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Colombian climate teleconnections from complex networks and information transference

by Nicole RIVERA-PARRA

This study leverages complex network analysis and information transfer quantifiers to character-
ize the climate variability teleconnection spatial patterns across Colombia, based on causal relation-
ships. Causality between six oceanic indices (Niño 3.4, Niño 3, SOI, TNA, NTA, and CAR) and three
local climatic variables (total precipitation [TP], two-meter temperature [T2M], and vertical conver-
gence of moisture flux [VIMFLUX]) is estimated through the Liang-Kleeman Maximum Likelihood
Estimator (LKMLE), which works as a quantifier of information transfer between time series. Six
climate complex networks are built based on the strength of these teleconnections, summarizing the
overall causal influence of each index on the chosen variables.

The spatial distribution of teleconnections between El Niño-Southern Oscillation (ENSO) indices
and TP captures the strong connectivity over eastern and southeastern Colombia, as in previous stud-
ies. Nevertheless, our findings suggest that ENSO does not have a statistically significant causal
relationship with T2M. On the other hand, Atlantic Ocean-related indices are found to have signifi-
cant causal teleconnections with northern, western, and northwestern Colombia, especially over the
Orinoco and Amazon’s basins for TP, in agreement with previous studies.

Our model results in simple, undirected, and unweighted graphs. The presence of several isolated
vertices for all indices suggests sparse networks. This indicates that most of the territory exhibits lim-
ited teleconnection-based connectivity. Despite this sparseness, the properties of the graphs hint at a
highly complex underlying network structure that may not readily fit into the currently established
categories of canonical complex networks.

Keywords: Complex Network Analysis, Atmospheric Teleconnections, Climate Networks, Colom-
bia
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Introduction

In the wake of unprecedented global climate change, our planet faces an uncertain ecological equi-
librium, as affirmed by the Intergovernmental Panel on Climate Change (IPCC, Lee et al., 2023).
Nowhere is more concern than in regions harboring endangered biodiversity hotspots like Colombia
(Pabón, 2003; Ruiz et al., 2008), a country characterized by the convergence of ecological diversity and
climate susceptibility. This work studies the far-reaching atmospheric interactions and their structure
in Colombia through the construction of complex networks of climate teleconnections. This research
aims to provide valuable insights for safeguarding the biodiversity-rich nation and offering valuable
scientific information to face our evolving climate.

Teleconnections describe the relationships between climate anomalies at large distances (often
thousands of kilometers). These linkages were first introduced in the climate context by Ångström
(1935) to explain how the variability of large-scale atmospheric circulation patterns influence precip-
itation and temperature in tropical and extratropical regions, on various timescales (Lorenz, 1963;
Schneider and Dickinson, 1974; Easterling et al., 2000; Donner et al., 2009; Solman, 2013). Due to
climate’s high complexity, one critical challenge in our time lies in distinguishing between natural cli-
mate fluctuations and human-induced climate change (Hulme et al., 1999). Understanding telecon-
nections is crucial for accurately predicting both climate variability and climate change (Kucharski
et al., 2010). Different approaches have been proposed to quantify teleconnections, including atmo-
spheric circulation models (ACMs) and statistical methods based on correlations and mutual infor-
mation (Trenberth et al., 1998).

The Earth’s climate is a constantly changing system driven by external forcings, such as the Earth’s
astronomical position relative to the sun or anthropogenic activities. It dissipates energy through
various processes, exhibits unpredictable behavior (chaotic), and exists in a non-equilibrium state,
meaning it is not perfectly balanced thermodynamically (Ghil and Lucarini, 2020). Natural variabil-
ity arises from a complex interplay of amplifying and dampening effects (positive and negative feed-
back), alongside mechanisms that limit change (saturation mechanisms) and variables interacting at
different spatiotemporal scales (Ghil, 2002). Therefore, a complex systems framework is a valuable
tool for studying global climate and its teleconnections.

Complex network theory is a recently introduced framework for modeling climate teleconnec-
tions (Tsonis et al., 2006). For instance, Tsonis et al. (2008) employed a climate network to analyze
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teleconnection patterns by calculating the Empirical Orthogonal Functions (EOFs) of observed ex-
tratropical 500-hPa flow. However, their method exhibits limitations in the tropics, as these regions
appear to have a similar number of connections to all other locations on Earth. Conversely, Liu et al.
(2023) established a teleconnection between the Amazonian rainforest, the Tibetan Plateau, and the
West Antarctic ice sheet —exceeding 16,000 kilometers apart— by constructing a climate network us-
ing near-surface air temperature fields.

All methods, including complex networks, have to reflect all we already know about the physical
mechanisms of teleconections, including The Tropical Oceans-Global Atmosphere (TOGA) diagnostic
research (Schneider, 2006). For example, it is well known that the Atmosphere influences the Oceans
primarily through anomalies in surface winds (Wallace et al., 1989; Hayes et al., 1989). In contrast, the
Ocean influences the Atmosphere through anomalies in Surface Sea Temperatures (SST) and upward
fluxes of latent and sensible heat (Peixoto and Oort, 1992). In the tropics, fluctuations in moist deep
convection occur on timescales of weeks to months (intraseasonal) and are linked to the large-scale
atmospheric circulation (Stan et al., 2017). This connection arises partly from the redistributed mass
by tropical convection. This redistribution is associated with both global and regional overturning
patterns and cycles of atmospheric angular momentum, and eastward and poleward propagating
Rossby wave trains observed in the mid-latitudes (Sardeshmukh and Hoskins, 1988; Pinault, 2022).

This highly complex atmospheric process is modeled using General Circulation Models (GCMs)
and Regional Climate Models (RCMs). These models are widely employed to understand and predict
the climate state. They utilize the equations of motion derived from fluid mechanics and incorporate
various parametrizations for physical processes, including cloud microphysics, radiation-matter in-
teraction, chemical components, and more (Ghil et al., 2008). However, GCMs and RCMs require
significant computational resources, restricting their accessibility primarily to well-funded, high-tech
institutions that can manage and absorb the associated budget. Additionally, these models may not
directly capture the full complexity of climate characteristics, such as teleconnections (Shackley et al.,
1998; Claussen et al., 2002; Morrison and Lawrence, 2023). Therefore, the application of a low-cost,
complex-systems-based framework that accounts for these climate characteristics becomes necessary.

This research is focused on a portion of Northern South America centered in Colombia, a bio-
diversity hotspot and second main holder of freshwater supply in the continent (Pacific, 2018). Its
diverse topography, ranging from soaring Andean peaks to lush Amazonian lowlands, presents a
kaleidoscope of climate scenarios. The nation’s unique geographic position accentuates its suscepti-
bility to climate variations, making it a living laboratory for researchers striving to decode the causal-
ity relationships of global variability atmospheric phenomena with the territory’s climate evolution.
Several studies have characterized the teleconnections with global variability like El Niño-Southern
Oscillation (ENSO) (Poveda et al., 2002; Poveda et al., 2011; Hoyos et al., 2013a; Hoyos et al., 2018;
Bedoya-Soto et al., 2019; Hoyos et al., 2019; Cai et al., 2020; Canchala et al., 2020b; Canchala et al.,
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2020a; Arias et al., 2021; Cerón et al., 2021; Reboita et al., 2021; Builes-Jaramillo et al., 2023). Hence,
this research’s model can be validated through comparisons with existing research findings.

Unraveling the complex dynamic of Colombia’s climate is not merely an academic pursuit but
a vital necessity for sustainable development and adaptive strategies in the face of a changing cli-
mate. Recent research points out that global variability influences key activities like coffee produc-
tion (Sanderson et al., 2022) an emblematic product from our land –representing around 8% of total
exports– and the main income for over 2.2 million people (FedeCafeteros, 2020). Food security and
other agricultural activities rely highly on the nation’s capability to predict and management of ex-
treme climatic events (Botero and Barnes, 2022). Additionally, 68% of electric production in Colombia
depends entirely on Hydroelectric dams (XM, 2019), whose vulnerability to droughts or heavy rain-
fall events is critical.

The methodology is based on a fundamental characteristic of complex networks, particularly
pertinent to climate networks: the presence of subsets of nodes that exhibit strong interconnections
among themselves while maintaining weak connections to the broader network. These cohesive node
sets are commonly referred to as communities (Fortunato, 2010; Newman et al., 2011). Communities as-
sume significance in the context of complexity reduction and system coarse-graining as nodes within
the same community can be considered a coherent component of a larger macro-system, whereas
interconnections between nodes from different communities can be abstracted into links connecting
these communities. This approach enables the construction of a network of communities, offering a
simplified representation that encapsulates pertinent macroscopic insights from the original network.

This research explores a new method for identifying teleconnections in climate data. The proposed
method leverages information transference quantifiers, a class of tools capable of analyzing time se-
ries data from climate variables and establishing causal relationships between them. Following the
identification of teleconnections, this research delves further to unravel the underlying structure of
these linkages. This is achieved by constructing a complex network representation of the Colombian
climate system, where the identified teleconnections map onto connections between nodes within the
territory’s network.

The thesis is divided into four main parts:

1. Theoretical Foundations (Chapters 1 & 2)

• Networks in Climate introduces key elements of complex network theory, including the
specific graph properties that will be calculated in this study. It also provides a brief intro-
duction to climate networks.
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• Information Theory in Dynamical and Complex Systems delves into the concepts of causal-
ity and entropy. It then introduces the Liang-Kleeman Information Transference Maximum
Likelihood Estimator (LKMLE), the key mathematical foundation for this thesis.

Note: This is a concise introduction. Readers seeking a more in-depth exploration of these topics
are encouraged to consult the references provided throughout the text.

2. Data and Methods (Chapters 3 & 4)

• Colombia Climate Characteristics introduces relevant climate characteristics of the study
area, along with the global variability modes that will be analyzed. Additionally, it details
the data sources, resolution, and timescale used in the research.

• Beyond data: Constructing a Climate Network based on Information Transference de-
scribes the construction of the climate complex network based on the LKMLE.

3. Results (Chapters 5 & 6)

• Mapping Teleconnections: Information Transference towards Colombia details the char-
acteristics of the identified teleconnections and discusses similarities and differences with
findings from other studies.

• Understanding the Link Between Climate Variability and Complex Networks explores the
constructed climate networks based on their properties.

4. Finally, Conclusions and Perspectives

The proposed methodology holds broad relevance for the physics community and various applied
fields, owing to its universal applicability to spatially extended dynamical systems. Timely within the
context of the ongoing scenario on climate change, this approach offers a novel perspective for eval-
uating the regional connectivity and complexity of the climate system, drawing upon global, rather
than exclusively regional, knowledge. This thesis’s methodology has the potential to make signifi-
cant contributions to our comprehension of local responses to extreme events and tipping points in
the Earth system within a holistic global framework.
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Chapter 1

Networks in Climate

In this section, fundamental concepts of complex networks applied to climate are introduced. A
summary of common construction methods, research findings, and applications within the realm
of climate studies is provided. Subsequently, the primary properties used to calibrate the model
are elaborated, focusing on their mathematical underpinnings and physical significance. Finally, the
general methodology for constructing climate networks is presented.

1.1 Elements of Complex Networks Theory

In the realm of network science, the term complex networks belongs to a category derived from
empirical observations and characterized by intricate topological features (Watts and Strogatz, 1998;
Barabási and Albert, 1999). These networks serve as a powerful framework for unraveling the funda-
mental structural attributes inherent to diverse real-world systems, encompassing domains as broad
as the internet, ecological ecosystems, neural connectivity patterns, interpersonal relationships, and
climatological phenomena, among others (Strogatz, 2001; Albert and Barabási, 2002; Caldarelli, 2007;
Barabási, 2009; Newman et al., 2011). The exploration and comprehension of complex networks con-
tribute significantly to our capacity to figure out the complexities of the real world, providing a deeper
understanding of the underlying dynamics in complex systems (Pósfai and Barabási, 2016).

In network theory, a network is a collection of elements, called nodes (vertices), connected by links
(edges), as it is shown in Figure 1.1. These connections can be visualized as a graph. Links can be
directed (indicating a specific flow or asymmetry) or undirected (symmetry). Additionally, networks
can be weighted (with links carrying values) or unweighted. Finally, networks can be simple (exclud-
ing connections between a node and itself) or include self-loops (Barabási, 2016a). One of the main
advantages of analyzing complex systems through complex networks is the ability to identify pat-
terns in their dynamics (regular or irregular) based on the network’s topology (Battiston et al., 2020).
This approach offers an elegant and versatile tool for examining the interconnections, dependencies,
and emergent behaviors between elements within a system (Mitchell, 2006). Moreover, by analyzing
the network’s structure, researchers can establish statistical and physical properties governing these
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relationships, ultimately revealing intricate interdependencies within the system (Majhi et al., 2022).

The complexity of a network is related to its topological properties. Complex networks are often
characterized by a vast number of non-regular connections. A central challenge within this modeling
domain is the building of a network that faithfully replicates the actual connectivity inherent to the
system under investigation. This requires careful consideration of methodological approaches. Two
well-known and extensively studied classes of complex networks are scale-free networks (Barabási
and Bonabeau, 2003; Barabási, 2009) and small-world networks (Watts, 2004). While these classes are
the focus of this study, understanding the properties of random networks also has important mathe-
matical and modeling implications (Erdős, Rényi, et al., 1959; Erdős, Rényi, et al., 1960). For further
insight into random networks, readers can refer to Barabási (2016b) although this specific class of net-
works is not extensively used in this manuscript.

