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Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic 
photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nano-
biosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in 
detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical 
transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews 
PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides 
(TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant 
biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhanc-
ing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, 
advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic 
applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic 
tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.

Keywords Photoelectrochemical nanobiosensor · Photoactive nanomaterial · Red light · Near-infrared (NIR) · Analytical 
performance

Introduction

PEC nanobiosensors use nanoscale components and light-
matter interaction to provide specific quantitative or semi-
quantitative analytical information about a (bio)analyte. 
They convert biological signals into electrical signals under 
the influence of light. PEC nanobiosensors consist of nano-
structured components linked to a molecular recognition 
element or bioreceptor that specifically binds to the analyte 
and a transducer that converts this interaction into a meas-
urable electrical signal [1, 2]. Rather than referring to the 
nanometric size of the entire device, the term nanobiosensor 
in this review refers to a system with at least one nanostruc-
ture within its components [3], whose enhanced properties 

from the nanoscale dimension give place to new, improved 
features and functionalities when assembled into biosensing 
devices [4]. PEC nanobiosensors utilize the interaction of 
light with photoactive materials to follow electrochemical 
reactions, benefiting from enhanced charge separation and 
signal amplification [5]. They typically integrate molecular 
recognition elements and/or (bio)receptors (e.g., enzymes, 
antibodies, nanobodies, peptides, cellular receptors, nucleic 
acids, glycans, aptamers, among others) with photoactive 
nanomaterials (e.g., semiconductor and plasmonic materials) 
[6–9]. Characterized by their high sensitivity and specific-
ity, PEC nanobiosensors offer significant advantages such 
as signal amplification, minimal background noise, and 
reduced photodamage. These sensors feature tunable opti-
cal properties, photostability, durability, and amenability for 
surface functionalization. By leveraging PEC approaches, 
these biosensors provide rapid response times, versatility, 
and multi-functionality [10]. The current or voltage response 
under irradiation with light of different wavelengths in PEC 
biosensors changes when a recognition event occurs on the 
transducer surface or electrode [11]. It allows for highly 
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specific and sensitive detection of various analytes, making 
PEC biosensors a promising tool for diverse applications in 
medical diagnostics [12]. Additionally, PEC nanobiosensors 
can be manufactured rapidly and cost-effectively for single-
use devices, enabling efficient measurement collection using 
disposable electrodes, simplifying sensor handling, reducing 
contamination risks, and eliminating laborious cleaning or 
maintenance steps [13]. This combination of high sensitiv-
ity, miniaturization, and disposable amenability makes PEC 
biosensors well-suited for rapid, cost-effective, and user-
friendly bioanalytical applications [14].

Incorporating high-surface-area photostimulable nanoma-
terials onto transducer platforms has further enhanced the 
performance of PEC sensing devices [15]. These nanoma-
terials can improve energy transfer processes, amplifying 
transduction signals to achieve highly sensitive, stable, and 
reproducible devices [16]. In particular, plasmonic nanopar-
ticles, such as noble metals like gold (Au) and silver (Ag), 
exhibit collective oscillations of free electrons on their sur-
face. This phenomenon leads to the absorption, scattering, 
and amplification of electromagnetic signals in the visible 
and NIR regions of the spectrum [17]. Utilizing this spec-
tral radiation range to stimulate plasmonic nanoparticles in 
PEC biosensing is advantageous, as it minimizes potential 
photodamage to biomolecules compared to ultraviolet (UV) 
radiation [18, 19]. By harnessing these advancements, plas-
mon nanoparticle-based PEC biosensors offer improved 
stability and analytical performance without compromising 
biointerface integrity, thereby facilitating sensitive analyte 
detection [20]. In PEC detection, light is crucial in excit-
ing the photoactive species, generating an electrical signal 
for transduction, and facilitating the detection process [21]. 
Separating the excitation source from the detection system 
endows this technique with potentially higher sensitivity. 
This heightened sensitivity is specifically due to the ability 
to automate the system’s excitation source, allowing it to be 
turned on and off in a specific time window. This automation 
enables a precise response to the detection of the analyte of 
interest, effectively eliminating background noise from sec-
ondary reactions that do not correspond to the PEC detection 
event of the system [22, 23]. Moreover, the ease of miniatur-
izing PEC biosensing systems renders them more effective 
than conventional optical and electrochemical methods [24, 
25]. This efficacy is due to the favorable photogenerated 
charge transfer reactions at the modified electrode surface 
[26]. When the analyte is present in the sample, the resultant 
specific recognition events can directly or indirectly induce 
alterations in the PEC signal, used to monitor the analyte 
levels [27, 28].

The selection of the photoactive material stands out as 
one of the most critical steps in determining the analytical 
performance of PEC devices. This choice is vital for enhanc-
ing charge conversion at the photoactive surfaces [1]. In 

recent years, semiconductor nanomaterials have emerged as 
the most utilized photoactive materials for PEC biosensing 
applications [29]. Various factors influence the performance 
of PEC devices, including changes in the photon conversion 
properties of typical semiconductor materials employed in 
transducer platforms. These factors encompass temperature 
fluctuations, external light exposure, electric and magnetic 
fields, and alterations in their electronic states of valence and 
conduction bands [30–33]. Such changes result in a sensitive 
response and impart unique properties in photoelectricity, 
photoluminescence, electroluminescence, electrochemilumi-
nescence, and thermoelectric phenomena [34–38]. Semicon-
ductor nanostructures exhibit a robust absorption capacity 
and an inherent electronic band structure [39]. Innovations 
in semiconductor morphology, structure, or elemental com-
position can bolster charge transport, facilitating high pho-
toelectric conversion efficiency [40, 41].

Even though plenty of reviews have already been reported 
in the literature [42–45], there is still a knowledge gap intended 
to fill in this topic. This work reviews the crucial role of PEC 
nanobiosensors in detecting a wide spectral range of bio-
analytes, discussing their impact on analytical performance. 
It compares PEC detection approaches stimulated by the spec-
trum’s red light and NIR regions and thoroughly outlines the 
technical characteristics of these PEC assays, including their 
physicochemical properties, signal sources, sensing formats, 
and signaling strategies. Additionally, it explores various pho-
toactive nanomaterials currently employed in PEC applica-
tions, examining their compositional and structural properties 
to enhance biosensing methodologies for various bio-analyte 
detection scenarios. Finally, it showcases the potential of red 
light and NIR region sources to improve PEC performance and 
finalizes with concluding remarks and perspectives to better 
exploit transduction mode PEC-based devices.

Technical characteristics 
of photoelectrochemical biosensors

PEC explores the interaction between light and photoactive 
materials, resulting in the interconversion of photoelectric 
and chemical energy [46]. The physical interaction between 
the photoactive material and the electrode promotes the 
charge transfer generated by the photons absorbed from the 
material, producing electrons and holes. Sacrificial reagents 
or redox mediators in solution transfer electrons to the pho-
togenerated holes to restrict charge recombination in the 
material. The charge transfer on the electrode is reflected in 
an increase in current or potential resulting from excitation 
with light [47]. PEC biosensors integrate photoactive mate-
rials and molecular biorecognition elements (bioreceptors) 
coupled to the electrode interface to detect various (bio)ana-
lytes [48]. The change of the PEC signal when the electrode 
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is exposed to defined spectral ranges of light irradiation evi-
dences the biorecognition event between the bioreceptor and 
the target (bio)analyte.

Conventional photodetection systems encompass four 
key components, as illustrated in Fig. 1. First is the excita-
tion source (light source), followed by the signal transduc-
tion platform, which consists of the electrode, photoactive 
material, and molecular recognition elements. The third 
component is related to the redox mediator dissolved in an 
electrolytic medium. Finally, the PEC signal-reading system 
[49]. Multiple interconnected physical and chemical pro-
cesses are essential to generate the signal. Initially, photons 
are absorbed, initiating a charge separation process in the 
material. Subsequently, charges migrate and recombine at 
the interface between the photoactive material on the work-
ing electrode and the redox mediator [50].

Efficiently converting photons into electric charge is a 
crucial factor in PEC processes [51, 52]. PEC devices inte-
grate light as an excitation source to generate an increased 
electrical signal, improving sensitivity compared to conven-
tional electrochemical processes [53, 54].

Photoactive nanomaterials

A photoactive nanomaterial can generate chemical or physi-
cal changes when interacting with electromagnetic radia-
tion, usually in detection systems in the ultraviolet–visible 
(UV–vis) and NIR regions [55, 56]. The functionality of a 

photoactive material involves the absorption of light energy, 
the generation of electron–hole pairs, and a specific response 
that depends on its structural properties and the surround-
ing medium [57]. Integrating nanostructured materials into 
PEC biosensors offers advantages, including increased sur-
face area, improved PEC features, bioconjugation, enhanced 
analytical properties, and the potential for miniaturization 
and amenability for portable sensing devices [58]. The light-
sensitive nanostructured material interacts closely with the 
electrode and facilitates the transduction of the biochemical 
interaction into a quantifiable electrochemical signal [59]. 
The choice of a photoactive nanomaterial depends on the 
requirements of the PEC sensing application, encompass-
ing the target analyte, detection sensitivity, and operating 
conditions [60]. Consequently, research on new photoactive 
materials would reinforce the versatility and functionality of 
PEC detection in bioanalysis applications [61, 62].

