally, it is possible to analyze their decays, not only
towards the ground state but also towards other non-degenerate single-excitation states, in the case
of multi-state excitation manifolds.

Excited State Absorption (ESA)

Excited state absorption (ESA) represents cases where, after the excitation process, population is
already reached in the form of single-excitation states |1) (1| (those connected by dipolar interaction
with the ground state). After the evolution of these states during the waiting time 7', the third pulse of
the spectroscopic protocol achieves coherence |2) (1| involving two-excitation states (those connected
by dipolar interaction with the single-excitation states). Once the system in a coherence |2) (1| emits
a photon after a time interval ¢, field which is detected, some population remains in the single-
excitation manifold [1) (1]. The diagrams Rjng) and Rjjg; in Fig. 3.6 represent ESA contributions to
the third-order nonlinear response in their respective PM conditions. With ESA spectra, it is possible
to test states that may not have a dipolar connection with the ground state, but instead they do have
connections with two-excitation states. This represents a great advantage of the 2D spectroscopic
technique compared to linear methods.

3.6.4. 2D nonlinear spectra

In the frequency domain, we can define a 2D spectrum analogously to the linear spectrum in Eq. (3.45).
For our study, we are interested in considering the sum of both NR and R PM conditions, so we define

(7, T et te o) (3.60)

[R]

S((IP\)I)R+R) (wr, Ty wy) = Z/ drdt {S[(Iél)R] (r,T, t)eiwﬁeiwq—’l' + S
0

Note that we have applied the Fourier transform only for the excitation time 7 (with respective excita-
tion frequency w;) and the detection time ¢ (with respective detection frequency w;). The dependence
on the waiting time T is kept explicitly in the time domain. Now we can define the following 2D
spectra

Absorptive spectrum = R{S((i’])R +R) (wry Tywy) }

®3)

(3.61)
Absolute value spectrum = |S(NR +R) (wr, Ty wy)].

The 2D spectra are constructed by defining the excitation frequency w, on the ordinate axis and the
detection frequency w, on the abscissa axis, while the waiting time T is taken as a parameter. This
allows for the study of the temporal evolution in 1" of the 2D spectra. Each 2D map is a “snapshot”
of the spectrum at a specific time T'. We can also define the spectra corresponding to each physical
process, we name path: GSB, SE and ESA as follows

3 [ 3 iwt twrT
S((N)R+R) path(w77 T,w) = Z/o drdt [S[(N)R] path(T, T,t)e™“te

(3) ot (362)
+S[R] path(Tv T,t)e"“e zwﬂ-} ,
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where ,
/)
S[(gf)R/R} patn (T T3 1) = <h> v1e(1)e(T)e(t) [R[NR/R} path (3.63)

is obtained from Eq. (3.59)) in the RWA, and RNR/R] path IS the respective contribution to each path
process according to Fig. 3.6. It has a negative sign if it corresponds to a conjugate term Rj. For

example, BiNrjasB = Ring)» and RRjesa = —R§[NR]. Now we define the GSB, SE, or ESA spectrum

(3)

(NR-R) path(wT, T,w;), so that the total absorptive spectrum can be constructed

as the real part of S
as the sum [148]

Absorptive spectrum = GSB spectrum + SE spectrum 4+ ESA spectrum,

if these are the only pathways contributing to the NR+R third-order nonlinear response function. If
new pathways emerge when incoherent process are included in the system Liouvillian, it is necessary
to add the new contributing components to the full spectrum.

As an example, let us consider the anharmonic oscillator shown in the Fig. 3.4. Once again, we include
a Lindblad term of the form le = /ﬁ[ﬁ(ff_), but this time, we set to zero the elements £o112 and
£10,21 of the Liouvillian to prevent the formation of a new pathway during the detection time. This
new pathway is studied in the second part of this thesis, and we refer to it as ESA’. For now, we do
not consider it.

For the waiting time T" = 0, we obtain the spectra shown in the Fig. 3.7. Note that there are only signals
at the excitation frequency w; = wyg since during the excitation process only transitions between the
states |0) and |1) are involved, as shown by the orange arrows in Fig. 3.7. A direct transition from the
ground state to state |2) is avoided by the selection rules of the dipole operator. Along the excitation
frequency, the signals then exhibit the same width at half maximum as the linear absorption spectrum,
which in this case is 2k. During the detection process, both GSB and SE contributions also account for
transitions between the states |0) and |1), as indicated by the green arrows for these two signals in the
Fig. 3.7. Therefore, both signals are expected to be observed at the detection frequency w; = w19, and
the width along this frequency is also expected to be 2x. This is why the GSB and SE signals appear
quite symmetric along both frequencies. On the other hand, the ESA contribution, which involves
transitions between the states |1) and |2) during detection, is observed consequently at the detection
frequency w; = wo1 and has a wider width along this frequency, indicating that the decay rate of the
state |2) is higher.

The sum of the three contributions results in the absorptive spectrum shown in Fig. 3.7. The GSB
and SE contributions are positive, while the ESA contribution is negative. Remember that the ESA
signal comes from the sum of R?;[Nm and RZ[R], which are conjugate terms and they contribute to
the nonlinear response function with a negative sign, indicating that the dipole operator Vs applied
an odd number of times on the right side of the density operator. Thus, the GSB and SE processes
interfere constructively while the ESA process interferes destructively with the other two. The GSB
and SE contributions are proportional to (vVi0)?, while the ESA is proportional to (vVig)?(vVar)?.
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Fig. 3.7.: Upper panel: GSB, SE, ESA and total absorptive normalized spectra at the waiting time
T = 0 for the anharmonic oscillator in Fig. 3.4. The elements L9112 and L1921 of the
Liouvillian have been nullified to prevent the formation of new pathways. Lower panel:
Schematic representation of the physical processes occurring in each contribution to third-
order non linear response. Orange arrows represent the two pulses of the excitation process,
and the green arrows represent the pulses of the detection process.

For dipole transition operators in oscillators, it is usually the case that (vVa1) = V2(vVig), thus the
ESA signal has twice the magnitude of the SE and GSB signals. If the decay rates are the same for all
states, the ESA signal would have the same shape as any of the GSB or SE signals. In this sense, if
wp1 = wi2 (harmonic oscillator), the sum of the GSB4+SE+ESA contributions would cancel out under
these conditions. Therefore, the 2D spectrum is useful then to account for the anharmonicity of the
System.

3.7. Analytical computation of the third-order nonlinear response

To compute the third-order nonlinear response function, which is directly measured with the 2D
spectroscopy protocol in Fig. 3.5 under the semi-impulsive limit and RWA, we employ Eq. (3.56)
written in the Liouville space (LS), before applying the RWA:

SO, T,1) = =" (V| Gs()VG(T)VGs(r)V |p(t0))).

Our aim in this section is to rewrite this equation in the basis of the Liouvillian eigenstates. The
resulting expression can be easily calculated with a computational code and it is quite efficient because,
aside from diagonalizing the Liouvillian matrix, the calculation is entirely analytical. Other algorithms
and methods (including non-perturbative ones) for computation can be found in [142, 42, 151, 152].
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3.7.1. Representations in Liouvillian eigenbasis

To construct the new expression, we need to use the tools introduced in Chap. 2 for the mathematical
formulation of states, operators, and superoperators in the LS. In particular, we return to the following
considerations obtained in that chapter:

s In Subsec. 2.1.6, we studied the eigenstates of the Liouvillian when it has a Hamiltonian counter-
part. We found that in this case, such eigenstates {|af))} can be written from the Hamiltonian
eigenstates {|a)}. The eigenvalues of the Liouvillian are of the form A\o3 = —iwag (see Eq. (2.41)).
On the other hand, in Subsec. 2.1.7 we discussed the general case, when processes leading to
incoherent dynamics are included in the Liouvillian, and it is not possible to find a Hamiltonian
representation. In this case, the Liouvillian eigenstates cannot be constructed from those of the
Hamiltonian. They are more general eigenstates, which, in the single-index notation, can be
written as {|v;))}, such that

&, lud) = A loa)), (3.64)

with respective eigenvalues {\;}. The subscript s indicates that it is the Liouvillian of the system
under study in the 2D spectroscopy, free from interaction with the classical fields. This is the basis
we use below to write S©) (7, T, t). Remember that |v;)) represents an operator 9; in Hilbert space
(HS). Once the set of eigenvalues and eigenvectors of £, is obtained (typically it is a numerical
process), the subsequent calculations are entirely analytical.

» Any LS state |p)) can be expanded in the {|v;))} basis following the Eq. (2.31) as

) = Zci lvi)), with ¢; = ((vi|p)). (3.65)

The LS expansion coefficient ¢; can be computed in the HS by using the definition of the LS
inner product Eq. (2.27) as

e = ({vilp)) = Tr [0]p] = (2]),. (3.66)
» The dipole LS operator V can be expanded in the {|v;))} basis according to Eq. (2.32) as follows
V=3 Vigloa)(ugl, with Vig = (il Vo). (3.67)

The LS matrix element V;; can be computed in the HS using the definition of the dipole HS
superoperator in Eq. (3.8) and the definition of the LS inner product Eq. (2.27), as follows

Vij = ((0i[V|v;)) = —%Tr (8 [V, ;1] = —ﬁTr 0,01V — olo,7] = —ﬁTr ([0, 0117],  (3.68)

’L

which can be interpreted as the “expected value”

Vij = =7 {[o5, 0]} (3.69)
Now, the LS dipole operator acting on an arbitrary state |p)) can be computed using Eq. (3.65)

and Eq. (3.67) as

Vip)) =D Vijerloi) {(vjlvx)) ZVszkW (3.70)
ijk
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where we have used the orthogonality relation of the Liouvillian eigenbasis ((vj|vg)) = 0j.

Particularly, when acting on a Liouvillian eigenstate |vy)), we obtain

Vo)) = > Vislo))((wslog)) =D Vielvi)). (3.71)

= The field-free Liouvillian of the system £, is time independent. Consequently, its LS time pro-
pagator U, (t) is that of Eq. (2.36) and the respective Green’s function is, from the definition in
Eq. (3.16), A
Gs(t) = O(t)e™. (3.72)
The great advantage of using the Liouvillian basis is that the temporal evolution of an arbitrary
state |p)) is quite straightforward, as shown below

Gs(t) Z Ci et lvi)) = Z cieit u;)) (3.73)

where we have used the expansion in Eq. (3.65) and we have taken into account that if the
cigenvalue Eq. (3.64) is satisfied, then a function f of the Liouvillian satisfies f(£,)]|v;)) =
f(\i) Jvi)). Particularly, when acting on an eigenstate |vg)), we obtain

Ga(1) [vg)) = O(1)e " [u)) = O(B)EM [uy)). (3.74)

Now it is straightforward to compute the expression for the third-order nonlinear response function
as indicated in the next subsections.

3.7.2. Excitation process

The initial state |p(to))) is expanded in the Liouvillian eigenbasis by using Eq. (3.65)
)= clu)). (3.75)
I

If |p(to))) is the ground state |gg)) and since the ground state is also a Liouvillian eigenvector, only the
term colvo)) = |gg)) is different from zero. The interaction V with the first pulse of the 2D spectroscopy
protocol is computed as

Vlp(to)) ZC;V lu)) = sz’lcl |vi)), (3.76)
il

by using Eq. (3.71). The subsequent temporal evolution during the excitation time 7, resulting when
applying GS(T), is obtained as

Go(T)V |plto))) szlclgs ) [vi)) = Ze“vuczlvm (3.77)

where we have used the relation in Eq. (3.74). The interaction V with the second pulse is again
computed by using Eq. (3.71). At this point, the excitation process finishes, and yields the excitation
state

p(T))) = VGs(T)V |p(t0))) = O(1) D Vjie Ve [v5)). (3.78)
gil
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Excitation function

We can define an excitation function E;(7) as

Ej(1) = O(1) Y Ve Vya, (3.79)
il
such that the excitation state is
lp(T))) =D Ej(7) |v;)). (3.80)

J
Only those jth Liouvillian eigenvectors for which the excitation function E;(7) is nonzero contribute
to the excited state and consequently to the third-order response function.

3.7.3. Detection process

In a completely analogous manner, we keep on calculating the temporal evolution during the waiting
time 7', the subsequent interaction with the third pulse of the 2D spectroscopic protocol, and the
evolution during the detection time ¢ to obtain the final state |p(7 + T +t))) as follows

p(r +T + 1)) = G()VG(T)VGs(T)V |p(t0)))

=0(t)0(T)O(r) Z e)"“thje)‘jTVjie/\iTVz’lCl |vk))
< (3.81)

=0)O(T) Y MV eNTEj(1) |vg)).
kj

The final step to compute S®)(7,T,t) is the inner product between the LS state bra ((V| and the
state |p(T + T +t))), where the detection process ends.

SO (7, T,t) = = (V] p(r + T + 1))
= —01'0H)0(T)O(7) > M Vied Ve Ve (V Jug))

kjil
= —'0)O(T)0(1) Y Ve VeN TV eh Ve (3.82)
kjil
= —U4@(t)@(T) Z Vke/\ktvkje/\jTEj (7’),
kj
with
Vi = (Vo)) = Tr (Vx| = (7T, (3.83)

Detection function

We also define the detection function D;(t) in the form

D;(t) = 0(t) > Ve V. (3.84)
k
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In terms of these excitation and detection functions we can write a compact expression for the third-
order response function, which accounts for the three experimental processes in its measurement,
namely excitation, waiting (evolution during time T'), and detection, as

SG) (7,1, t) ZD t)eNT B (7). (3.85)

Only those jth Liouvillian eigenvectors for which both the excitation and detection functions are
nonzero contribute to the third-order response function. In this sense, these functions act as masks or
filters that select the relevant eigenvectors and eigenvalues for the calculation.

Non Rephasing and Rephasing PM conditions

Under the RWA, the third expression in Eq. (3.82) can be rewritten for the NR and R PM conditions
as

®

ey (T 10 1) = —'0M)O(T)0(7) Y Vi e VN VTNV e, (3.86)

kjil
The excitation and detection functions for both PM conditions are now of the form
Ejnrmy) (1) = O(1) Y VieN Ve,  Dyjnry(t) = O(t) > Vi e Vi (3.87)
l k

The detection function is the same for both PM conditions since ks has a positive sign in both. In
terms of these functions

CINAC ) ZD ()N T Ejinmemy (7). (3.88)

3.7.4. Frequency domain spectra

The frequency domain expression for the third-order nonlinear response resulting from the sum of the
NR and R PM contributions is obtained by inserting Eq. (3.86) (or Eq. (3.88)) into Eq. (3.60)

S((1?\)I)R+R) (wr, Tywy) = —iv Z Vi (/ dteMte zwﬁ) V+ AT
= (3.89)

X [Vﬂ < / dreAiTei“’TT> Via+Vi < / dTeAiTe_i“’TT> VZ-ICz} :
0 0

Note that this method allows for the analytical development of the integrals resulting from the 2D
Fourier transform, further enhancing the computational efficiency of the calculation. It is important
to clarify that the eigenvalues of the Liouvillian, as discussed later in the second part of this thesis,
are generally of the form \; = —I'; +iw;, where I'; and w; are real numbers. This prevents the integrals
in the above equation from diverging when evaluated at +oo. Finally, we obtain

|7 Vas VoV ViV
5(3) T, a4 k "kj >\ T ji Vil Ji Vil 3.90
(NR+R) (cor, T 1) w Z A + zwt i Fiwr N —iws “: (3.90)

kjil
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or in the compact form

S((;)R—i-R) (WT, T, U.)t) = —iU4 Z D][R] (wt)eAjT [E][NR} (WT) + Ej[R] (wT)} 5 (391)
J
with et N
ViV Vie Vi
EjiNr(Rr)) (wr) = ; mcl, Djry(wt) = zk: ma (3.92)

being the respective Fourier transforms of excitation and detection functions in Eq. (3.87). The ex-
pression Eq. (3.90) can be computed very efficiently as simple matrix and vector products. Note,
for example, that one can construct the matrices V¥ such that their elements {i,j} are ij? (values
obtained from Eq. (3.68)).



Part IIl.

Results and discussion



4. Multidimensional spectroscopy in the
dissipative Jaynes-Cummings model

The simplest polaritonic model used to describe the strong interaction between molecules and radiation
is the Jaynes-Cummings (JC) model, which represents a single two-state emitter (atom, molecule, etc.)
interacting with one mode of the quantized electromagnetic field confined in a cavity'. The Hamiltonian
associated to the JC model reads

Hjc = hwe a'a + hw. o'o 4+ hg(a'o + o'a), (4.1)

where w,, we are the cavity and molecule frequencies respectively; a, o are the cavity annihilation and
molecule de-excitation operators respectively (aT, ol are their adjoints) and g is the radiation-matter
coupling constant. The left panel of Fig. 4.1 shows the energy scheme of this model up to the second
excitation manifold A, and the possible radiative dipole transitions between the states. The dimension
of the Hilbert space is dimpg = 5 [i.e., Ag (1), A1 (2), A2 (2)]. Except Ag, composed only by the ground
sate |G), in each excitation manifold A; there are two polariton states: the lower (L) and the upper
(U). The splitting between polaritons of A; is the Rabi frequency Qg = 1/4g% + A2/2. If the system is
resonant then the detuning is zero A = w, —w, = 0 and the Rabi frequency is Qr = 2g. We introduce
cavity photon losses as a Lindblad term for the operator a, with a cavity decay rate k = 1/t,,, where ¢,
is the cavity lifetime (related with the cavity quality factor Q). The molecular vibrational relaxation
is taken into account within the Bloch-Redfield formalism for the dephasing-type operator oo with a
vibrational bath spectral function J(w) =~ for w > 0 and J(w) = 0 for w < 0. The molecular exciton
lifetime then corresponds to t, = 1/v. The Liouvillian superoperator £ for this open system reads as
i

Llpl = =5 [Hyc, pl + rL(a)lp] + B(o'a)[p]. (4.2)

4.1. Liouvillian eigenvalues and eigenstates

The Liouvillian is a superoperator with a related eigenvalue equation, (£ — X;) |v;)) = 0. For our
example with 5 Hamiltonian states the dimension of the Liouvillian matrix is dim% x dim?% = 25 x 25
complex. The right panel of Fig. 4.1 shows the position of these 25 Liouvillian eigenvalues in the
complex plane for a given set of parameters. The real part of each eigenvalue accounts for a decay I,
while the imaginary part is approximately the frequency difference w,g = w, — wpg between any two
respective eigenstates ) and |/5) of the JC Hamiltonian. We have decided to identify each Liouvillian

1Expe]ri]fnentally7 achieving strong coupling between radiation and a single or few molecules is only possible by using
nanoplasmonic cavities [1]
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Fig. 4.1.: Left panel: energy scheme of the Jaynes-Cummings (JC) model eigenstates for the excita-
tion manifolds Ag, A; and Ay (not to scale). Each manifold, except A9 = |G), is characte-
rized by a lower polariton L and an upper polariton U. The splitting between polaritons
of A is called the Rabi frequency Q. Red arrows indicate the allowed radiative dipole
transitions. Blue arrows indicate transitions due to cavity photons losses (solid lines) and
molecular dephasing-type vibrational relaxation (dotted lines). Right panel: blue points re-
present Liouvillian eigenvalues for the open Jaynes-Cummings (JC) model up to the second
excitation manifold. We have chosen fiw. = hw. = 2 eV and Afdr = 0.1 eV. Cavity lifetime
is 15 fs (k = 44 meV/h) and molecular exciton lifetime is 50 fs (y = 13 meV/h). The real
parts of the eigenvalues are related to decays and their imaginary parts are close to energy
differences between any two JC Hamiltonian eigenstates.

eigenvalue by using the two labels o and 3 of the Hamiltonian states whose energy difference closely
approximates its corresponding imaginary partZ:

)\aﬁ = _Faﬁ - i(waﬁ + 5aﬁ)a (4'3)

where 6,3 is a small frequency shift. For the cases oo = 3, both w,s and d,4 are zero and these Liou-
villian eigenvalues (Agq, ALL, Avv, ALoL, and Ay,y,) are real. We may classify these eigenvalues by
ordering their decays in such a way that? T = 0and Ty < Tyy < T oLy, < I't,u,. The eigenvalues
with an imaginary part (Agr, Agu, etc.) in the positive imaginary plane are accompanied by their
respective complex conjugate (Arq, A\vg, etc.) in the negative imaginary plane. Except Agg = 0, the
real part (-I'yg) of all eigenvalues is negative, producing losses to the initial density matrix and decay
transitions as shown by the blue arrows in the left panel of Fig. 4.1. In general, any eigenvalue with

®Note that although we label the Liouvillian eigenvalues with the Hamiltonian states, this does not mean that the
corresponding Liouvillian eigenvector |vag)) corresponds to the operator |a) (8] = |a8)).

3Experimentally it is known that U polaritons decay faster than L polaritons and the states of Ay decay faster than
those of Aj.
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Fig. 4.2.: Schematic representation of non-zero Liouvillian elements in the Hamiltonian eigenbasis
for three independent blocks. Orange color represents contributions due to cavity photon
losses, green color are due to molecular dephasing-type vibrational relaxation, while gray
color represent contributions of both molecular relaxation and cavity losses. Additionally,
diagonal elements have the energy contribution of Hamiltonian.

I'ng = 0 corresponds to a steady state of the system. In this dissipative TC model, only the ground
state is stationary.

In the Liouville space (LS) representation of density operator (see Subsec. 2.1.4) the Liouvillian in
Eq. (4.2) can be visualized as a matrix in the Hamiltonian eigenbasis {|af))}, exhibiting the existence
of five independent diagonal blocks. Three of these blocks are shown in the Fig. 4.2. The double-label
notation in this figure (and henceforth) refers to the Liouvillian space labels a8 = |af)) = |a) (8], so
that the Liouvillian element £,3 o5 accounts for transitions in the density matrix formalism of the
form |a) (7] — |a) (3].

The first block at the left side in the Fig. 4.2 is composed by states of the form* A;A;, with i = 0,1, 2.
The colors in each element of the figure identify whether the respective transition is due to cavity
decay (orange), molecular dephasing-type vibrational relaxation (green) or a combination of both pro-
cesses (gray). Additionally, there is a diagonal Hamiltonian contribution (not colored). For example,
we can observe transitions of the form AsAy — Aj;A; mediated entirely by photon losses, while
the transitions AjA; — AgAy (which represent pumping) are forbidden. Molecular relaxation only
causes transitions between some populations (or coherences) of the same form (A;A; — A;A;). The
transitions between populations are also represented by blue arrows in the left panel of Fig. 4.1. The
second independent block is composed by coherences of type A;A;_1, with ¢ = 1,2, and the third block
by coherences of the form AsAg. The two missing blocks (not shown in the figure) are the adjoint
matrices of the second and third ones and are composed by coherences A;_1A; (i = 1,2) and AgAs,
respectively. Each diagonal block in the Liouvillian evolves in time independently and the transitions

“The notation A;A; = |A;) (Aj| refers to all possible ket states in A; and all possible bra states in A;.
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Fig. 4.3.: Absolute value of the non-zero elements pga(t), prr(t), pur(t), pru(t), puu(t) of the
density matrix p(t) = e*p(0) for the initial conditions p(0) = |L) (L| (left panel), p(0) =
|U) (U| (middle panel) and p(0) = %(|L> (L|+|U) (U|+|L) (U|+|U) (L|) (right panel). The
same parameters as in Fig. 4.1 have been used. In the left panel, pr 1 () exhibits a behavior

of the form e~ (¥/2)t K/ 24/t

and in the middle panel, pyy(t) decreases according to e
In the right pannel, it is possible to observe oscillations with the Rabi frequency €2r. Here
k and ~ are the cavity photon losses rate and molecular relaxation rate respectively. The

evolution time ¢ is in units of the Rabi period of the system Tr = 27/Qpr = 41.47 fs.

shown in the Fig. 4.2 will help us to understand the behavior of 2D spectra later on.