Scale-free networks were introduced by Barabási and Albert (1999) and have been widely stud-
ied after that. This type of network exhibits a distinctive structural pattern where a small fraction of
nodes possess an exceptionally high number of connections (hubs), while the majority of nodes have
relatively few links. This connectivity distribution follows a power-law, indicating a probabilistic de-
cay in the likelihood of nodes having a certain number of connections. This phenomenon is observed
in diverse real-world systems such as the World Wide Web (Pastor-Satorras and Vespignani, 2001),
social networks (Ebel et al., 2002), and biological networks like protein-protein interactions (Albert,
2005). Notably, scale-free networks display increased robustness to random node failures but height-
ened vulnerability to targeted attacks on the highly connected hubs (Li et al., 2015).

On the other hand, small-world networks were introduced by Watts and Strogatz (1998) while
exploring models that exhibit a connection topology that is neither fully regular nor fully random.
Therefore, these networks are characterized by high local clustering and short average path lengths,
forming a balance between local connectivity and global efficiency. This property is exemplified in
various real-world systems such as social networks, neuronal networks in the brain (Bassett and Bull-
more, 2017; Liao et al., 2017), and power grids (Pagani and Aiello, 2014). In social networks, for in-
stance, individuals tend to be closely connected to their immediate contacts while maintaining short
paths to any other person in the network (Arney, 2010).

Complex network understanding based on graph theory developments and several applications
to diverse scientific and computational problems has become a novel and accessible modeling frame-
work that unveils high-dimensional systems structure and connectivity (Newman, 2003; Boccaletti
et al., 2006). Its wide scope of applications easily adaptable construction methods and variety of mea-
sures Strogatz (2001) make this a good complex-systems-based framework to study climate (Stein-
haeuser et al., 2011). Previous research has discussed notorious climate networking challenges and
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advantages that incentivize more novel developments in this area (Tsonis et al., 2006), especially se-
lecting the appropriate linkage criteria and threshold selection (Steinhaeuser et al., 2010).

1.1.1 Complex Networks Properties

The complex network framework approach unveils a range of network measures, spanning from local
metrics like vertex degree centrality (kν), which quantifies the normalized number of first neighbors
of a vertex, to mesoscopic properties like the clustering coefficient (C), and finally, to global indicators
such as the average path length (P) (Dijkstra et al., 2019). Local degree centrality and associated
metrics provide an instrument to identify super-nodes, denoting regions with notably high degree
centrality (Tsonis et al., 2006). In the subsequent discussion, we enumerate and detail the specific
network properties that we prioritize to evaluate our climate network, emphasizing their significance
in enhancing our comprehension of Colombia’s climate dynamics. All definitions are based on Pósfai
and Barabási (2016) and Newman (2018).

FIGURE 1.1: Simple undirected unweighted network representation for a graph with 5
nodes (N = 5) and 7 links (L = 7) (left) and its corresponding adjacency matrix (right).

Let N be the total number of nodes in the network and L the number of links, then the graph den-
sity for simple undirected graphs is defined as D = 2L/N(N − 1). This metric serves as an indicator
of the network’s connectivity, with a maximum value of 1 indicating that every node is linked to ev-
ery other node. In the realm of complex networks, densities fall below 0.5 (or even more), signifying
that the network is not characterized by ubiquitous connections but is instead distinguished by the
presence of shorter paths or small-world connections between nodes that promote efficient informa-
tion transfer.

Consider that all the networks used in this work are simple unweighted graphs (see Figure 1.1),
then their adjacency matrices A will have dimensions N × N, with their elements aij = 1 if there exists
a link between nodes i and j. Hence, its main diagonal aii = 0 for all i = 1, . . . , N and A = AT. This
matrix description facilitates the quantification of network properties (Marwan et al., 2009).
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The degree of the i-th node, denoted by ki, is the count of links associated with a given node,
reflecting the number of links that either meet at or terminate at that node. A node exhibiting a
degree of 0 is known as an isolated node. A node with a degree of 1 is referred to as a leaf node or
end node. For an undirected graph, the total number of links (L) can be expressed as half the sum of
all node’s degrees (ki):

L =
1
2

N

∑
i=1

ki.

The average degree of the graph, often denoted by ⟨k⟩, given the degree of a node, can be calcu-
lated using Equation 1.1. This property holds significance in various domains such as information
transmission, where a higher average degree fosters more efficient communication and robustness,
as networks with a greater degree tend to be more resistant to random failures:

⟨k⟩ = 2L
N

. (1.1)

For each node, the degree to which every linked node tends to group, or cluster can be measured
using the local clustering coefficient Ci defined in Equation 1.2 and discussed in Wang et al. (2017),
were is computed for a binary, undirected, simple graph (the same type of graph we construct in this
research).

Ci =
1

ki(ki − 1) ∑
jk

Aij Ajk Aki. (1.2)

Higher Ci indicates nodes that link with nodes that also link between them. For an undirected simple
graph, the mean Clustering coefficient ⟨C⟩ can be found averaging over all nodes N:

⟨C⟩ = 1
N

N

∑
i=1

Ci. (1.3)

According to Freitas et al. (2019), one suitable and clear measure of the network’s degree distribu-
tion heterogeneity is the Network Entropy H. They propose its calculation based on the normalization
of the probability distribution of a random walk from node i towards node j:

H =
1

N log (N − 1)

N

∑
i=1

log ki. (1.4)

Thus, H ∈ [0, 1] where 0 indicates a sparse network and 1 a fully connected one.

It is also important to understand how close or far is one node from another. Hence, the distance
between two nodes u and v, d(u, v) is defined as the number of links in the shortest path that links
them (this is also called a graph geodesic). When two nodes are disconnected, then its distance is set
equal to infinity. The greatest distance from a node v to any other node within the graph is called the
node eccentricity ϵ(v). This last concept provides insight into the relative centrality and spread of the
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vertices within the network. The main focus is to discuss mainly the diameter and the radius of each
graph, given by the maximum and the minimum eccentricity respectively.

FIGURE 1.2: Illustration of the network’s eccen-
tricity measure intensity given in color scale. Cir-
cles represent nodes and lines show links.

The diameter represents the graph’s overall
size and maximal longest shortest path length,
whereas the radius is the minimal shortest path
length. Both metrics provide insights into the
centrality and compactness of the network. A
small diameter suggests effective overall connec-
tivity, while a small radius indicates a more cen-
trally concentrated and compact structure (see Figure
1.2).

To characterize each node in the network, a dis-
cussion of the degree, eigenvector, closeness, and be-
tweenness centrality measures is proposed (see Fig-
ure 1.3). These will help identify spatial areas that
play a key role in the information flux of the Colom-
bian territory, the structure, and the influence of the
calculated teleconnections patterns towards the study area. More details about these measures can be
found in Newman (2010).

Eigenvector centrality, sometimes called eigencentrality, evaluates a node’s importance in a net-
work by considering both the quantity and quality of its connections. This measure is an extension
of the basic degree centrality since it measures the connections for a node but recognizes that not all
connections are equal and gives higher weight to nodes connected to other highly central nodes. In
a network, nodes with high eigenvector centrality are considered influential not only for their direct
connections but also for their connections to other influential nodes, making this measure valuable
for identifying key players in complex networks and the influence dynamics. A practical illustration
of this concept is discussed in Negre et al. (2018).

Closeness centrality Ci exhibits a close mathematical connection to the concept of node-to-node
distance within a network. The distance between any two nodes is precisely defined as the length
of the shortest path linking these nodes. Meanwhile, farness is the aggregate sum of distances from
a given node to all other nodes in the network. Closeness centrality stands as the reciprocal of this
farness measure. It effectively identifies nodes with the capability to efficiently access any other node
within a limited number of steps, as well as nodes that may be positioned quite distantly from others
within the graph. In essence, if the cumulative sum of distances from a node is substantial, the close-
ness centrality assumes a smaller value, and vice versa. Thus, a node characterized by high closeness
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FIGURE 1.3: Illustration of the closeness, betweenness, eigenvector, and degree central-
ity measures used to understand a graph topology. Circles represent nodes and lines
show links. Darker nodes represent higher centrality.

centrality implies its close relational proximity to a multitude of other vertices within the network.
This measure is estimated by taking the mean geodesic distance from i to j, denoted by li:

li =
1
N

N

∑
j

dij. (1.5)

Then, the closeness centrality is:

Ci =
1
li

. (1.6)

Finally, Betweenness Centrality quantifies the extent to which a target node, denoted as u, plays
a pivotal role in the passage of shortest paths between all possible pairs of nodes within a graph.
Mathematically, this score is calculated by considering the number of shortest paths, σv,w(u), that
traverse through the target node u (see Equation 1.7). The computation is then normalized by the
total count of shortest paths, σv,w, existing between any pair of nodes in the graph. The betweenness
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centrality of a particular node is higher when it is traversed by a larger number of shortest paths.

B(u) = ∑
u ̸=v ̸=w

σv,w(u)
σv,w

. (1.7)

The betweenness centrality measure serves as an indicator of the number of paths a node is situ-
ated upon, and further elucidates how many paths it actively participates in. In essence, it reflects
the node’s capacity to forge connections with various groups within the graph. This concept finds
significant applicability in domains such as social media influence analysis (Golbeck, 2015).

1.2 Climate Networks

Climate networks are essentially complex networks. They are characterized by subsets of highly in-
terconnected nodes that maintain relatively weak connections to the broader network. These subsets
are commonly known as communities (Fortunato, 2010; Newman et al., 2011). In these networks,
nodes represent geographical regions, and links represent relationships defined by a calculated met-
ric between the climatic variables that describe each node. Previous work has shown that climate
networks have small-world attributes on a global scale. This feature is attributed to the presence of
long-range connections represented as edges linking geographically distant nodes. These long-range
connections play a pivotal role in stabilizing and facilitating efficient information transfer within the
climate system (Tsonis and Roebber, 2004; Tsonis et al., 2006; Tsonis and Swanson, 2008).

Climate networks can be categorized into three folds: i) Functional networks are created through
correlation analysis, whether linear or nonlinear, employing techniques such as cross-correlations or
mutual information. These networks may exhibit either undirected or directed links. The direction-
ality of links is based on factors such as correlation time lags, measures of information transfer, or
Granger causality. ii) Flow networks originate from the examination of transport processes within
flows. iii) Event synchronization networks, formed through the analysis of correlations and time de-
lays associated with extreme events (Froyland et al., 2014; Baudena et al., 2022).

The fundamental procedure in establishment a climate network involves the computation of ei-
ther the correlation function or mutual information between time series data associated with network
nodes, followed by a thresholding process to determine the presence or absence of network links. This
is a challenging task that can be achieved using available software like ClimNet (Deza and Ihshaish,
2015). However, construction methods and novel linkage algorithms need to be analyzed to improve
efficiency and add spatio-temporal relationships to networks (Steinhaeuser et al., 2010).

Donges et al. (2009) conducted a comparative analysis of two construction methods for climate
networks using HadCM3 Surface Air Temperature data, and their findings revealed only minor devi-
ations in the resulting network characteristics when employing either Pearson correlation or mutual
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information as the linking criterion (see Figure 1.4). Further research demonstrated that both data
characteristics and linkage methods must be taken into account to increase the reliability of Climate
Networks outputs (Hlinka et al., 2013).

FIGURE 1.4: Example
of climate network from
Donges et al., 2009 rep-
resented using the Area
weighted connectivity
fields for global HadCM3
SAT networks using (a)
Pearson correlation and
(b) mutual information
linkages criteria.

FIGURE 1.5: Example of
Event Synchronization
Network (ESN) from
Boers et al., 2019 showing
the south-central Asia
teleconnection pattern for
rainfall events above the
95th percentile.

The event synchronization (ES) method offers an alternative approach for constructing networks
(ESNs) from climate observations. To illustrate this methodology, Boers et al. (2019) employed event
synchronization to quantify the synchronicity of rainfall events in South-central Asia. They identi-
fied highly significant synchronizations, limited to a maximum time delay of ten days, resulting in
the formation of a network encompassing 576.000 nodes, corresponding to the total spatial grid cells
within the TRMM dataset. Network connections were established between pairs of nodes based on
the significance level of the synchronization values, with a p − value < 0.05. Their analysis revealed
significant structural patterns within the network, leading to the identification of teleconnections as-
sociated with Extreme-Rainfall Events (EREs) in the South-central Asian region (refer to Figure 1.5).
This approach shows the utility of event synchronization in unveiling important climate-related phe-
nomena and their interconnections.
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Generally, the climate networks presented above adhere to the methodology proposed by Donges
et al. (2015), where the construction of the climate network is divided into five stages: 1) selection of
spatial grid, or node location and size, 2) selection of the climatological variables to study, 3) linkage
criteria based on a statistical similarity measure and thresholding, 4) resulting network analysis based
on graph theory measures and metrics, and 5) climatological interpretation of the inferred links and
network topology (see Figure 1.6).

FIGURE 1.6: Methodology used to extract climate networks from climatic signals shown
in Dijkstra et al. (2019). This thesis proposal changes only step 3 introducing the Liang-
Kleeman causality measure to establish the network’s links.