Physicochemical considerations

Specific physicochemical parameters play a pivotal role in 
comprehending the performance of photoactive nanoma-
terials [63]. To effectively absorb electromagnetic radia-
tion and generate charge carriers leading to PEC detection, 
these materials must initially possess optical properties, 
including energy absorption and emission, as well as 
high quantum yield and extinction coefficient [64]. The 
morphology, atomic configurations, and nanostructure’s 
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Fig. 1  Schematic representation of PEC assays utilizing miniaturized 
electrochemical cells, external excitation sources, and specific inter-
actions in immunosensing, genosensing, enzymatic, and cytosensing 
assays. Charge generation and transduction occur at the electrode sur-

face through photoactive nanomaterials promoted by the alignment of 
conduction (CB) and valence bands (VB) in materials with varying 
band-gaps



 Microchim Acta         (2024) 191:535   535  Page 4 of 26

exposed surface area are related to the efficient transfer of 
charge carriers during reactions in electrolytic media [65].

Achieving proficient charge transfer and efficient elec-
tron flow within a PEC system hinges on the alignment of 
energy levels between photoactive nanomaterials and other 
components [66]. This alignment is crucial for effective 
charge injection, transport, and collection at the electrode. 
Equally important is selecting the appropriate excitation 
wavelength range and the energy level at which the nano-
material is stimulated [67]. The range of wavelengths that 
photoactive nanomaterials absorb depends on their band-
gap [68]. The feasibility of designing and manipulating 
this band-gap in PEC applications is demonstrated through 
doping, alloying, or quantum confinement effects. These 
methods allow absorption spectra adjustment and maximi-
zation of nanomaterial photoactivity [69].

Sources of signals and excitation

The photocurrent signals produced by PEC biosensors 
involve various kinetic and thermodynamic steps [70]. The 
performance of PEC biosensors is influenced by light exci-
tation, photogenerated carrier transfer, and redox mecha-
nisms [71, 72]. According to energy band theory, electrons 
are propelled from the valence band (VB) to the conduction 
band (CB) when photons with energy equal to or exceed-
ing the band-gap energy  (Eg) of the photoactive nanomate-
rial irradiate them [73]. These photogenerated carriers are 
then transported to the electrode or electrolyte, but their 
effective utilization requires their migration to the surface 
from within the material [74]. Upon the creation of the 
electron–hole pair, a fraction of carriers promptly recom-
bines, while others do so during their journey to the sur-
face (as illustrated in Fig. 1). Carrier migration, a relatively 
slow process, introduces varying recombination pathways. 
Upon reaching the surface, carriers might engage in redox 
reactions with electroactive species in the electrolyte [75]. 
Nonetheless, many carriers recombine on the surface before 
completing these processes due to the time-consuming 
nature of electroactive species adsorption and medium-
related redox reactions. The migration of carriers and the 
rates of reactions in photoactive materials are influenced by 
the VB/CB levels and the redox potential of electroactive 
species [76]. From a thermodynamic standpoint, oxidation/
reduction reactions occur when the oxidizing species poten-
tial is more positive than the CB level and the reducing 
species potential is more negative than the VB level [77].

(Bio)sensing formats and signaling strategies

The construction of PEC biosensing assays has proven chal-
lenging in developing novel photoactive nanomaterials and 

searching for more sensitive, precise, and accurate signals 
[78]. Highly specific and selective detection formats have 
achieved tests with minimal background noise compared 
to conventional methodologies [79]. The specificity and 
selectivity of the bioreceptor and the stable coupling with 
photoactive nanomaterials are paramount factors for direct 
detection of the molecular target [80, 81]. Consequently, 
PEC analysis’s versatility and practical potential have found 
widespread applications in many scientific domains, particu-
larly in identifying various (bio)analytes of biochemical and 
clinical interest [82]. These applications encompass nucleic 
acid analysis [44], immunoassays [83, 84], cell detection 
[85–87], enzyme and protein bio-detection [88–90], and 
monitoring of small (bio)molecules [91, 92].

Nevertheless, PEC detection presents a massive challenge 
in sensitively detecting various (bio)analytes, particularly 
those with exceedingly low levels, such as biomolecules, 
during the early stages of diseases. This reality places 
heightened demands on PEC sensors’ sensitivity and detec-
tion range [11]. Therefore, numerous signal amplification 
strategies have been introduced to enhance the practical 
utility of the devices. High analytical performance, self-
powered functionality, and miniaturization significantly 
impact the overall effectiveness of PEC detection systems 
[93]. Likewise, detecting multiple analytes and analyzing 
big data are other progressive needs that require customiza-
tion of detection systems [94]. Consequently, the research 
on PEC biosensors has a noteworthy influence on endeavors 
to innovate and elevate the functionality of these devices 
[95, 96].

Classification of photoactive nanomaterials

Over the last decade, nanomaterials capable of interacting 
with electromagnetic radiation in the UV–visible and NIR 
ranges have been successfully coupled into PEC applica-
tions, highlighting photocurrent and photopotential signals 
[97, 98]. Table 1 overviews the critical characteristics of vari-
ous materials used in PEC detection processes. PEC systems 
generally require a redox probe to reveal the generated photo-
current and complete the charge transport cycles. Most semi-
conductor systems used in PEC systems have well-defined 
band-gap values to determine the optimal excitation energy 
ranges. While band theory elucidates the general PEC princi-
ple, most PEC assays involve different optical and electrical 
phenomena depending on the nanomaterial and photoactive 
nanomaterials arranged on the transduction surface. In this 
context, molecular biorecognition events involve different 
PEC detection mechanisms. This review classifies PEC sys-
tems according to the photoactive nanomaterial type, includ-
ing metals and metal oxides, carbon nitrides, quantum dots, 
semiconductors, and transition metal chalcogenides (TMCs).
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Metallic nanostructures are highly valued in PEC sys-
tems for their surface plasmon resonance properties, which 
enhance light-particle interactions and improve photoelec-
tric conversion efficiency [119]. However, their high cost 
and potential toxicity are significant drawbacks. In contrast, 

metal oxides are known for their strong light absorption, 
adjustable energy band-gap, and exceptional chemical stabil-
ity, making them suitable for harsh environments and effec-
tive at increasing photocurrent signals, although they may 
suffer from charge carrier recombination losses [120]. On 

Table 1  Classification of photoactive nanomaterials in UV- and visible-light-activated PEC biosensors

5cadCTP, 5-carboxy-2′-deoxycytidine-5′-triphosphate; AA, ascorbic acid; AChE, acetylcholinesterase; Ag2S, silver sulfide; AgI, silver iodide; 
ALV-J, J avian leukosis virus; APFO-3, ammonium pentadecafluorooctanoate; Au@ZnO/FTO, heteroconjuction of gold nanoparticles, zinc 
oxide, and fluorine-doped tin oxide; Au/GR-CdS, heteroconjuction of gold nanoparticles, reduced graphene, and cadmium sulfide; AuNPs, 
gold nanoparticles; BiOBr, bismuth oxybromide; BiVO4, bismuth vanadate; BN, boron nitride; CdS QDs, cadmium sulfide quantum dots; CdS/
SnS2/CNTs/GCE, heteroconjuction of cadmium sulfide, tin disulfide, carbon nanotubes, and glassy carbon electrode; CN, carbon nitride; CoO, 
cobalt(II) oxide; DNA, deoxyribonucleic acid; dTiO2-x@Au, titanium dioxide and gold nanoparticles composite; Exo III, exonuclease III enzyme; 
[Fe(CN)6]3−/4−, hexacyanoferrate; GSH, glutathione; GSSG, oxidized glutathione; g-C3N4, graphitic carbon nitride; g-C3N4/Co3O4, heterocon-
juction of graphitic carbon nitride and cobalt(II) oxide; g-CNS3, three-step thermal polycondensation of 2D g-C3N4 nanolayers; ITO, indium 
tin oxide; KCl, potassium chloride; LOD, limit of detection; MgCl2, magnesium chloride; MCF-7, breast cancer cell line; MoS2, molybdenum 
disulfide; Na2SO4, sodium sulfate; NaHCO3, sodium hydrogen carbonate; (NH4)2SO4, ammonium sulfate; NGQDs, nitrogen-doped graphene 
quantum dots; PBS, phosphate-buffered saline; PCMB, 4-chloromercuribenzoic acid; PdO, palladium oxide; RNA, ribonucleic acid; rGO, 
reduced graphene oxide; S, sulfur; SnS2, tin(IV) sulfide; SnS2@Ti3C2, heteroconjuction of tin (IV) sulfide and titanium carbide MXene; WS2, 
tungsten disulfide; Xe, xenon; ZnONRs/TNs/TiO, heteroconjuction of zinc oxide nanorods and titanium dioxide; λexc, excitation wavelength

PEC materials Platform struc-
ture

Electrolyte/
redox probe

λexc (nm) Band-gap (eV) Detected bio-
marker

Linear range LOD Ref

Metals and 
metal oxides

Au@ZnO/FTO 
nanorods

GSH/GSSG–
PBS

1 sun - GSH 20–1000 µM 3.29 µM [99]

ZnONRs/TNs/
TiO

(NH4)2SO4  ≥ 420 2.89 AChE 0.05–1000 µM 0.023 µM [100]

dTiO2−x@Au Exo lll/PBS 585 2.52 DNA 1 pM–10 nM 0.6 pM [101]
Au/GR-CdS Na2SO4 Xe Lamp - Diclofenac 1–150 nM 0.78 nM [102]
PdO/APFO-3: 

PCMB
NaHCO3-PBS 1 sun - Oxygen 0.5–20 mg/L 0.034 mh/L [103]