As an example of the dynamics governed by the Liouvillian, the Fig. 4.3 shows the absolute value of
the time-dependent density matrix elements p, g involving the ground state and the first excitation
manifold {G, L, U}, for three different initial conditions. When the initial condition is |LL)) or |[UU))
(left and middle panels in Fig. 4.3, respectively), we can observe that those polaritonic states exhi-
bit a roughly exponential decay with a rate equivalent to /2 for prr(t) and /2 + /4 for pyy(t),
where k and ~ are cavity photon losses and molecular relaxation rates respectively. Rabi oscillations
are also present, especially when coherences |[UL)) and |LU)) are initially populated (right panel in
Fig. 4.3). It is because the only complex eigenvalues of the Liouvillian involved in this dynamics are
just Ay and Apy, which contribute with the temporal phases +i(wyr + dyp)t = +iQpt (shifted Rabi
frequency). When the upper polariton is the initial condition (middle panel of figure), there is a small
population that migrates to the lower polariton. This transition is solely due to the molecular relaxa-
tion (as indicated by the element £17, yy in the first block of Fig. 4.2). On the other hand, when the
lower polariton is initially populated (left panel in Fig. 4.3), there is a much smaller population that
migrates towards the upper polariton. This migration must occur through the coherences (mediated
only by cavity decay) because the direct transition LL — UU is forbidden®.

All dynamical cases studied in the Fig. 4.3 have an analytical solution if the populations and coherences
associated to AsAs in the first block of the Fig. 4.2 are not taken into account. In this case, the
Liouvillian sub-block matrix £5,z, corresponding to this minimal basis in the Liouvillian space takes

This transition would be possible if temperature effects are included in the Liouvillian, as will be studied later. For
now, we are considering zero temperature.
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the form
GG LL UL LU vu
GG [ 0 K/2 K/2 K/2 K/2
LL 0 —kK/2 —K/4 —K/4 /4
o, =UL| 0 —k/4 —K/2—7v/8—1iQR v/8 —K/4 . (4.4)
LUl 0 —k/4 v/8 —K/2—7/8+1iQpR —K/4
uu \ 0 0 —K/4 —K/4 —K/2 — /4
This reduced Liouvillian has analytic eigenvalues \gg = 0, Ayy = —K/2 — /4 and the eigenvalues

AL, ALu, A\ur correspond respectively to the three analytical roots of the polynomial® 256/—@(2%% +
(167K + 326% + 64wR)\ + (27 + 126)A% + X3 = 0. Although these solutions are analytical, they are
complex functions of x and ~y, which can be approximated by simpler forms as follows: Ar;, ~ —k/2,
ALu & —K/2—7v/8+ iQr and \yp ~ —Kk/2—7v/8— iQ k. We have labeled those eigenvalues according
to previously established rules. For any initial condition that is a linear combination of states of the
form AjAq, the exact analytic solutions to p,s(t) takes the form

paﬁ(t) — Z Cz/ﬁﬂle)\alﬁlt
o' (4.5)
_CoBeTunt 4 008 ~Tuut | Tort [(ogg + C25Y cos(Qpt) 4+ i(CTF — C5) sin(QRt)}

where C's/%/ = <<Uo/,8’ |P(0)>><<0‘5 ‘Ua’6’>>'

In general, the I'y 3 decay values in Eq. (4.3) for all JC Liouvillian eigenvalues exhibit a linear behavior
as a function of the cavity and molecular decay rates. Some examples are plotted in the Fig. 4.4. The
dependence on k (cavity loss rate) can be observed in the left panel of the figure. Those eigenvalues of
the form I'y 5, increase linearly with slope £/2, while those of the form I'y, 5, follow a line with slope
3r/2. All JC Liouvillian eigenvalues, except I'gq, are affected by the decay due to photon loss. In
the right panel of the Fig. 4.4 the linear dependence with the cavity photon loss rate « is also shown.
Lower polaritons, both of first and second excitation manifolds, do not decay by molecular relaxation.
In fact, in the absence of photon loss, the associated eigenvalues for Az, 1. (n > 1) would be zero,
meaning that |L,) states would be stationary. All the other eigenvalues are affected by molecular
relaxation. The I' decay values of both upper polaritons increase linearly with x with a slope /4,
while the coherences increase linearly with a slope /8.

These linear dependencies for the widths I' in Fig. 4.4 were obtained for the full 25 x 25 Liouvillian
matrix. They match perfectly with the analytical results obtained with the reduced model of Eq. (4.4).
In conclusion, we can say that 'y, ~ k/2, T'yy = k/2+v/4, Tvr =Trv =~ /24 7/8, T'L,1, = 3k/2,
T'v,u, = 3/@/2 + ’7/4, v, =T'rvu, = 3/6/2 +’y/8.

5Solutions calculated in Mathematica, Wolfram Research, Inc.
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Fig. 4.4.: Negative real part (I" in Eq. (4.3)) of some Liouvillian eigenvalues (those in the first block in
the Fig. 4.2) in function of cavity photon losses rate  (left panel) and in function of molecular
relaxation rate v (right panel). Gray dashed lines represent the fixed chosen values of v = 13
meV/h and kK = 44 meV /h in each respective case. Hamiltonian JC parameters of Fig. 4.1
have been used.

Regarding the Liouvillian eigenstates, we describe below those that belong to the sub-block” LA, -
For the same parameters as in Fig. 4.1, we obtain®

lvaa)) = |GG))
luz)) = 0.7112|GG)) — 0.6940 |LL)) — 0.0172 |UU))
+ (—0.0027 + 0.0782i) U L)) + (—0.0027 — 0.0782i) | LU))
lvgy)) = —0.7071|LL)) + 0.7071 |UU)) (4.6)
lopL)) = (0.0056 — 0.2148¢) |GG)) + (—0.0064 + 0.10747) | LL)) + (0.0008 + 0.1074) [UU))
+0.9646 |UL)) + (—0.0120 + 0.00773) |LU))

L)) = lour))

"The eigenstates obtained by diagonalizing the reduced sub-block £, , remain unchanged when including the other
states (A2A2) from the full 9 x 9 block of the Fig. 4.2 in the calculation. This is because the states in the reduced
block do not evolve in time towards the AaAs states.

®Double kets in terms of capital letters |a8)) (i.e. GG, LL, LU, etc.) refer to Hamiltonian eigenstates. Double kets
denoted |vag)) refer to Liouvillian eigenstates, with subscripts according to the respective eigenvalue Ang. For the
sake of clarity, in the Liouvillian space |a8)) = |a) (8] and |Ba)) = |8) (a] = |aB))'.
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We can also write the Hamiltonian basis of eigenstates in terms of the Liouvillian eigenstates:

|GG)) = |vaa))
ILLY) = [vga)) — 14775 [urr))

+(—0.0032 + 0.11831) |oprz)) + (—0.0032 — 0.11834) [vrr))
UUY) = Juge)) — LATTS [urr)) + 1.4142 [ugr))

+(—0.0032 + 0.11831) |opr)) + (—0.0032 — 0.11834) [vrr))
ULY) = (—0.0113 + 0.32503) [vr.1)) — 0.1556 |[vprer))

+(1.0629 + 0.00164) |vyrz)) + (—0.0132 — 0.00854) |vrr))
ILU)) = [UL))f

(4.7)

With the knowledge of the eigenvalues and left /right eigenvectors of the Liouvillian, the time evolution

of the density matrix is readily computed using the spectral decomposition of the time propagator as

applied to the initially chosen state |p(0))), i.e., |p(t))) = Z Cope [ua5)), With Cap = ((vag |p(0))).
apf

4.2. Linear spectra

In order to study the linear response of the JC model subject to the radiation of a laser pulse, we
calculate the linear absorption spectrum defined in Eq. (3.45) as

S (W) = 2R { /0 °°<a(t)aT(0)>eiwt} , (4.8)

and the linear emission spectrum for different laser frequencies wy, (see Eq. (3.54))

SS)(w;wL) =2R {/
0

o0

(@1 (0a(0))es — timr el (Ba(0))uc] €1}, (4.9)

where we assume that only the cavity interacts with the laser pulse’. The subscript ss in the emission
spectrum indicates that the expected value is calculated in the steady state of the system, by using
the rotating frame transformation (see Subsec. 3.5.2). So far, in all the calculations we have presented,
we have used the Bloch-Redfield formalism to simulate the molecular relaxation through a vibrational
bath with spectral density function for broadening of the form

Tstep(w) = nOw), (4.10)

with ©(w) the Heaviside step function. Note that in this case 7 is identical to v introduced previously
for the molecular relaxation rate. Unless otherwise stated, we take the temperature to be T' = 0, so
that the bath noise-power spectrum defined in Eq. (2.87) is equivalent to the spectral function, i.e.,
S(w) = J(w). At this point, we can evaluate the possibility of using other spectral density functions

9For closed cavities, the laser interacts with the system (cavity+molecules) solely through the cavity mirrors. The cavity
operator representing this interaction is a + a'. For open cavities, such as plasmonic cavities, the plasmonic dipoles
are often much larger than molecular dipoles. Thus, in either situation, when interacting with laser pulses, only the
cavity operators are taken into account.
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Fig. 4.5.: Different vibrational bath spectral densities J(w) (upper panel) and their respective bath
noise-power spectrum S(w) defined in Eq. (2.87) (lower panel) to be used in the Bloch-
Redfield formalism to simulate molecular relaxation. The functions employed here are (see
(Eq. (4.10)-Eq. (4.12))) the step function Jgiep(w) with n = v = 0.0132 eV (left panel),
the Debye function Jpehye(w) with n = 2y = 0.0264, wg = 0.2 €V and a temperature of
300 K in the noise-power spectrum function S(w) (middle panel); and the Ohmic function
Johmic(w) with 7/wg = 15 eV, wy = 0.2 eV and a temperature of 300 K in the noise-
power spectrum S(w) (right panel). Vertical dotted lines indicate the position of the Rabi
frequency £ = £0.1 eV.

and observe what happens to the linear response spectra. In particular, we test a Debye function and
an Ohmic function, which are defined as follows

nwWwa

JDebye<W) = m@(w)7 (411)
w —wW/Ww
Jonmic(w) = 1_~e /10 (w). (4.12)

In all the cases 7 is a dimensionless parameter that accounts for the system-bath coupling strength
and wy is a cutoff frequency. The three spectral density functions are plotted'® in the upper panel of
Fig. 4.5. At zero temperature, using the step function as considered in the previous calculations, the
linear absorption and emission spectra are shown respectively in the panel labeled Step in Fig. 4.6.
We can observe in the absorption spectrum two peaks corresponding to the polariton states |L) and
|U), located at their respective frequencies wrg = 1.95 eV and wyg = 2.05 eV. It is expected for
the upper polariton |U) to exhibit a lower absorption peak than the lower polariton |L), because |U)
generally has higher decay rates. In particular, it has an additional decay channel, through molecular
relaxation, towards |L) (see left panel of Fig. 4.1). However, this expected asymmetry between the
two absorption peaks cannot be simulated by using a Lindblad term for the molecular dephasing-type
operator ofo. In fact, if a Lindblad term is introduced for this operator, two completely symmetric
peaks are obtained for both polaritons, as observed in the panel labeled as Lindblad 1 in Fig. 4.6.
The excitation-emission spectra of these two models are also completely different. While in the Bloch-
Redfield step function model, a single predominant peak is observed at (w;, = wyg,w = wrg), in the

1OHen(:eforth, in all spectral plots, we will use energy units for the frequencies.
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Fig. 4.6.: Normalized linear absorption spectra (upper panel) and linear emission spectra (lower panel)
for different models of molecular relaxation. In the panel labeled as Lindblad 1, molecular
relaxation is introduced as a Lindblad term for the operator oo, with the decay rate v=13
meV /h. In the panel labeled as Lindblad 2, a Lindblad term has also been used, but for the
upper triangle of the operator ol in the basis of JC Hamiltonian eigenstates, with the same
rate v = 13 meV/A. In the other three models, the Bloch-Redfield formalism is used with
the respective labeled bath spectral density function with the same parameters as in the
Fig. 4.5. The emission spectra have been plotted for different laser frequencies wy,. Dotted
lines indicate the lower and upper polariton frequencies, respectively. The parameters for
the JC model are those of Fig. 4.1.

Lindblad 1 model, two symmetric diagonal peaks along with two symmetric cross-peaks are observed.
The reason for this symmetry is that the Lindblad 1 model allows for transitions in both the |U) — |L)
and the |[L) — |U) directions, each occurring at the same rate. This additional pumping from L to U
polariton, which is not permitted in the Bloch-Redfield step function model, leads to the emergence
of the other symmetric cross-peak in the emission spectrum.

In general, each peak in this spectrum indicates that upon exciting the system with a laser frequency
wr, (as read in the y-axis), once the system reaches the steady state, it can be detected at the frequency
w (as read in the x-axis). In this regard, it is worth noting that in the Bloch-Redfield step function
model, it is possible to excite U, then wait for its decay towards L, and finally detect L. However,
in the Lindblad 1 model, it is also possible to excite through L and to detect in U, in addition to
the trivial excitation-emission by the same states (diagonal peaks). One way to avoid the nonphysical
L — U pumping even within the Lindblad formalism is to eliminate the matrix elements of the oo
operator (expressed in the JC Hamiltonian eigenbasis ordered by energy) that produce transitions
from lower to higher energy levels and to consider only the upper triangle in the Lindbladian matrix,
which produce the physical transition from higher to lower energy levels. By introducing only the
upper triangle of the oo operator as a Lindblad term, we obtain the results quoted as Lindblad 2 in
the Fig. 4.6. With this modification, the L - U asymmetry in the linear absorption peaks is restored.
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Additionally, the L/U peak!! in the emission spectrum also disappears in the Bloch-Redfield model
with a step function for J(w). When comparing the models Lindblad 1 (in which olo is introduced
as a standard Lindblad term), Lindblad 2 (in which only the upper triangle of ol is introduced as
a Lindblad term) and Step model (in which ofo is introduced through the Bloch-Redfield formalism
with J(w) as step function) (see the first three panels of Fig. 4.6), we consider that the latter Bloch-
Redfield model fits better the expected behavior at zero temperature. At this same zero temperature,
if the step function is replaced with the Debye or the Ohmic function in the Bloch-Redfield formalism
for molecular relaxation, the resulting spectra do not differ significantly from those obtained with the
(zero temperature) step function. For this reason, these plots are not shown. However, the Debye and
Ohmic spectral density functions are useful for studying temperature effects on the spectra. These
effects can be incorporated by using the bath noise-power spectrum S(w) [95], defined in Eq. (2.87).

The function S(w) is plotted in the lower panel of Fig. 4.5 for the Debye and Ohmic bath spectral
density functions. These functions, at a temperature 7' > 0, do not vanish for negative frequencies.
For instance, there is a small contribution at the negative value of the Rabi frequency (as seen in
the dotted lines of the Fig. 4.5), indicating that for temperatures other than zero, there is still a
small rate of L — U pumping. However, this rate is much smaller than the U — L decay rate. Note
that S(0) is only well-defined if lim,,_,oJ(w)/w exists, which is not the case for the step function.
The spectra obtained by using both S(w) functions (for Debye and Ohmic) in the Bloch-Redfield
formalism at a temperature of 300 K are shown in the two rightmost panels in Fig. 4.6, respectively.
When comparing the spectra obtained by using the Debye and the Ohmic spectral density functions,
no significant differences are observed. This leads us to conclude that the Bloch-Redfield formalism
only weakly depends upon the choice for the spectral function as long as it is sufficiently smooth.
Consequently, in the following, when investigating temperature effects, our choice will be the Debye
function by default. The effect of temperature is only observed in the reduction of the cross-peaks
intensity.

4.3. Two-dimensional non-linear spectra (2DS)

We again deal with the JC model relaxed by photon loss and molecular vibrational relaxation (descri-
bed by the Bloch-Redfield formalism and using the step function for zero temperature). This polariton
system is then subject to the interaction with the three delayed pulses of the 2D spectroscopy pro-
tocol. At different waiting times 7', we compute the respective 2D nonlinear electronic spectra (2DS)

S((l?\’I)R +R) (wr, T, wy), including the non-rephasing and the rephasing components. The Fig. 4.7 shows

both the absolute value of the spectra (i.e., |S ((;)R +R) (wr, T, wy)]) along with the 2D absorptive spec-
3)

NR+R
evolution of the system by collecting a series of snapshots of the 2DS at different waiting times 7.

trum (i.e., the real part R[S (( )(wT, T, w;)]). Nonlinear spectroscopy allows us to track the dynamic

Additionally, due to the presence of a third laser, we have access to states within the second excitation
manifold.

H Henceforth, when we refer to the a/f8 peak in any 2D spectrum, it corresponds to an excitation with the « state
frequency and a detection through the [ state frequency.
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Fig. 4.7.: Two-dimensional non-linear electronic spectra (2DS) for the open JC model at different wai-

ting times 7. Both the absolute value |S((1?\’I)R +R)

or 2D absorptive spectra R[S ((1?\)1)15{ +R) (wr, T, wy)] (lower panel) are plotted. The parameters of

(wr, T,wy)| (upper panel) and the real value

the model are chosen as in Fig. 4.1. Dotted right lines indicate the lower and upper polariton
frequencies. All spectra are normalized to the maximum real value at time T" = 0. The plots
have been truncated to half of this maximum. The excitation frequency w, lies along the
y-axis, while the detection frequency w; lies along the x-axis. Solid contour lines at heights
[0.05,0.08,0.1,0.15,0.2,0.3,0.4] are included in the absolute spectrum and their negative
counterparts also for the absorptive spectra.

In the 2D spectra, plotted as the absolute values, |S((1§I)R +R) (wr, Tywi)], shown in the upper panel of

Fig. 4.7, four peaks can be observed located around the points quoted in the figure as L/L, L/U, U/L
and U/U, where the frequencies of the L and U polaritons intersect. These peaks are separated by the
Rabi frequency of the polariton system (Qr = wyr=0.1 eV). We also appreciate that peaks slightly
shift their positions with increasing waiting time 7T'. However, the shape of the four peaks are quite
similar, with the peak L/L always being the most intense. The cross peak L/U approximately displays
a similar intensity as the U/L peak at any waiting time 7". On the other hand, the absorptive spectra
R[S((I?\’I)R +R) (wr, T wy)], shown in the lower panel of Fig. 4.7 exhibit both positive and negative peaks.
At any waiting time T, there are four positive peaks representing transitions between Ay and A1, and
two negative peaks representing transitions between Ay and As. The separation between a negative
peak and its paired positive peak in the L/L and U/U positions is a measure of the anharmonicity of
the system. If the system were completely harmonic, both peaks would be located at the same position
in the spectrum, and they tend to cancel to each other because of their opposite sign, resulting in
a null 2DS. As the number of molecules inside the cavity increases, using a Tavis-Cummings model
to represent the system, the whole polariton system becomes increasingly harmonic. Therefore, it is
expected, as it will be confirmed later, that the most intense 2DS correspond to the JC case (with a
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single molecule), and the 2DS intensity gradually decreases by augmenting the number of molecules,
because harmonicity is being gained. The case with a higher number of molecules will be considered
and studied with more detail in subsequent chapters.

4.4. Contributing pathways

During the 2D spectroscopy protocol, which involves the interaction of the system with three time-
delayed pulses (see Subsec. 3.6.1), multiple processes of excitation and de-excitation occur simulta-
neously at each step of the protocol. In terms of the JC excitation manifolds, these processes can be
summarized with the double-sided Feynman diagrams plotted in the Fig. 4.8. All these interfering
paths contribute to the signal used to construct the 2D maps shown in Fig. 4.7. Please note that the
rephasing and non-rephasing pathways only differ during the excitation process (Pulse 1 + Evolution
7 + Pulse 2, shaded region in the Fig. 4.8). With the first pulse interaction, non-rephasing diagrams
involve coherences of the form |A1) (G|, while rephasing diagrams involve coherences of the adjoint
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Fig. 4.8.: Total non rephasing (upper panel) and rephasing (lower panel) double-side Feynman dia-
grams illustrating the processes occurring during the 2D spectroscopy protocol. These dia-
grams are valid for both the JC and Tavis-Cummings models. Here, excitation manifolds A;
are considered instead of individual system states. The shaded region represents the whole
excitation process, the only part where the rephasing and non-rephasing diagrams differ.
Note that |A1)(Ai| indicates both populations and coherences within the first excitation
manifold.
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form |G) (A1|. After the interaction with the second pulse, rephasing and non-rephasing signals involve
the same type of intermediate and final states. The GSB (Ground State Bleaching), SE (Stimulated
Emission), and ESA (Excited State Absorption) diagrams arise from the different terms obtained
when applying the dipole superoperator to the density matrix of the system for each pulse interaction
(see Subsec. 3.5.3). On the other hand, the GSR (Ground State Recovery) and ESA’ (Excited State
Absorption, prime) diagrams represent new processes resulting from the decay due to cavity photon
loss during the waiting time T and during the detection time t, respectively. The GSR signals arise
from decays of the type |A1) (A1| — |G) (G| during T', and the ESA’ signals from decays of coherences
in the form |Ag2) (A1| — |A1) (G| during the detection time ¢. These photonic decays occur between
different excitation manifolds A; — A;, which allows us to explicitly identify them as new pathways
in our excitation manifold notation. On the other hand, decays through vibrational relaxation occur
between states of the same excitation manifold. This prevents us from explicitly identifying them in
the diagrams shown in the Fig. 4.8. However, we will analyze these decays in more detail later and

introduce their respective pathways.

The Feynman diagrams, in terms of excitation manifolds, are valid for both the JC and the Tavis-
Cummings models. The kets |A;) and bras (A;| (¢ = 1,2) appearing in the pathways represent any of
the states (belonging to the respective excitation manifold A;) involved at each step of the spectrosco-
pic protocol. For example, for the interaction with the first pulse, |A1) = {|L),|U)} (for non-rephasing
diagrams) and (A;| = {(L|, (U]} (for rephasing diagrams) since both polariton states can be excited
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Fig. 4.9.: Upper panel: population (left), coherence (middle), and total (right) absorptive 2DS for
open JC at T'= 0.5 Tr. Same normalization and contour lines as in Fig. 4.7. Lower panel:
temporal T evolution of absolute value of the population (left), coherence (middle), and
total (right) 2DS peaks.