In consequence, the primary advancements and innovations in Climate network construction pro-
tocols focus on altering the linkage criteria. The traditional reliance on simple and linear statistical
similarity measures has proven insufficient in grasping the intricacies of the climate system, often
failing to capture the complex interactions and feedback loops inherent in climatic phenomena. To
address this limitation, the incorporation of causality quantifiers provides an improvement in the
representation of dynamical connections in climate networks. By doing so, the analysis moves be-
yond basic statistical correlations and immerses itself in the directional relationships among different
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components of the climate system. This shift is particularly crucial for comprehending the dynamic
nature of climate networks, enabling the identification of influential nodes and the discernment of
causal links that actively shape the behavior of the system.
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Chapter 2

Information Theory in Dynamical and
Complex Systems

Entropy is a measurable physical quantity associated with the information content of a system from
variables and connections that describe its dynamics (Volkenstein, 2009). The measure of information
between two variables X and Y depends on their interactions and, in turn, indicates causality or the
existence of coupling mechanisms. The transfer of information between the components of a dynamic
system is an important concept for the analysis of nonlinear and multivariate time series. Many stud-
ies have focused on mutual information or entropy functionals to estimate the information transfer
of nonlinear, stochastic, and highly complex systems such as neural connections in the brain (Heisz
et al., 2012) or the weather (Bhaskar et al., 2017).

In this contribution, the main focus is on information theory-based estimators of causality, since
they rely on the Probability Density Function (PDF) instead of the time series, so they can assess both
linear and nonlinear statistical relationships between the ensemble prediction and observation. In
contrast, conventional signal-to-noise ratio-based methods primarily gauge their linear correlation,
leading to an underestimation of nonlinear statistical relationships (Kleeman, 2011).

This chapter provides an overview of the initial theoretical methodologies and mathematical ad-
vancements related to predictability, with a focus on the utilization of relative entropy. Relative en-
tropy holds paramount significance in the context of the Liang-Kleeman formalism, which is detailed
in Section 2.2, and which forms the foundational basis for constructing the climate network through
an information theory framework within this thesis.

2.1 Relative Entropy and Causation

Entropy stands as a cornerstone in the realm of physics, intricately intertwined with the Second
Law of Thermodynamics, which asserts that the total entropy of an isolated system evolves towards
augmentation until reaches the thermodynamic equilibrium (Boltzmann, 1974; Lieb and Yngvason,
1999). The genesis of entropy as a theoretical construct harks back to the pioneering contributions
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of Rudolf Clausius and Ludwig Boltzmann during the 19th century (Balibrea et al., 2016). Clausius
(1866) conceived entropy as a property limiting the energy available to do mechanical work. In con-
trast, Boltzmann (1896) proffered a statistical interpretation of entropy, establishing a link with the
microscopic configurations compatible with a macroscopic state. The Boltzmann entropy is defined
as S = k log W, where k denotes the Boltzmann constant, and W represents the count of microstates
compatible with the macrostate of entropy S. Entropy finds multifaceted utility in fields such as infor-
mation theory, where the pioneering work of Shannon (1938) provides a mathematical formulation of
entropy, that quantifies information uncertainty (Shannon, 1948). Entropy is a foundational concept
in the dynamics of physical systems and information processing, thereby yielding far-reaching impli-
cations across diverse scientific and engineering domains.

In the context of climate dynamics, the concept of entropy has been actively examined to evalu-
ate the predictability of potential states that climate variables might traverse based on specific initial
conditions. Pioneering research by Lorenz (1963) highlighted the high sensitivity of weather pre-
dictions to the initial conditions, leading to the realization that detailed weather forecasts become
inherently impracticable beyond a certain temporal threshold –later research established to be ap-
proximately two weeks– (Krishnamurthy, 2019). This observation prompted in-depth investigations
into the fundamental constraints governing the predictability of weather and climate conditions, even
when employing idealized models. It is essential to underscore that the efficacy of weather forecasts
is intricately linked to the performance of the underlying models, in addition to being influenced
by factors such as the observational network, initialization procedures, and forecasting methodolo-
gies (Brotzge et al., 2023). Therefore, a comprehensive understanding of predictability requires an
approach that acknowledges the inherent challenges posed by data inaccuracies and the inherently
chaotic nature intrinsic to complex systems like the Earth’s climate.

A novel approach, based on the amount of physical information transferred from one system to
another under interaction, is useful to quantify the utility of a prediction (Liang, 2013a). In practical
scenarios, prior knowledge typically exists concerning the historical or climatological behavior of the
system, against which predictions are evaluated. Information theory offers a metric for this purpose,
known as relative entropy, denoted as R (e.g., Cover and Thomas, 1991).

R = ∑
i

pi ln
(

pi

qi

)
, (2.1)

where qi is the climatological distribution and pi is that for the prediction. This definition of R is also
known as the Kullback-Leibler distance (Kullback and Leibler, 1951) since it measures the distance
between the q and p distributions and only goes to zero when they are identical. Relative entropy
quantifies the lack of information encoded when the assumption of climatology is upheld in the pres-
ence of an accessible prediction distribution. In essence, it gauges the informational gain achieved
through prediction.
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Kleeman (2002) introduced a novel measure of prediction utility for dynamical systems, rooted
in the framework of a perfect model approach. This innovative measure served as the foundation
for the subsequent Liang-Kleeman Maximum Likelihood Estimator (LKMLE) (Liang, 2013b), a cen-
tral element characterized and employed as a linkage norm within the complex network framework
explored in this thesis. Kleeman’s approach drew upon the formal definition of relative entropy and
incorporated considerations regarding the physical accuracy of prediction models. Additionally, it
addressed the challenges inherent in determining the climatological (mean) state distribution in real-
world scenarios.

2.2 Liang-Kleeman Information Transference

In recent years, Liang (2014) and Liang (2016) introduced a novel theoretical framework for estab-
lishing causal relationships between two time series employing an information transfer quantifier.
This represents a conceptual advancement over conventional correlation analysis, including lag cor-
relation, due to the asymmetric associations between correlation and causation (Pearl, 1997). In the
field of climate studies, this approach offers the potential to define more robust dynamic teleconnec-
tions than those based on linear correlations. Specifically, it enables inquiries into whether a global
climate phenomenon exerts influence on a local process. In this section, a summary of this method is
provided, while readers seeking in-depth insights are encouraged to refer to Liang’s seminal articles
including (Liang, 2014; Liang, 2015; Liang, 2016).

Complex systems are fundamentally composed of a large number of subsystems that interact
across different spatio-temporal scales. This allows access to the phase space to be statistically repre-
sented by a probability distribution, denoted by ρ. As highlighted by Schreiber (2000), the dynamics
of these processes are captured by the transition probabilities. These probabilities correspond to the
conditional probabilities within a Markov process. The transition probabilities themselves are deter-
mined by the dynamical interactions between the system’s components. These interactions can be
understood as an asymmetric transfer of information, meaning they are not necessarily equal in both
directions between components. Information transfer serves as a measure of the dynamic influence
one system exerts on another. In physics, this concept is referred to as causality (Liang, 2016).

Consider a bi-dimensional stochastic dynamical system composed by the processes S = {X, Y},
its governing equation is given by:

dS
dt

= F(S, θ) + B(S, θ)
dW
dt

, (2.2)

where F = {FX, FY} is the differentiable flux vector, θ is the parameter vector, B is the diffusion
coefficient matrix with elements bij, and W is the white noise vector. Let ρ be the joint probability
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density of X and Y, and suppose that it and its derivatives have compact support. Following Liang
(2008) and Liang (2014), the derivation of the information transfer from X to Y needs the marginal
density of X written as:

ρX(t; X) =
∫

R
ρ dY,

and the marginal (Shannon) entropy,

HX = −
∫

R
ρX ln ρX dX,

where HX varies as the system moves forward and the use of natural logarithm sets the information
units in nats. The variation of the marginal entropy of X is due to two mechanisms, the one due to
itself, named dHX�Y

, and another due to Y, named TY→X, the information transference from Y to X that
we are interested in. Later in this section (subsection 2.2.1) we explore the influence of an additional
mechanism called the stochastic part which accounts for other variables’ influence and noise (Liang,
2015).

Considering the time evolution of the joint entropy H, a system following the Louville equation
fulfills:

dH
dt

= E(∇ · F), (2.3)

where E is the mathematical expectation with respect to ρ. Building on the detailed mathematical
demonstration provided in Liang (2016), involving the evaluation of the Frobenius-Perron operator
(Liang, 2013a) and the establishment of a kind of Fokker-Planck equation for the Y-excluded system
(Liang, 2008), it can be established that for the 2-dimensional system, dHX�Y

/dt takes the form:

dHX�Y
dt

= E
[

∂FX

∂X

]
, (2.4)

and, the information transference for the 2-dimensional system is

TY→X = −E
[

1
ρx

∂(Fxρx)

∂x

]
+

1
2

E

[
1
ρx

∂2(b2
xx + b2

xy)ρx

∂x2

]
. (2.5)

A value of TY→X equal to zero signifies the absence of causality from Y to X, while a nonzero value
indicates that Y is causally connected to X, with information transfer flowing from Y to X. This infor-
mation flow metric maintains an inherent asymmetry in the direction in which information flows.

The final form of Equation 2.5 depends on the governing dynamics of the specific system in ques-
tion. Liang (2014) proposes the simplest linear system description F = f + AS, where f = ( f 1, f 2)T,
A = (aij), and B is a diagonal matrix with values b1 and b2. If the initial state of the variables (X, Y)
follow a bivariate Gaussian distribution, then it is easy to find a re-writing of equation 2.5 in terms of
the now known marginal density of X, its variance and mean. From there, the maximum likelihood
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estimation (MLE) is used to estimate the parameters f , A and B from the time series of X and Y. The
corresponding mathematical derivation is left to read on pages 3 to 4 of Liang (2014).

Finally, the Liang-Kleeman Maximum Likelihood Estimator of Information Transference flow rate
(LKMLE for simplicity) from Y to X can be written as:

TY→X =
CXXCXYCYẊ − CXXCXẊ

C2
XXCYY − CXXC2

XY
. (2.6)

where CXY is the sample covariance between the time series of the processes, and CYẊ is the sample
covariance between Y and the first time derivative of X. This is an asymmetric quantifier that allows
the distinction of information flow directionality and a nonzero information transfer from Y to X im-
plies causality from Y to X. If the information transfer flow from Y to X is zero (TY→X = 0), then X is
not causally related to Y.

The sign of a nonzero information transference can be either positive or negative. If TY→X < 0
then Y is said to indeterminate X, i.e., Y expands the possible accessible space states for X; and, if
TY→X > 0 then Y is said that make X more predictable, i.e., Y limits the possible accessible space
states for X. In general, the asymmetry nature of this quantifier implies that TY→X ̸= TX→Y, thus each
information flow direction must be analyzed separately. In this thesis, emphasis is placed on deter-
mining the direction of transference information flow from oceanic indices (Y) towards local climate
variables (X) so that teleconnections can be established.

Within the framework of our calculations utilizing the LKMLE, a negative TY→X signifies a de-
crease in the change of entropy over time compared to the contribution from other sources. A de-
crease in relative entropy compared to other sources implies that the negative information flow from
one variable to another, say from variable Y to variable X, pushes X away from its most probable
state of maximum entropy. Consequently, the number of accessible microscopic configurations (or
equivalently, accessible states) of variable X increases due to the influence of Y. An increase in the
accessible states for variable X due to the influence of Y means that Y’s action on X makes it more
uncertain. In terms of predictability, this type of teleconnection can be seen as an indicator of sources
of uncertainty, as variable Y serves as a source of uncertainty for variable X.

As noted by Kleeman (2011) regarding the predictability of dynamical systems, a source of un-
certainty, in the case of the teleconnections found, can be understood as those places (and variables)
where small variations significantly increase the possible states (values) that another place (variable)
can take. Thus, classical determinism is lost. Increasing our understanding of sources of uncertainty
can help better determine the probability distribution of the possible accessible states of those vari-
ables it affects. And this is what we mathematically seek with an improvement in predictability.
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The LKMLE TY→X is a valuable instrument for unveiling complex spatial interconnections across
the Earth (Vannitsem and Liang, 2022). A notable illustration of this application is found in the work
of Hagan et al. (2019), who extended the Liang-Kleeman formalism to encompass a time-varying vari-
ant. This time-varying formalism retains analogous properties to its time-invariant counterpart and is
applied in causal relationships within the context of soil moisture–air temperature coupling. Their ap-
plication of this approach yielded successful results, underscoring the potential of the Liang-Kleeman
formalism as a versatile analytical tool for unravelling complex causal structures in climate dynamics.