Carbon nitrides g-C3N4/Co3O4 Na2HPO4/
NaH2PO4

Xe lamp 2.62/2.13 Oxytetracycline 0.01 – 500 nM 3.5 pM [104]

g-C3N4/AuNPs/
CoO

Na2SO4/PBS  > 420 2.75/2.85 Microcystin-LR 0.1 pM – 10 nM 0.01 pM [105]

g-C3N4/BiVO4 PBS  > 420 2.70/2.40 Microcystin-LR 5 pg/L – 10 µg/L 41.9 fg/L [106]
g-CNS3 AA/PBS Xe lamp 2.59 ALV-J 102.14–103.35 

 TCID50/mL
102.08  TCID50/

mL
[107]

g-C3N4/TiO2 AAP/PBS  > 460 2.69/3.21 Protein kinase 
A

0.05 – 100 U/mL 0.048 U/mL [108]

Quantum dots g-C3N4/CdS 
QDs

AA/PBS Xe lamp 2.42 Prostatic anti-
gen

0.01 – 50 ng/mL 4 pg/mL [109]

g-C3N4/CdS 
QDs

AA/NaCl-KCl Xe lamp 2.42 MicroRNA-21 0.1 fM – 1 nM 0.05 fM [110]

rGO/CdS QDs H2O2/PBS  > 450 - 2,3′,5,5′ Tetra-
chlorobiphe-
nyl

10–1000 ng/mL 1 ng/mL [111]

h-BN/CdS QDs AA/PBS Xe lamp - MicroRNA-141 0.001–100 nM 0.73 fM [112]
WS2/β-CD@

CdS nanorod
AA/PBS 1 sun 1.46/2.36 MicroRNA-21 0.1 fM – 10 pM 25.1 aM [113]

Transition metal 
chalcogenides

Single-layer 
 nanoMoS2

PBS White LED - Dopamine 10 pM – 10 µM 2.3 pM [114]

SnS2@Ti3C2 Tris–HCl Xe lamp 1.86 5cadCTP 0.001 – 200 nM 260 fM [115]
MoS2/NGQDs PBS Xe lamp - Acetamiprid 0.05 pM – 1 nM 16.7 fM [116]
WS2/MoS2/β-

TiO2

AA/PBS  > 420 1.37/1.57/2.38 5-Formylcyto-
sine

0.01–200 nM 2.7 pM [117]

CdS/SnS2/
CNTs/GCE

PBS Xe lamp 2.12/1.92 Hydroquinone 0.2–100 μM 0.1 μM [118]
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the other hand, carbon nitrides (g-C3N4) offer high chemi-
cal stability and ease of functionalization due to their two-
dimensional (2D) structure and carbon–nitrogen conjugated 
bonds, but their relatively low conductivity can be a limi-
tation [121]. Conversely, semiconductor quantum dots are 
appreciated for their quantum confinement effects, which 
enable size-tunable optoelectronic properties and efficient 
charge transfer [122]. However, they can encounter stability 
and toxicity issues. Finally, TMCs exhibit diverse optoelec-
tronic properties and can function as metals and semicon-
ductors, depending on their structure and conditions. They 
offer significant potential but face challenges with defect 
control and complex material synthesis [123].

Each type of nanomaterial has unique advantages and 
drawbacks, influencing its suitability for specific PEC appli-
cations. The properties of each photoactive nanomaterials 
play a crucial role, individually or as composite nanomateri-
als, in the assembly of biosensor platforms. These platforms 
leverage the unique virtues of each nanomaterial to enhance 
the detection device’s analytical properties. The selection of 
the spectral range of radiation in the PEC process depends 
on the wavelength at which each photoactive material in 
the platform absorbs the radiation and uses it in the PEC 
detection process. The following section briefly reports the 
mechanisms explored for each family of materials.

Metals and metal oxides

The use of metallic nanostructures, such as those based 
on Au, Ag, and platinum (Pt), has been prompted in PEC 
systems due to their surface plasmon resonance properties 
[124]. Plasmons entail the collective oscillations of elec-
trons on the surface of metallic nanoparticles. Electrons 
are excited when light interacts with these nanoparticles, 
generating plasmonic oscillations that produce a distinctive 
light-particle interaction [125]. This interaction leads to sur-
face plasmon resonance, wherein light gets absorbed and 
scattered at particular wavelengths [126]. Plasmonic metal 
nanostructures can interact with light at frequencies aligned 
with the coherent oscillation of conduction electrons on the 
nanostructure’s surface, thus generating resonant surface 
plasmons [127–129]. Excitation with wide energy ranges 
favors the injection of hot electrons into the conduction 
bands of semiconductor materials through metal resonant 
plasmon energy transfer. The versatile optoelectronic attrib-
utes of plasmonic nanoparticles (narrow band-gap) enable 
photoelectric conversion efficiency through intimate interac-
tion with wide band-gap semiconductors [130, 131].

Metal oxides constitute a class of nanomaterials with 
semiconducting characteristics ideal for applications in 
PEC devices. Metal oxides present strong light absorption, 
modulable charge carriers (electrons and holes), and exten-
sive surface area available for electrocatalytic reactions [132, 

133]. Metal oxides have broad and tunable energy band-
gap, which allow them to absorb radiation in a wide range 
of wavelengths, a fundamental characteristic for generat-
ing electrons and holes upon material illumination [134]. 
Likewise, metal oxides have exceptional chemical stability 
and are suitable for operating in corrosive or hostile envi-
ronments, such as PEC cells [135, 136]. Many metal-oxide 
nanomaterials have catalytic properties, accelerating elec-
trochemical reactions and increasing photocurrent signals 
[137].

Zhang et al. [99] conducted a glutathione detection assay 
utilizing a “photo-anode” founded on zinc oxide (ZnO) 
nanorods decorated with Au nanoparticles. This plasmonic 
nanoparticle/semiconductor hybrid was employed as a com-
parative and competitive test to elucidate the role of metallic 
nanoparticles as charge transducers induced by the injec-
tion of hot electrons into the ZnO conduction band. Inves-
tigating the pathways of PEC signaling was based on water 
oxidation, the reaction’s self-sustaining capability, and the 
detection of various glutathione concentrations. Figure 2 A 
illustrates the detection mechanism of the Au/ZnO hybrid 
interface, where the surface plasmon resonance (SPR) of the 
Au nanoparticles enhances the absorption of visible plas-
mon-induced irradiation, generating energetic hot electrons. 
These electrons are then transferred to the conduction band 
of the metallic oxide material, facilitating charge transfer at 
the working electrode and enhancing charge carrier separa-
tion. Leveraging the surface sensitization provided by Au 
nanoparticles enables the creation of a glutathione disulfide 
(GSSG) detection assay with a linear range of 20–1000 µM, 
R2 = 0.996, and a LOD of 3.29 µM across the entire spectral 
window, encompassing both visible and ultraviolet ranges.

Conversely, the utilization of titanium oxide  (TiO2) [10, 
138] and its anatase phase (β-TiO2) [101] (Fig. 2B) has been 
explored for detecting specially designed DNA sequences 
within photoelectrode arrays. The plasmonic effect of an 
AuNP/tDNA nanobioconjugate on  dTiO2−x was employed 
for PEC detection of DNA. Likewise, exonuclease III (Exo 
III)-assisted target recycling amplification was coupled to 
the detection system to amplify the number of rDNA seg-
ments labeled with AuNPs. The capture probe targeted DNA 
sequences related to the manganese superoxide dismutase 
gene (MnSOD gene), a regulator of cellular redox homeosta-
sis. AuNP-tagged hairpin DNA probes were designed to rec-
ognize target DNA (tDNA) and undergo hybridization, acti-
vating Exo III and leading to the digestion of the probes into 
residual DNA (rDNA) segments containing AuNPs. These 
segments were then anchored to the electrode surface, facil-
itating DNA analysis. When plasmonic nanoparticles and 
 TiO2 converged within approximately 10 nm or less, a direct 
influence on the lifespan of charge carriers was observed. 
The generated hot electrons with a higher negative potential 
than that of the CB of  dTiO2−x could be injected smoothly 
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Fig. 2  A Au/ZnO hybrid interface for PEC detection of GSSG, repro-
duced with permission from Ref. [99]. B PEC genosensor system 
based on  dTiO2−x-AuNPs interaction for tDNA detection, reproduced 

with permission from Ref. [101]. C Fabrication of a PEC enzymatic 
sensor for elucidating the activity of AChE, reproduced with permis-
sion from Ref. [100]
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into the CB, resulting in the enhancement of photocurrent. 
Moreover, the impact of the crystalline phase of  TiO2 was 
demonstrated with a LOD of 0.6 pM, a linear range between 
1 pM and 10 nM, and a high linearity (R2 = 0.967). This 
effect was rooted in the interplay between the nanomaterial 
structure of PEC processes and surface plasmons’ resonance, 
together with the injection of hot electrons into the semicon-
ductor’s conduction band [139].

Zhang et al. [100] utilized a label-free PEC biosensing 
method to study acetylcholinesterase (AChE) activity using 
a nanocomposite made of zinc oxide nanorods (ZnONRs) 
within titanium dioxide nanotubes (TNs) on titanium foils 
(Fig. 2C). The PEC nanocomposite was created by anodic 
oxidation of Ti foil to form TNs, followed by cathodic depo-
sition of ZnONRs. AChE immobilized on this nanocompos-
ite showed enhanced photoelectrochemical responses under 
visible light. They observed that high concentrations of  Cd2+ 
inhibited AChE activity, while low levels stimulated it. The 
PEC assay produced electron holes under light irradiation, 
which reacted with acetylthiocholine (ATCh) to generate 
thiocholine (TCh). It increased the photocurrent propor-
tionally to the TCh concentration, reflecting AChE activity. 
The assay demonstrated high linearity in the 0.05–1000 µM 
range with a LOD of 0.023 µM. This method aided in under-
standing how metal ions affect enzyme activity and the 
pathogenesis of neurodegenerative disorders.