84 4 Multidimensional spectroscopy in the dissipative Jaynes-Cummings model

91 GSB GSR SE ESA ESA' 1
A v " = \ =
> 9 g
L 201 - 0 =
g o
S :
1.9 L —1
2.1 1
i U/L U/l 3
< ; %
L2200t 0 &
& ¢ =
= L/ L S
1.9 L —1
2.1 1
> =
=20+ 0 E
A
1.9 . W, W . . 1
1.9 2.0 2119 2.0 21 1.9 2.0 2119 2.0 2119 2.0 2.1
w; [eV] w; [eV] w; [eV] w; [eV] w; [eV]

Fig. 4.10.: Contributions to the open JC absorptive 2DS R[S((Ii)RJrR) (wr, T,we)], at the waiting time
T = 0.5 T ~ 20.73 fs. The contributions (rephasing + non-rephasing) have been separa-
ted into population pathways (upper panel) and coherence pathways (middle panel). The
combination of both are represented in the lower panel. Same normalization as in Fig. 4.7.
The gray dotted lines represent the frequencies of the polariton states wrg = 1.95 eV and
wya = 2.05 eV. The black dotted straight lines in the ESA spectra represent the frequencies
wr,r = 1.98 eV and wy,y = 2.02 eV. Contour lines at £[0.05,0.1,0.2,0.3,0.4,0.6,0.8, 1].

from the ground state |G) with a dipole transition (see Fig. 4.1). In the interaction with the second
pulse, for the diagrams that lead to |Ay) (A;|, we would then have 4 possibilities: the populations
{IL)(L|,|U) (U|} (they, along with the GSB pathways, give rise to what we will call population
pathways) and the polariton coherences {|L) (U], |U) (L|} (that give rise to coherence pathways).
The population, coherence, and total spectra obtained from these respective pathways are displayed
in Fig. 4.9 at a specific waiting time of 0.5 Tr. The population spectrum broadly encompasses the
most relevant features of the total spectrum. In the lower panel of the Fig. 4.9, we observe the time
evolution of each peak in 2DS (in absolute value) vs the waiting time T, for population, coherence and
total spectra, respectively. The coherence spectrum has a lower intensity contribution but highlights
the oscillations that are evident in the total spectrum, occurring with the Rabi frequency of the system.

The Fig. 4.10 displays the JC 2DS contributions (rephasing + non-rephasing) for population and
coherence pathways, and the sum of both, at the waiting time 7' = 0.5 Tr. The summation of all con-
tributions from this figure yields the respective absorptive 2DS in Fig. 4.9. Since during the excitation
process, only the upper and lower polariton states (U and L) are involved, all the signals in the 2DS
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Fig. 4.11.: Temporal evolution during 7" (units of Tr = 41.47 fs) of the peak intensities appearing in
each contribution to the absorptive population 2DS: GSB (dotted lines in the left panel),
-GSR (solid lines in the left panel), SE (middle panel) and -ESA (right panel). The GSB
L/U peak intensity coincides with the GSB U/L peak. For GSB, -GSR and SE, we consider
peaks L/L (w; = wy = wrg = 095 eV), U/U (wy = wy = wyg = 2.05 V), U/L (w; =
wue,wt = wra), and L/U (w; = wrg,w = wyg). In -ESA contribution, we consider the
peaks L/ Ly (wy = wrg,wt = wr,r, = 1.98eV), and U/Us (wr = wyg, wr = wy,u = 2.02 eV).
The same intensity normalization as in Fig. 4.7 has been used.

are located at their respective excitation frequencies, w, = wyg (upper peaks) and w, = wrg (lower
peaks). In practical 2D spectroscopy experiments, during the excitation process, the pulses do not
manage to produce polariton coherences with amplitudes as relevant as those obtained theoretically
when considering laser pulses as temporal delta functions (sudden perturbation limit). For this reason,
we will focus our attention on studying in more detail the 2DS formed only by population pathways.
These spectra provide valuable insights into the dynamics of population transfer between polariton

states.

The contributions to the population 2DS exhibit clearly localized (positive or negative) peaks, at the
frequencies w; = {wrg, wue} and wy = {wrg, wua} for GSB, GSR, SE and wy = {wr,1, wy,u} for
ESA. We can keep track of the evolution of the intensity of these peaks as a function of T' (see Fig. 4.11),
and therefore to extract information from the system dynamics. Let us study each contribution to the

population spectrum separately.

4.4.1. GSB (Ground State Bleaching) and GSR (Ground State Recovery)

The intensity of the four peaks (diagonal and cross peaks) of the GSB contribution to population!?
2DS in Fig. 4.10 can be plotted as a function of the waiting time 7". These intensities remain constant
along T (see dotted lines in left panel of Fig. 4.11). This is because in the GSB pathways the system
returns to the ground state after the excitation process (see Fig. 4.8 and Fig. 4.12), and the ground

2 There is no GSB contribution to the coherence 2DS since in GSB pathways no coherences are formed after the excitation

process (only the population in |GG)) contribute to GSB paths).
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Fig. 4.12.: GSB non-rephasing relevant pathways for separated excitation of polaritons L (lower paths)
and U (upper paths), respectively, and their contributions to each region around the dia-
gonal peaks L /L and U/U and cross peaks L/U and U/L (colored circles) within the 2DS.
The shaded gray region represents the excitation process. Each P; (i=1,2,3) indicates the
interaction with each pulse of the 2D spectroscopy protocol.

state does not evolve during 7T'. In the Fig. 4.12 we make use of a notation that involves individual sta-
tes instead of excitation manifolds and only for the non-rephasing'® contribution. This notation allows
to separate the absorption of both polaritons L or U during the excitation process. The absorption of
the upper polariton is represented in the upper paths of the Fig. 4.12 and the absorption of the lower
polariton is represented in the lower paths. Additionally, this Fig. 4.12 shows which region within the
2DS is contributed by each pathway. For example, we can see that GSB diagonal peaks U/U and
L/L represent respectively the absorption of U and L during both excitation and detection processes.
It explains that the intensity of the GSB L/L peak (see again Fig. 4.11) be higher than that of the
U/U peak. It is due to the higher absorption peak that L exhibits, compared to U, as indicated by
the linear absorption spectrum (see Fig. 4.6). On the other hand, the cross peak U/L represents the
absorption of U during excitation and of L during detection whereas the cross peak L/U represents
the absorption of L during excitation and of U during detection. It explains that both cross peaks have
the same intensity, as they involve the absorption of both L and U, although at different moments in
the 2D spectroscopy protocol. In conclusion, except for a normalization factor, any cut along the ex-
citation or detection frequency in the GSB component of the 2DS yields the linear absorption spectrum.

In the Fig. 4.12, the action of the first pulse (P1) and the evolution during 7 are combined into a
single process. This is because, if the first pulse creates the coherence |UG)) (upper pathway of the
Fig. 4.12), for example, then this coherence can migrate to the coherence |LG)) during the excitation
time 7. This migration is due to both photon loss and molecular relaxation (see the third block in the
Fig. 4.2), giving rise to a new pathway that is not illustrated in the Fig. 4.12. However, this migration
is small compared to the amplitude that remains in |[UG)), and therefore, the most relevant pathway
is the one shown at the top of the figure. The same analysis applies if the initial coherence is |LG))
(lower pathway of the figure).

3The same conclusions in this section apply for the rephasing diagrams.
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Fig. 4.13.: GSR non-rephasing relevant pathways for separated excitation of polaritons L (lower paths)
and U (upper paths), respectively and their contributions to each region around the peaks
L/L,U/U, L/U, and U/L within the 2DS. We use the same notation as in Fig. 4.12.

Fig. 4.13 displays the most relevant pathways for each peak in the GSR population spectrum. It is
noteworthy that, unlike the GSB pathways where the system returns to the ground state during the
excitation process, in this case, the polariton states L and U from the first excitation manifold are
populated. However, a portion of the population in these states decays back to the ground during the
evolution T'. This recovered population in the ground state, originating from the polaritons in the first
excitation manifold, produces the GSR pathways. It is therefore expected that the intensity of each
GSR peak exhibits the same time evolution as the pga(T) component of the density matrix when
evolving from the initial condition of either p(0) = |L) (L] or p(0) = |U) (U|. Indeed, if we recall the
dynamic evolution of the polariton states (left and middle panel of Fig. 4.3), we observe that pga(T")
displays the same behavior as any of the GSR peaks (in Fig. 4.11), except for certain normalization
factors. These normalization factors are again related to the absorption of each state and are precisely
the values of the GSB intensities for each peak. In general, for the JC model, with «, 5 = {L,U}, we
have the following relationship for each «/f peak in the GSR component of the population spectrum

a/Biasry(T) = —a/Brassy X paa(Ts ), (4.13)

where paa(T; |)) indicates the component pga(T') of the system density matrix, when the initial con-
dition is the state |«). The minus sign indicates that the GSR contribution has an opposite sign to the
GSB, and then the negative values of the GSR intensities are shown in the Fig. 4.11. The component
GSR of the population spectrum thus allows us to extract the dynamics of the decays L — G and
U — G. With our JC model (see Fig. 4.3 and Eq. (4.4)), pcc(T; |L)) = pac(T; |U)) = 1—exp(—kr/2T),
i.e., the decay rate of the transitions L — G and U — G (mediated by photon losses) is x/2 (remember
that x is the cavity decay rate), which also corresponds to the decay rate of the GSR peaks.

When each polariton state, either L or U, completely decays into the ground state G, pgg = 1, and
therefore the condition GSR=-GSB is fulfilled, meaning that GSB and GSR contributions cancel each
other for long waiting times T'. This represents the simple physical fact that for long enough times T,
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the dissipative system studied here will return to its ground state and lose all memory of the excitation
pulse sequence. In the Fig. 4.11, it can be observed that this effect occurs at T' ~ 3 T, both for the
state L (L/L peak) and for the state U (U/U peak). Later, in our study of the Tavis-Cummings model
with 2 emitters, we will observe that this behavior changes due to the presence of the dark state in
the first excitation manifold. In that case, the cancellation of the GSB and GSR spectra occurs at
different times for L and U, due to the new channel decay from U to the dark state.

4.4.2. SE (Stimulated Emission)

Fig. 4.14 displays the population SE pathways for each polariton L and U. Similar to the GSR spec-
trum, the SE spectrum reveals features of the populations of L and U attained during the excitation
process. In this case, we focus not on the population that decays to the ground state but on the
population that remains in L and U during the evolution T'. This population, which is subsequently
transferred to the ground state with the action of the third pulse, gives rise to the SE spectra.

By observing the first block of the Fig. 4.2, we notice that the Liouvillian dynamics during the waiting
time T allows for the direct transfer [UU)) — |LL)) through vibrational relaxation and the transfer
from |UU)) to the coherences |UL)) and |LU)) via photon loss. Therefore, if the state U is populated
during the excitation process (upper pathways in the Fig. 4.14), part of the population remains in U
during T' (contributing to the U/U peak) while another part migrates to L (contributing to the U/L
peak). Additionally, the coherences |[UL)) (contributing to the U/U peak) and |LU)) (contributing to
the U/L peak) are formed during 7". Consequently, the evolution during T of the SE U/U peak (middle
panel of Fig. 4.11) should account for the components pyy(T'; |U)) and pyr(T5|U)) of the system
density matrix. On the other hand, the peak U/L should account for the components prr,(T'; |U)) and
pru(T;|U)). We find the following relationships:

U/Usey(T) =~ U/Usgy(0) [pou(T5|U)) — pur(T;1U))] (4.14)
U/Lispy(T) =~ poe(T5|U)) — pro (T3 |U)) = pro(T5|U)) — pur(T5|U)). (4.15)
Pl/T Py T Ps t
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Fig. 4.14.: SE non-rephasing relevant pathways for separated excitation of polaritons L (lower paths)

and U (upper paths), respectively and their contributions to each region around the peaks

L/L,U/U, LJU, and U/L within the 2DS.
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Now, let us focus on the excitation of L (lower pathways in the Fig. 4.14). From the first block of
the Liouvillian (Fig. 4.2), we observe that during the waiting time 7', the |LL)) population produces
coherences |LU)) and |UL)) formed by photon loss. However, the direct transfer |[LL)) — |UU)) is not
allowed. Therefore, one might think that the evolution of the SE peaks L/L and L/U accounts only
for the components prr(T;|L)), prv(T;|L)), and pyr(T;|L)) of the system density matrix. However,
as can be seen in the left panel of Fig. 4.3, the component pyy (T |L)) also becomes slightly populated
during the time evolution of p(0) = |L) (L|, and this small contribution must be considered in the
2DS. In this sense, we have that the SE L/L peak must account for both prr(T;|L)) and pry (15 |L)),
while the L/U peak must account for pyy(7;|L)) and pyr(T;|L)), and we find the approximated
relationships

L/Lisey(T) =~ L/Lsgy(0) [pr(T5|L)) — pro(T;|L))] (4.16)
L/Usey(T) =~ puu(T;IL)) = pur(Ts L) = puu(T5 L)) — pru(T5 | L) - (4.17)

At T =0, no SE cross peaks are formed in the population 2DS (L and U, initially populated during
the excitation process, do not decay yet). On the other hand, the SE diagonal peaks L/L and U/U
show an initial non-zero value (see middle panel of Fig. 4.11), which, once again, accounts for the
absorption intensities of both polaritons and it precisely corresponds to the respective values of the
GSB contribution in each diagonal peak.

In our open JC model, the identity pyr(T5|U)) = pur(T;|L)) holds. Therefore, by subtracting the
intensity of the L/Usgy peak from the U/Lsgy peak, we obtain (see the Liouvillian matrix Eq. (4.4)
for an insight) pr(T;|U)) — puv(T5|L)) ~ exp(—k/2 T)(1 — exp(—7/4 T')), meaning that we can
extract the dynamics of the transfer U — L, but in combination with the transfer L — U. If the
contribution L — U is small, the subtraction of these SE cross-peak intensities allows us to directly
extract the dynamic information about the decay U — L mediated by vibrational scattering. The
Fig. 4.15 allows us to compare pr1.(T; |U)), pvv(T;|L)), prr(T; |U)) - puu(T; |L)) and the subtraction

0.08
PLL (TS |U>)

0.06 puo(T; |L>)
prr(T:[U)) = puv(T; | 1))
=== U/L{sg} — L/U{sp}

Normalized Intensity
[a]
o
=

I

o

S
)

Fig. 4.15.: Comparison between the components of the system density matrix prp(T;|U)),
puu (T L)), prr(T5|U)) - puu (T |L)) and the subtraction of the SE cross peaks U/Lgg —
L/Ugg from the population 2DS. The same parameters as in Fig. 4.1 have been used.
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of the SE cross peaks U/Lgg — L/Usg. We can observe that the subtraction (as a function of T") of
these peaks is very close to prr(T; |U)) — pyu (T |L)). Thus, once we identify the decay rate L — G
(which in this case is approximately /2, as can be seen from the Liouvillian in Eq. (4.4)) from the
GSR spectrum, it becomes possible to determine the rate U — L. In our model, it is approximately
v/4 (see again the Liouvillian in Eq. (4.4)), by analyzing the curve U/Lsy — L/Ugsg, as a function of
T.

4.4.3. ESA (Excited State Absorption)

While in the SE population pathways, it is necessary to consider the coherences |[UL)) and |LU))
and population exchanges |UU)) — |LL)) and |LL)) — |UU)) that occur during 7', the population
resulting from these transitions are hardly excited towards the second exciton manifold with the
third pulse of the spectroscopic protocol. Consequently, these transitions are not relevant in the ESA
pathways (see Fig. 4.16). The populations that persist in the states (L or U) during T', which were
initially populated through the excitation process, are subsequently excited to Lo and Us respectively.
This leads to the negative peaks in the 2DS that we have denoted as L/Ly and U/Us. Consequently, it
is expected that both peaks (see right panel of Fig. 4.11) evolve according to the following relationships

U/Usirsay(T) =~ U/Usrsay(0) puv(T5|U)) = U/Uspsay (0) e /24 T (4.18)
L/Lyesay(T) ~ L/Lyesay(0) pLo(T3|L)) ~ L/Logrsay(0) e /2 7. (4.19)

Clearly, the negative ESA peaks (see Fig. 4.10) are wider along the detection frequency axis compared
to the other peaks. These ESA widths are related to the decays of the states Lo and Us. Such decays
are larger the other previously analyzed peaks.

As a summary, the Fig. 4.17 indicates the set of dynamical processes that can be tracked using
population 2DS, specifying the spectral region where they are visualized and to which contribution
(GSR, SE, or ESA) they belong. In the SE contribution, it is important to highlight that, in addition
to the processes indicated in the figure, the formation of coherences |(UL)) and |LU)) during 7" must
be taken into account, whose contributions are also present in the four peaks. On the other hand,
although the two ESA peaks account for the processes U LuUuandrl L L, from which information

Pl/’i’ PQ T P3 t
GG)) — |UG)) — |UU)) — |[UU)) — [U2U)) @
|GG)) ILG)) |LL)) — |LL)) — |L2L)) — L/La

Fig. 4.16.: ESA non-rephasing relevant pathways for separated excitation of polaritons L (lower paths)
and U (upper paths), respectively and their contributions to each region around the peaks

L/Ls, and U/U, within the 2DS.
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Fig. 4.17.: Most relevant physical transitions between states of the open JC system during the waiting
time T' that contribute to each region of the population 2DS, categorized by the distinct
GSR, SE, and ESA population pathways.

can already be extracted through the SE diagonal peaks, it is noteworthy that their widths along the
detection frequency provide insights into the decay rates of states Us and Lo respectively. This will be
further analyzed in the next section.

4.4.4. ESA’ (Excited State Absorption Prime)

The contribution ESA’ to population spectrum is somewhat more challenging to analyze as it exhibits
interference between positive and negative peaks (see Fig. 4.10). This contribution, arising from the
decays |Az2) (A1] 4 |A1) (G|, is usually not included in the 2DS analyses done in the literature, as
electronic excitations of free molecules decay on much slower timescales than the polaritons with
very fast decay rates studied here. This pathway leads to a narrowing of the ESA line shape along
the detection frequency wy, as observed in Fig. 4.18, which displays the sum of the ESA and ESA’
contributions to 2DS population spectra. The widths along w; and w; of ESA + ESA’ peaks are
similar to those of GSB and SE. This effect is typically accounted for by considering a spectral density
function, which also influences the line shape (in w;) of the ESA contribution. In this sense, the ESA’
pathway could be viewed as equivalent to modifying the spectral width function. However, within
our formalism, there is no need to simulate this effect through a spectral width function. The ESA’
contribution formally emerges as a new pathway generated by photon decays during the temporal
evolution t, related to the detection.

4.5. Excitation and Detection Masks

In Sec. 3.7, we derived the expression Eq. (3.91) for the 2DS in terms of excitation and detection

functions. We rewrite that expression as

S (wr, Tw) = Ej(wr)edTDj(wy), (4.20)
J
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where the excitation function Fj(w:) = —(Ejnr)(wr) + Ejrj(w-)) contains the rephasing and non
rephasing PM contributions and the detection function Dj(w;) = iDjng)(wt) = iDjrj(wt) is any of
the rephasing or non rephasing PM contributions (they both have the same detection function). This
Eq. (4.20) exhibits also an exponential factor et containing the Liouvillian eigenvalue A; that shapes
the evolution during the waiting time 7". We have already explained that the excitation process in the
open JC model leads to a combination of the states |GG)), |LL)), and |UU)) (which give rise to the
population spectrum), as well as the coherences |[UL)) and |LU)) (which contribute to the coheren-
ce spectrum). This combination represents the initial condition for the evolution during 7" in the 2D
spectroscopic protocol. Since these five states'® belong to the same Liouvillian diagonal block (the first
block in Fig. 4.2), and none of them can migrate to the second excitation manifold, the temporal evolu-
tion T' remains confined within this 5x5 Liouvillian subspace. Therefore, it is expected that among all
the 25 Liouvillian eigenvalues, only the excitation/detection functions associated to those five eigen-
values (Aga, ALL, Auu, AuL, and Ary) in this Liouvillian subspace contribute to the sum in Eq. (4.20).

The left panel of Fig. 4.19 shows how the absorptive 2DS quoted in Fig. 4.7 at waiting time 7" = 0 is
built from the required excitation and detection functions. Note that the excitation/detection function
associated to Agq is not necessary to be included. For any eigenvalue \;, both functions F;(w,) and
Dj(w,) do not depend on T, so that the factor ™7 carries the whole time T-evolution of the 2DS.
There are other nonzero detection functions associated with the eigenvalues Ar, 1., Av,v,, AvyL,, and
AL,U,. However, since the corresponding excitation functions for those eigenvalues are zero, they do not
contribute to the sum in Eq. (4.20). Then it is clear that the excitation and detection functions act as
masks or filters, and only those eigenvalues for which both functions are nonzero contribute to the 2DS.

Out of the four nonzero excitation/detection functions, two correspond to Liouvillian population
eigenvalues (Arr and Ayy). For those eigenvalues, Ej(w;) are real, while D;(w;) are complex. The
other two correspond to coherence eigenvalues (Ayr and Apy). For the coherence eigenvalues, both

“Here we use the term ‘states’ loosely, as the coherences |UL)) = |U) (L| and |LU)) = |L) (U| are not actual quantum
states, since they are not Hermitian.

ESA

ESA+ESA'

T/Th =0.5

1.9 2.0 21 19 2.0 21 19 2.0 2.1
@; [eV] @; [eV] @; [eV]

Fig. 4.18.: ESA, ESA’ and ESA+ESA’ population contributions to absorptive 2DS

R[S((Ii)RJrR)(wT,T,wt)] for a waiting time 7" = 0.5 Tr. ESA and ESA’ contributions

are also plotted in Fig. 4.10. Parameters as used in that Fig. 4.10.
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Fig. 4.19.: Left panel: Real part of 2DS R[S((f\})R+R) (wr, T wy)] corresponding to the open JC model
at the waiting time 7' = 0, formed by the contribution of all nonzero excitation functions
(those associated to population eigenvalues Arr, A\yy and to coherence eigenvalues Ay,
Arv) and their corresponding detection functions (only real parts are plotted at left and
bottom, respectively). Right panel: the same 2DS formed only by the excitation/detection
functions associated with the population Liouvillian eigenvalues, namely Ar; and Ayy.
The gray dotted lines indicate the frequencies wrg = 0.95 €V and wyg = 2.05 eV, while
the black dashed lines indicate the frequencies wy,ir = 2.02 €V and wr,r, = 1.98 eV. Both

2DS are normalized as in Fig. 4.7. Contour lines are drawn at +[0.1,0.3,0.5,0.7,0.8,0.9].