2.2.1 Normalized Information Transference

In subsequent developments, Liang (2015) proposes a normalization to the information transference
flow, denoted by ZY→X, to assess the importance of the influence of Y on X relative to other pro-
cesses. By considering a similar fundamental deduction as the one employed in Liang (2016), they
distinguish between three types of mechanisms that contribute to the evolution of the marginal en-
tropy of X. Let Hnoise

X /dt be the time evolution of stochastic effects, H∗
X/dt be the time rate of change

of HX due to itself in the absence of stochasticity, and TY→X the information transference flow from
Y to X deduced previously in this section, then, by considering the evolution of X and Y in terms of
this decomposition (see Figure 2.1), the normalization term goes by:

ZY→X ≡ |TY→X|+
∣∣∣∣dH∗

X
dt

∣∣∣∣+
∣∣∣∣∣dHnoise

X
dt

∣∣∣∣∣ (2.7)

FIGURE 2.1: Schematic of the marginal entropy evolution and information flows in the
system of X (X1) and Y (X2) from Liang (2015).
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This ZY→X is no less than TY→X in magnitude and only sets to zero if X does not evolve in time
–which is excluded within this analysis–. Therefore, the relative information flow is defined as:

τY→X =
TY→X

ZY→X
. (2.8)

If τY→X = 1, the variation of HX is 100% due to the information flow from Y; if τY→X = 0, Y is not the
cause. This relative information flow may only be used to compare effects for the same variable’s time
series, since comparison of the information flow between the two series, i.e. τY→X and τX→Y, does not
belong to the same normalization considerations given the asymmetry of the proposed estimator.

In the context of this thesis, we will use both, the net information transference TY→X and the
relative τY→X, to map Colombia’s teleconnections with global variability phenomena and to build
our proposed information transference-based complex climate network. The latter was chosen as the
similarity measure for linkage establishment in the network since, as mentioned before, τY→X assesses
the importance of the influence of the studied global variability on the local climate variables in a [0, 1]
interval that makes easier the thresholding of minimum information transference.
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Chapter 3

Colombia Climate Characteristics

This section describes the study area, with a focus on Colombia as the target country, encompassing
crucial elements such as its topography, ecological characteristics, and socio-economic conditions.
Also, a description of the global climate variability modes is presented, which exert a substantial
influence on moisture flux patterns in this country of Northern South America. Finally, the six climate
indices representing the global phenomena related to anomalies over both the Pacific and Atlantic
Oceans are presented.

3.1 The Study Area and Data

Colombia’s climate is featured by a convergence of unique characteristics that collectively are globally
meaningful. This country hosts high biodiversity and high biological connectivity (Myers et al., 2000;
Bass et al., 2010; Sánchez-Cuervo et al., 2012), and stands as the sixth country globally in freshwater
resources -and the second in South America- (Pacific, 2018), playing a pivotal role in the global hy-
drological cycle. The Colombian terrain experiences a consistent influx of solar radiation that leads to
convective atmospheric processes dominating short-term dynamics, resulting in a smaller variation
in the annual temperature cycle compared to the diurnal cycle (Mesa S et al., 1997; IDEAM and De-
sarrollo Territorial, 2005; Hoyos et al., 2013b).

Colombian climate unfolds through a diverse topography, shaped prominently by the Andes
mountain, which splits into three branches, contributing to a varied landscape, including snow peaks,
plateaus, canyons, rainforests, and valleys, that impact atmospheric dynamics and regional climate
patterns (Espinoza et al., 2020; Poveda et al., 2020; Arias et al., 2021), as well as diverse ecological
ecosystems such as tropical moist rainforests, tropical grasslands, tropical dry forests, deserts, and
mangroves (Sánchez-Cuervo et al., 2012; Aldana-Domínguez et al., 2017). Seasonality is chiefly de-
fined by the annual rainfall regime, capturing the migration of the Intertropical Convergence Zone
(ITCZ) and its interaction with regional orography (Poveda et al., 2011; Urrea et al., 2019; Pabón-
Caicedo et al., 2020).
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Colombia is surrounded by the basins of the Amazon and Orinoco rivers, the Pacific Ocean, and
the Caribbean Sea. The complex interplay of these geographical factors and regional circulation re-
sults in diverse rainfall patterns, atmospheric transport across the Americas, and a heightened re-
gional sensitivity to global climate phenomena across various temporal scales (Restrepo and Kjerfve,
2000; Pabón, 2003; Sakamoto et al., 2011; Poveda et al., 2011; Hoyos et al., 2013a; Arias et al., 2015;
Cordoba-Machado et al., 2015; Córdoba-Machado et al., 2015; Hoyos et al., 2018; Martinez et al., 2019;
Escobar et al., 2022). The study area is particularly sensitive to the variability modes of the Atlantic
and Pacific oceans, as detailed in Hoyos et al. (2019).

Colombia has one the most climate change-endangered ecosystems, such as the Páramos, which
harbor unique flora and fauna, further accentuating the nation’s role as a living laboratory for study-
ing climate-induced impacts on specialized habitats and freshwater supply (Díaz-Granados Ortiz et
al., 2005; Rincón, 2015). Understanding Colombia’s climate is important not only for local environ-
mental stewardship but also for its broader implications in the context of global climate research,
freshwater resource management, and biodiversity conservation strategies (Poveda et al., 2020).

The geographical scope of this thesis encompasses northern South America, a region delineated
within the coordinates of 5°S to 15°N latitude and 90°W to 60°W longitude, centered on Colombia
(Figure 3.1) and encompassing Nicaragua, Costa Rica, Panama, Venezuela, and Ecuador, along with
a northeastern section of Peru and northwestern Brazil.

A homogeneous coverage of data across the study area ensures the robust construction of tele-
connection patterns through information transference. The Liang-Kleeman Maximum Likelihood
Estimator (LKMLE) requires long-term and well-behaved time series for both the climate variables
and global indices. In the present work, data from the ERA5 reanalysis, the fifth-generation dataset
from the European Centre for Medium-Range Weather Forecasts (ECMWF), is included as a regional
climate database. This reanalysis offers hourly estimates for diverse atmospheric, land, and oceanic
climate variables, covering the Earth on a 30 km grid with vertical resolution spanning 137 levels
from the surface to 80 km height. The dataset spans from 1959 to the present (Hersbach et al., 2020a;
Hersbach et al., 2020b). In this study, the regional climate state is represented in terms of a set of
target variables: two-meter temperature (T2M), total precipitation (TP), and vertical convergence of
moisture flux (VIMFLUX) for the time window 1950 to 2020.

3.2 Representing the Influence of Global Variability in Colombia

The intrinsic Ocean-Atmosphere coupled dynamics, which drive the entire Earth’s circulation pat-
terns, exhibit a pronounced reliance on various timescale-dependent variability modes distributed
across the globe. For instance, some of the primary sources of variability arising from anomalies
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FIGURE 3.1: Study area with Orography and Basins of interest used to locate the discus-
sion of the results.

in this ocean-atmosphere system that significantly influence Colombia’s climate are those occurring
within the influence regions of the El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal
Oscillation (AMO), the Tropical Atlantic Dipole (TAD), the South Atlantic Dipole (SAD), and the an-
nual oscillations of the Intertropical Convergence Zone (ITCZ), which traverses the northern part of
South America (Schneider et al., 2014).

The predominant sources of precipitation seasonality and spatial variations within the study area
are chiefly influenced by regional atmospheric transport and its interaction with local topography
(Hoyos et al., 2018). Subsequent investigations have revealed the key moisture flux-related indices
for Colombia, with TNA, NTA, and CAR emerging as the most causally linked variables on the pri-
mary mode of Moisture Flux Divergence (MFD) variability, while Niño 3, Niño 3.4, and SOI hold
prominence on the second mode of MFD variability (Hoyos et al., 2019). This can be attributed to
the heightened susceptibility of Colombia’s coastline to changes in the Caribbean Atlantic Ocean and
the heterogeneous ENSO response in the continental area. Consequently, a more intricate analysis is
warranted to provide a comprehensive depiction of ENSO effects on the region.

For this study, a set of six climate indices was chosen based on Hoyos et al. (2019). They found
that the following present the most substantial contributions to the rate of information flow between
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FIGURE 3.2: Extension of the area involved in climate index calculation for TNA, NTA,
CAR, Niño 3.4, and Niño3. Highlighted in black is the study area.

oceanic indices, specifically linked to the variability modes of global climate dynamics, and the first
three Principal Components (PCs) characterizing the regional moisture flux divergence field. The
six indices, distributed by the National Oceanic and Atmospheric Administration (NOAA), include
Niño 3, Niño 3.4, Southern Oscillation Index (SOI), Caribbean SST Index (CAR), Tropical North At-
lantic (TNA), and North Tropical Atlantic (NTA).

Indices related to Atlantic (Pacific) variability: TNA, NTA, AMO, and CAR (the Niño 3, Niño 3.4,
and SOI). Indices CAR, TNA, NTA, Niño 3.4, and Niño 3 are calculated using SST anomalies over the
specific regions shown in Figure 3.2. SOI is based on the observed sea level pressure (SLP) differences
between Tahiti and Darwin, Australia.
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Chapter 4

Beyond data: Constructing a Climate
Network based on Information
Transference

This chapter presents the details of the methodology used throughout this thesis. This framework
follows the general Climate Network construction steps suggested by Dijkstra et al. (2019), where the
statistical measure used to construct the adjacency matrix was replaced with the relative information
transference flow. The primary goal of this change is to quantify the regions in Colombia connected
by the shared importance of causality from global phenomena towards the local climate variables.

4.1 Information transference network construction details

The procedure to construct our proposed climate network is illustrated in Figure 4.1, where the study
area is selected. In this case, the area consists of a portion of Northern South America that includes
the Colombian territory described in section 3.1. This region defines 9801 nodes corresponding to
each one of the 0.25◦ × 0.25◦ grid squares over the coordinates -90°W -60°W and 15°N 5°S, following
the spatial resolution of the ERA5 reanalysis. The time series for the three climatic variables (TP, T2M
and VIMFLUX) and the six global climate variability indices (CAR, TNA, NTA, Niño 3, Niño 3.4, SOI)
have monthly time-scale resolution over the period 1950-2022.

The causal similarity measure from the relative information transference flow from the global
climate indexes towards the gridded climate variables is used for establishing the links between nodes
(or grid cells). A 0.5% threshold is suggested for τ2−>1, such that τ2−>1 ∈ (−0.005, 0.005) are set as
zero in the building process. Additionally, two different nodes i, j are connected if, for a given index h
and any variable k, the relative information transference for that node (τi

h→k) is within a 0.005 distance
of another node’s τ

j
h→k, so for each oceanic index h the elements of the adjacency matrix A of its
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associated causal climate network follows the linkage criterion for i ̸= j:

a(h)ij =

1, if τi
h→k ∈ [τ

j
h→k − 0.005, τ

j
h→k + 0.005] ∀k

0, otherwise
. (4.1)

As noted in 4.1, the diagonal elements are zero. This reflects our focus on inter-location relationships,
not self-causal effects, which could be a topic for future research. The threshold of 0.005 was chosen
based on a statistical analysis that indicated it represents the minimum detectable influence within
the study area using the LKMLE quantifier.

The obtained adjacency matrices are symmetric and their corresponding graphs are simple, un-
weighted and undirected. Each graph captures a single index’s overall influence on the three studied
variables (TP, T2M, and VIMFLUX) within the study area. Consequently, we have six distinct net-
works, one for each index (CAR, TNA, NTA, Niño 3, Niño 3.4, and SOI).

Global Climate

 Variables and indexes time series

Observation sites

Select study area

Causal similarity measure
and threshold selection

Grid points

Network Analysis

Climatological interpretation
Causal Teleconnections structure

Network Topology

FIGURE 4.1: Scheme of the step-by-step process to build the proposed climate networks
based on information transference. Modified from (Dijkstra et al., 2019).
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Chapter 5

Mapping Teleconnections: Information
Transference towards Colombia

This chapter presents the results of the computed Liang-Kleeman information transfer flows for all
indices and variables. Starting with the general description of the spatial distribution of the net infor-
mation transference flow and the meaning given by its sign, the objective is to understand the climate
teleconnections of the Colombian territory. Then, the approximate distribution of these values is
shown and the differences between each index for the same variable are compared. Finally, the re-
sults for the relative information transference values are presented to give insight into the importance
of these long-range phenomena compared to noise and self-causality for each variable.

5.1 Colombian climate unveiled from a teleconnection perspective

Figure 5.1 presents a visual summary of the regional information transference for all indices and vari-
ables. These results reveal a high variability of the information transfer flow across the study area,
represented by a large difference between the maximum and minimum values. Moreover, there is a
considerable number of extreme values, shown by the outliers. This section focuses on describing the
spatial distribution of the LKMLE outliers. Values near zero for Information Transfer do not defini-
tively establish causal relationships. In the later section 5.2, by studying the normalized LKMLE, we
can clearly establish.

A high amount of almost zero information transference can be seen in Figure 5.2. Here, high kur-
tosis around zero and positive skewness show the dominance of negative values, which implies an
indetermination of the state space of the variable. This also shows that the majority of nodes do not
have a clear causal relationship through LKMLE.

The information transference flow rate for VIMFLUX is mainly negative for all indices, showing
that the overall causal relation between the studied indices and this variable is to indeterminate its
state. Niño 3 and Niño 3.4 display the highest magnitudes of TY→VIMFLUX being −165.37 and −176.06
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(a) TP (b) VIMFLUX

(c) T2M

FIGURE 5.1: Boxplot illustrating the spread of (a) TP, (b) VIMFLUX and (c) T2M variables
information transference flow from the CAR, Niño 3, Niño 3.4, NTA, SOI and TNA in-
dices. The box represents the middle 50% of the data, with the line inside indicating the
median. Whiskers show the overall range, and any dots outside indicate outliers.

respectively. The outliers below the lower limit for these indices indicate that the higher negative val-
ues for these two indices are located along an area over the western branch of the Colombian Andes,
the Colombian Pacific Ocean coastline near Panama (see Figures 5.3e and 5.3d), and another one sim-
ilar to the Chocó Low-Level Jet (Chocó LLJ) moisture path of moisture income (Yepes et al., 2019).