Carbon nitrides

Carbon nitrides are 2D nanostructures, often called 
g-C3N4, bearing a graphitic-like framework constituted by 
carbon and nitrogen atoms intricately assembled within a 
singular crystal lattice [140]. Their layered, planar con-
figuration facilitates the establishment of carbon–nitrogen 
conjugated bonds, fostering the generation of a continuous 
network of delocalized electrons traversing the 2D struc-
ture and conferring semiconductor attributes [141]. This 
distinctive feature was harnessed by Zeng et al. [142], who 
devised a photoelectrode based on graphitic carbon nitride, 
silver, and silver iodide (g-C3N4/Ag/AgI) heterojunction, 
as illustrated in Fig. 3A. The integration of 2D g-C3N4 
nanostructure with Ag as a plasmonic metal facilitated the 
design of a highly selective detection assay for hydrogen 
sulfide  (H2S). The interaction of band-gap values, ranging 
between 2.7 eV (g-C3N4) and 2.8 eV (Ag/AgI), along with 
the strategic alignment of AgNPs, catalyzed electron trans-
fer across metal/metal iodide and carbon nitride domains. 
The distribution of the three components on the platform 
formed a Z-scheme type system that reduced the recombi-
nation of photogenerated electron–hole pairs. The gradu-
ally increasing photocurrent showed that the Z-scheme 
pathway efficiently promoted the photoelectric conversion 
efficiency of g-C3N4. In the presence of target  S2−, the AgI 

was transformed to  Ag2S, leading to the broken Z-scheme 
electron migration pathway and, thus, the decreased pho-
tocurrent. The authors established that a 402-nm mono-
chromatic radiation source was optimal for inducing the 
generation of hot electrons in plasmonic metals, their sub-
sequent transfer to the 2D structure, and the acceleration 
of delocalized electrons. The optimal Z-scheme junction 
led to a highly effective PEC detection assay, exhibiting 
linearity between 5 and100 µM (R2 = 0.998) and a LOD of 
1.67 µM. This phenomenon stemmed from the judicious 
selection of the excitation range, a facet substantiated by 
spectroscopic analyses performed on the photoelectrode 
[143].

The research of Xu et al. [144] also exploited the char-
acteristics of an interface of g-C3N4 and α-Fe2O3 (Fig. 3B). 
This strategic pairing engendered a heterojunction for rapid 
migration of photogenerated carriers, thereby increasing the 
overall efficiency. The electrons within α-Fe2O3 could be 
effectively roused toward the conduction band, leveraging 
the influence of a 390-nm monochromatic radiation source 
to incite a gap formation within the valence band. Subse-
quently, the energized electron underwent a process of reso-
nance energy transfer to the nanostructure of g-C3N4. The 
delocalized electrons gained momentum within this domain, 
participating in redox reactions in the medium. This assay 
highlighted the electron acceptor attributes inherent to gra-
phitic carbon nitride structures, demonstrating high linearity 
(R2 = 0.993) in the range of 0.1–11.5 mg/L and a LOD of 
0.03 mg/L. Combining g-C3N4 with other semiconducting 
or metallic materials produced exceptional photoactive nano-
composites ideal for supporting PEC detection assays [145].

Tan et al. [105] developed an aptamer-based PEC sensor 
(aptasensor) and a heterojunction composed of cobalt oxide 
(CoO), AuNPs, and g-C3N4 to detect microcystin-leucine 
arginine (MC-LR). The PEC platform, shown in Fig. 3C, 
enhanced the separation of photo-induced electron–hole 
pairs, and AuNPs significantly increased the visible light 
absorption through SPR. The heterojunction structure ben-
efited from the large surface area of g-C3N4 and the tailored 
band-gap between g-C3N4 and CoO. AuNPs at the CoO-g-
C3N4 interface enhanced light absorption and acted as elec-
tron mediators, forming a Z-scheme-type system that reduced 
charge carrier recombination. When MC-LR was captured 
on the PEC aptasensor, holes accumulated on the CoO 
VB, oxidizing MC-LR and further hindering electron–hole 
recombination, resulting in increased photocurrent. Visible 
light irradiation generated electrons on the CoO CB that flow 
to AuNPs, recombining with holes from the g-C3N4 VB, 
enhancing electron–hole pair separation and suppressing 
recombination. The SPR effect of AuNPs also produced hot 
electrons, contributing to increased photocurrent for MC-LR 
quantification, with a linear range of 0.1 pM to 10 nM, an 
R2 = 0.997, and a low LOD of 0.01 pM.



Microchim Acta         (2024) 191:535  Page 9 of 26   535 

Quantum dots (QDs)

Semiconductor QDs constitute a collection of nanoscale 
materials, typically encompassing  102–105 atoms, with 
dimensions not exceeding 10 nm [146, 147]. Their compact-
ness engenders an environment conducive to the quantum 
confinement of electrons and holes across all three spatial 
dimensions [148]. Consequently, QDs harbor a distinctive 

semiconductor property wherein the energies and wave func-
tions of the constrained quantum states can be manipulated 
by adjusting the QDs’ size, shape, and composition. This 
inherent confinement is pivotal for exceptionally efficient 
charge transfer [149, 150].

Xue et al. [113] demonstrated the PEC behavior of QDs 
using a photoelectrode composed of tungsten disulfide 
 (WS2), β-cyclodextrin (β-CD), and cadmium sulfide (CdS) 

A

B

C

Glucose

e-

Gluconolactone

PBS (pH=7) solution

g-CN

-Fe
2
O

3

Time (s)

P
h

o
t
o

c
u

r
r
e

n
t
 
(
µ

A
)

0 mg L
-1

11.5 mg L
-1

Fig. 3  A GCE/g-C3N4/Ag/AgI assembly for the PEC detection of 
 S2− mean the  Ag2S formation, reproduced with permission from 
Ref. [142]. B g-C3N4/α-Fe2O3/ITO heterojunction for the PEC detec-

tion of glucose, reproduced with permission from Ref. [144]. C PEC 
aptasensor assembly based on CoO/Au/g-C3N4 heterojunction for the 
MC-LR detection, reproduced with permission from Ref. [105]
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heterostructure (Fig. 4A). Incorporating CdS QDs increased 
the photocurrent due to their ability to generate holes and 
electrons, which were enhanced by quantum confinement 
effects and created a localized electric field for ascorbic 
acid (AA) oxidation. The experiment used a variable power 
radiation source covering the visible spectrum and specific 
ultraviolet frequencies, highlighting the narrow wavelength 
activation range of QDs. The nanostructured interface was 
utilized to construct an ultrasensitive PEC biosensor for 
detecting microRNA-21 (miR-21) using a cyclic strand dis-
placement reaction (SDR)-mediated  Cu2+ quenching mecha-
nism. Adamantane (ADA)-labeled hairpin DNA1 (ADA-H1) 
was immobilized on the electrode via host–guest interac-
tion with β-CD@CdS. When a mixture of target miR-21 and 
biotin-labeled hairpin DNA2 (Bio-H2) was added, ADA-
H1 unfolded through hybridization. Bio-H2 then hybridized 
with ADA-H1, releasing miR-21 and triggering another SDR 
process. Avidin-labeled CuO nanoparticles attached to the 
duplex were dissolved, releasing  Cu2+, which reacted with 
CdS to form  CuxS, reducing the photocurrent. This easy-
to-assemble  WS2/β-CD@CdS heterojunction and the SDR-
dependent  Cu2+ quenching signal cascade enabled highly 
sensitive miR-21 detection, with a highly linear range of 0.1 
fM to 10 pM (R2 = 0.997) and a LOD of 25.1 aM.

In a similar vein, Liu et al. [109] developed a label-based 
PEC biosensing method for detecting prostate-specific 
antigen (PSA) using a CdS@g-C3N4 heterojunction and 
CuS-conjugated antibodies  (Ab2-CuS) for signal amplifi-
cation (Fig. 4B). The PEC immunosensor was constructed 
by assembling CdS@g-C3N4, chitosan (CS), AuNPs, and 
primary antibodies  (Ab1) on dual electrodes, followed by 
blocking unbound sites with bovine serum albumin (BSA). 
Varying concentrations of PSA were added to one work-
ing electrode (WE1) and a fixed concentration to the other 
(WE2) before incubating  Ab2-CuS on both. The specific 
binding of PSA to  Ab2-CuS led to a weakened photocur-
rent response in a linear concentration range of 0.01–50 ng/
mL and a LOD of 4 pg/mL. Spatial resolved radiometry 
was based on the photocurrent intensity ratio between WE1 
and WE2. With well-matched band energies, the photoac-
tivity of the CdS core and g-C3N4 shell enabled effective 
light harvesting and electron–hole pair separation. Elec-
trons migrated to the CdS CB while holes transferred to 
the g-C3N4 VB, enhancing photoactivity and stability. The 
 Ab2-CuS conjugates acted as signal amplifiers by weaken-
ing the PEC intensity in the presence of PSA. This effect 
occurred due to photogenerated electrons transferring from 
g-C3N4 to CuS, reducing electron transfer to the electrode. 
The captured electrons formed  O2

−• with dissolved  O2, 
enabling ultrasensitive PSA detection through photocurrent 
generation.