E;(w;) and D;(w;) are complex. The most relevant features of the 2DS can be reproduced if only the
terms associated with population eigenvalues are considered in the sum Eq. (4.20). In this case, the
spectrum at 7" = 0 in the right panel of the Fig. 4.19 is obtained from the expression

RISSmsm @ T=0w)]= 3 Ejw)R[Dj(w)], (4.21)
j={LL,UU}

where we have used that for population eigenvalues E;(w;) are real. The contribution from population
eigenvalues plays a leading role in shaping the 2DS while the coherence contributions provide slight
modifications. It is important to clarify that this 2DS built from the Liouvillian population eigenvalues
in Eq. (4.21) is similar but not completely equivalent to the population 2DS that we defined earlier
in terms of Feynman pathways leading to population in Sec. 4.3. The coherence spectrum defined
previously in terms of Feynman pathways leading to coherences is also not identical to the spectrum
obtained by summing only those terms associated to the coherence eigenvalues. Remember that the
coherence spectrum contributes to highlighting the Rabi oscillations (as a function of T') of the total
spectrum, as shown in Fig. 4.9. Furthermore, the j—terms in the sum Eq. (4.20) associated with co-
herence eigenvalues contain phases e that oscillate approximately with the system Rabi frequency.
Indeed, whereas for the population eigenvalues, the phases in Eq. (4.20) take the form et — =T

MooT — ,~TouT

and e , which are entirely real, for the coherence terms the phases are of the complex
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form LT m o(CTvL=R)T ypq vt e(_FUL‘HQR)T, respectively.

We emphasize that excitation and detection functions are not observable quantities. The complex
excitation mask Ej(w;) (real for population Liouvillian eigenvalues) is not the linear absorption spec-
trum, and the complex detection mask D;(w;) is not the emission spectrum. However, these excitation
and detection masks provide relevant information about the frequencies of the states involved in the
spectroscopic protocol and the widths of the 51gnals in the 2DS. Both the excitation and detection

masks for the j-th eigenvalue read (see Eq. (3.92)) E;( Z fj (wr) and Dj(wy) Z g7.(wt), where
Vi Viys
] _ ji vl 4.22
filwr) = Zl: )\:I:sz )\Z-:I:in @ (4.22)
J Vi V 4.23
gip(we) = m (4.23)

The first term in Eq. (4.22) is the non-rephasing contribution and the second is the rephasing one.
Ej(wr) and Dj(w;) are thus contributed by the whole set of Liouvillian eigenvalues \; (associated to f;
functions) and A\ (associated to gj functions) respectively for a fixed frequency w, and w;. However,
only two of them contribute to the j-th excitation function and four to the j-th detection function.
For instance, in Fig. 4.20 we show the relevant contributions to E),, and E),, together with D),
and Dy, .

The contribution Arg to Ey,, has a width of 2I';,¢ and the contribution Ay to both Ey,, and Ey
has a width'® of 2I';. These are just the widths of the signals along the excitation frequency w, in
the 2DS. Analogously, the contributions to detection masks determine the widths along the detection
frequency wy of the 2DS signals. Particularly, these contributions to detection functions are Arg, Ava,
which provide the GSB, GSR, and SE spectra (since these eigenvalues belong to the first excitation
manifold Ap), and Ar,r and Ay, which contribute to the ESA spectra (since these eigenvalues
represent two excitations and belong to Ag). The signals associated with Arg and Ayg have the same
widths in w; and w,, while the signals ESA, have widths in w; proportional to 2I'y, 7, and 2Ty, 7, which
are larger than the widths along the excitation frequency (2I'r¢ and 2I'yq, respectively).

4.6. 2DS building history

For a quantitative insight into the state of the system during each step of the 2D spectroscopy protocol,
the Fig. 4.21 depicts the real part of the Fourier transform of each component (in the Hamiltonian
basis) of the system density matrix at each step. Both non-rephasing and rephasing contributions are
taken into account.

5Remember that T'ap represents the negative value of the real part of the Liouvillian eigenvalue A,3.
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4.6.1. Excitation

As we have discussed previously, after the excitation process (interaction with the first pulse + evolu-
tion 7 + interaction with the second pulse), the system is represented by a superposition of the states
|GG)), |[LL)), |UU)), and the coherences |[UL)) and |LU)). In the upper panel of the Fig. 4.21, we can
quantitatively observe the contribution of each of these components to the excitation state. Remem-
ber that the states (density matrices) theoretically formed during the construction of the 2DS are not
Hermitian. Hermiticity is lost because the interactions with the pulses are treated as commutators,
either with the operator a or the operator al (depending on the phase matching conditionlﬁ), and
neither of these operators is Hermitian. For this reason, it is not surprising to obtain, for example,
negative values for the GG (population) component. We emphasize that the physical density matrix,
of course, does stay Hermitian at all times.

When the excitation frequency is close to wrg = 1.95 €V, the state |LL)) is predominantly excited,
while when it is close to wyg = 1.05 €V, the state |UU)) is more populated. The coherences |UL))

16 Although the total interactions with the pulses are actually commutators with a + al (which is Hermitian), the signals

collected for the selected phase matching conditions (non-rephasing and rephasing in this case) are theoretically

t

obtained by choosing either a or a' in each pulse interaction, making use of the rotating wave approximation.
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Fig. 4.20.: Upper panels: real part of relevant ff (w;) functions defined in Eq. (4.22) whose sum is
the excitation j-function E),, (wr) (left panel) and the excitation j-function Ey, (w;)
(right panel). Only the fl-j (wr) functions associated to A; = {ALg, Aug} are non-zero.
Lower panels: real part of relevant gi (wt) functions defined in Eq. (4.23) whose sum is the
detection j-function Dy, , (w;) (left panel) and the detection j-function D), (w) (right
panel). Only the gi(wt) functions associated to A\, = {A\rg, Avg, AL,L, \U,u } are non-zero.
The widths of some fij and gi functions are labeled.
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Fig. 4.21.: Plots, by Hamiltonian components of f[p], defined as the real part of the Fourier transform

of ,01(\% + pg), being pl(\% /R the state of the system after the corresponding (I) step of
the spectroscopic protocol (I = Excitation, Evolution T, Interaction with third pulse and
detection). The detection state here refers to the state immediately before performing the
trace of ap(t), which is necessary to obtain the expectation value of the annihilation dipole
operator. The subscripts NR and R refer to the states obtained through the non-rephasing
and rephasing pathways, respectively. Except for the excitation process, the other processes
have been plotted at two waiting times, 7' = 0.5 Tr and T' = 2 T (Tr = 41.47 fs). Gray
dashed lines are the frequencies wrg and wyg respectively. Black dotted lines are the
frequencies wy,, 1, and wy,y respectively. Each signal is labeled with the corresponding peak

in the 2DS. The parameters are those of the Fig. 4.7.
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and |LU)) (which later will form the coherence spectrum) are present for both excitation frequencies.
The component |GG)) (which gives rise to the GSB spectrum) is also present for both excitation
frequencies, showing a higher intensity for w; = wrg than for w; = wyg. The excitation state is the
initial condition for the evolution during 7.

4.6.2. Evolution T

We have selected two waiting times to visualize the composition of the system state: a short time of
0.5 T and a longer one of 2 Tr. The comparison between these two times will allow us to appreciate
certain differences between the JC 2DS and the Tavis-Cummings 2DS in subsequent sections. In the
JC model, the components of the state are not strongly modified at long values of T. What can be
observed is a global decrease in their amplitudes during 7" and the oscillatory nature of the coherences
UL and LU (positive, for example, at 0.5 T and negative at 2 Tg).

4.6.3. Pulse 3

The third pulse forms the coherence LG from the populations that remained during the evolution T
in {GG, LL, LU}, and the coherence UG from {GG, UU, UL}. The amplitude of LG is dominant at
w; = wrg and the amplitude of UG is dominant at w, = wyg. The contributions originated from GG
are responsible of GSB and GSR spectra, while contributions originated from LL, UU, LU, and UL
are responsible of SE spectrum. On the other hand, the coherence Lo L formed during the interaction
with the third pulse primarily originates from the population that remained in LL during 7', and the
coherence UsU originates from UU. These two coherences involving states from the second excitation
manifold contribute to the ESA and ESA’ spectra. Lo L is primarily populated at frequencies close to
wr = wrg, while UsU is mainly populated at frequencies near to w, = wyg.

4.6.4. Detection

The detection plots, unlike the previous ones, are presented in the Fig. 4.21 as a function of the
detection frequency wy. In this part, we only plot the population components of ap(t), where p(t) is
the state of the system just after the interaction with the third pulse of the 2D spectroscopy and its
subsequent evolution up to time t. We omit the coherences here because only populations contribute
to the calculation of Tr [ap(t)], which represents the final step to determine the 2DS value in the time
domain. In other words, the sum of all components in the detection plots exactly corresponds to the
value of the 2DS at each detection frequency and at the selected excitation frequencies, w, = wya and
w; = wrg for the respective waiting time T'.

The component GG represents the sum of all GSB, GSR, SE, and ESA’ contributions. Meanwhile,
the components LL and UU represent the ESA contribution of the 2DS. The diagonal peaks U/U and
L/L have higher amplitudes than the cross-peaks U/L and L/U at 0.5 Tgr. At 2 Tg, all four peaks
have similar amplitudes. Those four peaks are formed by the GG component. Incidentally ESA peak
L/ Ly presents higher amplitude than U/Us for both short and long waiting times.



5. Multidimensional spectroscopy in the
dissipative Tavis-Cummings model

5.1. Hamiltonian, Liouvillian and linear response

The generalization of the JC model to the case of two or more two-sate emitters interacting strongly
with the electromagnetic field in a cavity is the Tavis-Cummings (TC) model. The Hamiltonian asso-
ciated to the TC model is

N N
Hro = hwe ala + thi UZTJZ' + hg Z(aTai + O'Za), (5.1)
i=1 i=1
Im(4)
[ @ ° 4 L
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Fig. 5.1.: Left panel: energy scheme of the Tavis-Cummings (TC) model eigenstates for the exci-
tation manifolds Ay, A; and Ay (not to scale). The splitting between polaritons of A; is
the Rabi frequency 2. Red arrows indicate the more relevant (matrix elements with ab-
solute value larger than 10™*) allowed radiative dipole transitions (both directions) and
also transitions due to cavity photons losses (downward direction). Dotted arrows repre-
sent relevant transitions due to molecular relaxation. Right panel: Liouvillian eigenvalues
for the open TC model with N = 2 up to the second excitation manifold. We have chosen
fw. = hwe = 2 eV for all molecules and Adp = 0.1 eV. Cavity lifetime is 15 fs (k = 44
meV /h) and molecular relaxation time is 50 fs (y = 13 meV/h).
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where N is the number of emitters inside the cavity, and w; and o; (ag is its adjoint) are the frequency
and annihilation operator respectively of emitter .

Unlike the energy distribution in the JC model (Fig. 4.1), the TC energy spectrum presents a co-
llection of N — 1 degenerate dark states, denoted as | D), within the first excitation manifold A; (see
Fig. 5.1). The second excitation manifold Ay encompasses the lower energy polariton state |Lg), its
higher energy counterpart |Us), two sets of degenerate states, |A2) and |Bs), and also a collection of
degenerate intermediate states |M2) (see Subsec. 1.3.2). Among the states |Ms), we group the midd-
le polariton bright state, along with the set of degenerate dark states | D) in the second excitation
manifold. This is because in the case of zero detuning (A = w. — w. = 0), both types of states are de-
generate. When there are N = 2 molecules inside the cavity, the second excitation manifold Ao differs
from the scheme presented in the left panel of Fig. 5.1. In this case, there are no states |Ms), |A2) and
| B2), but there are two of a new kind of degenerate states |C2), which have a dipolar transition with
both dark and polariton states of Aj.

Similar to the JC model studied in the previous chapter, we account for cavity photon losses through

a Lindblad term for the operator a. Furthermore, we incorporate molecular relaxation by using the
]

operator o; 0; associated with each of the individual molecules, employing the Bloch-Redfield formalism
with a vibrational bath spectral function J(w) = y©(w) (a y-normalized Heaviside step function). We
obtain a master equation of the form
i
2lp) = —1Hre, o) + (@) + 3 Blolo1) o] (52)
(2
When diagonalizing the Liouvillian matrix £ in the TC Hamiltonian basis, we obtain a set of complex
eigenvalues, as depicted in the right panel of Fig. 5.1 for N = 2 molecules. The eigenvalues of the
Liouvillian for N = 2 emitters can be obtained analytically in the limit of no-pure dephasing as shown
in [153]. The dimension of the Liouvillian space increases rapidly with the number of molecules N. For
the case N = 2, the dimension of the Hilbert space is dimy = 8 (there are a total of 8 polariton states

into Ag (1), A; (3) and Ay (4)), whereas the dimension of the Liouvillian space is dimg = dim%; = 64.

The Liouvillian superoperator Eq. (5.2) expressed in the Liouvillian space basis set is also a block dia-
gonal matrix for the open TC model, just like the Liouvillian of the open JC model (see Fig. 4.2). For
the TC model, the diagonal blocks are also of the form A;A; (i =0,1,2), A;A;—1 (i =1,2), and AgAg
and their respective adjoint matrices. The A;A; block of the TC model (analogous to the JC block in
the left panel of Fig. 4.2), contains both populations (e.g., GG, LL, DD, UU) and coherences (e.g.,
LU, LD, UD). If we restrict ourselves to populations within this block A;A;, we obtain the matrix
scheme represented in the left panel of Fig. 5.2. From all allowed transitions among population states
(mediated by photon losses, molecular relaxation or both) we have also represented only the relevant
ones as in Fig. 5.1. The dark states |D) in A; only have a decay channel through the lower polariton
|L) of A; via molecular relaxation. The value of I'pp (mind that R[App] = —T'pp) is small compared
to the other values I',q, as shown in the right panel of Fig. 5.1. It indicates that dark states decay very
slowly and are quasi-stationary states. For example, if the upper polariton U is initially populated,
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Fig. 5.2.: Left panel: Schematic representation of the Liouvillian matrix elements (in the TC Hamilto-
nian eigenbasis) only for the population states of the diagonal block A;A; (i = 0,1, 2). Orange
color represents contributions due to cavity photon losses, green color are due to molecular
relaxation, and gray color represents contributions of both molecular dephasing-type vibra-
tional relaxation and cavity losses. Right panel: Absolute value of the respective elements of
the time dependent density matrix p(t) = e*p(0) for the initial condition p(0) = |U) (U|. We
have used N = 4 molecules (upper panel) and different number of emitters N = 1,2, 3,4,5,6
and 10 (lower panel). We have used the same parameters as described in Fig. 5.1. Time ¢t is
in units of the Rabi period T = 41.47 fs of the system.

its dynamical evolution p(t) = £[p(0)] with the Liouvillian in Eq. (5.2) is shown in the upper right
panel of Fig. 5.2 for N = 4 molecules. At variance with the case of one single emitter (without dark
states, where the U state ends up decaying into the ground state) for N = 4 and long evolution times
a part of the population that would reach the ground state remains instead distributed among the
three dark states as transients. As the number of molecules N increases, the populations take a longer
time to decay to the ground state, as shown in the lower right panel of Fig. 5.2, due to the presence
of a larger number of dark states.

In our open TC model, all states, except for the dark states |D), exhibit decay via photon losses (see
left panel of Fig. 5.2). Additionally, with the exception of the lower polaritons in both A; and Ag,
all states decay via molecular relaxation. The Hamiltonian states used to represent the population
matrix block in Fig. 5.2 are ordered with increasing energy. Consistent with the fact that the baths
only induce relaxation, we find that the lower triangle of the matrix block is null, as these entries
would describe pumping from a lower-energy state to a higher-energy one.
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Fig. 5.3.: Left panel: Comparison of linear absorption spectrum for N = 1 (open JC model) and open
TC model with N =4, and N = 10 molecules. All spectra are normalized to unity at their
maximum, that is, the lower peak L, with wrg = 1.95 eV. Right panel: Comparison of linear
emission spectrum for N = 1 (open JC model) and open TC model with N = 4. Except
for N all parameters here used are the same as quoted in Fig. 5.1. Vertical dotted lines
represent the frequencies wrg = 1.95 eV and wyg = 2.05 eV respectively.

If only the population states (not coherences) are considered up to the first excitation manifold, the
analogue to the JC Liouvillian in Eq. (4.4) now reads for N = 2 molecules as

GG LL UL DD LU vu
GG [ 0 k)2 K/2 0 K/2 K/2
LL 0 —k/2 —Kk/4+~/8 ~v/4 —k/4+7/8 v/8
Sy = UL| 0 —-k/4 —k/2-3v/16—1iQr —7/8 v/16 —k/4+7/8
DD 00 —/8 —/4 —/8 v/4 ’
LU | 0 -—k/4 v/16 —v/8 —K/2—7/8+iQr —k/4+/8
uu \ 0 0 —K/4 0 —K/4 —K/2—37/8

(5.3)
The dark states in Aj, which represent molecular (but not cavity) excitations cannot be reached from
the ground state |G) via a dipolar interaction. The dipole transition |G) — |D) is not allowed, as shown
in Fig. 5.1. Consequently, a peak around the dark states energy (wpg = 2.0 eV for the parameters
described in Fig. 5.3) is absent in the linear spectra of the open TC model (see Fig. 5.3). However,
dark states play an important role in the dynamics of the polaritons L and U of the A; excitation
manifold, since transitions |U) — |D) — |L) are possible through molecular relaxation (see Fig. 5.2).
In the linear absorption spectrum (left panel of Fig. 5.3), after normalizing the signals, it is difficult
to discern noticeable differences between the case with N =1 (JC model) and the cases with N = 4
or N = 10 molecules (TC model). For N > 1, a slight variation in the relative intensity of the peaks
centered around the frequencies of the polaritons L and U can be observed compared to the N =1
case. On the other hand, the linear emission spectrum, depicted in the right panel of the Fig. 5.3,
exhibits noticeable differences between the TC and JC models. The diagonal peaks L/L and U/U
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are less intense for N > 1 (TC), in comparison to the case of N = 1 (JC). The emission from the
polariton states is reduced precisely due to the population that remains trapped in the dark states,
whose number scales as N — 1.

5.2. Two-dimensional non-linear spectra (2DS)

The absorptive 2DS for the open TC with a different number N of molecules and at different waiting
times T" are shown in Fig. 5.4. These spectra are normalized to the maximum of their respective initial
values (at T'= 0). We can observe that as the number of molecules increases, the upper signals along
the wyg excitation frequency of the 2DS (corresponding to the excitation of the upper polariton and

T/Tr=0.0 (0 fs) T/Tp=0.5 (21 fs) T/Tr=1.0 (41 fs) T/Tp=2.0 (83 fs) T/Tr=4.0 (166 fs
1 0.5

Vb @b

U/ L U/y
0.0 é
/L LU

—0.5

)
0.5
; @ @& o ~
. . 0.0 |
o Z
—0.5

0.5

0.0 [
Z

—0.5

4

1.9 2.0 21 1.9 2.0 21 1.9 2.0 21 1.9 2.0 21 1.9 2.0 2.1
; [eV] ; [eV] @ [eV] @ [eV] @ [eV]

Fig. 5.4.: Electronic 2DS for the open TC model at different waiting times T for different num-

ber of molecules N = 1, 2, 4 and 10. Here the real value or 2D absorptive spectra
R[S((I?\’I)R +R) (wr, T, wt)] (lower panel) is plotted. The parameters of the model are chosen as

in Fig. 5.1, for the number of molecules N. Dotted right lines indicate the lower wyg = 1.95
eV and upper wyg = 2.05 eV polariton frequencies. All spectra are normalized to their
maximum real value at time T" = 0. The plots have been truncated to half of this maximum.
The excitation frequency w; lies along the y-axis, while the detection frequency w; lies along
the z-axis. Solid contour lines represent heights +[0.05,0.08,0.1,0.15,0.2,0.3,0.4].
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Fig. 5.5.: Maximum value of the absorptive 2DS R[S((;)R +R)] at the waiting time T' = 0, as a function

of the number of molecules N. This maximum value decreases with a factor ~ 1/N 2/3 The
parameters quoted in Fig. 5.1 are used.

including the U/L and U/U peaks) take longer times to decay compared to its initial value. This is
consequence of the behavior shown in the right panel of Fig. 5.2, where populations take longer to
decay to the ground state as IV increases, due to the presence of dark states. However, it should be no-
ted that the maximum initial value of the absorptive 2DS decreases with a factor close to 1/N 2/3 (see
Fig. 5.5). This is because as N increases, the system becomes more harmonic [103], and its nonlinear

response (measured by the 2DS) is fading away. The cause of the scaling law N —2/3

is yet unknown.
For N = 4 and N = 10, the 2DS display similar features at all waiting times. This is a common
characteristic for any N > 2 case, since all these systems have a similar energy scheme (that shown
in Fig. 5.1). The only anomalous 2DS are those corresponding to the cases N =1 (JC) and N = 2, as
the energy schemes of these two systems are also exceptional cases. Note, for example, that for N = 2,
at T' = 4 TR a negative peak centered at the frequency of the dark state wpg = 2.0 €V is observed.
However, this peak splits into two for N > 2, as explained later in detail in Subsec. 5.3.2. These peaks
represent transitions to the non-degenerate states |As) and |Bsy) (for N > 2) or to the states |Cq) (for
N = 2), which are degenerate, thus producing a single signal in their respective 2DS.

1000 10
\\ﬂ \U/L(T)| \U/U(T))| |L/L(T)| |L/U(T)|
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Fig. 5.6.: Evolution of the intensity for the peaks U/L, U/U, L/L, and L/U obtained from the absolute

value of the 2DS |*S*((f\})R +R)\ as a function of the waiting time 7'. This time is given in units

of the Rabi period Tr = 41.47 fs. The plot includes the results for a different number of
molecules N =1,2,3,4,5,6 and 10 of the TC model with the parameters used in Fig. 5.1.
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To provide a more detailed visualization of the behavior of the 2DS signals as a function of the waiting
time 7" and the number of molecules N in the TC model, we plot in Fig. 5.6 the intensity of the peaks
U/L, U/U, L/L, and L/U as a function of both parameters. For this, we use the signals from the
absolute value of the 2DS ]S((Ii)R )| instead of the absorptive spectrum R[S ((I?\’I)R +ryl- Once again, we
observe that the peaks U/L and U/U are the most robust at long times 7" and especially for a high
number of molecules N. These U/L and U/U peaks correspond to the excitation (with the first two
pulses of the 2D spectroscopic protocol) of the upper polariton U. The transition U L, D via molecular
relaxation allows the dark states to be populated during T" evolution. The slowly-varying signal at long
waiting times T mostly represents the track of excitations of the residual population in dark states
D though the third pulse, since these states take a considerable time to finally decay (see Fig. 5.2)
through the lower polariton L. On the other hand, the peaks L/L and L/U represent an excitation
through the lower polariton L (with the first two pulses of the 2D spectroscopy). Since the decaying
transition L > D is not allowed by the Liouvillian of the TC model (see Fig. 5.2), the dark states are
not populated during the build-up of the 2DS. At long waiting times 7', the population in L decay to
the ground state GG via photon losses and no population remains to be excited by the third pulse in
the 2D spectroscopy protocol. Consequently, at long waiting times, the magnitude of the 2DS signal
through the L excitation (lower peaks) tend to vanish. In contrast, the non-zero magnitude in the U
excitation pathways (upper peaks) reveal the population that remains in the dark states. In fact, while
upper peaks still do not vanish at T'= 10 Tg for N > 1 (see again Fig. 5.6), the lower peaks already
vanish at T' =~ 4 Tg for any number of emitters N. Finally we note that for short T, all peaks show a
lower intensity as the number of molecules increases. This is a consequence of the loss of anharmonicity
of the TC model as N increases (see Fig. 5.5).