Niño 3 and Niño 3.4 LKMLE distributions for all indices exhibit the same characteristics, with
long heavy tails of negative values and sharped peaks around zero for the TY→VIMFLUX (see Figure
5.2). Remarkable differences state in the minimum values, being CAR the lowest with −58.89 mili-
nats per month (Figure 5.1b). Nevertheless, those small values cover small punctual areas almost not
appreciated in the map (see Figure 5.3a).
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It can also be noticed that Niño 3 and Niño 3.4 exhibit small and zero values of information trans-
ference over the Orinoco, Amazon, and Caribbean Basins, meaning no causal relationship over wide
areas on the western side of the Andes and in Northern Colombia (see Figures 5.3d and 5.3e).

(a) CAR
(b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.2: Information transference probability distribution for the vertical integral of
moisture flux (VIMFLUX) from the (a) CAR, (b) TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3,
and (f) SOI indices in milinats per month. The majority of data is centred around zero.

TNA and NTA TY→VIMFLUX have similar minimums, −71.71 and −72.17 milinats per month re-
spectively, and maximum values, 2.52 and 1.76 milinats per month respectively. For TNA, the neg-
ative outliers are located in northern Peru and some areas around the Maracaibo Lake in Venezuela
and la Guajira in Colombia (see 5.3b). NTA outliers cover small areas similar to the ones of TNA over
the Caribbean Basin (see 5.3c).

Outliers of the ENSO-related indices (Niño 3, Niño 3.4, and SOI) TY→TP are located over the
Colombian Andes, the Cold Tongue of the Pacific and the Caribbean near Venezuela’s northern coast
(see Figures 5.4e, 5.4d, 5.4f. This suggests a causal teleconnection between high-altitude mountains
located in the Andes and ENSO, linking the indetermination of precipitation over the portion of ter-
ritory most densely populated with this global variability phenomenon. SOI also presents a low pos-
itive TY→TP towards TP over a small portion of the Amazon basin in southern Colombia (see Figure
5.4f).



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.3: Information transference towards vertical convergence of moisture flux (VIMFLUX) from the (a) CAR, (b)
TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3 and (f) SOI indices in milinats per month. Darker zones indicate outlier values for
TY→VIMFLUX .



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.4: Information transference towards Total Precipitation (TP) from the (a) CAR, (b) TNA, (c) NTA, (d) Niño 3.4, (e)
Niño 3 and (f) SOI indices in milinats per month. Darker zones indicate outlier values for TY→TP.



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.5: Information transference towards two-meter Temperature (T2M) from the (a) CAR, (b) TNA, (c) NTA, (d) Niño
3.4, (e) Niño 3 and (f) SOI indices in milinats per month. Darker zones indicate outlier values for TY→T2M.
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(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.6: Information transference probability distribution for the Total Precipitation
(TP) from the (a) CAR, (b) TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3 and (f) SOI indices in
milinats per month. The majority of data is centred around zero.

TP shows a spatial pattern in the LKMLE analysis that closely resembles the pattern for VIMFLUX,
where the TY→TP sign decreases the predictability of this variable. In this case, TNA and NTA hold
the lower minimums with −28.31 and −31.41 milinats per month respectively. Their distributions
also have kurtosis around zero and positive skewness but, the TNA trend towards zero is softer than
the other indices (see Figure 5.6b).

Different influence zones are found for the Atlantic’s indices, with CAR being the one with higher
negative values but a smaller influence area surrounding only the Colombia-Ecuador western frontier
and the Maracaibo Lake in Venezuela (see Figure 5.4a). TNA negative valued outliers for TY→TP are
located over the Amazon Basin, with values between −14 and −28 milinats per month, establishing
a teleconnection between this portion of an important South America macro basin and the Atlantic.
NTA’s TY→TP values flatten rapidly after −5 milinats per month (see 5.6c), stating fewer outliers and
this can also be seen by the wide white areas, indicating no causal teleconnection, with the studied
area.

The causal relationship from all Pacific-related indices towards TP also covers a significant area
of the Caribbean Sea coast, with values ranging from −6 to −30 milinats per month. This suggests
a role of the Pacific’s variability in the rain patterns of this area. Further research can be performed
to understand, in terms of information transference, the teleconnection between these two important
sources of moisture for the study area.
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On the other hand, information transference flow towards T2M exhibits significantly different be-
havior. High positive values are found for TNA and NTA indices, being 571 and 454 milinats per
month the maximum LKMLE values respectively (see 5.7). This suggests a causal teleconnection be-
tween these two global phenomena that determine the state space of T2M over the Colombian Andes
and the Caribean coast of Costa Rica and Panamá (see Figures 5.5b, 5.5c). Focusing our attention
on Colombian territory, NTA has the widest covered territory with the highest values of information
transference flow, suggesting an important role of the Atlantic. This will be discussed later in section
5.2.

(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.7: Information transference probability distribution for the two-meter Tem-
perature (T2M) from the (a) CAR, (b) TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3, and (f) SOI
indices in milinats per month.

For CAR index, the highest overall negative values for TY→T2M, reaching −1238 milinats per
month, were found around the coastlines of Colombia near Panamá and the Amazon Basin ( see
Figure 5.5a). The former represents one of the most interesting teleconnections for this index since
Morales et al., 2017 relates the important role of the Caribbean Low-Level Jet (CLLJ) in the transport
of moisture towards Central America but the role of the Caribbean with temperature was not clear.
Further research is needed to understand the meaning and usefulness of LKMLE applied to Low-
Level Jets in this area.

Over the same influence area of CAR, Niño 3.4 also has negative values of TY→T2M, suggesting an
indetermination of temperature due to these two teleconnections (see Figure 5.5d). On the contrary,



5.2. Role of Teleconnections in Shaping Colombia’s Climate 37

Niño 3 TY→T2M takes positive high values over the Colombian Andes ranging from 112 to 338 mili-
nats per month (see figure 5.5e). The inversion of the TY→T2M sign concerning TP in Niño 3 suggests
that the anti-correlation studied between these two variables (Trenberth and Shea, 2005; Berg et al.,
2015) is somewhat captured by the LKMLE of information transference, but it does not hold for all
the indices and it is not quantitative proportional. Further studies might be carried out to establish
this inversion of sign in terms of TY→X for TP and T2M.

Notice that, unlike the behavior of VIMFLUX and TP, the values of the LKMLE for T2M are not
centred around zero for most of the indices. Also, the peaks are not as sharp. This indicates a higher
number of teleconnections with the studied global phenomena with this variable, which might have
a more strong causal relationship.

5.2 Role of Teleconnections in Shaping Colombia’s Climate

The previous section focused on mapping information flow and identifying potential teleconnections
(remote climate influences) on Colombia’s climate. However, understanding the relative strength of
each influence is crucial. This section dives deeper by analyzing the spatial distribution and nor-
malized magnitude of information transfer for each climate variability mode towards the three key
variables (TP, T2M, VIMFLUX). This approach provides a clearer picture of how much each tele-
connection previously identified, contributes to the Colombian climate and highlights the specific
locations (future nodes) considered in the analysis. Furthermore, by comparing these results with
previously characterized teleconnections, we can validate this method.

Building upon the boxplots presented in the previous section (Figure 5.1), Figure 5.8 displays the
normalized LKMLE (τY→X) for all indices and variables. We observe that the box shapes and signs of
the relative information transfers remain consistent with Figure 5.1. However, the percentage values
of the normalized LKMLE are considerably smaller compared to the large net values found previ-
ously. This emphasizes the importance of information transference normalization. Figures 5.9, 5.10
and 5.11 present the spatial distribution of the calculated τY→X. Values below 0.05% are considered
negligible and set to zero (−0.005 < τY→X < 0.005).

Figure 5.9 maps the relative influence on VIMFLUX across Colombia. The influence values range
from −13% to 1%, with higher values indicating stronger influence. Compared to other variables
(see Figure 5.8), VIMFLUX shows the greatest overall influence. This highlights an interesting point:
even though the net influence values (TY→X) found earlier were small, they have a relatively strong
impact on the overall changes in Colombia’s moisture patterns. For example, the Caribbean coast and
the Brazilian Amazon (areas with lower net influence for TNA) show the strongest relative influence
from the Tropical North Atlantic (TNA) index according to Figure 5.9b (compare with net influence
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in Figure 5.3b). This suggests that while the overall impact of TNA might seem small, it plays a sig-
nificant role in specific regions.

(a) TP (b) VIMFLUX

(c) T2M

FIGURE 5.8: Boxplot illustrating the spread of (a) TP, (b) VIMFLUX and (c) T2M vari-
ables relative information transference flow from the CAR, Niño 3, Niño 3.4, NTA, SOI
and TNA indices. The box represents the middle 50% of the data, with the line inside
indicating the median. Whiskers show the overall range, and any dots outside indicate
outliers.

Additionally, if the relative causal contributions to VIMFLUX for all indices over the Colombian
Orinoco basin are added, the relative information transference flowing from global variability to-
wards this area is less than 10%. This observation aligns with prior research findings, indicating that
the primary source of moisture within the study area predominantly stems from the recycling pro-
cess, involving evapotranspiration within the Andean mountain range, as well as in the Orinoco and
Amazonian Basins (Hoyos et al., 2018; Escobar et al., 2022).



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4
(e) Niño 3 (f) SOI

FIGURE 5.9: Relative information transference towards vertical integral of moisture flux (VIMFLUX) from the (a) CAR, (b)
TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3 and (f) SOI indices in %. Darker zones indicate outlier values for τY→VIMFLUX .



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.10: Relative information transference towards Total Precipitation (TP) from the (a) CAR, (b) TNA, (c) NTA, (d)
Niño 3.4, (e) Niño 3 and (f) SOI indices in %. Darker zones indicate outlier values for τY→TP.



(a) CAR (b) TNA (c) NTA

(d) Niño 3.4 (e) Niño 3 (f) SOI

FIGURE 5.11: Relative information transference towards two-meter Temperature (T2M) from the (a) CAR, (b) TNA, (c) NTA,
(d) Niño 3.4, (e) Niño 3 and (f) SOI indices in %. Darker zones indicate outlier values for τY→T2M.
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Figure 5.8a shows that the relative influence τY→X on Total Precipitation (TP) ranges from −10.8%
to 0.7%. Nino 3 and Nino 3.4 indices, linked to the Pacific’s SST anomalies, have the most significant
negative LKMLE normalized values, particularly in the Cold Tongue, the Andes, the Caribbean and
Pacific coastal areas (seen in Figure 5.10e). This suggests a strong and clear teleconnection (remote cli-
mate influence) impacting overall precipitation uncertainty. SOI, another Pacific Ocean index, shows
similar results. However, its influence pattern over the Pacific doesn’t directly match the Cold Tongue
region. Interestingly, a small area in the Amazon basin also exhibits low positive LKMLE values (see
Figure 5.10e).

In the literature, ENSO and TP is a good representation of tropics-tropics teleconnections since
they are consistent with precipitation deficiency or abundance during El Niño (EN) or La Niña (LN)
events over Northern South America. Our analysis confirms a strong causal influence of ENSO on
precipitation over some parts of the Colombian territory, consistent with previous findings across
broader regions (e.g., Kousky et al., 1984; Aceituno, 1988; Souza and Ambrizzi, 2002; Poveda et al.,
2006; Grimm and Tedeschi, 2009). Importantly, the LKMLE approach allows for spatially differen-
tiated causality analysis, enabling further targeted investigations in areas exhibiting the strongest
ENSO-precipitation linkages (as identified by high normalized LKMLE values).

Canchala et al. (2020a) found a teleconnection based on Pearson’s Correlation between the el Niño
indices (ONI, MEI, Niño1 + 2, Niño3, Niño3.4, Niño4, and PDO) and precipitation in the department
of Nariño in Southwestern Colombia, being the correlation stronger with Niño3.4 and Nino4. Sim-
ilarly, we found high information transference from Niño 3 and Nino 3.4 towards this region (see
Figure 5.10d and 5.10e darker areas over the Pacific coast). Our contribution states that the informa-
tion transference is negative, meaning a causal relationship with ENSO variability that amplifies the
TP uncertainty.

In a similar work, Canchala et al. (2020b) found a strong ENSO teleconnection towards streamflow
(water carried by streams for rivers) in eastern Colombia, using Kendall’s Tau Correlation and Cross-
Correlation. This is due to the direct effect towards the Choco Jet (Chocó LLJ) during EN (weakening,
i.e., reduction of rainfall) or LN (intensifying i.e., higher convection and rainfall) events (Poveda and
Mesa, 1999). In agreement with them, we found this teleconnection with TP and VIMFLUX to be
stronger for El Niño 3 and El Niño 3.4 indices (see figure 5.9d,5.9e and 5.10d, 5.10e), with negative
information transference sign.

In agreement with these two studies, subsequent prediction analysis for this region must include
the climate-oceanographic-indices, but focus on its influence on the space state expansion of rainfall.
Further research into this region of Colombia and considering interannual and annual time scales is
suggested to differentiate the causal relationship with EN or LN events.
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The Caribbean (CAR) and North Tropical Atlantic (NTA) indices have the least widespread influ-
ence on TP (see Figures 5.10a and 5.10c). Their small negative influence is limited to the Caribbean
Basin and the eastern Andes (values between −0.5 and −3). Interestingly, the Tropical North Atlantic
(TNA) index shows similar influence but in a completely different region (compared to net LKMLE),
around Northern Peru (see Figure 5.10b).