QDs coupled to highly sensitive and label-free PEC bio-
sensors were also studied by Yu et al. [112], as shown in 

Fig. 4C. The PEC biosensor was based on CdS QDs sen-
sitized porous hexagonal boron nitride (h-BN) nanosheets 
(NSs) and multiple-site tripodal DNA walkers (TDWs) 
formed through catalytic hairpin assembly (CHA). The 
porous h-BN NSs provided a large surface area and numer-
ous active sites, making them ideal for photoelectric sub-
strate materials. The h-BN/CdS QDs composite ensured the 
efficient transmission of photogenerated electrons and holes, 
resulting in high photoelectric conversion efficiency. CHA-
formed TDWs triggered by miRNA-141 immobilized a sig-
nificant amount of alkaline phosphatase (ALP) on the elec-
trode surface, catalyzing ascorbic acid 2-phosphate (AAP) to 
produce AA as an electron donor. The h-BN/CdS QDs com-
posite was coupled to a fluorine-doped tin oxide (FTO) elec-
trode and modified with Hairpin4 (H4) DNA tracks. Upon 
miRNA-141 initiation, TDWs bound to H4 on the electrode 
surface and underwent strand displacement, exposing the toe 
region of H4. This region formed a double-stranded DNA 
structure with ALP-AuNPs-H5 through further strand dis-
placement, continuing the walking process and anchoring 
more ALP on the electrode. Under visible light, h-BN NSs 
and CdS QDs photogenerated electrons and holes, moving 
electrons from the CB of h-BN to CdS QDs and then to the 
electrode, creating a stable photocurrent. It allowed for the 
sensitive detection of miRNA-141, achieving an excellent 
linear range from 1 fM to 100 nM (R2 = 0.997) and a detec-
tion limit of 0.73 fM. This PEC biosensor provides a robust 
strategy for early clinical diagnosis and biomedical research.

Transition metal chalcogenides (TMCs)

TMC nanomaterials are composed of chalcogen atoms, com-
monly oxygen, sulfur, selenium, or tellurium, in conjunc-
tion with a transition metal [151, 152]. Extensive research 
has been conducted to explore the optoelectronic properties 
of TMCs, especially tungsten disulfide  (WS2) and  MoS2. 
The molecular arrangement of TMCs involves positioning 
metal atoms surrounded by chalcogen atoms in an organized 
manner, forming 2D or 3D layers [153]. Due to the specific 
arrangement of atoms within the structure, they can exhibit 
conductive characteristics under certain conditions, such as 
nanometer-scale thinning or introducing defects [154, 155].

Wang et  al. [156] and Dai et  al. [116] reported 
improved performance of TMCs through the synergy of 
 MoS2/N-graphene (Fig. 5A) and  MoS2/NGQDs (Fig. 5B) 
nanostructures, respectively. Both studies utilized semi-
conductors to sensitize the TMCs and capture signals 
within narrow wavelength ranges of approximately 400 
and 630 nm. Wang et  al. employed  MoS2/N-graphene 
(NGH) heterojunctions for PEC analysis of chloram-
phenicol (CAP) in food samples with the aid of a CAP 
aptamer. The  MoS2/NGH composites displayed a reversed 
“V-shaped” p-n heterojunction curve, promoting efficient 
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Fig. 4  A  WS2/β-CD@CdS 
assembly for the PEC detection 
of miR-21, reproduced with 
permission from Ref. [113]. B 
PEC immunosensor based on 
ITO/CdS/g-C3N4/CuS hetero-
junction for the PSA detection, 
reproduced with permission 
from Ref. [109]. C FTO/CdS/h-
BN/AuNPs heterojunction plat-
form for the PEC detection of 
miRNA-141, reproduced with 
permission from Ref. [112]
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spatial charge separation and longer photocarrier lifetimes. 
The PEC sensor recognized CAP quickly, inhibiting elec-
tron–hole recombination and enhancing the photocurrent. 
The sensor showed excellent linearity from 32.3 ng/L to 
96.9 μg/L (R2 = 0.998), with a detection limit of 3.23 ng/L. 
On the other hand, Dai et al. used nitrogen-doped graphene 
quantum dots (NGQDs) with ultrathin  MoS2 nanosheets 
(NGQDs/MoS2) to create a high-performance photoac-
tive material. The NGQDs extended the lifetimes of pho-
togenerated charge carriers, leading to improved charge 
separation and substantial photocurrent signal amplifica-
tion for acetamiprid detection. The photocurrent intensity 
decreased with increasing acetamiprid concentration, 
showing a linear range from 0.05 pM to 1 nM and a detec-
tion limit of 16.7 fM. These advancements highlight the 
benefits of TMCs in PEC detection, including chemical 
stability, efficient charge carrier separation, and transport, 
resulting in significantly improved detection performance.

One particular type of TMC is metal sulfides, a class 
of nanomaterials that manifest metallic and semiconduc-
tor properties ideal for electronic applications [158, 159]. 
The optoelectronic mechanism of these materials hinges 
on the role of metal cations as electron donors and sulfide 
anions as electron acceptors [160], resulting in a partially 
occupied valence band and an unoccupied conduction band. 
This dynamic engenders a distinctive band-gap contingent 
upon the structural attributes of the ionic arrangement within 
the crystal lattice [11, 161]. One clear example is given by 
Wei et al. [157]. They developed a highly sensitive insulin 
detection assay on bismuth oxybromide (BiOBr) and sil-
ver sulfide  (Ag2S)-modified indium tin oxide (ITO) elec-
trodes (Fig. 5C). The photoelectrode was irradiated with 
420-nm monochromatic light in a solution with AA as a 
redox probe and PBS as an electrolyte medium. The reso-
nant energy levels of the BiOBr microspheres and  Ag2S 
nanoparticles enabled efficient electronic transition under 
visible light with high photocurrent signals compared to the 
individual systems. The photocurrent response in the PEC 
system decreased with a progressive increase in the insulin 
concentration on the electrode in a range between 0.001 to 
20 ng/ml, R2 = 0.993, and a detection limit of 0.2 pg/ml. 
This method ensured measurement stability and robust PEC 
activity.

Likewise, ITO photoelectrodes were modified with a het-
erojunction of nanosheets of tungsten disulfide, molybdenum 

disulfide, and titanium dioxide  (WS2/MoS2/β-TiO2) to detect 
5-formylcytosine (5fC), as shown in Fig. 5D [117]. The nano-
structured surface of TMCs was coated with  Fe3O4-NH2 
covalently coupled to 4-amino-3-hydrazino-5-mercapto-1,2,4-
triazole (AHMT) using a cross-linker of N-succinimidyl 
4-(N-maleimidomethyl) cyclohexanecarboxylate (SMCC). 
The hydrazine of AHMT specifically captured 5fC by reaction 
with the aldehyde groups of the AHMT/Fe3O4/WS2/MoS2/ITO 
interface. AA was used as a redox probe for interference-free 
detection under white light. 2D metal sulfide-semiconductor 
heterojunctions demonstrated outstanding photoactive and 
analytical performance, with a linear range of 0.01–200 nM 
(R2 = 0.998) and a LOD of 2.7 pM. It highlights the role of 
TMCs in PEC sensing applications, providing sensitive and 
time-stable responses.

In the evolving field of PEC bioanalysis, significant pro-
gress has been made across various approaches and applica-
tions, each offering unique advantages and challenges. Zhao 
et al. [42] emphasized integrating PEC techniques with bio-
molecular detection, highlighting the development of bismuth-
based photoelectrodes to address toxicity and low efficiency 
in conventional materials. This approach shows promise in 
enhancing PEC performance through improved charge sepa-
ration and light absorption. On the other hand, Ai et al. [43] 
focused on applying electrochemical, electrochemilumi-
nescent, and PEC techniques for detecting epigenetic modi-
fications, underscoring the importance of these methods in 
diagnosing diseases and understanding biological functions. 
It emphasized the need for ultra-sensitive and specific detec-
tion technologies in this context. Similarly, Chen et al. [44, 
45] provided an extensive overview of PEC DNA biosensors, 
detailing the types of transducers and probe immobilization 
techniques used and various DNA interactions that can be 
monitored. Despite significant advancements, challenges such 
as stability and reproducibility remain, with future research 
directed to solve such issues, develop new photoactive mate-
rials, and integrate nanotechnology for clinical applications.

Liu et  al. [162] explored the advancements in self-
powered PEC sensors, which enhance portability and sim-
plify operation by eliminating the need for external power 
sources. These sensors leverage solar energy to drive redox 
reactions, offering superior sensing performance and envi-
ronmental benefits. In contrast, Pang et al. [163] delved 
into semiconductor nanomaterial-based PEC biosensing, 
highlighting the role of materials such as metallic oxides, 
sulfides, and graphitic carbon nitride in constructing high-
performance PEC sensors. It pointed out the challenges 
of improving photoconversion efficiency and addressing 
photobleaching. Finally, Tang et al. [79] emphasized the 
impact of nanotechnology on PEC biosensing, focusing on 
advanced photoactive nanomaterials and their charge separa-
tion and transfer mechanisms, the biomedical applications 
of PEC biosensors, and the potential of composite materials 

Fig. 5  A PEC aptasensor based on ITO/NGH/MoS2 for CAP detec-
tion, reproduced with permission from Ref. [156]. B  MoS2/NGQDs-
modified platform for PEC aptasensing detection of acetamiprid, 
reproduced with permission from Ref. [110]. C PEC immnosensing 
assembly for insulin detection based on ITO/BiOBr/Ag2S heterojunc-
tion, reproduced with permission from Ref. [157]. D  WS2/MoS2/
Fe3O4/β-TiO2 platform for PEC detection of 5fC, reproduced with 
permission from Ref. [117]
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in overcoming limitations like high charge recombination 
rates and low photoelectric conversion efficiency. Overall, 
the promising future of PEC bioanalysis, driven by continu-
ous innovations in material science and sensing mechanisms, 
aims to enhance sensitivity, specificity, and practical appli-
cations in fields ranging from disease diagnosis to environ-
mental monitoring.