5.3. Population pathways

We have already defined in Sec. 4.4 the population and coherence spectra, whose sum constitutes the
absorptive 2DS R[S((li)R +R)
the population 2DS is of greater interest. In this section, we will focus on the contributions to the
absorptive population 2DS for the open TC model. The GSB, GSR, SE, and ESA’ contributions are
similar for any number of molecules, whether N =1 (JC) or N > 1 (TC). The ESA contribution will

be discussed separately in Subsec. 5.3.2. For example, Fig. 5.7 displays each of these four contributions

] shown in Fig. 5.4. We explained that for practical experimental purposes,

for N = 4 at a waiting time T = 0.5 Tg. In fact, no noticeable differences are observed in the shape
of the signals compared to the contributions shown in Fig. 4.10 for the open JC model with N = 1.
The T evolution of the peaks appearing in the signals GSB, GSR and SE can be interpreted similarly
as already done for the JC model (see Fig. 4.17).

5.3.1. GSR (Ground State Recovery) and dark states

First of all, as explained previously, GSB implies that the system returns to the ground state after the
excitation process (pulse 1 + pulse 2), and the ground state does not evolve during 7. Then the GSB
intensity remains constant during 7" as shown in Fig. 5.8. The GSR peaks in the TC model, just like
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Fig. 5.7.: Population pathways GSB, GSR, SE, and ESA’ contributing to the open TC absorptive 2DS

(R[S((;)RJFR) (wr, T, wy)]) at the waiting time T = 0.5 T (Tr = 41.47 fs) for N = 4 molecules.
Same normalization as in Fig. 5.4. The gray dotted lines represent the frequencies of the
polariton states L (wrg = 1.95 eV) and U (wyg = 2.05 €V). The black dotted straight lines
in the ESA’ contribution represent the frequencies wr,;, = 1.956 €V and wy,y = 2.044 eV.

Contour lines are plotted at +[0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1].
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Fig. 5.8.: Left panel: Temporal evolution during 7' (units of T = 41.47 fs) of the peak intensities
appearing in the contributions to the absorptive population 2DS: GSB (constant dotted
lines) and -GSR (solid lines) for the open TC model with N = 4 molecules. The GSB L/U
peak intensity coincides with the GSB U/L peak. We consider the peaks L/L (w, = wy =
wrg = 0.95 eV), U/U (w; = w = wyg = 2.05 eV), U/L (w; = wyg, wi = wrg), and
L/U (w; = wrg, wr = wyg). Right panel: comparison between the sum of the population

2DS peaks U/Usaspy + U/Uigsry(T) (a mutual cancellation along T') and the population
N-1

of dark states (normalized with the U/U GSB peak intensity) U/U;gspy Z pp,p; (T3 |U)).
i=1

The same intensity normalization as in Fig. 5.4 has been used.
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in the JC, correspond to the population of the state |G) when the initial condition is |U) (paa(T;|U))
— upper peaks) or when the initial condition is |L) (paa(T;|L)) — lower peaks). However, in the TC
model we can observe a difference in the behavior of -GSR peaks, as shown in the left panel of Fig. 5.8.
In the TC case, unlike JC, the GSR upper peaks do not cancel with their respective GSB peaks at
times where the JC model already does (see Fig. 5.8 for T'/Tr = 7). This is parallel to the behavior
shown in Fig. 5.2 (right panel), where the ground state G accumulates population more slowly due to
the leaking of intermediate metastable dark states D, populated from the U states. From the waiting
time T ~ 4 Tk onward, the mutual cancellation of GSB and GSR peaks follows the trend of the total
population of dark states (see right panel of Fig. 5.8 for the case § = U)

N-1
U/Biasey + U/Brasry(long T) ~ U/Bicspy >, po,p,(long T;|U)), (5.4)
i=1
where pp.p,(T’; |U)) is the population in the i-th dark state |D;) originating from the initial condition
|U) and g € {U, L}. We would need a much longer waiting time 7' (approximately 30 Tx) for both
GSB and GSR signals to fully cancel each other out and the 2DS to completely vanish.

5.3.2. ESA (Excited State Absorption)

The ESA contribution to the population 2DS is the one that differs the most between the JC and TC
models. In fact, this contribution also shows differences between the cases N = 2 and N = 4 (as a
representative of N > 2). This is due to the difference in the scheme of energy levels in the second
excitation manifold. Fig. 5.9 shows a comparison of the ESA contribution for N = 2 and N > 2, at
short and long waiting times 7'. The leftmost and rightmost panels show the simulation results, while
the middle panels provide an explanatory scheme of what each signal represents. For any number of
molecules at short waiting times, for example T" = 0.5 T, the polariton states L and U, populated
during the excitation process (pulse 1 + evolution 7" + pulse 2), keep most of their population. These
states are subsequently excited towards states in the second excitation manifold As by the action of
the third pulse P3 of the 2D spectroscopy. If the state initially populated is L, we then observe the
transitions L 2 Ly and L —% Cs (for N =2)or L LENy Y (for N > 2) (lower orange signals in
second column of Fig. 5.9). These are excitations of the population that remains in the lower polariton
during the evolution T L L

On the other hand, the population that remains in the upper polariton during 7: U Lu , can be
excited by P3 towards the states U s Uy and U 22 ¢y (for N =2)or U LENy (for N > 2),
producing the respective upper signals in blue color (see the first middle column in Fig. 5.9). Addi-
tionally, when the state populated during the excitation process is U (upper signals of the 2DS —with
excitation frequency w,; = wyg—), this state can decay towards the dark states during the evolution 7"
UL D. The population that reaches the dark states can be excited by P3 according to the transitions
D 3 Cy (for N =2) or D Ps, Ao and D Ps, By (for N > 2), producing the respective upper signals
in green (see the first middle column in Fig. 5.9). Of course, this type of signals is not present in the
JC model, due to the absence of dark states.
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Given that the frequencies wpz,i7 and wa, p for the case N > 2 are close to each other, these two signals
(blue and green in the middle panels in Fig. 5.9) overlap in the 2DS and appear as a single signal
centered at an intermediate frequency (leftmost upper peak in the left lower panel of the Fig. 5.9). It
is possible that in this peak there is also a contribution from the transition L Ps, Lo, originating from
the decays D L LandU 5 L. However, to isolate this contribution is challenging, even at longer
waiting times T'. The overlap of the signals also occurs in the upper right peak of the ESA contribution
for N > 2 at T'= 0.5 Tg. This is because the frequencies wy,r and wp,p are also close to each other,
producing a global single signal. There may be also a contribution in this peak from the transition
AN My, originating from D L, L and U 5 L. For the case of N = 2, the upper signal located at
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Fig. 5.9.: Population ESA pathways contributing to the open TC absorptive 2DS at the waiting times
T = 0.5 Tg (left panels) and T = 4 Tg (right panels) for N = 2 molecules (upper panels) and
for N = 4 molecules (lower panels). Middle panels represent an schematic representation
of the signals at both short and long waiting times. Same normalization as in Fig. 5.4.
The gray dashed lines represent the frequencies of the polariton states wrg (equivalent to
we,r for N = 2 and to wy,p for N > 2) and wye (equivalent to we,z, for N = 2 and to
war,r, for N > 2). The black dashed straight lines are the frequencies wy,r, and wy,y. Green
dashed lines in the middle panels represent the frequencies we,p for N = 2 and wa,p, wp,p
for N > 2. The colors of the signals in the middle panels represent the states (populated
during the temporal evolution T') that are excited towards Ag with the third pulse of the
2D spectroscopic protocol.
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the frequency we,p causes a shift towards the center of the 2DS for those signals corresponding to
the frequencies we,y and wy, . As a result, only two upper peaks are observed in the 2DS (see upper
leftmost panel in Fig. 5.9).

At longer waiting times, for example T' = 4 Tp, the population in the state L has decayed to the
ground state G via photon losses. Consequently, no signals are observed in the lower regions of the
ESA 2DS (with excitation frequency w, = wrg —see the rightmost column in Fig. 5.9-). On the other
hand, a portion of the population achieved in U during the excitation process, has decayed to G
via photon losses, or to L via molecular relaxation. The population that reached the dark states via
molecular relaxation: U = D still remains, as these dark states take more time to decay. Therefore,
the signals produced by excitation with P3 from the dark states are still observed at their respective
detection frequencies wc,p for N = 2 and wy,p and wp,p for N > 2.

5.4. Temperature effects on polariton states

In Sec. 4.2, we investigated temperature effects on the linear emission spectrum of the JC model by
using different vibrational bath spectral densities. In this section, we explore the temperature effects

GSR SE CESA

2.0 2.11.9 2.0 2.11.9 2.0 2119 2.0 2.1 —1
¢ [GV] ¢ [GV] W [GV] ¢ [CV]

Fig. 5.10.: Population pathways GSB, GSR, SE, and ESA contributing to the open TC absorptive 2DS
(R[S ((ij)R +R) (wr, Tywy)]) at the waiting times T' = 0.5 T (upper panel) and T' = 4 Tx (lower
panel) for N = 4 molecules at a temperature of 300 K. A vibrational bath power spectrum
function S(w) has been used within the Bloch-Redfield formalism with a Debye spectral
density function Jpepye(w) with 7 = 2y = 0.0264 and wy = 0.2 eV. Same normalization
as in Fig. 5.4. The gray dotted lines represent the frequencies of the polariton states L
(wpg = 1.95 eV) and U (wyg = 2.05 e€V). The black dotted straight lines in the ESA
contribution represent the frequencies wy,;, = 1.956 eV and wy,y = 2.044 eV. Contour
lines are plotted at £[0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1].
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on the 2DS for the TC model. We employ a Debye-type function to model the vibrational bath spectral
density within the Bloch-Redfield formalism. Our focus is to study the contributions to the population
2DS since they provide a simpler understanding of the dynamics of the polariton states. The Fig. 5.10
shows the GSB, GSR, SE and ESA contributions to the population 2DS at a temperature of 300
K. The effect of temperature is hardly noticeable in the shape of the spectra. The most significant
difference is observed in the ESA contribution at a waiting time T' = 4 Tg, where lower signals appear

(at the excitation frequency w; = wrg = 1.95 €V) that were not present at zero temperature (see right

lower panel in Fig. 5.9). To extract detailed information about the dynamics of polariton states, let

us analyze each contribution separately.
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Fig. 5.11.: Upper panel: Temporal evolution during 7' (units of Tr = 41.47 fs) of the peak intensities
appearing in the contributions to the absorptive population 2DS: GSB (dotted lines) and
-GSR (solid lines) for the open TC model with N = 4 molecules at zero temperature (left
panel) and at a temperature of 300 K (right panel). A Debye spectral density function
has been used with the same parameters as in Fig. 5.10. Lower left panel: Peak intensities
appearing in the contribution GSB of the 2DS against temperature. Lower right panel:
Vibrational bath power spectrum function used to include temperature effects within the
Bloch-Redfield formalism with a Debye density function (same parameters as in Fig. 5.10)
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5.4.1. GSB and GSR: Population pumping L to D

The GSB contribution, which physically represents a double linear absorption process of polariton
states, decreases as the temperature increases. This is observed in the lower left panel of the Fig. 5.11,
where the intensity of the peaks L/L, U/U, L/U, and L/U of the GSB spectrum are plotted against
temperature. The increase in temperature leads to incoherent pumping of the TC Hamiltonian states.
In Fig. 5.11 the vibrational bath power spectrum function S(w) is shown at different temperatures.
At higher temperatures, S(w) exhibits non-zero values over an increasingly wider range of negative
transition frequencies. This implies the possibility of transitions from lower energy Hamiltonian states
to higher energy states (pumping) during the temporal evolution of the system. Incoherent pumping
results in population losses of polariton states, causing a reduction in their linear absorption and
consequently in the GSB and the total 2D absorptive spectrum. For a fixed frequency, e.g., w = —0.05
eV, S(w) exhibits a quasi-parabolic behavior with respect to the temperature 7', given by S(w) ~
(kpT)?. This behavior is inherited by the GSB spectrum. The intensities of the GSB peaks follow laws
of the form (in this set of equations T represents temperature)

L/Lgspy(T) ~ L/Lgspy(T =0)—3.2x107°(kgT)?
U/Ugspy(T) ~ U/Uggspy(T =0) — 2.2 x 107°(kpT)?
U/Lgspy(T) ~ U/Ligspy(T =0) — 2.7 x 107°(kpT)>. (5.7)

Note that the L/L¢ggp) peak has a higher reduction constant (3.2 x 10~°) compared to the U/Uicssy
peak (2.2 x 10°). This is because the lower polariton L, being a lower energy state, undergoes more
incoherent pumping channels than the upper polariton U under the influence of temperature. On the
other hand, the U/L{gspy and L/Uigspy peaks (which follow the same law) exhibit an intermediate
constant (2.7 x 1075) since these peaks represent both the linear absorption of L and U.

The possibility of the pumping L Lp during the temporal evolution at the waiting time 7" implies
that, at a nonzero temperature, upon exciting the state L, a portion of the population reaches the
dark states, and it takes more time to eventually decay to the ground state. The pumping L LD may
be experimentally a significant process (see, for instance, [10]) Consequently, the cancellation between
the GSB and GSR signals of the 2DS corresponding to the excitation of L (peaks L/L and L/U) will
take longer compared to the case of zero temperature. This behavior is observed in the upper panel
of Fig. 5.11. The intensity of the peaks -L/ Ligsry and -L/ Uiasry approaches the respective peaks
L/L{GSB} and L/Uggspy more rapidly when the temperature is zero (upper left panel of Fig. 5.11), in
comparison, for instance, with the case of a room temperature of 300 K (upper right panel of Fig. 5.11).

In Sec. 5.3, we discussed that the sum of the contributions GSB and GSR of the 2DS is directly related
to the population of dark states. When including the effects of temperature, this premise remains valid,
as shown in Fig. 5.12. From a waiting time of approximately 6 T, the sum of the intensities of the
diagonal peaks U/Uigspy + U/Uqgsry and L/Ligspy + L/ Licsry compares well with the respective
populations of the dark states U/U;gspy Z pp;p;(T5|U)) and L/Lgspy Z pp;p;(T5|L)). It is obser-

7 1
ved that when the state initially excited is U (left panels of Fig. 5.12), at waiting times 7" > 6 T,
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Fig. 5.12.: Comparison between the sum of the diagonal peaks GSB and GSR of the population
2DS (upper panels) and the population of dark states (lower panels) achieved through the
evolution of the state U (left) and the state L (right). An open TC with N = 4 molecules at
different temperatures has been used, with a noise-spectral power spectrum function with
the same parameters as in Fig. 5.10. All graphs are plotted as a function of the waiting
time T'.

the population of dark states is slightly decreased as the temperature increases. On the other hand,
when the state initially populated is L (right panels of Fig. 5.12), there is a noticeable increase in the
population of the dark states with the rise in temperature. We have already explained that this is
due to the incoherent pumping induced by the temperature. In this Fig. 5.12, at higher temperatures,
the retarded cancellation between the GSB and GSR lower signals (corresponding to the excitation
of L) becomes more evident and clearly represents an increase in the population of the dark states

originating from the pumping from L during the temporal evolution 7.

5.4.2. SE: Slight population pumping L to U

In Subsec. 4.4.2, we discussed that the SE contribution to the 2DS contains information about the
transfers I = L,U (lower peaks) and U EIN L,U (upper peaks) during the temporal evolution at the
waiting time 7. One would expect the intensity of the peak L/Ugg) to increase as the temperature
is higher, as the pumping L L U would intensify. However, this pumping channel L Lu (occurring
at transition frequency wry = —0.1 eV) is not as intense as the L Ly D channel (with transition
frequency wrp = —0.05 eV this process must have a greater rate due to the large number of final dark
states). Note in Fig. 5.11 that S(wrp) > S(wrv), and thus the transition L Lu (and consequently
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Fig. 5.13.: Temporal evolution during 7' (units of T = 41.47 fs) of the peak intensities U/Lgg} (left
panel) and L/Uysg} (right panel) of the SE contribution to the population 2DS at different
temperatures. Same parameters as in Fig. 5.10.

the peak L/ U{SE}) is not notably altered by the temperature variation (see right panel in Fig. 5.13).
In fact, at early waiting times, both peaks L/ Uisgy and U/ Lsgy show a slight decrease in intensity
with increasing temperature. This is probably due to an effect of the coherences pyr(7T), which are
also present in both signals (see Eq. (4.15) and Eq. (4.17)).

The transitions L — U and U — L are also challenging to track in the SE spectrum because the
population reaching the respective U and L states decays (or gets pumped) rapidly, for example, to
the dark states. The SE signals do not contain direct information about the population in the dark
states, and therefore, it is not possible to trace such transitions. The ESA contribution, on the other
hand, offers the possibility of extracting more information in this regard since it involves the dark
states, which have a longer lifetime, thus facilitating their study.

5.4.3. ESA: Population transfer L-U-D and U-L-D

We have already mentioned in Subsec. 5.3.2 that the ESA population contribution for N > 2 displays
four upper signals (see Fig. 5.9) located around the excitation frequency w, = wyg with detection
frequencies wy = wyru —peak U/Mo—, wy,u —peak U/Us—, wa,p —peak U/DAs—, and wp,p —peak
U/DBy—; and also two lower signals located around the excitation frequency w, = wr with detection
frequencies w; = wyr,, —peak L/My— and wy,;, —peak L/Lo—. Now, with the increase in temperatu-
re, two new lower signals emerge with detection frequencies: wa,p —peak L/DAy— and wp,p —peak
L/DBsy—, which account for the pumping L — D.

As an example of the variation of these signals with temperature, Fig. 5.14 shows the temporal
evolution of four of them at different temperatures. Let us analyze the dynamic processes contributing
to each of these signals:

» U/Usz: The intensity of this peak shows a similar behavior to the peaks U/DAs and U/DBs
(not shown) and also to the sum U/Uigspy + U/Uqgsry (see Fig. 5.11). We have already seen
that at long waiting times 7', this behavior represents the population of dark states, originating
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from the decay U L. D. This indicates that at long waiting times, the dominant process in these
three ESA peaks is U = D 5 B, (for peaks U/Uy and U/DB3) and U L, D5 4, (for peak
U/DAz). At short waiting times, we also observe the process U LuvS o,

» L/L2: Analogously, the processes contributing to this peak and the peaks L/DAy and L/D By
are L 5 L2 Ly and L 5 D £ A, (for peaks L/Ly and L/DA,), and L = D 22 B, (for
peak L/DB,). This is inferred as the behavior of these three peaks is similar to the population
of dark states originating from the decay L LD (see Fig. 5.11).

» U/Ms3: What is interesting in studying the variations of the 2DS signals with respect to tem-
perature is that we can determine if the population of the dark states we are observing in the
2DS originates from L or from U, as both exhibit different behaviors with temperature changes
(see Fig. 5.11). The peak U/Mj; represents an excitation from U, but its behavior in Fig. 5.14
resembles the population of the dark states originating from the decay L L. Din Fig. 5.11. This
indicates that in the peak U/Mj, in addition to the process U Ly B, My, contributes the
process (remember that the frequency wa,p is close to war,p).

vL 1L DD 4, (5.8)

In this sense, the ESA peak U/M, allows us to track the transition U — L through the population
that subsequently decays towards the dark states, originating from L.
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Fig. 5.14.: Temporal evolution during 7" (units of T = 41.47 fs) of the peak intensities -U/Mygga },
-U/Usqesa s -L/Lagrsa}, and -L/Maggga } of the ESA contribution to the population 2DS
at different temperatures. Same parameters as in Fig. 5.10.
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» L /Ms: Similarly, the peak L/Ms allows us to track, in addition to the transition L EINY N Lo,

the processes of the form
L uvLpip, (5.9)

5.5. Comparison with experiments

Recent studies on polariton systems incorporating molecular J-aggregates within a microcavity have
revealed three primary characteristics in their 2DS as the waiting time T increases (see Fig. 5.15).

These features include:

= a swift emergence of asymmetry in the 2DS, characterized characterized by the prevalence of

the cross peak U/L against the cross peak L/U.
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Fig. 5.15.: Upper panel: 2DS |S((1§I)R+R) (wr, T wy)| for a TC model with N = 5 emitters, at different
waiting times T (in units of the Rabi period Tr = 13.8 fs). All spectra are normalized to
the maximum value at T/Tr = 0. The parameters w. = 2.09 eV and w. = 2.1 eV have been
used, with a Rabi splitting 2z = 0.3 eV. Dotted lines indicate the transition frequencies
wre = 1.945 eV and wyg = 2.245 eV. Cavity lifetime is 120 fs and exciton lifetime (decay
by vibrational relaxation) is chosen as 60 fs. We have considered a Debye spectral function
(with cut-off wg = 0.2 V) at room temperature (7" = 300 K). Lower panel: Time evolution
of the diagonal and cross peaks intensities during the waiting time 7" for the theoretical
model (left panel) and for experimental data [38] corresponding to a system of J-aggregates
within an optical cavity. The peak heights are normalized such that the value of the highest

peak L/L at T/Tr = 0 is unity.
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» the diagonal peak L/L, initially the strongest, shows the most rapid reduction in intensity during
the waiting time T, eventually tending to parallel the U/L cross peak intensity.

» the dominance of the L/L and U/L peaks in comparison to the U/U and L/U peaks at long
waiting times T

In our study to replicate these observations, we employed a dissipative TC model with N > 2, in this
case we use an ensemble of N = 5 molecules. It is noteworthy that larger groups of molecules do not
exhibit significant differences in the 2DS as previously mentioned in Sec. 5.2. In the model we use a
molecular natural frequency w, = 2.09 eV and a cavity mode that is slightly blue-shifted at w, = 2.1
eV. We found that for a good comparison between theory and experiment a small detuning A > 0
is necessary. Consistent with the experimental setup, the Rabi frequency was set at (0 = 0.3 eV. To
more accurately match the experimental conditions, we also incorporate temperature effects in our
model. This is achieved by integrating the exciton-phonon coupling with a bath noise power spectrum
S(w), using a thermal population n(w) at room temperature 7' = 300K and a Debye spectral function
J(w) with a cut-off parameter wg = 0.2 V. Our findings indicate that to accurately replicate the three
experimental characteristics identified earlier, the cavity lifetime (120 fs) should be slightly longer
than the molecular exciton lifetime (60 fs). These phenomena originate from the relaxation mecha-
nisms within the A; and As state manifolds. It is important to acknowledge that while our simplified
model does not perfectly align with the experimental scenario, it is still meaningful qualitatively. In
the experiments, J-aggregates interact with their surroundings and among themselves, and they have
a complex phonon structure that could lead to a slower decay of of the peak intensities compared to
that caused solely by electronic motion. The oscillations observed in the L/L and U/L peaks versus
waiting time 7" in the experiment (as it is displayed for waiting times 7" below 500 fs in the lower right
panel of Fig. 5.15) are not the result of electronic Rabi oscillations. The latter are considerably quicker
and they are evident in the evolution of the theoretical L/U and U/L peak intensities under 400 fs
in the lower left panel of Fig. 5.15 (note that the figure shows shadowed areas between the upper and
lower amplitudes of the oscillations). Despite the limitations of our model, its ability to replicate the
trends of these three key experimental features is quite relevant.