Surprisingly, except for the Caribbean (CAR) index, all other indices have minimal influence on
two-meter temperature (T2M) within the study area (see Figure 5.11). This is unexpected because
T2M had the highest overall influence (net TY→X) in the previous analysis (compare with Figure 5.5).
This suggests that for T2M, "noise" and the influence of the location itself on its own changes (self-
contribution) are much stronger than the influence of these teleconnections.
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Chapter 6

Understanding the Link Between Climate
Variability and Complex Networks

In this chapter, the main findings of this thesis are presented. First, the network’s complexity is an-
alyzed using the graph properties of the climate network built based on the LKMLE. In the second
section, the complex climate network structure is discussed in terms of the centrality measures: de-
gree, eigenvector, closeness, and betweenness. Findings suggest that the highly clustered networks
exhibit similar measures and structures for all ENSO-related indices, with the Colombian Andes play-
ing a key role in the connectivity with this phenomenon. Meanwhile, Atlantic oceanic indices display
different features and spatial distributions among them, with higher centralities in the Orinoco, Ama-
zon, and Caribbean basins.

6.1 Graph Structure: Unveiling Complexity

The relative information transference flow allows the estimation of differential contributions of global
climate processes to regional climate variability instead of the net value of the estimator. A 0.5% rel-
ative information transference is a suitable threshold for establishing a climate link among grid cells
for all indices. A summary of the overall properties for each index is presented in Table 6.1, followed
by the adjacency matrix structure (see Figure 6.1), and its corresponding node degree distribution (see
Figure 6.2).

Six simple, undirected, and unweighted networks were obtained. There are around 50% and 70%
isolated vertex within the study area for each index. NTA shows the maximum isolated vertices with
7209, followed by CAR and SOI; these three indices have the resulting smaller networks with 2592,
3846, and 4714 nodes, respectively. On the other hand, TNA, Niño 3.4 and Niño 3 graphs contain
5800, 6283, and 5444 nodes respectively. All graphs are neither sparse nor dense since all their densi-
ties state around 50% of the maximum possible connections. Niño 3 has a lower density with 35% of
the maximum possible connections.
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Table 6.1: Summary of Network’s measures and properties highlighting changes when
omitting isolated nodes for the mean degree centrality ⟨kν⟩ and the diameter Disolated.

Network L D ⟨k⟩ ⟨C⟩ H ϵ(ν) R D Isolated
nodes

Disolated ⟨kν⟩

CAR 3871346 0.5236 790.0 0.833 0.319 2.875 2 3 5955 0.0806 0.081
NTA 1374263 0.4092 280.4 0.781 0.195 3.223 2 4 7209 0.0286 0.029
TNA 9961331 0.5923 2032.7 0.795 0.517 2.458 2 4 4001 0.2074 0.207
Niño3.4 8706501 0.4412 1776.7 0.705 0.545 3.119 3 5 3518 0.1813 0.181
Niño3 5234314 0.3533 1068.1 0.690 0.448 3.028 2 4 4357 0.1089 0.109
SOI 5940966 0.5348 1212.3 0.769 0.402 3.805 3 6 5087 0.1237 0.124

Considering the 9801 grid points covering the study area, the obtained network densities show a
sparse graph structure due to the high amount of isolated vertices. In this case, the lowest density
corresponds to NTA with around 2% of all possible connections and the highest density is for TNA
with 20%. This finding shows a strong differentiation between the resulting spatial distribution of the
teleconnections pattern from SST anomalies from similar areas of the Atlantic, and it is a clue about
the mechanisms of information transference from these areas.

The average eccentricity for all indices (Table 6.1) suggests that for the big graphs obtained (more
than 2k nodes and 1m edges each) it takes a maximum of 4 links to reach any other node on the
network. This is the first indicator of shortcuts and complex structure in our networks because there
are emerging paths that minimize the distance between points of space in terms of the shared relative
information transference from global variability phenomena. This property is supported by the graph
radius and diameter, with a maximum eccentricity of the whole network between 3 and 6 links for all
indices.

This heterogeneous and complex structure of the obtained graphs is confirmed for some indices
by the network’s entropy, quantifying the heterogeneity of the network’s degree distribution. Figure
6.1 shows the complex structure pattern discussed in terms of all graph properties, as well as cluster-
ing areas and isolated patterns. For TNA, Niño 3, Niño 3.4, and SOI, the average normalized entropy
is around 0.5, which reinforces that the network is neither sparse nor fully connected, and does not
have dominant peaks or tails on the distributions, as seen in Figures 6.2 b, d, e and f. On the other
hand, CAR and NTA have lower entropy, showing that flattened and peaked shapes in their degree
distributions are expected (Figure 6.2 a and c).

The average Clustering coefficient ⟨C⟩ for all networks suggests a high clustering structure among
all networks. CAR shows the highest value with 0.833 and Niño 3 the lowest with 0.690. Clustering
values are very similar for NTA and TNA indices, with 0.78 and 0.79 respectively. The modular struc-
ture indicated by these high (⟨C⟩) values is also visualized in the display of adjacency matrices (see
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FIGURE 6.1: Adjacency matrix representation for (a) CAR, (b) TNA, (c) NTA, (d) Niño
3.4, (e) Niño 3 and (f) SOI indices networks. Dimension is 9801× 9801 (N × N) and black
points represent links.

Figure 6.1). This type of structure also means that the network has the smallest possible average dis-
tance among different nodes, a characteristic previously discussed in terms of the graph’s eccentricity.

The probability distribution of the networks, estimated by the histograms in figure 6.2, show that
hyper-connected nodes are highly probable in TNA, Niño 3.4, Niño 3, and SOI. These nodes serve
as an important connectivity bridge for the whole network and will be discussed in the next section.
Nevertheless, neither distribution follows a canonical known shape for the degree distribution (see
vertex-degree-dist), since neither Power Law nor Binomial shape distributions are seen in the ρk plots.



a) CAR b) TNA c) NTA

d) Niño 3.4 e) Niño 3 f) SOI

FIGURE 6.2: Estimation of the probability distribution function for the a) CAR, (b) TNA, (c) NTA, (d) Niño 3.4, (e) Niño 3
and (f) SOI indices networks vertex degree k. The distributions indicate certain regions with nodes with several connections,
showing a high probability of finding nodes with a high number of links.
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CAR and NTA have a marked maximum probability for the vertex degree, at 2100 and 1000, re-
spectively. On the other hand, TNA, Niño 3, Niño 3.4, and SOI have several probability modes, which
translates into several regions with a large number of nodes connected, while intermediate nodes con-
nect such regions. Degrees centralities below 1000 nodes are less probable for all networks, indicating
other regions in the network with fewer connected nodes. These regions will be then observed by the
centrality measures, calculated in section 6.2.

Characteristics of complex networks have been described for each obtained network in terms of
the key network properties, the visualization of the networks (Figure 6.1), and the vertex degree
distribution (Figure 6.2). Further research must be done to establish the topological details of the
presented measures in the context of a Climate Complex Network and check additional properties
for real-world systems. In the scope of this work, clustering structure and shortcuts were found as
important features of these networks, making them robust against stochastic perturbations.

6.2 Interpreting Colombian Variability from a Climate Complex Network
Approach

In the previous section, the complexity of these networks was discussed. Here, the properties maps
of the degree, eigenvector, closeness, and betweenness centrality measures are shown to place the key
nodes of the networks in specific points of Colombian territory and its surroundings.

Figure 6.3 presents the degree centrality for the six constructed networks. Darker zones represent
higher vertex degrees, i.e., the ones with more links in the network. ENSO-related indices exhibit a
similar structure, with higher connectivity in the Caribbean region and along the cold tongue of the
Pacific. There is also high connectivity over southern Venezuela for Niño 3.4 and Niño 3.

On the other hand, CAR, TNA, and NTA exhibit differentiated structures. The TNA vertex degree
is maximum over the southern coast of Costa Rica and the western portion of the Amazon rainfor-
est in Brazil. CAR maximums are distributed over the Colombian Andes, with peaks in the Orinoco
Basin near the eastern branch and northwestern Brazil. NTA exhibits a smaller degree of centrality
from all indices, being its maximal area of influence around the valleys near the Colombian Andes.

White areas in Figure 6.3 display the location of isolated nodes in each network. ENSO-related
indices show the isolation of the Orinoco and Amazonian basins, which agrees with the significance
of the teleconnections established in the previous chapter. This is also valid for CAR, TNA and NTA
isolated nodes over the Pacific.



a) CAR b) TNA c) NTA

d) Niño 3.4
e) Niño 3 f) SOI

FIGURE 6.3: Degree centrality measure’s spatial distribution over the study area for the a) CAR, (b) TNA, (c) NTA, (d) Niño
3.4, (e) Niño 3 and (f) SOI indices networks. Darker zones indicate nodes with higher vertex degree k.



a) CAR b) TNA c) NTA

d) Niño 3.4 e) Niño 3 f) SOI

FIGURE 6.4: Eigenvector centrality measure’s spatial distribution over the study area for the a) CAR, (b) TNA, (c) NTA, (d)
Niño 3.4, (e) Niño 3 and (f) SOI indices networks. Darker zones indicate nodes with higher meaningful links.
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TNA high probability for great node degrees is attributed to the wide areas around all the studied,
with degree centrality over 0.4. This is attributed to similar τ2→1 values in VIMFLUX and TP, weakly
connecting these places due to the chosen 0.5% threshold. Further research is needed to establish the
sensitivity of this network’s connectivity to the threshold employed.

In addition to the degree, the importance of the linkages each node has is discussed using the
eigenvector centrality displayed in Figure 6.4. It is observed that the spatial structures are the same,
but the color gradient changes in terms of the importance of those connections. For instance, NTA low
maximal degree connections are important within the network structure, so the valleys surrounding
the Andes play a key role in the information transference for its associated variability phenomena. In
contrast, TNA high maximal degree areas display similar centrality importance.

All ENSO-related indices show similar eigenvector centrality (Figure 6.4), suggesting that the im-
portance and quantity of connections within these networks preserve the same topology for the study
area. This finding is interesting since it is suggested that no matter the index you use to discuss the
causal effect of ENSO towards Colombia, the causal structure in terms of a network’s topology will
be very similar over the Andean mountain range. Differences over the Pacific Cold Tongue for these
three indices may unravel slightly important paths for the information transference flow, but further
research is needed.

Closeness centrality indicates nodes with the capability to efficiently access any other node within
a limited number of steps, as well as nodes that may be positioned quite distantly from others within
the graph. Figure 6.5 exhibits which places are close to other parts of the study area by the connections
established with the causal relationship of the shared teleconnection with the Oceanic index. To make
this more clear, darker zones are understood as being closer to the rest of the network and lighter ones
as farther away from other nodes. For instance, the Andes are close to the rest of the network in TNA,
Niño 3.4, Niño 3, and SOI. For CAR the highly central nodes are distributed among the Orinoco Basin.

Additionally, the importance of nodes given their role as crucial passing spots of short paths be-
tween nodes is shown in Figure 6.6. Here, darker zones highlight important structural nodes that,
if removed, will certainly affect the eccentricity of the network. Higher values are found over the
Orinoco basin in the Colombian frontier with Venezuela for CAR, highlighting a structurally impor-
tant role of this area for the teleconnection structure of the territory with the Caribbean (see Figure 6.6
a). Southern to this area, following the shape of the Andes NTA displays some of the most structural
points for its network (see Figure 6.6 c).



a) CAR b) TNA c) NTA

d) Niño 3.4 e) Niño 3 f) SOI

FIGURE 6.5: Closenness centrality measure’s spatial distribution over the study area for the a) CAR, (b) TNA, (c) NTA, (d)
Niño 3.4, (e) Niño 3 and (f) SOI indices networks. Darker zones indicate nodes closer to any other node in the network.



a) CAR b) TNA c) NTA

d) Niño 3.4 e) Niño 3 f) SOI

FIGURE 6.6: Betweenness centrality measure’s spatial distribution over the study area for the a) CAR, (b) TNA, (c) NTA, (d)
Niño 3.4, (e) Niño 3 and (f) SOI indices networks. Darker zones indicate structurally important nodes through which many
short paths pass in the network.
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TNA has some important -but not crucial- structural nodes over the north-western Amazon and
the Pacific near Panama and Costa Rica (see Figure 6.6 b). A high betweenness centrality over this
area suggests a dependency on the Amazon rainforest to preserve the graph structure for this index.
On the other hand, for ENSO-related indices, the structure of betweenness is similar to previous cen-
trality measures. The Colombian Andes show a key structural role in these networks (see Figure 6.6
d, e and f).

Considering all the above centrality measures, some of the most important places in the study
area for the constructed networks are the Colombian portion of the Andean Mountain range, which
is transversal for all indices except CAR and NTA. The Colombian part of the Orinoco Basin for the
former and the Pacific Cold Tongue for all ENSO-related indices. The Amazon Basin is isolated from
the former but significant for TNA, which opens up further discussion into the connection between
this important South American Basin and the Atlantic.