Red light and NIR excited PEC biosensors

The evolution of diverse structural configurations integrat-
ing optical and electrochemical analyses sets the stage for 
the refinement of more accurate and efficient PEC assays 
to quantify a wide array of substances [164]. Within this 
framework, the adoption of red light and NIR excitation in 
PEC devices offsets the limitations of existing sensors with 
UV light. Radiation in the UV range restricts the applica-
tions of PEC biosensors in areas of biodetection of clini-
cally relevant biomarkers due to conformational damage 
and decreased biological activity of protein-type biorecep-
tors such as antibodies or enzymes [165–167]. NIR light, 
spanning wavelengths from over 650 up to 1700 nm, is 

gaining importance in biosensing and biomedicine due to 
its minimal spectral interference, ability to penetrate deep 
tissues, and limited harm to biological entities [168, 169]. 
Consequently, considerable efforts have been devoted to 
extending the excitation source into the visible spectrum 
by coupling small band-gap semiconductors to augment 
light absorption efficiency and biosensor performance. 
Radiation in this range is less energetic, facilitating non-
invasive or minimally invasive detection in biological sam-
ples such as blood or tissues [170, 171]. Red light and NIR 
PEC biosensors also exhibit reduced background inter-
ference (photobleaching), which improves signal quality, 
biosensor sensitivity, and probe stability over extended 
analysis periods [172]. Table 2 reviews the most repre-
sentative reports on nanobiosensors activated by red and 
NIR light.

Red and NIR light have been explored to detect breast 
cancer cell lines (MCF-7) [173, 174]. Plasmonic nanopar-
ticles were incorporated into ITO electrodes modified with 
multicomponent semiconductor nanomaterials to improve 
the photoelectric conversion efficiency. In the first study, 
TMC,  WS2, and AuNPs heterojunctions were assembled on 
ITO to detect MCF-7 cells non-invasively. A long excitation 

Table 2  PEC biosensors activated by red light and NIR

AFP, alpha-fetoprotein; AuNSs, gold nanostars; AA, ascorbic acid; AgInS2, silver indium disulfide quantum dot; AgS2/AuNPs, heteroconjuction 
of silver sulfide quantum dot and gold nanoparticles; Bi2O2S/AuNPs, heteroconjuction of bismuth oxysulfide chalcogenide and gold nanoparti-
cles; CEA, carcinoembryonic antigen; CN/TsCuPc, heteroconjuction of carbon nitride and copper phthalocyanine; DA. dopamine; FTO, fluorine-
doped tin oxide; G, guanine; GC, glassy carbon; H2O2, hydrogen peroxide, ITO, indium tin oxide; KCl, potassium chloride; λexc, excitation 
wavelength; miRNA-21, microRNA 21; Na2SO4, sodium sulfate; NaCl, sodium chloride; NaYF4, Er@CdTe, core–shell sodium yttrium tetrafluor-
ide doped with ytterbium and erbium, coated with cadmium telluride upconversion nanoparticle; NaYF4, Tm@TiO2, core–shell sodium yttrium 
tetrafluoride doped with ytterbium and thulium, coated with titanium dioxide upconversion nanoparticle; NaYF4, Tm/ZnO/CdS, heteroconjuction 
of sodium yttrium tetrafluoride doped with ytterbium and thulium upconversion nanoparticle, zinc oxide, and cadmium sulfide; PB, phosphate-
buffered; PBS, phosphate-buffered saline; TET, Tris–HCl, Tris(hydroxymethyl)aminomethane hydrochloride; WS2/AuNPs, heteroconjuction of 
tungsten disulfide and gold nanoparticles

Platform structure Electrolyte/redox probe λexc (nm) Detected biomarker Linear range LOD Ref

ITO/WS2/AuNPs PBS/AA 630 MCF-7 cell 102 –5 ×  106 cells/mL 21 cells/mL [173]
ITO/AgS2/AuNPs PBS/AA 810 MCF-7 cell 102 –  107 cells/mL 100 cells/mL [174]
FTO/NaYF4:Yb,Tm@TiO2 G bases 980 CEA 0.01–40 pg/mL 3.6 pg/mL [175]
GC/AuNSs PBS 780 AA 0.1 – 11 mM 10 µM [176]
ITO/Bi2O2S/AuNPs PBS/AA 808 MCF-7 cell 50 – 5 ×  106 cells/mL 17 cells/mL [177]
FTO/NaYF4:Yb,Tm/ZnO/CdS PBS/AA 980 AFP 0.01–200 ng/mL 5 pg/mL [178]
FTO/CdS/NaYF4:Yb,Tm@NaYF4 PBS 980 miRNA-21 0.05–100 nM 8 pM [179]
FTO/Ag2S/AuNP PB 980 MC-LR 10 pg/L –10 μg/L 7 pg/L [180]
ITO/AgInS2 Tris–HCl/AA-NaCl-KCl 630 CCRF-CEM cell 1.5 ×  102–3 ×  105 cells/mL 16 cells/mL [56]
NaYF4:Yb,Tm@ZnO Na2SO4 980 CEA 0.1–300 ng/mL 0.032 ng/mL [181]
NaYF4:Yb,Er/Ag2S Na2SO4 980 CEA 0.005–5 ng/mL 1.9 pg/mL [165]
TiO2/AuNPs PBS 760 TET 2–150 nM 0.6 nM [182]
ITO/CN/TsCuPc PB/DA  > 630 DA 0.05–50 µM 2 nM [183]
FTO/ZnO/Ag/NaYF4:Yb,Tm PBS 980 AFP 0.05–100 ng/mL 0.04

ng/mL
[184]

NaYF4:Yb,Er@CdTe Na2SO4 980 CEA 10 pg/mL – 5.0 ng mL 4.8 pg/mL [185]
FTO/NaYF4:Yb, Er@Au@CdS Na2SO4/glucose-H2O2 980 AFP 0.01–40 ng/mL 5.3 pg/mL [186]
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wavelength was employed in PEC bioanalysis to prevent cell 
damage or denaturation.  WS2 nanosheets exhibited low cyto-
toxicity and harvested red light to produce photoinduced 
electrons injected into the ITO electrode, with photogen-
erated holes and scavenged by AA. The AuNPs assembly 
on  WS2 nanosheets amplified the photocurrent by approxi-
mately 31 times due to the localized surface plasmon reso-
nance (LSPR) effect of the AuNPs. The direct transfer of hot 
electrons from the plasmonic metal to the CB of the  WS2 
nanosheet occurred by the induction of a collective oscil-
lation of free electrons on the surface of the AuNPs under 
630-nm irradiation (Table 2). A MUC1 aptamer immobi-
lized to the nanostructured interface was used to capture 
MCF-7 cells as a model analyte specifically. Detection of 
MCF-7 cells was related to the decrease in photocurrent 
under irradiation with red light at a fixed voltage in amper-
ometry at 0.1 V, showing a high linearity in a range of  102 
– 5 ×  106 cells/mL (R2 = 0.996), with a LOD 21 cells/mL. 
The efficiency of plasmon-enhanced photoelectric conver-
sion highlighted the effectiveness of PEC methods for sensi-
tively detecting cancer-related biomarkers without collateral 
damage to the analyte biomolecules.

On the other hand, the ITO/Ag2S/AuNPs heterojunc-
tion was used under 810-nm NIR light to quantify MCF-7 
cells and dynamically evaluate cell surface glycan expres-
sion after sialidase (SA) stimulation, as shown Fig. 6B and 
Table 2.  Ag2S QDs showed excellent PEC properties in the 
NIR range, and adding AuNPs created a hybrid material with 
enhanced photoelectric conversion efficiency. AuNPs exhib-
ited strong LSPR, leading to significant signal amplification. 
The biosensing platform featured a self-assembled mon-
olayer (SAM) of thiol on the AuNPs, facilitating the assem-
bly of 4-mercaptophenylboronic acid (MPBA) molecules. 
MPBA was a biorecognition element to capture MCF-7 cells 
through the reaction between SA on the cell membrane and 
boric acid in MPBA. This specific capture decreased pho-
tocurrent proportional to the MCF-7 concentration, with 
a linear range of  102 –  107 cells/mL, an R2 = 0.992, and a 
 102 cells/mL LOD. The LSPR effect enhanced the photo-
electric conversion efficiency by increasing light scattering 
and promoting electron–hole pair generation in  Ag2S QDs. 
The platform effectively transferred plasmonic energy from 
AuNPs to  Ag2S QDs, improving light absorption and charge 
separation, which is crucial for sensitive MCF-7 detection.