To extract parameters of physical relevance from the experimental 2DS, such as partial decay rates
due to incoherences in the dynamics, helps in the understanding of processes involved in polariton
photodynamics. The time evolution of both diagonal and cross peaks as a function of the waiting time
T provides insights into the inherent decay processes. From Eq. (4.20), we can determine the spectral
values at any point (w;,w;) in the 2DS. Specifically, for the L/L diagonal peak, we have derived an

analytical expression for its intensity:

1S(wr, Tywr) |2 = Cre™ et 4 e~ Cuet )T [0y cos(QRT) 4 Cssin(QrT))
5.10
4 e~ HurT [04 cos®(QRT) + Cs sin?(QRT) + Cs sin(QQRT)} ) (5.10)

where I'1;, (negative real value of the Arr Liouvillian eigenvalue) is approximately /2 and I'yp, is
near to k/2 + /8. From the latter expression, we have further developed a simplified equation to fit
the 2DS L/L peak:

1S(wr, Tywr)|? ~ |Ae 2 etT o= 2ULT [ B cos(QRT) + C sin(QRT)]|. (5.11)
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As an example, in the case of the JC model (see Fig. 4.9), we have used the theoretical values k = 0.044
eV (corresponding to a lifetime of 15 fs) for cavity photon loss and v = 0.0132 (equivalent to a lifetime
of 50 fs) for the exciton. By fitting the L/L peak intensity against the waiting time 7' using this
5-parameter function (A, B, C, k,7) in Eq. (5.11), and extracting the Rabi frequency Qp directly from
the oscillations observed in the plot, we found decay times of approximately 15 and 43 fs, respecti-
vely. This approach demonstrates the effectiveness of our method in closely approximating the decay
rates from the experimental 2DS data, providing valuable insights into the underlying mechanisms of
polariton photodynamics.

As N — oo the TC model becomes linear, analogous to two coupled harmonic oscillators [103]. This
thermodynamic limit results in the loss of anharmonicity, which is crucial for producing a nonzero
2DS. However, a realistic treatment of 2DS for large systems would require going beyond the third-
order perturbative limit, as the number of absorbed photons would also increase with N for a given
driving strength, reaching much higher excitation manifolds A,,, with the nonlinearity scaling as n/N.
In practical terms, when dealing with large systems, the behavior is anticipated to be similar to that
of a TC model with a smaller number of molecules. This expectation is supported by the reasonable
congruence observed between theoretical predictions and experimental data, as exemplified in Fig. 5.15.
Thus, despite the challenges posed by larger systems, the TC model performance remains robust and
relevant in approximating the behavior of more complex systems.



6. Interacting Molecules and Energy Transport

In this chapter, we explore new effects on the structure and dynamics of polariton states, caused by
introducing explicitly in the TC Hamiltonian the dipole-dipole interaction between molecules. These
effects are indeed visualized in the 2DS. Furthermore, we provide an analysis from the 2D spectra to
check out the presence of transport mechanisms in a polariton molecular system composed by two
types of molecules.

6.1. Adding molecule-molecule interaction to the TC model

So far, with the TC model, we have considered that the only way molecules interact is through
radiation, without accounting for a direct interaction between them. In situations where the dipole
moments of the molecules are substantially large compared with the strength of the radiation-matter
interaction, or when the concentration of molecules within optical cavities is high enough to facilitate
the intermolecular interaction, it becomes necessary to add a term for molecule-molecule interaction to
the TC Hamiltonian. It could be the case of organic molecules like TDBC that form J-aggregates [3§]
and have large dipole moments. This new Hamiltonian, that we denote as the Interacting Molecules
(IM) model, can be expressed as follows

N N
G
Hiy = hweata + thm}Ui + thi (aTo'Z- + U;ra) + hz ; _Z;|3 (a;.raj + U}O'Z‘) , (6.1)
i=1 i=1 i

where the constant G;; accounts for the interaction strength between the i-th and j-th molecules, and
the term 1/|i — j|* is an approximation that represents the dependence of the dipole-dipole interaction
upon the distance between both molecules (located in sites ¢ and 7). This proposed model is actually a
reasonable model for a (single) aggregate made up of N molecular monomers, interacting through the
dipole-dipole interaction and coupled to a cavity mode. Upon the choice of the interaction parameter
G one may address molecular J- or H-aggregates. Here we only study the G > 0 case for simplicity,
since it induces more dramatic changes in the dynamics and spectra.

6.1.1. Energy structure, linear response and dynamics

The new molecule-molecule interaction included in the Hamiltonian notably modifies the eigenvalue
spectrum of the polaritons and dark states, as shown in Fig. 6.1. Recall that for any number of mo-
lecules N, the TC Hamiltonian presents N — 1 degenerate dark states in the first excitation manifold
A;. The TC Hamiltonian corresponds to the case G;; = 0 V 7, j in the plots of Fig. 6.1. For simplicity
we will assume that G;; = G for all 4, j, thus without considering orientational effects among mole-
cules. When G > 0, this degeneracy between dark states breaks down, and some of the dark states
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Fig. 6.1.: Energy of the eigenstates in the first excitation manifold Ay of the Interacting Molecules
(IM) Hamiltonian, as a function of the ratio G/g between the molecule-molecule interac-
tion strength G and the radiation-molecule interaction strength g for a different number of
molecules N = 2,3,4 and 5. The lowest energy bright state has been identified as the lower
polariton L, the highest energy bright state has been identified as the upper polariton U, the
intermediate bright states have been labeled as middle polaritons M, and the dark states
have been identified with the label D. The parameters used are hw. = hw; = 2.0 eV (for
all molecules), g; = g = Qr/2V'N (for all molecules), with a Rabi frequency i2g = 0.1 eV
associated with the radiation-matter interaction g, and G;; = G (for all pairs of molecules),
is the parameter varied in the plot. The ordering of labels before and after the anticrossings
indicates the identification of states upon a linear absorption spectrum.

become bright states coupled to the cavity (labeled here as middle polaritons M). We can observe
the appearance of avoided crossings for certain values of the interaction strength G. For G =~ g, the
first anticrossing occurs between the two lowest energy states for any number of molecules. Any anti-
crossing indicate an exchange of character between the states involved. For example, for N = 2 and
G < g, the lowest energy state in Ay comes from a bright state and it represents the lower polariton
L. The second state (ordered by energy) is a dark state. After the avoided crossing located when
G = g, the lowest energy state becomes dark, and the following one becomes bright (in the following,
for simplicity, we will name bright state to any polariton state that results from a bright state of
matter coupled to the cavity photons and it displays an absorption peak). This indicates an exchange
of character L <+ D. In another case, for N = 5, in addition to the anticrossing between the two
lowest states in A; when G = g, a second anticrossing is observed between the second (M) and third
(D) states at G/g ~ 1.3. When the number of molecules increases, more anticrossings appear within
the first excitation manifold Aj, with fully degenerated dark states for G = 0. Of course, a similar
behavior is found in the second excitation manifold Ay (not included here). Our ordering of labels
before and after the anticrossings comes from the expected identification of states as corresponding to
visible peaks in a linear absorption spectrum for different values of G/g.

Similar to the TC Hamiltonian, the first excitation manifold of IM Hamiltonian is composed of N + 1
states. If the number of molecules inside the cavity is odd, the two lowest states of A; remain bright
states even after the first avoided crossing (and before other possible anticrossings), the next one is a
dark state, and the remaining polaritons alternate between bright and dark (see the bottom left panel
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Fig. 6.2.: Upper and lower right panels: Linear absorption spectrum of the IM model with the para-
meters of Fig. 6.1 for different values of G. The spectra are normalized to their maxima.
Lower left panel: Energy scheme of the IM model eigenstates in A1 for NV odd and N even.
In the first anticrossing (for G ~ g) the two lowest energy states exchange their character.
Photon lifetime is 15 fs and molecular relaxation time is 50 fs. Note for example that the
four peaks in the absorption spectrum for N =5 and G/g > 1 correspond to the sequence
of states (L, M, M,U) according to Fig. 6.1.

of Fig. 6.2). This results in (N —1)/2+2 bright states and (N —1)/2 dark states when N is odd. On the
other hand, if the number of molecules is even, the lowest Hamiltonian eigenstate is bright (if G < g)
or dark (if G > g), the next one is dark (if G < g) or bright (if G > g), and the higher states alternate
between bright and dark, resulting in N/2+1 bright states and N/2 dark states (as shown the bottom
left panel of Fig. 6.2 for even N). For instance, if N =2 and G # g, there are three states in Aj: two
are bright (L and U in Fig. 6.1) and one is dark (D in Fig. 6.1). Consequently, it is expected that
the linear absorption spectrum of this system may exhibit two peaks located at frequencies wye and
wyq respectively (see the upper panel of Fig. 6.2 for N = 2). The particular case of N =2 and G =g
results in three bright states in A (the dark state disappears merging into a degenerate brightness, as
shown in Fig. 6.1 for N =2 at G/g = 1). Hence in the linear absorption spectrum, two peaks are also
observed, the lowest corresponding to the absorption of the two degenerated L and L’ bright states.
For N = 4, there are two dark states and three bright states, represented by the three peaks in the
linear absorption spectrum in Fig. 6.2, and for N = 5, there are two dark states and four bright states,
as observed in the four peaks of the respective linear absorption spectrum in Fig. 6.2. The shifting
of peaks in all linear absorption spectra when varying the value of GG in Fig. 6.2 corresponds to the
shifting of energies of the respective bright states in Fig. 6.1. We emphasize that when G ~ ¢, an
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exchange of character between the two lowest states of A; occurs. For even N, this has two strong

implications:

= Considering the respective energy scheme in the lower-left panel of Fig. 6.2, it is observed that
when G > g, the lowest energy state is dark, and the second lowest one is bright (the lower
polariton L). This lowest energy dark state cannot decay due to photon losses towards the
ground state nor through molecular vibrational relaxation, as there are no lower energy states
in A1. As a result, it becomes a stationary state, which is not present in the TC Hamiltonian.

= The lower polariton L can now decay through vibrational relaxation towards the stationary dark
state. This represents a new decay channel that is not present in the TC Hamiltonian without

molecule-molecule interactions.
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Fig. 6.3.: Dynamics of polariton states under the IM Hamiltonian with dissipation, for N = 4 (two
upper panels) and N =5 (two lower panels) molecules. The same parameters as in Fig. 6.2
have been used, with two values of G (0.5g and 1.5g, with hg = 0.1/2V/N V). In the first
column the initial condition is L, in the second column is U and in the third (and fourth
for N = 5) column(s) the initial condition is a middle polariton M. Note that for N = 5
molecules there are two middle polaritons, here denoted as higher and lower energy M.
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For odd N, at G = g the character exchange occurs between two states that are both bright i.e., the
L and the lowest middle M polariton states (see the respective energy plots in Fig. 6.1 for N = 3 and
N =5). Therefore, the lowest energy state remains bright even when G > g and can decay through
photon losses towards the ground state (it does not become a stationary state). And the second lo-
west state remains as a middle bright polariton (until a possible next anticrossing with a dark state).
Because of this exchange of character, the lowest energy middle polariton M for odd N displays an
absorption peak with higher intensity than the lower polariton when G > g as shown in Fig. 6.2 for
N =5.

To get an idea of the dynamic behavior of the polariton states of the IM model, Fig. 6.3 shows the
temporal evolution of their respective populations for N = 4 and N = 5 molecules. Tab. 6.1 summarizes
a description of the main dissipative transitions of the polariton dynamics shown in Fig. 6.3.

Lower (L)
G<yg G>g
L — D (new - no present in TC)

Even N | L - G
ven No considerable modification of the lifetime compared with G < ¢

L — G (lower yield compared with G < g due to the character
Odd N | L - G | exchange L <» M)
The lifetime is enhanced.

Upper (U)
G<yg G>g
U — G (lower yield compared with G' < g)
Even N U—G U — D (higher yield compared with G < g)
U—D No considerable modification of the lifetime compared
with G < g
U—dG
U—G U—-M
OddN |U—-M U — L (lower yield compared with TC)
(no present in TC) | No considerable modification of the lifetime compared
with G < g
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Lower-middle M

G<yg G>g
MG M — G (higher yield compared with G < g)
Even N M— D M — D (lower yield compared with G' < g)

The lifetime is slightly reduced.

M — G (higher yield compared with G < g
Odd N | M — G | due to the character exchange L <> M)
The lifetime is reduced.

Tab. 6.1.: Description of the main transitions during dynamics of polariton states according to Fig. 6.3.

6.1.2. Effects of molecule-molecule interaction on 2DS

The total absorptive 2D spectrum of the IM Hamiltonian (Fig. 6.4) exhibits a rather complex structure
when increasing the number N of interacting molecules, compared to the TC Hamiltonian (Fig. 5.4).
Unlike the 2DS for the TC model, which only presents signals at the excitation frequencies wrg and
wya associated to L and U polaritons respectively, our IM model exhibits signals at more excitation
frequencies: wysq, corresponding to the middle polaritons from A; (except for N = 2, with no midd-
le polaritons). The number of middle polaritons, and consequently, the number of signals in the 2D
maps, increases with the number N of interacting molecules (see, for instance, the N = 5 column in
Fig. 6.4). For odd N, these new signals are more robust during the waiting time 7' for G > ¢ than
for G < g. For even N, when G > g, the 2DS exhibits a non-zero asymptotic value for T — oo, as
a result of the existence of a stationary dark state. For example, in Fig. 6.4 for N = 2 and N = 4,
the spectra observed at T =5 T with G = 1.5 g remain almost unchanged for longer waiting times.
Indeed, under these conditions, at T = 5 Tg, the dynamics of the states has already stabilized to a
steady value, as shown in Fig. 6.3 for N = 4.

The new diagonal peaks appearing in the spectra account for the absorption processes of the middle
polaritons M, while the new cross peaks represent the dynamic interaction of these states with the
other states of the first excitation manifold A;. We have already mentioned that a straightforward
understanding of the total 2DS is a challenging task as they are the result of the interference between
different physical processes described by Feynman pathways. It is advisable to analyze separately the
various paths that contribute to the 2DS, and again, we focus only on the population 2DS, as they
are of greater experimental interest.

GSB (Ground State Bleaching) and GSR (Ground State Recovery)

The GSB spectrum accounts for the linear absorption of the polariton states. Any cut along the excita-
tion or detection frequency of the GSB spectra shown in lower panel of Fig. 6.5 for different number of
molecules coincides with the respective linear absorption spectrum of Fig. 6.2 for the case G = 1.5 g.
For example, for N = 2, a cut along the excitation frequency w, = wrg of the GSB spectrum in
Fig. 6.5 would result in two peaks centered at the detection frequencies w; = wrg and wr = wyga,
which are the same peaks as in Fig. 6.2 for N = 2 with G = 1.5 g, except for a normalization factor.
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Note that in this case, the peak associated with L is broader and more intense than that associated
with U, although for other values of G (see Fig. 6.2) it is observed that the L peak is narrower than
the U. This has to do with the lifetime of both polaritons in each situation. The intensities of the
GSB peaks are asymmetric (each polariton L, M, U presents a different linear absorption peak than
the others). These GSB intensities are factors that accompany the intensities of the respective peaks
GSR and SE peaks during their evolution in the waiting time T' (see, for example, Eq. (4.13)).

In the upper panel of Fig. 6.5, the intensity of the diagonal GSB peaks (representing the intensity of
the linear absorption peak of each polariton) is shown as a function of the ratio G/g, between the
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Fig. 6.4.: Electronic 2DS for the open IM model at waiting times 7'=0 and T' =5 Tg (Tr = 41.47

fs) for N = 2, 4 and 5 molecules with different molecule-molecule interaction strengths
G = 0, 0.5g, 1.0g, and 1.5g (hg = 0.1/2\/]V eV). Here the 2D absorptive spectra
R[S((;)R +R) (wr, T, wy)] is plotted. The parameters of the model are chosen as in Fig. 6.2.
Dotted straight lines indicate the lower wr g, upper wyg and middle wysg (for N = 4 and
N = 5) polariton frequencies. All spectra are normalized to their maximum real value at ti-
me T = 0. The plots have been truncated to half of this maximum. The excitation frequency
w; lies along the y-axis, while the detection frequency w; lies along the x-axis. Solid/dashed

contour lines represent heights +[0.05,0.08,0.1,0.15,0.2,0.3,0.4].
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Fig. 6.5.: Upper panel: Diagonal peak intensities appearing in the GSB contribution to the 2DS (lo-
wer panel shows a specific case with G = 1.5 g) against the molecule-molecule interaction
strength G (in units of g, with fig = 0.1/2v/N V). The plots are for different number of
molecules N = 2, 3,4, and 5 with the IM Hamiltonian. The same parameters as in Fig. 6.2
have been used. The GSB spectra in lower panel are normalized to the maximum real value
of the respective population 2DS at T' = 0 with G = 0. Solid contour lines represent heights
[0.05,0.1,0.2,0.3,0.4,0.6,0.8,1]. Dotted gray lines indicate the lower wr g, upper wyg and
middle wpsg (for N > 2) polariton frequencies.

molecule-molecule interaction strength G' and the cavity-molecule interaction strength g. For even N,
the L/L peak presents a discontinuity at G =~ g. This is indicative of the character exchange that L
undergoes from this value of G with the next dark state. At that value of G, there is also a character
exchange of L with the next bright state (M) for odd N. We observe that for G > g, the L/L peak
decreases if N > 2 with the increase of G. However, this decrease occurs at a slower rate if IV is even
(character exchange with dark state) than if N is odd (character exchange with bright state). In fact,
for G = 2g and N odd, L presents a very low linear absorption intensity compared to its value at
G = 0 (TC model). The U/U peak always shows a decreasing behavior with the increase of G, for
any number of molecules. The M /M peak, represented by the dashed green lines in Fig. 6.5, shows a
similar behavior for any number of molecules, with the exception that for N = 5 it presents a discon-
tinuity at G ~ 1.3 g, which again is indicative of the character exchange of this state. Because of that,
for certain values of GG, this middle polariton can have the highest absorption peak, even surpassing
those of the L and U states. For N = 5, we observe that the M /M peak associated with the higher
energy middle state (green dotted line) shows an increasing absorption behavior with the increase of G.

The GSR contribution to the population 2DS, which accounts for the decay of polariton states of
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A1 to the ground state during the waiting time, is shown in the left column of Fig. 6.6 for different
number of molecules of the open IM model at a time T = 0.5 Tr. The shape of the signals from
this contribution is similar to the shapes of the GSB contribution since both must cancel each other
out when all the population has migrated to the ground state (if no other stationary states are formed).

G = 0 and G < g: The behavior of the intensity L/ L csry in relation to the respective intensity
L/Ligspy does not vary significantly between the TC model (G = 0) and the case G < g for any

number of molecules (see second column of Fig. 6.6). This indicates that the decay L L, G is not
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Fig. 6.6.: Left column: GSR contribution to the population 2DS for different number of molecules
of the open IM Hamiltonian at a waiting time T = 0.5 T with G = 1.5 g. Contour
lines, normalization and dotted gray lines as in the lower panel of Fig. 6.5. Other columns:
Temporal evolution during 7" (units of Tr = 41.47 fs) of the peak intensities L/L (second
column), U/U (third column) and M/M (fourth column) appearing in the contributions
to the population 2DS: GSB (dashed lines) and -GSR (solid lines) for the open IM model
with different number of molecules N = 2,3, and 4, and G = 0, 0.5¢g, g, 1.5g. The same
parameters as in Fig. 6.2 have been used.
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notably altered by the molecule-molecule interaction when it is small compared to the cavity-molecule
interaction; and also that no new decay channels for L appear that compete with the channel towards
the ground state. On the other hand, the intensities associated with the U/U peak (third column of
Fig. 6.6) exhibit a more noticeable difference between the cases G = 0 and G = 0.5 g. It is concluded
that the population of the U state takes a longer time to reach the ground state when G > 0, even
when G < g. In the case of even N, it is due to the fact that the transition U L5 D becomes stronger
with the increase in the value of G (see Fig. 6.3), and in the case of odd N, it is due to the emergence
of a new significant decay channel U L, M. Neither the GSB nor the GSR contribution show high
intensities in the M /M zone (fourth column of Fig. 6.6 for N > 2) when G = 0.5 g. Under this
condition, regardless of the number of molecules, the linear absorption peak of the middle polaritons
M is very small compared to the L and U peaks (see Fig. 6.2 for N = 4 or N = 5 with G = 0.5¢).
Consequently, the respective GSB and GSR peaks should also be of low intensity.

G = g and G > g: When N is even and G > g (G > g for N = 2), we have identified that a
dark stationary state is formed, which prevents the total population to decay to the ground state.
Consequently, the GSB and GSR contributions fail to cancel each other out for long times 7', and a
non-zero asymptotic spectrum is expected to be found for even N and G > g, as shown in Fig. 6.4.
Under these conditions, the difference between the GSB and -GSR intensities shown in Fig. 6.6 at
long times T indicates the population that remains in the dark stationary state. For the special case
N =2 and G = g, we notice that L/L;_ggg) takes longer to cancel out L/L{gsp) compared to other
values of G. This is because in this situation, dark states are not formed, but rather two lower bright
polaritons L and L’ with the same energy. The population migrating from them to the ground state
(L, L' ER G) is attenuated by the population exchange between them (L, L’ EN L, L), which causes a
delay in the total population reaching the ground state.

For odd values of N, like N = 3 in the second row in Fig. 6.6, we observe that the L/L{ qsr) peak
takes longer to cancel out the L/ Liasry peak when G > g, compared to the case G < g, and the
intensity of the L/Ligsp) peak is smaller when G' > g. This is due to the exchange of character
(thus exchange of lifetimes) between the L and the lower-energy M polariton already discussed for the
results in Fig. 6.3. In this odd N case no stationary states are formed and thus all the GSB and -GSR
peaks L/L, U/U, and M /M show a cancellation at long times T'. The U/U peaks take longer to cancel
out as the value of G increases. This is because when G > g, the channel U 1> L becomes relevant in
the dynamics, attenuating the channel U La. Additionally, the channel U Ly M is also present. The
opposite effect is observed in the M /M peak (the cancellation takes less time as G increases) since M
decreases its lifetime when G > g by the character exchange with L.

SE (Stimulated Emission)

The cross peaks of the SE (stimulated emission) contribution to the population 2DS (Fig. 6.7 shows
the temporal evolution of these peaks for the IM Hamiltonian) provide information about the popu-
lation transfer between the different polariton states of A;. These cross peaks (for example U/ Lisgy
as in Eq. (4.15)) are mostly a contribution of the density matrix coherences (for example pyr(T)).
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For even N, the transition U - L (see panels in second column for N = 2 and N = 4 in Fig. 6.7)
loses intensity with the increase of G as the transition U LD gains importance in the dynamic
evolution (see Fig. 6.3 for N = 4). For odd N, the transition U Lr gains importance when G > g at
long waiting times, as a result of the character exchange between L and M, and in compensation, the
transition U — M decreases in intensity also for long T (see third column in Fig. 6.7). The pumping
transitions (L Lu , L NV , M Ly ) are weak for any number of molecules in the IM model, even
for G > g.