57

Conclusions and Perspectives

This work studied causal teleconnections underlying Colombian climate variability related to the
Atlantic and Pacific Ocean’s anomalies in the scope of the network frame. Considering the Liang-
Kleeman maximum likelihood quantifier for information transference revealed the spatial structure
of causal relationships. ENSO-related indexes exhibit a robust causal teleconnection with precipita-
tion, amplifying the accessible states. Conversely, AMO-related indexes showcase a causal relation-
ship with temperature, contributing to its certainty.

Based on the Liang-Kleeman quantifier, the present analysis remarks a heterogeneous spatial dis-
tribution of information transference within the study area. Regions demonstrating maximum causal-
ity are concentrated along the Pacific coast and the Andean Mountain range portion of Colombia. In
contrast, negligible causal relationships were identified along the Amazonian and Orinoco Basins for
ENSO across all variables. Particularly, Sea Surface Temperature index anomalies in the Atlantic, ex-
hibit significant causal relationships in the eastern and southern parts of Colombia’s Andes. These
findings underscore the complex nature of the teleconnections, offering valuable insights for under-
standing and predicting Colombian climate dynamics in the context of oceanic sources of variability.

The 0.5% chosen threshold is suitable to discern between negligible and significant causal rela-
tionships through Liang-Kleeman’s relative information transference flow, showing meaningful tele-
connections within the study area. Further research applications to evaluate this formalism should be
carried out in other tropical and non-tropical areas to explore the causal relationship around the globe.

Undirected, unweighted, and simple graphs were derived from the proposed climate network
based on information transference. The graph’s measures and description suggest a complex net-
work topology that is not canonical. Further research should explore deeper into other real-world
network characteristics so our analysis contributes to the development of a more robust wide net-
work theory to unravel climate teleconnections structure.

Finally, the climate network based on information transfer for Colombia contributes to the expla-
nation of causal connectivity between the territory and the global climate system. This network un-
veils distinct spatial structures associated with well-known phenomena, such as the Cold Tongue of
the Pacific and the Low-Level Jets in the Pacific and Orinoco Basin. The outcomes generated through
this framework provide valuable insights for unraveling the most significant causally related spatial
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locations of interest. Moreover, they shed light on how global teleconnections manifest in specific
structures that influence climate development in a particular region, all achieved within a framework
of lower computational cost.

The established framework presented in this thesis will serve as a valuable tool for replicating
similar analyses in diverse geographical regions. To facilitate widespread use, all codes have been
made open-source and are compatible with personal laptops. Given the unprecedented era of climate
change, it is imperative for the scientific community to collaboratively enhance our comprehension
of the climate system for a more informed and nuanced understanding of our decisions and impacts
within our territory and the whole world.
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Appendix A

Information transference calculation code

The computations undertaken in this thesis were executed utilizing CDO (Climate Data Operators),
Python, and Mathematica, with each programming language serving distinct roles in the various
stages of implementing the complete formalism of the Complex Network based on information trans-
ference. The corresponding source codes are accessible in the GitHub repository: https://github.com/
nicolerivera1/colombian-teleconnections. While a concise overview of the repository’s structure and
functionality is provided in this appendix, a detailed elucidation is available within the repository
and each code.

The repository’s hierarchical organization aligns with the distinct computational stages involved
in constructing the networks. The inf-transference folder encompasses Bash scripts dedicated to exe-
cuting Liang-Kleeman’s information transference rate calculations between two cdf files, leveraging
the CDO library. Both files must exhibit temporal and spatial consistency to ensure the proper func-
tioning of the algorithms. Additionally, for readers seeking to replicate the thesis results, instructions
for acquiring ERA5 data from the Climate Service Storage and obtaining the NOAA indexes are pro-
vided in this section.

Within the adjacency-matrices folder, all Python codes pertinent to the analysis of information
transference flow rate probability density distributions, as well as the corresponding fitting and
visualization using Mathematica, are housed. For reproduction purposes, the primary algorithm,
build_adjacency_matrix.py, encompasses calculations for causal similarity thresholding, linkage estab-
lishment based on the threshold, and final adjacency matrix construction for each index.

Lastly, the network-analysis folder houses all codes for calculating the network’s properties. Here,
we also store the original properties maps alongside the corresponding Mathematica scripts. Notably,
all maps in this thesis were crafted using QGIS Software for map construction and layer management.

https://github.com/nicolerivera1/colombian-teleconnections
https://github.com/nicolerivera1/colombian-teleconnections
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Erdős, Paul, Alfréd Rényi, et al. (1959). “On random graphs I”. In: Publ. Math. Debrecen 6, pp. 290–297.
— (1960). “On the evolution of random graphs”. In: Publ. math. inst. hung. acad. sci 5.1, pp. 17–60.
Escobar, Maritza, Isabel Hoyos, Raquel Nieto, and Juan Camilo Villegas (2022). “The importance of

continental evaporation for precipitation in Colombia: A baseline combining observations from
stable isotopes and modelling moisture trajectories”. In: Hydrological Processes 36.6, e14595.

Espinoza, Jhan Carlo, René Garreaud, Germán Poveda, Paola A Arias, Jorge Molina-Carpio, Mariano
Masiokas, Maximiliano Viale, and Lucia Scaff (2020). “Hydroclimate of the Andes part I: Main
climatic features”. In: Frontiers in Earth Science 8, p. 64.

FedeCafeteros, Federación Nacional de Cafeteros (2020). Coffee Grower Services. URL: https://federac\
iondecafeteros.org/wp/coffee-grower-services/?lang=en.

Fortunato, Santo (2010). “Community detection in graphs”. In: Physics reports 486.3-5, pp. 75–174.
Freitas, Cristopher GS, Andre LL Aquino, Heitor S Ramos, Alejandro C Frery, and Osvaldo A Rosso

(2019). “A detailed characterization of complex networks using Information Theory”. In: Scientific
reports 9.1, p. 16689.

Froyland, Gary, Robyn M Stuart, and Erik van Sebille (2014). “How well-connected is the surface of
the global ocean?” In: Chaos: An Interdisciplinary Journal of Nonlinear Science 24.3.

Ghil, Michael (2002). “Natural climate variability”. In: Encyclopedia of global environmental change 1,
pp. 544–549.

Ghil, Michael, Mickaël D Chekroun, and Eric Simonnet (2008). “Climate dynamics and fluid mechan-
ics: Natural variability and related uncertainties”. In: Physica D: Nonlinear Phenomena 237.14-17,
pp. 2111–2126.

Ghil, Michael and Valerio Lucarini (2020). “The physics of climate variability and climate change”. In:
Reviews of Modern Physics 92.3, p. 035002.

Golbeck, Jennifer (2015). Introduction to social media investigation: A hands-on approach. Syngress.
Grimm, Alice M and Renata G Tedeschi (2009). “ENSO and extreme rainfall events in South America”.

In: Journal of Climate 22.7, pp. 1589–1609.

https://federac \ iondecafeteros.org/wp/coffee-grower-services/?lang=en
https://federac \ iondecafeteros.org/wp/coffee-grower-services/?lang=en


Bibliography 65

Hagan, Daniel Fiifi Tawia, Guojie Wang, X San Liang, and Han AJ Dolman (2019). “A time-varying
causality formalism based on the Liang–Kleeman information flow for analyzing directed inter-
actions in nonstationary climate systems”. In: Journal of Climate 32.21, pp. 7521–7537.

Hayes, SP, MJ McPhaden, and JM Wallace (1989). “The influence of sea-surface temperature on sur-
face wind in the eastern equatorial Pacific: Weekly to monthly variability”. In: Journal of Climate
2.12, pp. 1500–1506.

Heisz, Jennifer J, Judith M Shedden, and Anthony R McIntosh (2012). “Relating brain signal variabil-
ity to knowledge representation”. In: Neuroimage 63.3, pp. 1384–1392.

Hersbach, Hans, Bill Bell, Paul Berrisford, Per Dahlgren, András Horányi, J Munoz-Sebater, Julien
Nicolas, Raluca Radu, Dinand Schepers, Adrian Simmons, et al. (2020a). “The ERA5 Global Re-
analysis: achieving a detailed record of the climate and weather for the past 70 years”. In: European
geophysical union general assembly, pp. 3–8.

Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. (2020b). “The ERA5 global
reanalysis”. In: Quarterly Journal of the Royal Meteorological Society 146.730, pp. 1999–2049.

Hlinka, Jaroslav, David Hartman, Martin Vejmelka, Jakob Runge, Norbert Marwan, Jürgen Kurths,
and Milan Paluš (2013). “Reliability of inference of directed climate networks using conditional
mutual information”. In: Entropy 15.6, pp. 2023–2045.

Hoyos, Isabel, Astrid Baquero-Bernal, and Stefan Hagemann (2013a). “How accurately are clima-
tological characteristics and surface water and energy balances represented for the Colombian
Caribbean Catchment Basin?” In: Climate dynamics 41, pp. 1269–1290.

Hoyos, Isabel, Astrid Baquero-Bernal, Daniela Jacob, and Boris A Rodríguez (2013b). “Variability of
extreme events in the Colombian Pacific and Caribbean catchment basins”. In: Climate dynamics
40, pp. 1985–2003.

Hoyos, Isabel, J Cañón-Barriga, T Arenas-Suárez, F Dominguez, and BA Rodríguez (2019). “Vari-
ability of regional atmospheric moisture over Northern South America: patterns and underlying
phenomena”. In: Climate Dynamics 52, pp. 893–911.

Hoyos, Isabel, F Dominguez, J Cañón-Barriga, JA Martínez, R Nieto, L Gimeno, and PA Dirmeyer
(2018). “Moisture origin and transport processes in Colombia, northern South America”. In: Cli-
mate Dynamics 50, pp. 971–990.

Hulme, Mike, Elaine M Barrow, Nigel W Arnell, Paula A Harrison, Timothy C Johns, and Thomas E
Downing (1999). “Relative impacts of human-induced climate change and natural climate vari-
ability”. In: Nature 397.6721, pp. 688–691.

IDEAM and Ministerio de Ambiente Vivienda y Desarrollo Territorial (2005). Atlas climatológico de
Colombia. IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales).

Kleeman, Richard (2002). “Measuring dynamical prediction utility using relative entropy”. In: Journal
of the atmospheric sciences 59.13, pp. 2057–2072.

— (2011). “Information theory and dynamical system predictability”. In: Entropy 13.3, pp. 612–649.



66 Bibliography

Kousky, Vernon E, Mary T Kagano, and Iracema FA Cavalcanti (1984). “A review of the Southern
Oscillation: oceanic-atmospheric circulation changes and related rainfall anomalies”. In: Tellus A
36.5, pp. 490–504.

Krishnamurthy, V (2019). “Predictability of weather and climate”. In: Earth and Space Science 6.7,
pp. 1043–1056.

Kucharski, Fred, In-Sik Kang, David Straus, and Martin P King (2010). “Teleconnections in the atmo-
sphere and oceans”. In: Bulletin of the American Meteorological Society 91.3, pp. 381–383.

Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”. In: The annals of
mathematical statistics 22.1, pp. 79–86.

Lee, Hoesung, Katherine Calvin, Dipak Dasgupta, Gerhard Krinner, Aditi Mukherji, Peter Thorne,
Christopher Trisos, José Romero, Paulina Aldunce, Ko Barret, et al. (2023). “IPCC, 2023: Climate
Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II
and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core
Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.” In.

Li, Rui-qi, Shi-wen Sun, Yi-lin Ma, Li Wang, and Cheng-yi Xia (2015). “Effect of clustering on attack
vulnerability of interdependent scale-free networks”. In: Chaos, Solitons & Fractals 80, pp. 109–116.

Liang, X. San (2008). “Information flow within stochastic dynamical systems”. In: Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics 78.3, p. 031113.

— (2013a). “Local predictability and information flow in complex dynamical systems”. In: Physica D:
Nonlinear Phenomena 248, pp. 1–15.

— (2013b). “The Liang-Kleeman information flow: Theory and applications”. In: Entropy 15.1, pp. 327–
360.

— (2014). “Unraveling the cause-effect relation between time series”. In: Physical Review E 90.5, p. 052150.
— (2015). “Normalizing the causality between time series”. In: Phys. Rev. E 92 (2), p. 022126. DOI:

10.1103/PhysRevE.92.022126.
— (2016). “Information flow and causality as rigorous notions ab initio”. In: Physical Review E 94.5,

p. 052201.
Liao, Xuhong, Athanasios V Vasilakos, and Yong He (2017). “Small-world human brain networks:

perspectives and challenges”. In: Neuroscience & Biobehavioral Reviews 77, pp. 286–300.
Lieb, Elliott H and Jakob Yngvason (1999). “The physics and mathematics of the second law of ther-

modynamics”. In: Physics Reports 310.1, pp. 1–96.
Liu, Teng, Dean Chen, Lan Yang, Jun Meng, Zanchenling Wang, Josef Ludescher, Jingfang Fan, Saini

Yang, Deliang Chen, Jürgen Kurths, et al. (2023). “Teleconnections among tipping elements in the
Earth system”. In: Nature Climate Change 13.1, pp. 67–74.

Lorenz, Edward N (1963). “Deterministic nonperiodic flow”. In: Journal of atmospheric sciences 20.2,
pp. 130–141.