The plasmon-enhanced direct electrocatalysis of gold 
nanostars (AuNSs) deposited on a glassy carbon (GC) sub-
strate for PEC detection of AA is shown in Fig. 6D [176]. 
The electrocatalytic performance of the AuNSs/GC system 
increased substantially under red light irradiation. This 
enhancement was attributed to the collective oscillations of 
conduction electrons in the light-excited AuNSs, also called 
LSPR. The study highlights the tunability of the LSPR of 
plasmonic nanostructures through parameters such as size, 

shape, interparticle distance, and surrounding medium prop-
erties. LSPR excitation drove electrons from the sharp tips 
(hot spots) of the AuNSs to higher energy levels, generating 
hot electrons. The anisotropic AuNSs hosted numerous “hot 
spots,” facilitating the efficient generation of hot carriers 
and a reduced activation energy barrier. Likewise, the pho-
tothermal effect of LSPR excitation further increased the 
electrocatalytic performance of the AuNSs. The measure-
ment at open circuit potential (OCP) led the hot electrons 
to the external circuit, separating them from the holes and 
preventing recombination. The accumulation of hot holes on 
the surface of AuNSs enhanced the oxidation ability toward 
AA, reducing the overpotential and activation energy for AA 
electrocatalysis in a linear range of 0.1 – 11 mM with a LOD 
of 10 µM and a detection sensitivity of 190.9 µA/cm2mM. 
The detailed description of plasmon-mediated electrocataly-
sis under NIR and red-light irradiation lays the foundation 
for the design of PEC (bio)sensors based on anisotropic plas-
monic nanostructures.

Similarly, other studies have reported the use of the con-
junction between AuNPs and TMC, QDs, carbon nitrides, 
or metallic oxides, activated with red or NIR radiation for 
the detection of various targets shown in Table 2: MCF-7 
cells at 808 nm [177], MC-LR cells at 980 nm [180], CCRF-
CEM cells at 630 nm [56], tetracycline at 760 nm [182], 
and dopamine at 630 nm [183]. These studies highlight the 
versatility of detection modalities achievable with different 
arrangements of photoactive nanomaterials using red and 
NIR radiation. Additionally, future research can focus on 
developing new NIR light-sensitive materials and miniatur-
ized photoelectrodes, applying them further for in vivo and 
single-cell analysis due to the versatility of irradiating nano-
structured surfaces based on these photoactive nanomaterial 
arrangements.

Lanthanide-doped up-conversion nanoparticles (UCNPs) 
represent another material-sensitive NIR radiation type. 
UCNPs convert low-energy excitation light into high-energy 
fluorescence emission, leveraging their exceptional chemical 
stability, resistance to photobleaching, low toxicity, and abil-
ity to convert NIR light into shortwave light in the UV–vis-
ible spectral range. UCNPs typically consist of a host material 
like  NaYF4 doped with lanthanide ions such as  Er3+,  Yb3+, 
and  Tm3+, which possess discrete energy levels. Upon NIR 
illumination, these lanthanide ions absorb low-energy photons 
through sequential multi-photon absorption or energy transfer 
processes. A common mechanism, energy transfer upconver-
sion (ETU), involves an ion like  Yb3+ absorbing a photon and 
transferring its energy to another ion like  Er3+, allowing the 
absorption of multiple low-energy photons. In a typical two-
photon upconversion process, a lanthanide ion absorbs two 
photons sequentially, first exciting the ion from the ground to 
an intermediate state and then to a higher energy state. The 
absorbed energy is often transferred from a sensitizer ion (e.g., 
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Fig. 6  A  WS2/AuNPs-modified platform for PEC cytosensing detec-
tion of MCF-7, reproduced with permission from Ref. [173]. B 
PEC cytosensing detection of MCF-7 based on ITO/Ag2S/Au het-
erojunction, reproduced with permission from Ref. [174]. C FTO/

NaYF4:Yb,Tm@TiO2 platform for PEC detection of CEA, repro-
duced with permission from Ref. [175]. D PEC detection of variable 
concentrations of AA based on GC/AuNS heterojunction, reproduced 
with permission from Ref. [176]
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 Yb3+) to an activator ion (e.g.,  Er3+), which emits a higher-
energy photon. Once in the excited state, these ions can return 
to lower energy states by emitting photons (radiative relaxa-
tion), observed as upconversion luminescence, while minimiz-
ing non-radiative relaxation to maintain high upconversion 
efficiency. The application of PEC biosensors based on NIR 
radiation of UCNPs for detecting biomarkers in the clinical 
field has also been demonstrated. Tang et al. [175] presented 
a proof of concept of a PEC platform for the sensitive detec-
tion of carcinoembryonic antigen (CEA) under 980-nm NIR 
excitation, using core–shell  NaYF4:Yb,Tm@TiO2 UCNPs. 
(Fig. 6C). The detection strategy was based on light conver-
sion from NIR to UV and signal amplification by rolling cir-
cle amplification (RCA). The platform employed a sandwich 
assay with two CEA-targeting aptamers immobilized on bio-
functional magnetic beads, activating RCA to produce a long 
guanine (G)-rich oligonucleotide strand. Enzymatic digestion 
released G bases by enhancing the photocurrent under NIR 
light excitation. This approach took advantage of the minimal 
photobleaching and low phototoxicity of NIR light by effi-
ciently converting it to UV light to activate the  TiO2 layer and 
generate a photocurrent increase proportional to the CEA con-
centration. The device exhibited high sensitivity with an LOD 
of 3.6 pg/mL, in a linear range of 0.01–40 pg/mL (R2 = 0.994), 
and successfully detected CEA in serum samples. This novel 
PEC biosensing system is promising for detecting low-abun-
dance biomolecules in biological fluids using UCNPs.

UCNP-activated systems have been extensively used 
for PEC biosensing due to their ability to function as non-
invasive sensitizer systems activated by 980-nm radiation, 
which in turn activates heterojunction systems between 
UCNPs and metals, metal oxides, and QDs through visible 
radiation emitted via fluorescence processes. The detection 
of alpha-fetoprotein (AFP) has been achieved through the 
heterojunction between  NaYF4:Yb,Tm/ZnO/CdS [178] and 
 NaYF4:Yb,Er@Au@CdS [186], as shown Table 2. Addi-
tionally, the detection of carcinoembryonic antigen (CEA) 
has been conducted using UCNP heterojunctions based on 
 NaYF4:Yb,Tm@ZnO [181],  NaYF4:Yb,Er/Ag2S [165], and 
 NaYF4:Yb,Er@CdTe [185]. These studies demonstrate the 
versatility of such systems for analyte detection based on the 
conjunction of different types of materials in hybrid systems, 
which enhance the detection performance of PEC systems 
and pave the way for ongoing research into nanostructured 
platforms based on UCNPs.

Characterization of PEC biosensors

The accurate and rigorous characterization of PEC interfaces 
is crucial in developing reproducible and trustworthy detec-
tion assays. The most widely used techniques for character-
izing PEC biosensing are listed in Table 3. Typically, the most 

relevant parameters of PEC platform surfaces are character-
ized in terms of surface chemistry, morphology, and (photo)
electrochemical performance. Energy-dispersive X-ray spec-
troscopy (EDS) is a powerful analytical technique for char-
acterizing PEC biosensors. It provides valuable information 
about the elemental composition, material characterization, 
surface modification verification, quality control, material 
degradation studies, and correlation with materials within the 
PEC system [96]. Furthermore, Fourier-transformed infrared 
spectroscopy (FT-IR or Raman) and X-ray photoelectron 
spectroscopy (XPS) are versatile analytical techniques that 
can be integrated into PEC biosensors to provide insights into 
molecular composition, chemical bonds, surface functionali-
zation, and the monitoring of chemical changes. FT-IR and 
XPS enhance the understanding of PEC biosensor behavior by 
offering information about the chemical nature of the sensor’s 
surface and the biomolecule-analyte interactions [187, 188].

Alternatively, ultraviolet–visible diffuse reflectance spec-
troscopy (UV–vis DRS) is a valuable analytical technique 
employed in PEC biosensors to investigate the optical proper-
ties of materials, specifically their absorption and reflectance 
of ultraviolet and visible light. This technique is essential for 
band-gap determination, quantification of photogenerated carri-
ers, monitoring chemical changes, studying the kinetics of PEC 
reactions, and characterizing the performance of functionalized 
surfaces [189]. Finally, photoluminescence (PL) can be utilized 
in PEC biosensors to investigate the emission of light, usually 
fluorescence, from materials exposed to photons, typically from 
a light source. PL is commonly used for characterizing fluores-
cent labels, enhancing sensitivity, monitoring redox reactions, 
conducting kinetic studies, enabling multiplexed detection, and 
facilitating real-time monitoring of PEC surfaces [190].

Scanning electron microscopy (SEM), field emission scan-
ning electron microscopy (FESEM) [191], and atomic force 
microscopy (AFM) [117] are powerful surface analytical 
techniques that can be used in PEC biosensors to study the 
surface morphology, structure, and composition of materials. 
Together, they provide comprehensive analyses of morphol-
ogy, nanostructuring, chemical composition, real-time moni-
toring, and interaction analysis during the immobilization of 
biomolecules. Electrochemical techniques, including cyclic 
voltammetry (CV), electrochemical impedance spectroscopy 
(EIS), and chronoamperometry, play crucial roles in devel-
oping and characterizing PEC biosensors. CV is relevant 
for determining redox properties, measuring band-gaps and 
energy levels, kinetic studies, and assessing sensitivity in PEC 
devices [192]. On the other hand, EIS is used to characterize 
interfacial properties, monitor charge transfer resistance, and 
understand charge transfer rates and diffusion processes [193]. 
Finally, chronoamperometry is commonly used for real-time 
monitoring and steady-state current measurements [194].