The transition lower-energy M L. L is not very strong for any number of molecules as shown in
Fig. 6.3. However, the M /L) peaks in Fig. 6.7 dominate against the other peaks at long T'. Tt
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Fig. 6.7.: Left column: SE contribution to the population 2DS for different number of molecules of
the open IM Hamiltonian at a waiting time T' = 0.5 Ty with G = 1.5 g. Contour lines,

normalization and dotted gray lines as in the lower panel of Fig. 6.5. Other columns: Tem-

poral evolution during T of the cross peak intensities appearing in the contribution SE for

different number of molecules in the open IM model and G = 0, 0.5¢g, 1.0g, and 1.5g. The

same parameters as in Fig. 6.2 have been used.
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is important to be careful when extracting information from the 2D maps, as the peaks associated
with some physical process may overlap with other peaks. In this case, for example, by observing the
left column of Fig. 6.7, we notice that the M/L{SE} and L/M{SE} peaks overlap with the diagonal
much more intense peaks L/Lsgy and M/Msgy and, it happens for any waiting time T, so that
the information retrieved from the time evolution of the intensity of a less intense cross peaks like
M/ Lggy may be of difficult interpretation. To extract more precise information, it would be necessary
to eliminate the contribution of the diagonal peaks.

ESA (Excited State Absorption)

The ESA contribution, which was studied for example in Subsec. 5.3.2, is the best tool within the 2D
maps for tracking dark states over long waiting times, as these states tend to have the longest lifetimes
and, therefore, are still susceptible to being excited to Ag (with the third pulse of the spectroscopic
protocol). For instance, if we analyze the simplest case in the IM model (N = 2), Fig. 6.8 shows the
ESA signals of the spectra, indicating the frequency of contributing transitions. In this N = 2 case,
with G > 0 (G # g), the second excitation manifold Ay is composed of 3 polariton states: lower Lo
(mainly connected through dipolar transition with L), middle Ms (connected with both L and U),
and upper Uy (mainly connected with U), as well as a state connected with the dark state D of Aq,
which we name Ds.

For G < g (first column of Fig. 6.8), at early waiting times (for example, T' = 0.5 Tr), we observe two
upper ESA signals centered at the excitation frequency w, = wya. These signals allow us to follow the
temporal evolution of the population that, after being excited to the state U, remains in that state
during T and is then excited with the third pulse to My (process U Loy B Mo, located at the
detection frequency wy = wpp,) or to Uy (process U EINY AN U,, located at the detection frequency
wr = wr,r ). With less intensity, the third process contributing to the upper ESA signals at short times
represents the migration of the population in U to the dark state D and the subsequent excitation
of this population to Dy (process U L p B Dy, located at the detection frequency wy = wp,p).
However, this last process is not as strong at short times as it is at long times (for example, T'= 5 TR),
where all the initial population in U has relaxed and part of it still remains in the dark state, producing
the only signal we observe in the 2D map ESA at long times.

These three processes at short times, representing the upper signals, are also present for G = g (se-
cond column of Fig. 6.8) and G > g (third column of Fig. 6.8). The two lower signals located at the
excitation frequencies w, = wrg at short times (when G < g), respectively represent the processes
L L L i Lo, located at the detection frequency wy = wp,r, and L 1> L i Mo, located at the
detection frequency w; = wpy, 1. Since for G < g, the transition L L. D is not relevant in the dyna-
mics, we do not observe a lower signal at long times 7" that accounts for such transition. However, for
G > g, where the character exchange L <> D has occurred, the process L L. D becomes relevant in
the dynamics, and therefore, in such a case, the lower signal at long times 7', located at w; = wp,p

(process L L. p B, Dy), is indeed observed, as shown in the bottom right map of Fig. 6.8.
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Fig. 6.8.: ESA contribution to the population 2DS for N = 2 molecules of the open IM Hamiltonian
at the waiting times 7' = 0.5 Tp and T = 5 T with G = 0.5¢g, g,1.5g. Normalization and
dotted gray lines as in the lower panel of Fig. 6.5. The same parameters as in Fig. 6.2 have
been used. Black dotted lines represent the respective labeled transition frequencies between
states of A1 and states of As.

In the particular case of G = ¢ at short waiting times, the lower signals represent the processes
L Lo 5o, (located at wy = wr,r), L, L KA A JEi N VA (located at wy = wapr)
and also a new signal appears, even more intense than the previous two, representing the process
L, L KN L, L &> Dy (located at wy = wp, ) since in this specific case the degenerate states L and r
are connected through dipolar transition with the state Dy of As. Given that the state L formed when
G = g (N = 2), have long lifetime, at advanced times (T" =5 Tr) we observe a lower signal represen-
ting the process L, L’ EINY SN Dy and an upper signal representing the transition U EINY SN Do,
both of them located at the detection frequency wp,r..

The same type of ESA signals described for N = 2 would be obtained for other values of N, considering
that new signals at more excitation frequencies w, appear, due to the presence of new polariton states
in A;. The location in wy of these new signals will depend on how the states of A; are connected
by dipole transitions with those of Ay. This varies depending on the number of interacting molecules
and the value of G. For example, for N = 3, when G > 0, the states L, M, and U in A; are dipole
connected with five states of Ay, while the D states in A; are connected with two states of As. In any

case, the ESA signals for large T reveal the excitations that results from long living states in A; to
As.
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6.2. Energy transport between two groups of molecules and cavity

The energy transport in polariton systems has been an area of active research in the last years (see
for instance [154, 12, 10] and references therein). In this section, we consider two groups of molecules,
one of them is called the donor group, whose characteristic frequency is denoted by wp, and the other
is the acceptor group, with frequency w4. Each of these groups may be composed by one or several
molecules, in such a way that the Donor-Acceptor Hamiltonian (DA) describing the system in strong
coupling with a cavity of frequency w, is

Ny Ny
Hpa = hweala + 1 Z wr Zayail + g1 Z((LTU{ + agla) , (6.2)
I1={D,A} i=1 i=1

where aiD and O'ZA are the de-excitation operators for the ith molecule of donor and acceptor groups
respectively, Np and N4 represent the respective numbers of molecules in each group, and gp and
ga are the cavity-molecule interaction strengths for each group. Once again, we introduce photonic
losses in the cavity using a Lindblad term for the operator a, with a decay rate of kK = 1/T};, (where T}
represents the cavity lifetime). We also consider molecular vibrational relaxation through the Bloch-
Redfield formalism, employing individual operators UZT o; for all molecules in both the acceptor and
donor groups. We use a step-type vibrational bath spectral function J(w) =y = 1/T,, for w > 0 and
J(w) = 0 for w < 0, where T, denotes the lifetime of the molecular excitons, which we assume to be
the same for both groups of molecules.

6.2.1. Properties of the model and energy distribution of the states

When there are N4 acceptor molecules and Np donor molecules inside the cavity, three polariton
states are formed in the first excitation manifold Ay (lower L, middle M, and upper U), and also
N4 — 1 degenerate dark states D 4 associated with excitations of the acceptor group, and Np — 1 dark
states Dp associated with the donor group. In the top left panel of Fig. 6.9, the energies of these states
are shown as a function of the cavity frequency w. for Ny = Np =2, wq = 1.9 eV, and wp = 2.1 eV.
Acceptor dark states D4 are quasi-degenerate with the middle polariton M for w. < wa, and with
the lower polariton L for w. > w4; whereas donor dark states Dp are quasi-degenerate with U for
we < wp, and with M for w, > wp. In the interval wy < w. < wp, middle polaritons M break their
quasi-degeneracy. We can observe two points of character exchange between states: when w, = wy4,
the exchange L <+ M occurs, and when w. = wp, the exchange M <> U takes place.

The middle polariton M only appears when w4 # wp. If wg = wp = we, even when w, # we, the TC
model discussed in Chap. 5 is recovered, in which only two polariton states L and U are formed in
A;. The dipolar transition G — M (which would be achieved by excitation with the first two pulses
of the 2D spectroscopy protocol) is maximized when w. = (w4 + wp)/2. For that value of w,, the
transitions G — L and G — U are minimized, as indicated by the plot in the upper middle panel
of Fig. 6.9. The exchange of character between states are reflected in the linear absorption spectrum
for different cavity frequencies, as shown in the upper right panel of Fig. 6.9. When w, < wa, L is
the polariton that shows the highest peak of linear absorption, but in the zone wgq < w., < wp, the
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Fig. 6.9.: Upper panel: energy of the lower polariton L (red), upper polariton U (blue) middle polariton
M (black) and dark states D (dashed gray) in the first excitation manifold A; of the Donor-
Acceptor (DA) Hamiltonian, as a function of the cavity frequency w. (left panel). Probability
of the dipolar transition |G) — |a) (| (G| (a + a') |a) |*), where a = L, U, M, D (DA model
eigenstates), as a function of the cavity frequency w. (middle panel). Linear absorption
spectra (normalized to their maxima) of the DA model for different values of w. (right
panel). Lower panel: Square modulus of the expectation value of the operators of cavity
excitations a'a (left panel), acceptor molecules excitations O'LJ A (middle panel), and donor
molecule excitations O'TDO'D (right panel) for the polariton states L, U, and M of the DA
model. In all cases, the parameters used are N4 = Np = 2, wqa = 1.9 €V, wp = 2.1 eV
(dotted vertical lines in the plots), hga = hgp = 0.025 €V, cavity lifetime is 15 fs, and
exciton lifetime (vibrational relaxation) is 50 fs for both groups of molecules.

highest peak corresponds to a transition from G to M, and for w. > wp, a transition to U displays
the highest peak. The choice of the cavity frequency w. determines how the energy of the photonic
and molecular excitations is distributed among the polariton states. In the lower panel of Fig. 6.9 the
contribution of each state to the photonic excitations is shown (left panel, identified by the square
modulus of the expectation value of the number operator aTa), to the excitations of the acceptor group
(middle panel, identified with the operator ULO'A), and to the excitations of the donor group (right
panel, identified with the operator U}L)UD). The photonic energy is mainly represented by the polariton
L when w, < wa, by M when w, is near to (wq +wp)/2, and by U when w. > wp. On the other hand,
the excitonic energy of the acceptor group is primarily concentrated in the middle polariton M when
we < wa and in L when w, > w4, while the energy of the donor group is stored in U when w, < wp
and in M when w, > wp. In this way, by applying the 2D spectroscopy protocol to the DA system for
a given cavity frequency we, it is possible to trace the dynamic evolution of the polariton states and

consequently determine how photonic and excitonic energy is transported.
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Fig. 6.10.: A. Upper panel: Populations for the dissipative dynamics of eigenstates of the DA Ha-
miltonian with w. = 2.0 eV and for different initial conditions. Lower panel: Zoom of the
dynamics of the respective column, over a more extended period of time. B. Time depen-
dent evolution of the state initially populated for different cavity frequencies w.. In each
column the label of the state for the initial condition is inserted within the plot. Time is
measured in units of Tp = 41.47 fs and the same parameters as in Fig. 6.9 have been used.

To get an idea of the dynamic evolution of the eigenstates of DA model, Fig. 6.10 shows the evolution
of the respective populations when the initial condition is chosen to be one of the eigenstates of Ay
(L, Dy, M, Dp, U) for Ny = Np = 2. In this case, the cavity frequency is w, = (wa +wp)/2 = 2.0
eV, indicating that L represents the excitations of the acceptor group, U those of the donor group,
and M those of the cavity (see lower panel in Fig. 6.9). Similar to the TC model, the lower polariton
L decays only to the ground state through cavity photon losses (see the middle left panel of Fig. 6.10).
The decay rate L — G (by photon loss) decreases as the cavity frequency increases, as observed in the
lower left panel of Fig. 6.10, where the population prr(¢; |L)) is shown for different values of w.. This
is explained by the fact that L loses its photonic character with the increase of w,. (see see bottom
panel in Fig. 6.9), becoming less affected by the photon losses of the cavity. For the specific case of
we = 2.0 eV, the decay of L translates into the de-excitation of the acceptor molecules (see bottom
panel in Fig. 6.9). On the other hand, the D4 states (second column in Fig. 6.10) can decay to L
only through vibrational relaxation of acceptor molecules. For this case with w. = 2 eV, the decay
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yields from D4 to L along with that from U to Dp are the most relevant out of all transitions due
to vibrational relaxation. However, these relevant transitions do not imply an energy transport, since
for w. = 2 €V the states L and D4 carry the energy of the acceptor molecules; and the states U and
Dp carry that of the donor molecules (see bottom panel in Fig. 6.9). Contrary to the behavior of
the L state, the state D4 decays faster when the cavity frequency w. increases. This is because as
omega increases, the state L, which is the only decay channel of D4, carries the energy from acceptor
group, enhancing the transition D4 — L. Photonic excitations, represented by the middle polariton
M when w, = 2.0 eV, primarily decay to the ground state (third column in Fig. 6.10). However, the
zoom in Fig. 6.10 indeed shows those transitions M — L and M — D 4, which are relevant for energy
transport from cavity to acceptor molecules. In general, M has has the shortest lifetime when w, is
close to (wa + wp)/2, due to its photonic character, and its lifetime increases when w, departs from
this middle point frequency. Both Dp and U (last two columns of Fig. 6.10) have longer lifetimes as w,
decreases (where U reduces its photonic character). For the case w. = 2.0 €V, the main decay channel
of U is through Dp, although direct transitions U — M (energy transfer from the donor group to the
cavity), U — L, and U — D4 (transfer from the donor to the acceptor group) can also occur (see
zoom plots in Fig. 6.10).

6.2.2. Energy transfer pathways

In our dissipative DA model, we consider two primary decay mechanisms: photonic losses from the
cavity and molecular vibrational relaxation. Consequently, the Liouvillian can be divided into three
parts:

o= SHam + SCav + EVib’ (63)

where S1%% (o] = [Hp, p]/ih is the part associated with the coherent Hamiltonian dynamics, £°%V[p] =
xL(a)[p] corresponds to the photonic decay of the cavity, and £V*[p] = Z B(orzT 0;)[p] represents the

vibrational relaxation of both groups of molecules. In general, the matrix lelements of the Liouvillian
that connect population states, namely those of the form £,, 33, account for the transition rates
B — «. In the Chap. 4, we discussed that the nonzero matrix elements of £V are proportional to x
and those of £V are proportional to . Thus, we can study the strength of the transitions associated
with both decay mechanisms as a function of the cavity frequency w.. This is done by plotting sSgYB s/ K
versus w, (for the photonic decay mechanism) and SXS?BK? /7 versus w. (for the vibrational relaxation
mechanism). To study the energy transport between polariton states, the mechanism of vibrational
relaxation is of particular interest, as photon decay only allows transitions from the polariton states
to the ground state GG, whereas vibrational relaxation accounts for transitions among all states of Aj.
Fig. 6.11 displays the respective Liouvillian matrix elements QX&BB /7, which account for transitions

between the different states of A;.

The upper panel of Fig. 6.11 shows the strength of the main dissipative transitions from the state U
to other states of A; for the case Ng = Np = 2. The transition U — Dp is the most intense and it is
particularly strong when w. < wp, that is, when the state U carries the energy of the donor molecules
(see lower panel in Fig. 6.9). Therefore, this transition, in this frequency range, does not represent an
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Fig. 6.11.: First and second columns: Non-zero matrix elements that connect population states of the
Liouvillian associated with vibrational relaxation 22{2?55 /7, accounting for the transition
intensities 8 — «, as a function of the cavity frequency w,. In the top row, transitions from
U (8 =U) to the states « = Dp, M, Dy, L are plotted. In the middle row, transitions
from Dp to the states a« = M, D,, L are shown. In the bottom row, transitions from M
to the states « = Dy, L (first column) and from Dy4 to the state a = L (second column)
are displayed. Third column: Upper panel: Intensity of the transitions associated with the
seven possible pathways defined in Eq. (6.4) representing the energy transport from U to L
as a function of w.. Lower panel: Square root of the sum of the square of the intensities of
the seven routes starting from U and ending at L, as a function of w.. The same parameters
as in Fig. 6.9 have been used.

energy transport. The transition U — M gains intensity in the area where w, is close to wp, where
both U and M represent excitations of both the acceptor molecules and the cavity (as shown in the
bottom panel of Fig. 6.9) and thus there is also no energy transport during this transition in such
frequency range. On the other hand, the transition U — L is maximized at frequencies w. = 1.86 eV
and w, = 2.14 eV (frequencies close, but not equal to wq = 1.9 eV and wp = 2.1 eV respectively).
Near the w. = 1.86 eV zone, U carries the excitations of the donor group and L carries the photon
energy of the cavity. Thus, at this frequency (w. = 1.86 €V), the transition U — L indicates an energy
transport from the donor molecules to the cavity. Whereas near the w. = 2.14 eV zone, both transitions
U — Land U — D4 (also maximized in this zone), indicate an energy transport from the cavity to the
acceptor molecules (as shown by the energy distribution in the lower panel of Fig. 6.9). The middle row
in Fig. 6.11 indicates the transitions from the state Dp. Dp — M exhibits the same behavior of the
donor molecules excitations (see Fig. 6.9) carried by the state M, thus indicating that this transition
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does not represent an energy transport. However, the transition Dp — L, maximized when w, = 1.86
eV represents an energy transport from the donor molecules to the cavity. The transition Dp — Dy
is not possible in this case for any value of the cavity frequency w.. The transitions M — Dy4 and
D4 — L do not indicate energy transport since their intensities in Fig. 6.11 show the same behavior
of the molecular acceptor excitations carried by the middle polariton M and the lower polariton L
in Fig. 6.9, respectively. Finally, the transition M — L, which is maximized in the zone where w, is
close to w4, also does not indicate energy transport, since in this zone L and M both represent the
excitations of both the cavity and the acceptor molecules.

To study an energy transport process that starts by exciting the state U and ends in the state L,
we must consider all possible paths that would occur during the dynamic evolution. These paths are
indicated below with their respective energy transport processes (among cavity (C), donor molecules
(D), and acceptor molecules (A)), depending on the chosen cavity frequency w,:

RI:U—-L: D—-C(w=186¢eV), D— A (w.=2.0¢V), C— A (w.=2.14 €V)
R2:U—-Dy—L: C—>A— A (w.=214¢€V)

R3:U—-Dp—L: D—-D—C (w.=1.86¢V)

R4:U—-M—-L: D—-C—A (w.=2.0¢€V) (6.4)
R5:U—-Dp—-M—-L: D—-D—C— A (w.=20¢€V)

R6:U—-M—-Dy—L: D-C—-A—A (w.=20¢€V)

R:U—-Dp—-M-—-Dy—-L: D>D—-C—A—A (w.=2.0¢€V)

We can define the intensities or probabilities of these paths by multiplying the respective matrix ele-
ments of the Liouvillian involved. For instance, for the path R2, we define its intensity as S\EED AUU X
2){}}’7 DDA /fyg. Defined in this way, each of the intensities associated with the seven paths starting
from U and ending at L are plotted in the upper panel of the third column in Fig. 6.11. For all cavity
frequencies w., the most probable path turns out to be R1 (U — L). This route represents energy
transport for all values of w.. Particularly, for cavity frequencies 1.86, 2.0, and 2.14 eV, Eq. (6.4)
details how the respective energy transport processes occur. Other routes are also relevant in certain
frequency ranges. For example, near to w, = 2.14 €V, the R2 route (energy transport from the cavity
to the acceptor molecules) is significant, and near to w. = 1.86 €V, the R3 route (energy transport
from the donor molecules to the cavity) is relevant. The routes R4 to R7 are important around the
central frequency (wq + wp)/2 = 2.0 eV and represent energy transport from the donor molecules to
the cavity and subsequently to the acceptor molecules.

Note that the matrix elements of £V associated with vibrational decay plotted in Fig. 6.11 are divided
by ~y, which corresponds to the constant value (at positive frequencies with zero temperature) of the
vibrational bath noise power spectrum function S(w). If another function S(w) is used, the intensity

of each transition @ — 3 shown in the figure should be multiplied by the corresponding value S(w,,)-
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6.2.3. 2D Spectroscopy applied to the energy transport process

In the 2D spectroscopy protocol, the interaction of the first and second pulses with the system suc-
cessfully excites the polariton states according to the intensity of their dipole couplings shown in the
upper middle panel of Fig. 6.9. In this section, we choose w. = 2.0 V. At this frequency we expect the
initial state predominantly populated is M (which carries the cavity energy), although the states U
(with donor energy) and L (with acceptor energy) can also be excited, as shown in the upper middle
panel of Fig. 6.9. 2DS allows us to track the dynamics of the total transfer U — L, to which all possible
paths R1 to R7 contribute simultaneously. However, it is also possible to isolate some processes. For
example, one can track the transition U — M (contributed by the paths U - M and U — Dp — M),
which is present in routes R4 to R7, and also the transfer M — L (contributed by the paths M — L
and M — D4 — L) can be studied separately.

Fig. 6.12 shows the total 2DS at a waiting time 7" = 0.5 Tr and its respective decomposition into
different Feynman pathways. The high intensity of the peaks M/Mgg, and M /M {asBy Is indicative
that the most populated state during the excitation process is the middle polariton M, as expected.
In this Fig. 6.12, an scheme with the locations of the different transition frequencies is shown to
an approximate scale in the top right panel. The red color represents transitions Ag — Ay between
the ground state and the bright polariton states of the first excitation manifold; blue color denotes
transitions A1 — Ao between bright polariton states of different excitation manifolds, while magenta
and gray colors represent transitions A; — As from the dark states of the acceptor group and the donor
group, respectively. This graph helps us to understand that the different peaks appearing in all the
plotted spectra may be due to the interference of various processes occurring at very close frequencies.
For example, the top left peak in the ESA spectrum (U/Dpgsa}) represents the excitation of the U
state (population reached during the excitation process) and then, considering the evolution during
the waiting and detection times, we have two possible paths

UL UL P5: the population is excited to any accessible polariton state P> of Ay. This process
is observed at the lower detection frequency w; = wp,ry of the diagram in Fig. 6.12.

I Dp EN Dy: the population decays to the dark state of donor molecules Dp during T,
and subsequently, this state is excited to an accessible state Do of Ay from Dp. This process is
detected at the lower frequency w; = wp,p,, in Fig. 6.12.

According to the frequency diagram shown in Fig. 6.12, these two processes are detected at the same
frequency in the top left peak (which by the way also coincides with wr ), thus interfering in the left

U/DD{ESA} peak.

Now, we are interested in analyzing those peaks in the 2DS contributed from energy transport proces-
ses. Fig. 6.13 allows us to study the processes that start with the excitation of state U (donor group
excitations) and whose energy migrates towards the acceptor group (L) or towards the cavity (M).
In this Fig. 6.13, we show a function fops(T) extracted from the 2DS and compare it with a function
fo(T') obtained from the temporal evolution during T' of the system density operator, assuming the
initial state U. We identify correlations between the 2DS and the density operator of the system that
help us to understand the following energy transport mechanisms:
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Fig. 6.12.: Upper left panel: electronic population 2DS for the dissipative DA model at the waiting

time T' = 0.5 Tp (Tr = 4147 fs) for Np = Ny = 2 molecules, and cavity frequency

hwe = 2.0 eV. The real value or 2D absorptive spectra R[S((Ii)R +R) (wr, Tywy)] is plotted.