Majhi, Soumen, Matjaž Perc, and Dibakar Ghosh (2022). “Dynamics on higher-order networks: A
review”. In: Journal of the Royal Society Interface 19.188, p. 20220043.

https://doi.org/10.1103/PhysRevE.92.022126


Bibliography 67

Martinez, J Alejandro, Paola A Arias, Chris Castro, Hsin-I Chang, and Carlos A Ochoa-Moya (2019).
“Sea surface temperature-related response of precipitation in northern South America according
to a WRF multi-decadal simulation”. In: International Journal of Climatology 39.4, pp. 2136–2155.

Marwan, Norbert, Jonathan F Donges, Yong Zou, Reik V Donner, and Jürgen Kurths (2009). “Complex
network approach for recurrence analysis of time series”. In: Physics Letters A 373.46, pp. 4246–
4254.

Mesa S, Oscar J, Germán Poveda J, and Luis F Carvajal S (1997). Introducción al clima de Colombia.
Universidad Nacional de Colombia.

Mitchell, Melanie (2006). “Complex systems: Network thinking”. In: Artificial intelligence 170.18, pp. 1194–
1212.

Morales, José, Paola Arias, and John Martínez (2017). “Role of Caribbean low-level jet and Choco jet
in the transport of moisture patterns towards Central America”. In.

Morrison, Monica Ainhorn and Peter Lawrence (2023). “Understanding Model-Based Uncertainty in
Climate Science”. In: Handbook of Philosophy of Climate Change. Springer, pp. 1–21.

Myers, Norman, Russell A Mittermeier, Cristina G Mittermeier, Gustavo AB Da Fonseca, and Jennifer
Kent (2000). “Biodiversity hotspots for conservation priorities”. In: Nature 403.6772, pp. 853–858.

Negre, Christian FA, Uriel N Morzan, Heidi P Hendrickson, Rhitankar Pal, George P Lisi, J Patrick
Loria, Ivan Rivalta, Junming Ho, and Victor S Batista (2018). “Eigenvector centrality for charac-
terization of protein allosteric pathways”. In: Proceedings of the National Academy of Sciences 115.52,
E12201–E12208.

Newman, Mark (2018). Networks. Oxford university press.
Newman, Mark, Albert-László Barabási, and Duncan J Watts (2011). The structure and dynamics of

networks. Princeton university press.
Newman, Mark E. J. (2010). “Measures and Metrics in Networks”. In: Networks: An Introduction. Ox-

ford University Press. Chap. 7.
Newman, Mark EJ (2003). “The structure and function of complex networks”. In: SIAM review 45.2,

pp. 167–256.
Pabón, José Daniel (2003). “El cambio climático global y su manifestación en Colombia”. In: Cuadernos

de Geografía: Revista Colombiana de Geografía 12, pp. 111–119.
Pabón-Caicedo, José Daniel, Paola A Arias, Andrea F Carril, Jhan Carlo Espinoza, Lluís Fita Borrel,

Katerina Goubanova, Waldo Lavado-Casimiro, Mariano Masiokas, Silvina Solman, and Ricardo
Villalba (2020). “Observed and projected hydroclimate changes in the Andes”. In: Frontiers in Earth
Science 8, p. 61.

Pacific, Institute (2018). Data Table: Total renewable freshwater supply by country.
Pagani, Giuliano Andrea and Marco Aiello (2014). “Power grid complex network evolutions for the

smart grid”. In: Physica A: Statistical Mechanics and its Applications 396, pp. 248–266.
Pastor-Satorras, Romualdo and Alessandro Vespignani (2001). “Epidemic spreading in scale-free net-

works”. In: Physical review letters 86.14, p. 3200.



68 Bibliography

Pearl, Judea (1997). “The new challenge: From a century of statistics to the age of causation”. In:
Computing Science and Statistics, pp. 415–423.

Peixoto, José Pinto and Abraham H Oort (1992). “Physics of climate”. In.
Pinault, Jean-Louis (2022). “A review of the role of the oceanic Rossby waves in climate variability”.

In: Journal of Marine Science and Engineering 10.4, p. 493.
Pósfai, Márton and Albert-László Barabási (2016). Network Science. Cambridge University Press Cam-

bridge, UK:
Poveda, Germán, Diana M. Álvarez, and Óscar A. Rueda (2011). “Hydro-climatic variability over the

Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one
of the Earth’s most important biodiversity hotspots”. In: Climate Dynamics 36.11, pp. 2233–2249.

Poveda, Germán, Jhan Carlo Espinoza, Manuel D Zuluaga, Silvina A Solman, René Garreaud, and
Peter J Van Oevelen (2020). “High impact weather events in the Andes”. In: Frontiers in Earth
Science 8, p. 162.

Poveda, Germán and Oscar Mesa (1999). “La corriente de chorro superficial del Oeste (“del Chocó”)
y otras dos corrientes de chorro en Colombia: climatología y variabilidad durante las fases del
ENSO”. In: Revista Académica Colombiana de Ciencia 23.89, pp. 517–528.

Poveda, Germán, Oscar Mesa, Paula Agudelo, Juan Álvarez, Paola Arias, Hernán Moreno, Luis Salazar,
Vladimir Toro, and Sara Vieira (2002). “Influencia del ENSO, oscilación Madden-Julian, ondas del
este, huracanes y fases de la luna en el ciclo diurno de precipitación en los Andes Tropicales de
Colombia”. In: Meteorología Colombiana 5.0124-6984, pp. 3–12.

Poveda, Germán, Peter R Waylen, and Roger S Pulwarty (2006). “Annual and inter-annual variability
of the present climate in northern South America and southern Mesoamerica”. In: Palaeogeography,
Palaeoclimatology, Palaeoecology 234.1, pp. 3–27.

Reboita, Michelle Simões, Tércio Ambrizzi, Natália Machado Crespo, Lívia Márcia Mosso Dutra,
Glauber Willian de S Ferreira, Amanda Rehbein, Anita Drumond, Rosmeri Porfírio da Rocha, and
Christie Andre de Souza (2021). “Impacts of teleconnection patterns on South America climate”.
In: Annals of the New York Academy of Sciences 1504.1, pp. 116–153.

Restrepo, JD and B Kjerfve (2000). “Magdalena river: interannual variability (1975–1995) and revised
water discharge and sediment load estimates”. In: Journal of hydrology 235.1-2, pp. 137–149.

Rincón, Laura Natalia Garavito (2015). “Los páramos en Colombia, un ecosistema en riesgo”. In:
Ingeniare 19, pp. 127–136.

Ruiz, Daniel, Hernán Alonso Moreno, María Elena Gutiérrez, and Paula Andrea Zapata (2008). “Chang-
ing climate and endangered high mountain ecosystems in Colombia”. In: Science of the total envi-
ronment 398.1-3, pp. 122–132.

Sakamoto, Meiry Sayuri, Tércio Ambrizzi, Germán Poveda, et al. (2011). “Moisture sources and life
cycle of convective systems over western Colombia”. In: Advances in Meteorology 2011.

Sánchez-Cuervo, Ana María, T Mitchell Aide, Matthew L Clark, and Andrés Etter (2012). “Land cover
change in Colombia: surprising forest recovery trends between 2001 and 2010”. In.



Bibliography 69

Sanderson, Michael, Katie Hodge, José Ricardo Cure, Daniel Rodríguez, Luigi Ponti, Andrew Paul
Gutierrez, et al. (2022). “Impacts of the ENSO cycle on climate and coffee production in Colombia”.
In: EGU General Assembly Conference Abstracts, EGU22–13513.

Sardeshmukh, Prashant D and Brian J Hoskins (1988). “The generation of global rotational flow by
steady idealized tropical divergence”. In: Journal of the Atmospheric Sciences 45.7, pp. 1228–1251.

Schneider, Stephen H and Robert E Dickinson (1974). “Climate modeling”. In: Reviews of Geophysics
12.3, pp. 447–493.

Schneider, Tapio (2006). “The general circulation of the atmosphere”. In: Annu. Rev. Earth Planet. Sci.
34, pp. 655–688.

Schneider, Tapio, Tobias Bischoff, and Gerald H Haug (2014). “Migrations and dynamics of the in-
tertropical convergence zone”. In: Nature 513.7516, pp. 45–53.

Schreiber, Thomas (2000). “Measuring information transfer”. In: Physical review letters 85.2, p. 461.
Shackley, Simon, Peter Young, Stuart Parkinson, and Brian Wynne (1998). “Uncertainty, complexity

and concepts of good science in climate change modelling: are GCMs the best tools?” In: Climatic
change 38, pp. 159–205.

Shannon, Claude E (1938). “A symbolic analysis of relay and switching circuits”. In: Electrical Engi-
neering 57.12, pp. 713–723.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: The Bell system tech-
nical journal 27.3, pp. 379–423.

Solman, Silvina A (2013). “Regional climate modeling over South America: a review”. In: Advances in
Meteorology 2013, pp. 1–13.

Souza, EB DE and Tércio Ambrizzi (2002). “ENSO impacts on the South American rainfall during
1980s: Hadley and Walker circulation”. In: Atmósfera 15.2, pp. 105–120.

Stan, Cristiana, David M Straus, Jorgen S Frederiksen, Hai Lin, Eric D Maloney, and Courtney Schu-
macher (2017). “Review of tropical-extratropical teleconnections on intraseasonal time scales”. In:
Reviews of Geophysics 55.4, pp. 902–937.

Steinhaeuser, Karsten, Nitesh V Chawla, and Auroop R Ganguly (2010). “Complex Networks in Cli-
mate Science: Progress, Opportunities and Challenges.” In: CIDU, pp. 16–26.

— (2011). “Complex networks as a unified framework for descriptive analysis and predictive mod-
eling in climate science”. In: Statistical Analysis and Data Mining: The ASA Data Science Journal 4.5,
pp. 497–511.

Strogatz, Steven H (2001). “Exploring complex networks”. In: nature 410.6825, pp. 268–276.
Trenberth, Kevin E, Grant W Branstator, David Karoly, Arun Kumar, Ngar-Cheung Lau, and Chester

Ropelewski (1998). “Progress during TOGA in understanding and modeling global teleconnec-
tions associated with tropical sea surface temperatures”. In: Journal of Geophysical Research: Oceans
103.C7, pp. 14291–14324.

Trenberth, Kevin E and Dennis J Shea (2005). “Relationships between precipitation and surface tem-
perature”. In: Geophysical Research Letters 32.14.



70 Bibliography

Tsonis, Anastasios A and Paul J Roebber (2004). “The architecture of the climate network”. In: Physica
A: Statistical Mechanics and its Applications 333, pp. 497–504.

Tsonis, Anastasios A and Kyle L Swanson (2008). “Topology and predictability of El Nino and La
Nina networks”. In: Physical Review Letters 100.22, p. 228502.

Tsonis, Anastasios A, Kyle L Swanson, and Paul J Roebber (2006). “What do networks have to do with
climate?” In: Bulletin of the American Meteorological Society 87.5, pp. 585–596.

Tsonis, Anastasios A, Kyle L Swanson, and Geli Wang (2008). “On the role of atmospheric teleconnec-
tions in climate”. In: Journal of Climate 21.12, pp. 2990–3001.

Urrea, Viviana, Andrés Ochoa, and Oscar Mesa (2019). “Seasonality of rainfall in Colombia”. In: Water
Resources Research 55.5, pp. 4149–4162.

Vannitsem, Stéphane and X. San Liang (2022). “Dynamical dependencies at monthly and interannual
time scales in the climate system: Study of the North Pacific and Atlantic regions”. In: Tellus A 74,
pp. 141–158.

Volkenstein, Mikhail V (2009). Entropy and information. Vol. 57. Springer Science & Business Media.
Wallace, John M, TP Mitchell, and C Deser (1989). “The influence of sea-surface temperature on sur-

face wind in the eastern equatorial Pacific: Seasonal and interannual variability”. In: Journal of
Climate 2.12, pp. 1492–1499.

Wang, Yu, Eshwar Ghumare, Rik Vandenberghe, and Patrick Dupont (2017). “Comparison of different
generalizations of clustering coefficient and local efficiency for weighted undirected graphs”. In:
Neural computation 29.2, pp. 313–331.

Watts, Duncan J (2004). Small worlds: the dynamics of networks between order and randomness. Vol. 36.
Princeton university press.

Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of ‘small-world’networks”. In:
nature 393.6684, pp. 440–442.

XM, SAESP (2019). Reporte integral de sostenibilidad, operación y mercado 2018.
Yepes, Johanna, Germán Poveda, John F Mejía, Leonardo Moreno, and Carolina Rueda (2019). “Choco-

jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and
western Colombia”. In: Bulletin of the American Meteorological Society 100.5, pp. 779–796.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Networks in Climate
	Elements of Complex Networks Theory
	Complex Networks Properties

	Climate Networks

	Information Theory in Dynamical and Complex Systems
	Relative Entropy and Causation
	Liang-Kleeman Information Transference
	Normalized Information Transference


	Colombia Climate Characteristics
	The Study Area and Data
	Representing the Influence of Global Variability in Colombia

	Beyond data: Constructing a Climate Network based on Information Transference
	Information transference network construction details

	Mapping Teleconnections: Information Transference towards Colombia
	Colombian climate unveiled from a teleconnection perspective
	Role of Teleconnections in Shaping Colombia’s Climate

	Understanding the Link Between Climate Variability and Complex Networks
	Graph Structure: Unveiling Complexity
	Interpreting Colombian Variability from a Climate Complex Network Approach

	Conclusions and Perspectives
	Information transference calculation code
	Bibliography