The surface chemistry, morphology, and structural proper-
ties of nanostructured materials that alter the interfaces in PEC 
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biosensors are meticulously characterized to optimize the ana-
lytical performance of these devices. Transmission electron 
microscopy (TEM) is a powerful technique used to investigate 
nanoscale structures and compositions, offering exceptional 
resolution and the ability to observe internal structures [195]. 
X-ray diffraction (XRD) is a fundamental tool in materials 
research and crystallography, providing detailed information 
about atomic arrangements in crystals, which is essential for 
understanding material properties at the atomic scale [196]. 
Dynamic light scattering (DLS) and electrophoretic light scat-
tering (ELS) are typically employed to study size and surface 
charge [197] for characterizing colloidal systems.

Concluding remarks and perspectives

PEC analysis and ongoing research in photoactive materials 
as transduction platforms have garnered extensive attention to 
enhance these devices’ analytical performance. It is achieved by 
addressing the inherent challenges of PEC detection systems, 

focusing on acquiring new nanomaterials, and designing novel 
detection strategies. For example, nanomaterials capable of 
facilitating energy interconversion processes with superior effi-
ciency have boosted the ultrasensitive, reproducible, and stable 
detection of various bio-analytes. Optoelectronic properties of 
nanomaterials exhibiting semiconductor behavior, including 
various metal oxides, carbon nitrides, QDs, and TMCs, have 
been extensively exploited for this purpose. However, chal-
lenges still must be tackled fully by a broader range of excita-
tion sources covering more portions of the visible and NIR 
spectral range. Therefore, detection strategies aimed at enhanc-
ing the PEC behavior of devices have shifted toward sensitizing 
the materials with counterparts excitable at longer wavelengths 
and lower energy levels. Adopting red light and NIR excitation 
in PEC devices may overcome the limitations of existing (bio)
sensors primarily reliant on UV–vis light that restricts their 
potential applications, particularly in vivo, due to its shallow 
tissue penetration. NIR light, spanning wavelengths greater than 
650 nm, enjoys minimal spectral interference, deep tissue pen-
etration, and limited damage to biological entities.

Table 3  Characterization techniques of PEC biosensing interfaces

Properties Characterization technique Use in PEC systems Ref

Surface chemistry EDX Backscattered electrons in electron microscopy are employed to obtain elemental map-
ping of the composition of the PEC interface

[96]

FTIR-Raman The functional groups available for anchoring photoactive nanomaterials and biological 
recognition elements are characterized by measuring the different vibrational modes 
determined by the bonds of atoms from these groups

[187]

XPS XPS offers the ability to characterize the PEC interface’s chemical composition accu-
rately. It is also helpful in monitoring the biosensor assembly based on the types of 
bonds formed

[188]

UV–vis DRS This technique leads to the characterization of solid interfaces by dispersing a fraction of 
the incident UV–vis radiation on its surface, as seen in PEC systems with photoactive 
nanomaterials

[189]

PL The photoactivity of materials nanostructured on the PEC biosensing interface is charac-
terized by photoluminescence (PL), which involves the spontaneous emission of light 
from a material under optical excitation

[190]

Morphology SEM-FESEM The modification of PEC interfaces with nanostructured photoactive materials can be 
characterized using SEM by scanning with secondary and backscattered electrons. 
Furthermore, FESEM with field emission can be used to attain higher resolution, 
improving the observation of nanoscale details

[191]

AFM Critical morphological properties, such as surface topography, interaction forces, 
mechanical properties, electrical properties, and biomolecular interactions, can be 
measured at PEC sensing interfaces

[117]

Electrochemistry CV CV can be used to investigate redox reactions in the PEC biosensor and to measure the 
photocurrent generated when light activates the photoactive material in the presence 
of the analyte. This technique measures the photocurrent response across a range of 
potentials, enabling the determination of redox potentials and reaction kinetics

[192]

EIS EIS is employed to analyze the electrical impedance of the PEC system over a range 
of frequencies. It can provide insights into charge transfer resistance, adsorption pro-
cesses, and other electrochemical properties relevant to PEC biosensing

[193]

Chronoamperometry This technique involves measuring the photocurrent at a fixed potential over a specific 
period. By monitoring changes in photocurrent over time, chronoamperometry can 
provide kinetic information about the interaction between the analyte and the bioactive 
elements on the sensor surface

[194]
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The possibility of miniaturizing detection assays is 
another strength of PEC devices, enhancing electrode design 
versatility without compromising performance metrics like 
electron transport and stability. Miniaturization enables 
multi-analyte detection in single measurements, which is 
essential for POC devices that improve disease diagno-
sis and intervention. Leveraging patient-specific biology, 
physiology, and genetic precision medicine promises to 
revolutionize healthcare by predicting disease risks and 
treatment responses. In this context, transformative diag-
nostics incorporate smart, innovative devices and informatic 
approaches using big data analytics, the Internet of Things 
(IoT), machine learning, blockchain, artificial intelligence 
(AI), augmented reality, system integration, cloud and fog 
computing, and smartphones, offering advanced health-
care solutions through cutting-edge converging technolo-
gies. Integrating PEC devices with these advanced systems 
enhances their capability to deliver precise and rapid multi-
analyte detection in real-time, which is crucial for effectively 
implementing precision medicine. However, most research 
involving PEC devices for biosensing assays employs spec-
tral ranges in the tail of the UV region, the near-UV–vis-
ible region, or a combination of the entire visible region, 
overlooking the significant advantages of red light and the 
NIR range. Integrating these underutilized spectral ranges 
could further enhance the sensitivity and effectiveness of 
PEC devices in advanced smart diagnostic applications.

The advantages of using metal oxides and carbon nitrides in 
photoelectrochemical biosensors are substantial. As described 
by conventional band theory, metal oxides offer wide-space 
ionic structures with minimal curvatures in their electronic 
bands, resulting in smaller effective masses and enhanced car-
rier mobility. Conversely, carbon nitrides provide an adjustable 
band-gap for tunable electrical conductivity, light response, 
and high transparency across a broad spectrum of wavelengths, 
making them ideal for PEC detection devices. These properties 
make metal oxides and carbon nitrides valuable in advancing 
PEC biosensors, enhancing their performance, and expanding 
their applications in various fields. Their high carrier charge 
mobility holds promise for high-speed electronic devices like 
thin film transistors and photovoltaic devices. Furthermore, 
their photoluminescent properties facilitate light emission 
upon electromagnetic radiation excitation, proving useful 
in (bio)sensors and lighting devices. Their high mechanical 
strength makes them ideal for optical and electronic devices 
requiring robust and durable materials.

Semiconductor QDs activated by UV radiation offer 
optoelectronic properties such as tunable size, high photo-
luminescence quantum yield, quantum confinement effect, 
and strong absorption coefficients. Their high excitation 
efficiency enables effective absorption and conversion 
of UV light into visible emission, making them ideal for 
light-emitting devices. The adjustable emission spectrum 

of QDs, achieved by varying their size, is valuable for 
biosensors, displays, and as marks of biomolecules. Their 
stability and durability ensure consistent performance over 
time under various conditions, and their compatibility with 
flexible substrates allows for use in flexible electronic and 
optoelectronic devices like wearable displays and (bio)
sensors. TMCs with high excitation efficiency also con-
vert UV light into visible light, which is helpful for light 
emission devices. Their wide adjustable band-gap range 
enhances versatility, and their stability and good light dis-
persion improve the uniformity and quality of emitted light 
in lighting and display applications.

Exploiting the benefits of PEC systems activated at wave-
lengths exceeding 650 nm is worth mentioning. Their pro-
found tissue penetration, cellular safety, and detector stabil-
ity capabilities enable the detection of biomolecules within 
dense samples, including tissues and bodily fluids, rendering 
them promising for biomedical and diagnostic applications. 
Additionally, they effectively mitigate autofluorescence, 
thereby increasing sensitivity and selectivity by minimizing 
interference from biological components. Moreover, these 
systems inflict minimal damage to cells and tissues, facilitat-
ing real-time measurements under physiological conditions 
without adverse effects. For example, notable optoelec-
tronic properties of plasmonic nanoparticles enhance light 
capture and conversion efficiency through plasmonic cou-
pling, thereby increasing detection sensitivity and enabling 
the detection of biomolecules at low concentrations. Energy 
UCNPs can convert infrared light into visible or ultraviolet 
light, allowing biosensors to be excited with shorter wave-
lengths and enhancing detection efficiency by reducing the 
autofluorescence of biological components. NIR-activated 
QD, which absorbs NIR light and emits visible light, is help-
ful for exciting PEC biosensors, thereby improving the sen-
sitivity and selectivity of biomolecule detection. Photonic 
crystals manipulate and control light propagation at specific 
wavelengths, improving light capture efficiency and detec-
tion sensitivity.

Furthermore, PEC systems feature photodetectors char-
acterized by enhanced stability, ensuring precise and repro-
ducible measurements over extended periods. Their integra-
tion with biosensing approaches, such as optical coherence 
tomography and in vivo fluorescence imaging, paves the way 
for further positioning these devices into imaging systems 
tailored for biomedical applications. These technologies 
promise to develop more sensitive, selective, and efficient 
PEC biosensors for biomedical, food safety, and environ-
mental applications, thus revolutionizing clinical diagnos-
tics, pathogen detection, and environmental monitoring, 
ultimately improving society’s health and well-being.
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