The parameters of the model are chosen as in Fig. 6.9. The spectrum is normalized to

its maximum value. Upper right panel: schematic diagram, on an approximate scale, of

the frequencies associated with the transitions Ag — A1 (wrg, wyme, and wye in red) and

the transitions A; — A from the dark states of acceptor molecules (wp,p, in magenta),

from the dark states of donor molecules (wp,p,, in gray), and from the bright polariton

states (wp,1, wp, M, and wp,7 in blue). We have denoted by D2 and P, the dark and bright

states, respectively, of Ao that have a dipole connection with the dark and bright states,

respectively, of Aj. Lower panel: Decomposition of the population 2DS in the upper panel
into their contributing Feynman pathways GSB, GSR, SE, and ESA. The sum ESA+ESA‘
is also shown. These maps are normalized to the maximum value of the GSB component at

time 7" = 0.5 Tr. All 2D plots have been truncated to half of their respective normalization

value. Dotted right lines indicate the polariton frequencies wr g, wyra and wyg respectively.

Solid/dashed contour lines represent heights 4-[0.05,0.08,0.1,0.15,0.2,0.3, 0.4].

» Donor — Cavity — Acceptor and direct transfer Donor — Acceptor: The interference between

these two mechanisms is recorded in the temporal evolution during 7' of the density matrix

element f,(T) = prr(T) (we emphasize that we take the state U as the initial state), which
represents the transition U — L. This function prr(7T) is plotted with dashed line in the left
panel of Fig. 6.13. The dynamics of both transport mechanisms leave their mark on the 2DS.
They contribute to the peak U/Lggy. We propose the function fops(7T") = 0.625 x U/ L¢ggy(T)
(solid line in the left panel of Fig. 6.13), whose average value exhibits a behavior similar to the
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respective prr(T) function.

Donor — Cavity: This mechanism is recorded in the matrix element f,(T) = pyprar(T7) (dashed
line in middle panel of Fig. 6.13), representing the transition U — M. This transference leaves
its fingerprint on the peak U/M{gg;. We propose the function fops(T) = U/Lsgy(T)/3 (solid
line in middle panel of Fig. 6.13), which, except for very short waiting times, fairly fits ppras(7)

well.

We also plot the transition U — Dp in the right panel of Fig. 6.13. It is represented with f,(T)
pppDp (1) (dashed line) and fops(T) = 0.769(co x U/Uisgy(T) — U/Dpesay(T)) (solid line), with
co = [U/Dprsayl(0)/[U/Uisgy](0). This transition does not represent an energy transport process.
It is an energy exchange between polariton states mainly carrying excitations from the donor group.
The function extracted from the 2DS that we propose in this case takes into account that the po-
pulation migrating towards the dark states Dp from U is the one that mainly contributes to one
of the —U/ Dpesay peaks for the detection frequency wi = wp,p,, (in particular, we use the right
higher frequency shown in Fig. 6.12). However, from the frequency diagram shown in Fig. 6.12, we
see that the higher frequency wp,p,, is close to wyp,, implying that in that ESA peak, there is also a
contribution from the population remaining in U during the waiting time 7', which is extracted from

the U/Ugg, peak.

Finally, Fig. 6.14 illustrates the energy transfer process from the cavity to the acceptor molecular
group, identified by transitions starting from the state M and ending in the states L (left panel of

Donor — Cavity — Acceptor

Donor — Acceptor Donor — Cavity No energy transfer
. U— L U—M U— Dp
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Fig. 6.13.: Plots of the real part of a function f, extracted from the evolution during T of the density
operator of the system with the initial condition |p(0))) = |UU)) (dashed lines) and of a
“fitted” function fapg (solid lines) extracted from the 7" evolution of the 2DS. In each panel
we track a particular transition U — L (left panel), U — M (middle panel) and U — Dp
(right panel). They represent the respective labeled energy transport mechanisms, except
by U — Dp in which there is no energy transport. The explicit forms of f,(T") and fops(T)
are described in the text. All the fopg(7T') functions are divided by the constant real value

of U/U{GSB} .
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Fig. 6.14) or the state D4 (right panel of Fig. 6.14). In these cases we use the following functions,
taking as initial condition for the density operator the state M, i.e., |p(0))) = |MM))

= Cavity — Acceptor transport: It is represented by the transfer M — L. This transition is
recorded in the matrix element f,(T) = prr(T) (dashed line in left panel of Fig. 6.14). We
propose the function fops(T') = 2 x M/Lggy(T) (solid line in the left panel of Fig. 6.14), whose
average value exhibits a behavior similar to the respective prr(T) function.

s Cavity — Acceptor transport: It is represented by the transfer M — D 4. This transition is
recorded in the matrix element f,(T") = pp,p,(T) (dashed line in right panel of Fig. 6.14).
On the other hand, the function fops(T') = 0.4(co x M/Mgpy(T) — M /D atrsay(T)) (solid line
in right panel of Fig. 6.14), with co = [M/D 4rrsa}](0)/[M/Msry](0). Here we use the same
argument as we did to explain the choice of fopg(7') in the case of the transition U — Dp.

In conclusion we find valuable the analysis of 2DS and the time evolution of some specific peaks to
check out the presence of transport mechanisms in a polariton molecular system and to discriminate its
nature, namely, Donor-Acceptor, Donor-Cavity-Acceptor or Cavity-Acceptor. Further sophistication
of the model in order to optimize the control over transport is left for future works.
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Fig. 6.14.: Plots of the real part of a function f, extracted from the evolution during 7" of the density
operator of the system with the initial condition |p(0))) = |MM)) (dashed lines) and of a
“fitted” function fapg (solid lines) extracted from the 7" evolution of the 2DS. In each panel
we track a particular transition M — L (left panel) and M — D4 (right). They represent
an energy transport from cavity to acceptor molecules. The explicit forms of f,(7") and
faps(T) are described in the text. All the fops(T') functions are divided by the constant

real value of M/Mqspy-
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Conclusions

In this thesis we have developed a comprehensive theoretical approach to unveil the fast internal dyna-
mics of molecular polariton states subject to external weak classical fields. This perturbative approach
turns out to be useful for both linear and nonlinear spectroscopies. Our system consists of an ensemble
of molecules strongly coupled to an electromagnetic field within a cavity. Regarding the matter part,
each molecule is approximated as an electronic two-level system, and with respect to radiation, a single
quantized mode is considered. In addition, to match the experimental realm, dissipative effects due to
molecular nonradiative decay processes and photon losses from the cavity are included, thus leading
to a formalism in terms of master equations for the density operator.

In the matter-field strong coupling regime within the cavity, two kind of states, named bright (lower
and upper) and dark molecular polaritons, are formed in the first excitation manifold. Similarly these
sort of states are also found in upper excitation manifolds. Bright states can be reached directly
by absorption from the ground state while dark states cannot. This opens the question about the
contribution of dark states to the polariton photodynamics. In this work, we shed light on how these
dark states indeed play a crucial role and partially shape the line profiles in the absorption and emission
linear spectroscopies as well as in the surface profiles in two-dimensional spectroscopy.

1. We have developed mathematical expressions for the linear S (1)(75) and third-order nonlinear
S3) (1,T,t) response functions in the time domain, both in Hilbert space and Liouville space,
assuming the weak field approximation for external laser pulses, which allows for a perturbative
approach. These expressions can be interpreted as expectation values in Liouville space, but
they are also directly related to one-time and three-time correlation functions, respectively, in
Hilbert space. These obtained general expressions are valid for a master equation derived from
any Liouvillian. Incidentally, they are valid for any dipolar interaction operator between the
quantum system under study and the classical fields of a given spectroscopic protocol.

2. Within the semi-impulsive limit (sudden ultrashort pulses) and the rotating wave approxima-
tion, we have derived expressions to calculate the linear absorption and emission spectra from
the previous linear response function. In this work, we have introduced new formulas, not yet
reported in the literature, for the calculation of 2D absorptive spectra, obtained from the third-
order nonlinear response function under rephasing and non-rephasing phase matching conditions.
These new expressions are written in terms of a sum (which runs over the Liouvillian eigensta-
tes) of products of excitation F;(w,) and detection D;(w;) functions, and an exponential factor
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which contains the waiting time, i.e., exp(A;7"), responsible for the decay. In fact, this expression
reflects the consecutive experimental steps of the 2D spectroscopy protocol (excitation, waiting
and detection).

. Since in the Liouville space representation, the temporal evolution operator of the full dissi-

pative system is expanded in the Liouvillian eigenstates, the calculation of the dynamics and,
consequently, of both linear and nonlinear spectra are analytical. This makes of our method of
solution a very efficient computational tool for the calculation of 2D spectra.

. For the dissipative Jaynes- and Tavis-Cummings models employed in this work, we have consi-

dered a molecular vibrational bath within the Bloch-Redfield formalism and cavity photon losses
through the Lindblad formalism. Despite the simplicity of these models, they have proven to be
highly valuable for studying dynamic effects of polariton states. For instance, we demonstrate
that these models capture the expected asymmetries of lower L and upper U polariton peaks
present in the linear absorption spectra. Similarly, these models also reproduce the experimental
asymmetries in both the diagonal and cross peaks in 2D spectra.

We find that these effects arise from the difference between the relaxation channels of both
states, being the dark states those involved in the U decay channel. We stress that employing
the molecular pure dephasing operator o'o as a Lindblad term to simulate the vibrational bath
turns out to be incorrect, since this Lindblad model fails to reproduce the asymmetry between
L and U peaks in linear and non-linear spectroscopies.

. Analyzing the Feynman path contributions to the 2D population spectra, we conclude that each

of these contributions provide specific information about the dynamics of the polariton states as
follows

» Ground state bleach (GSB): except for a normalization factor, any cut along the excitation
or detection frequency in the GSB component of the 2DS yields the linear absorption
spectrum.

» Ground state recovery (GSR): it allows us to track the population migrating from the pola-
riton states L and U towards the ground state GG during the waiting time T'. The asymmetry
in the GSR signals is of the same nature as that presented in the linear absorption peaks
and it is due to the different relaxation mechanisms present in both polariton states. Asym-
ptotically, the magnitude of the GSR peaks is greater when the initially populated state is
L than when the state U is populated. This is because part of the population from U gets
trapped in the dark states, which take much longer time to decay to the ground state.

» Stimulated emission (SE): it allows tracking the population remaining in the polariton
states L and U during the waiting time T, after these states have been populated during
the excitation process.

» Excited state absorption (ESA): At long waiting times, when the bright polaritonic states
have relaxed, dark states leave their distinctive imprint on the ESA contribution. In the 2D
spectra, the dynamics of dark states can be directly visualized, unlike in linear spectra.
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6. By incorporating dissipative processes into the model, we unveil the existence of two new Feyn-
man path diagrams named ground state recovery (GSR) and excited state absorption prime
(ESA’). The former has received scant attention in the literature, while the ESA’ contribution
has not been reported until now to our knowledge. This contribution arises from the decay of
coherences between different excitation manifolds due to cavity photon losses.

7. The open Tavis-Cumming model used in Chap. 5 allows us to study other physical effects on
polaritonic dynamics. We have studied temperature effects, which lead to incoherent pumping
of polariton states, leaving a fingerprint on the different contributions to the 2D spectra. Each
contribution allows us to track different pumping and/or relaxation pathways. Furthermore,
our model enabled a reasonable comparison with 2D spectra obtained in experiments with J-
aggregates (see Sec. 5.5). The temporal evolution during the waiting time T of the spectral signals
obtained from our simulations reflects some of the behaviors also present in the experiments.

8. We have briefly analyzed the case of interacting molecules, by adding a dipole-dipole interaction
term to the Hamiltonian. In the case of a high concentration in solution of these J-aggregates,
one cannot disregard this interaction among emitters. Within our model we conclude that 2D
spectra may display drastic changes in the linear and 2D spectra, by shifting the peaks and by
modifying the intensities, which is due to an exchange of character of polariton states in energy
anticrossings as the ratio between the emitter-emitter interaction strength and the emitter-cavity
coupling G/g varies.

9. Finally, the last chapter deals with energy transport in molecular ensembles of Donors and Ac-
ceptors, with different natural frequencies wp and w4, respectively. This kind of Donor-Acceptor
systems are characterized by the presence of new middle polaritons M and also because there
are two different sets of degenerate dark states.

The choice of the cavity frequency w. determines how the energy of the photonic and molecular
excitations is distributed among the polariton states. Excitation to the lower polariton state L
dominates for w. < w4, to the middle polariton for w4 < w. < wp and to upper polariton U for
we > wp. The modification of the polariton energy spectrum and the eigenstate composition with
w, determines the frequency peaks and intensities in the absorption spectra. We have analyzed a
series of energy transport paths from U to L polaritons for different relevant cavity frequencies.
In 2D spectra (using we = (wa +wp)/2 a new series of X /M peaks appear due to the prevalence
of the middle polariton M in absorption. In fact, in this case, M represents the cavity, L mainly
corresponds to the Acceptor and U state represents the Donor. We analyzed mechanisms for
processes initiated with the excitation of the Donor (U polaritons) with a subsequent energy
migration to the Acceptor (L polaritons) or to the cavity itself (M polaritons), being able to
discriminate the nature of the transport mechanism as Donor-Acceptor, Donor-Cavity-Acceptor
or Cavity-Acceptor.
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Conclusiones

En esta tesis hemos desarrollado un enfoque tedrico para abordar la dindmica interna rapida de los
estados de polaritones moleculares sujetos a campos pulsados débiles externos. Este enfoque pertur-
bativo resulta tutil tanto para espectroscopias lineales como no lineales. Nuestro sistema consta de un
conjunto de moléculas fuertemente acopladas a un campo electromagnético dentro de una cavidad.
Respecto a la parte de materia, cada molécula se aproxima como un sistema electrénico de dos niveles,
y respecto a la radiacion, se considera un tnico modo de cavidad cuantizado. Ademaés, para simular
el entorno experimental, se incluyen los efectos disipativos debidos a procesos de relajacién molecular
no radiativa y pérdidas de fotones de la cavidad, lo que conduce a un formalismo en términos de
ecuaciones maestras para el operador de densidad.

En el régimen de acoplamiento fuerte entre materia y cavidad, en la primera variedad de excitacion se
forman dos tipos de estados, los denominados polaritones moleculares (inferior L y superior U) y los
estados oscuros materiales no acoplados con el modo de radiacién. De manera similar, estos estados
también se encuentran en las variedades de excitacién superior. Los estados de polaritones se pueden
excitar directamente mediante la absorciéon desde el estado fundamental, mientras que los estados
oscuros no. Esto abre la pregunta sobre la contribucién de los estados oscuros a la fotodinamica de
polaritones. En este trabajo, arrojamos luces sobre como estos estados oscuros juegan un papel crucial
y, ocasionalmente, dan forma a los perfiles de picos en las espectroscopias lineales de absorcién y
emisién, asi como a las sefiales de la espectroscopia bidimensional.

1. Hemos desarrollado expresiones matemaéaticas para las funciones de respuesta lineal de primer
orden SM () y no lineal de tercer orden S®)(r,T,t) en el dominio del tiempo, tanto en el
espacio de Hilbert como en el espacio de Liouville, asumiendo la aproximacién de campo débil
para pulsos laser externos, lo que permite un enfoque perturbativo. Estas expresiones pueden
interpretarse como valores esperados en el espacio de Liouville, pero también estan directamente
relacionadas con funciones de correlacién de primer y tercer orden, respectivamente, en el espacio
de Hilbert. Estas expresiones generales obtenidas son validas para una ecuacién maestra derivada
de cualquier Liouvilliano. De hecho, son validas para cualquier operador de interaccién dipolar
entre el sistema cuantico estudiado y los campos clasicos dado un protocolo espectroscépico.

2. Dentro del limite semi-impulsivo (pulsos laser ultracortos sibitos) y la aproximacién de la onda
rotante, hemos derivado expresiones para calcular los espectros lineales de absorcién y emisién a
partir de la funcién de respuesta lineal. En este trabajo hemos introducido nuevas férmulas, atin
no reportadas en la literatura, para el calculo de espectros de absorcién 2D, obtenidas a partir
de la funcién de respuesta no lineal de tercer orden en condiciones de phase-matching llamadas
rephasing y non-rephasing. Estas nuevas expresiones estan escritas en términos de una suma (que
recorre los estados propios del Liouvilliano) de los productos de las funciones de excitacién E;(w;)
y de deteccién Dj(wy), y de un factor exponencial que contiene el denominado tiempo de espera
T, es decir, exp(A;T), responsable del comportamiento de decaimiento polariténico. De hecho,
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esta expresion refleja los pasos experimentales consecutivos de un protocolo de espectroscopia
2D (excitacion, espera y deteccién).

. Dado que en la representacion del espacio de Liouville, el operador de evolucién temporal del
sistema, disipativo completo se expande en los estados propios del Liouvilliano, el calculo de la
dindmica y, en consecuencia, de los espectros lineales y no lineales es analitico. Esto hace de
nuestro método de solucién una herramienta computacional muy eficiente para el calculo de
espectros 2D.

. Para los modelos disipativos de Jaynes- y Tavis-Cummings empleados en este trabajo, hemos
considerado un bafio molecular de osciladores dentro del formalismo de Bloch-Redfield y las
pérdidas de fotones de la cavidad a través del formalismo de Lindblad. A pesar de la simplicidad
de estos modelos, han demostrado ser muy valiosos para estudiar los efectos dinamicos de los
estados de polaritones. Por ejemplo, demostramos que estos modelos capturan las asimetrias
esperadas de los picos de abroscion de polaritones presentes en los espectros lineales. De mane-
ra similar, estos modelos también reproducen las asimetrias experimentales tanto en los picos
diagonales como en los picos cruzados de los espectros 2D.

Encontramos que estos efectos surgen de la diferencia entre los canales de relajacién de ambos
estados polariténicos L y U, siendo los estados oscuros un canal adicional para U, que no
interviene en el decieminto de L. Destacamos que emplear el operador de dephasing molecular
puro oo como término de Lindblad para simular el bafio vibracional resulta incorrecto, ya
que este modelo de Lindblad no logra reproducir la asimetria entre lso picos L y U, tanto en
espectroscopias lineales como no lineales.

. Al analizar las contribuciones de los caminos de Feynman a los espectros de poblacién 2D,
concluimos que cada una de estas contribuciones proporciona informacién especifica sobre la
dindmica de los estados polariténicos de la siguiente manera

» “Blanqueamiento” del estado fundamental (GSB): excepto por un factor de normalizacién,
cualquier corte a lo largo de la frecuencia de excitacion o deteccién en el componente GSB
del 2DS reproduce el espectro de absorciéon lineal.

» Recuperacion del estado fundamental (GSR): nos permite rastrear la poblacién que migra
desde los estados de polariton L y U hacia el estado fundamental G durante el tiempo de
espera T'. La asimetria en las sefiales GSR es de la misma naturaleza que la que se presenta
en los picos de absorcion lineal y se debe a los diferentes mecanismos de relajacién presentes
en ambos estados polariténicos. Asintéticamente, la magnitud de los picos de GSR es mayor
cuando el estado inicialmente excitado es L que cuando se excita U. Esto se debe a que
parte de la poblaciéon de U queda atrapada en los estados oscuros, que tardan mucho mas
tiempo en decaer al estado fundamental.

» Emision estimulada (SE): permite rastrear la poblacién que permanece en los estados de
polaritén L y U durante el tiempo de espera T', luego de que estos estados hayan sido
poblados durante el proceso de excitacion.
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s Absorcién desde el estado excitado (ESA): en tiempos de espera largos, cuando los estados
polariténicos se han relajado, los estados oscuros dejan su huella distintiva en las contri-
buciones ESA. En los espectros 2D, la dindmica de los estados oscuros se puede visualizar
directamente por las contribuciones ESA, a diferencia de los espectros lineales.

. Al incorporar procesos disipativos en el modelo, revelamos la existencia de dos nuevos diagramas

o caminos de Feynman denominados recuperacién del estado fundamental (GSR) y absorcion
desde el estado excitado primado (ESA’). El primero ha recibido escasa atencion en la literatura,
mientras que hasta ahora, segin sabemos, la contribuciéon del camino ESA’ no ha sido repor-
tada. Esta contribucion surge del decaimiento de las coherencias entre diferentes variedades de
excitacién debido a las pérdidas de fotones en la cavidad.

El modelo abierto de Tavis-Cumming utilizado en Chap. 5 nos permite estudiar otros efectos
fisicos sobre la dindmica polaritonica. Hemos estudiado los efectos de la temperatura, que con-
ducen a un bombeo incoherente de estados polaritonicos, dejando una huella en las diferentes
contribuciones a los espectros 2D. Cada contribucién nos permite rastrear diferentes vias de
bombeo y/o de relajacién. Ademéds, nuestro modelo permitié una comparacién razonable con
espectros 2D obtenidos en experimentos con J-agregados moleculares (ver Sec. 5.5). La evolu-
ciéon temporal durante el tiempo de espera T' de las sefiales espectrales obtenidas en nuestras

simulaciones refleja algunos de los comportamientos también presentes en los experimentos.

. Hemos analizado brevemente el caso de moléculas que interactian, afadiendo un término de

interaccion dipolo-dipolo al hamiltoniano. En el caso de altas concentraciones en soluciéon de
estos agregados moleculares J, no se puede ignorar la interacciéon entre emisores. Dentro de
nuestro modelo concluimos que nuestros resultados pueden mostrar cambios drasticos en los
espectros lineales y 2D, al desplazarse los picos y modificarse sus intensidades relativas, lo cual
se debe a un intercambio de caricter entre estados polaritonicos en los anticruces de energia
presentes cuando la relacién entre el interaccién emisor-emisor y el acoplamiento emisor-cavidad
varia.

. Finalmente, el ultimo capitulo trata del transporte de energia entre grupos moleculares de Do-

nantes y Aceptadores, con diferentes frecuencias naturales wp y w4, respectivamente. Este tipo
de sistemas Donante-Aceptor se caracterizan por la presencia de nuevos polaritones intermedios
M y también porque existen dos conjuntos diferentes de estados oscuros degenerados. La elec-
cién de la frecuencia de la cavidad w,. determina como la energia del foton y de las excitaciones
moleculares se distribuyen entre los estados polaritonicos. La excitaciéon al estado polariténico
inferior L domina para w. < wa, al polariton medio para w4 < w. < wp y al polaritén superior
U para w. > wp. La modificaciéon del espectro de autoenergias del Hamiltoniano polariténico
y la composicién de los autoestados al variar w, determinan las nuevas frecuencias de los picos
y sus intensidades en los espectros de absorciéon. Hemos analizado una serie de rutas relevantes
de transporte de energia de polaritones U a L para diferentes frecuencias de la cavidad. En
espectros 2D (usando w. = (wa + wp)/2 aparecen picos en nuevas frecuencias de excitacién y
deteccién: los picos X/M y M/X con X = L,U debido al dominio del polaritén medio M en
la absorcién. En este caso, el estado M porta la energia de la cavidad, L la del grupo Aceptor
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y U la del gurpo Donante. Analizamos los mecanismos de procesos iniciados con la excitacién
del Donante (polaritones U) con una posterior migraciéon de energia al Aceptor (polaritones L)
o a la propia cavidad (polaritones M), pudiendo discriminar asi la naturaleza del mecanismo de
transporte como Donante-Aceptor, Donante-Cavidad-Aceptor o Cavidad-Aceptor.
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