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Abstract
Background  Cryptococcosis is a potentially life-threatening fungal disease caused by encapsulated yeasts of the genus 
Cryptococcus, mostly C. neoformans or C. gattii. Cryptococcal meningitis is the most frequent clinical manifestation in 
humans. Neutralizing autoantibodies (auto-Abs) against granulocyte–macrophage colony-stimulating factor (GM-CSF) have 
recently been discovered in otherwise healthy adult patients with cryptococcal meningitis, mostly caused by C. gattii. We 
hypothesized that three Colombian patients with cryptococcal meningitis caused by C. neoformans in two of them would 
carry high plasma levels of neutralizing auto-Abs against GM-CSF.
Methods  We reviewed medical and laboratory records, performed immunological evaluations, and tested for anti-cytokine 
auto-Abs three previously healthy HIV-negative adults with disseminated cryptococcosis.
Results  Peripheral blood leukocyte subset levels and serum immunoglobulin concentrations were within the normal ranges. 
We detected high levels of neutralizing auto-Abs against GM-CSF in the plasma of all three patients.
Conclusions  We report three Colombian patients with disseminated cryptococcosis associated with neutralizing auto-Abs 
against GM-CSF. Further studies should evaluate the genetic contribution to anti-GM-CSF autoantibody production and the 
role of the GM-CSF signaling pathway in the immune response to Cryptococcus spp.

Keywords  Granulocyte–macrophage colony-stimulating factor · Pulmonary alveolar proteinosis (PAP) · Meningitis · 
Cryptococcus neoformans · Cryptococcus gattii

Introduction

Fungi are abundant in the environment, but only a few cause 
human disease [1, 2]. Despite the availability of several 
potent antifungal drugs, the mortality associated with inva-
sive fungal diseases (IFDs) often exceeds 50% [3]. More 
than 90% of all reported fungal-disease related deaths are 

caused by species from four genera: Aspergillus spp., Can-
dida spp., Pneumocystis jirovecii, and Cryptococcus spp., 
with cryptococci accounting for almost half of all fungus-
related deaths [2, 3]. IFDs occur mostly in patients with 
acquired immunodeficiencies, or, more rarely, in individu-
als with inborn errors of immunity (IEI) [1, 4, 5]. Cryp-
tococcosis is a life-threatening IFD mostly caused by C. 
neoformans or C. gattii. C. neoformans has a worldwide 
distribution and is the etiological agent responsible for about 
95% of all cases of cryptococcosis, in both immunocom-
promised and apparently immunocompetent hosts [4]. By 
contrast, C. gattii has a restricted geographic distribution 
and generally affects apparently healthy individuals [4]. 
A survey carried out in Colombia between 1997 and 2016 
identified 1974 cases of cryptococcosis. Acquired immu-
nodeficiency syndrome (AIDS) was the leading risk factor 
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in 1505 individuals (76.2%, with an overall incidence of 
1.1 cases per 1000 people with AIDS), whereas no appar-
ent risk factor was identified in 248 cases (12.6%, overall 
incidence of 0.23 cases per 100,000 inhabitants) [6, 7]. The 
most common clinical presentation in the 1974 patients was 
meningitis (1600 patients, 81.1%), in both the AIDS and 
non-AIDS groups of patients [6].

Anti-cytokine neutralizing auto-Abs, usually found in 
adult patients, are considered to constitute autoimmune 
phenocopies of IEI [8]. Indeed, by blocking the biologi-
cal function of their target cytokines, these auto-Abs cause 
clinical phenotypes mimicking those of inborn errors of the 
corresponding cytokines or their receptors [8]. Patients with 
neutralizing auto-Abs against interferon-gamma (IFN-γ) are 
mostly vulnerable to disseminated infections with non-viru-
lent mycobacterial species and invasive non-typhoid salmo-
nellosis [8]. Their clinical phenotype therefore resembles 
that of patients presenting with Mendelian susceptibility 
to mycobacterial diseases (MSMD) due to mutations of 
20 genes controlling the production of, or the response 
to, IFN-γ [9, 10]. IL-6 neutralizing auto-Abs have been 
described in patients suffering from severe cutaneous and 
invasive staphylococcal and pneumococcal diseases [11]. 
These clinical phenotypes resemble that of patients with IEI 
impairing the response to or the production of IL-6 (e.g., 
autosomal recessive (AR) IL-6R, autosomal dominant (AD) 
IL6ST/gp130, AD STAT3, AR ZNF341, AR MYD88, or 
AR IRAK4 deficiencies) [12]. Auto-Abs against IL-17A and 
IL-17F (and IL-22) have been reported to underlie chronic 
mucocutaneous candidiasis (CMC) in patients with autoim-
mune polyendocrine syndrome type 1 (APS-1), paving the 
way for the identification of inborn errors of IL-17 immunity 
in patients with isolated or syndromic CMC (e.g., AD IL-
17F, AR IL-17RA, AR IL-17RC, AR ACT1, AD MAPK8, 
AR IL-23R, AR c-Rel, and AR ZNF341 deficiencies, or AD 
STAT1 gain-of-function [GOF]) [13–15]. Auto-Abs against 
type I IFNs were first identified in the early 1980s in patients 
treated with IFN-α or IFN-β, with systemic lupus erythema-
tosus, with thymic abnormalities (e.g., thymoma), or with 
various IEIs (e.g., APS-1 and AR AIRE deficiency) [8]. 
These auto-Abs were long thought to be clinically silent, but 
were recently shown to underlie critical COVID-19 pneu-
monia [16], adverse reactions to yellow fever live-attenuated 
vaccine [17], critical influenza pneumonia [18], or severe 
varicella-zoster virus diseases [19]. The associated clinical 
phenotype resembles that of patients with IEI of type I IFN 
underlying severe viral diseases [8, 20].

Anti-GM-CSF auto-Abs cause pulmonary alveolar pro-
teinosis (PAP), a severe lung disease characterized by the 
accumulation of surfactant in the alveoli, with progressive 
respiratory failure and an increase in the risk of infection 
[21], probably due to an impairment of the terminal dif-
ferentiation of alveolar macrophages affecting their ability 

to catabolize surfactant, and to protect the host against 
infectious diseases [21]. Patients with acquired PAP are 
also prone to recurrent common pulmonary infections, 
possibly secondary to the underlying lung dysfunction. 
They are also vulnerable to infections caused by intracel-
lular pathogens, including Mycobacterium spp. complex, 
Nocardia spp., Histoplasma capsulatum, and Cryptococ-
cus spp. [22]. In addition, auto-Abs against GM-CSF have 
been reported in adult patients with disseminated diseases 
mostly due to Nocardia spp. or C. gattii with or without 
PAP manifestations [23–27]. In this context, we investi-
gated three previously healthy HIV-negative Colombian 
adults with cryptococcal meningitis. One of these patients 
presented PAP 9 months later, followed 5 years later by 
pulmonary tuberculosis.

Materials and Methods

Subjects

This study was conducted according to the “Scientific Stand-
ards for Technical and Administrative Health Research” 
established in the Colombian Ministry of Health Resolution 
008430 of 1993 and approved by the local review board of 
the Universidad de Antioquia (F8790-07–0010) and Necker 
Hospital for Sick Children, France. All patients or their fam-
ily members provided written informed consent.

Detection of Anti‑GM‑CSF Auto‑Abs by ELISA

Briefly, 96-well plates (Nunc Maxisorp, Thermo Fisher Sci-
entific) were coated by incubation overnight at 4°C with 
1 µg/mL rhGM-CSF or rhIFN-γ (R&D Systems). The plates 
were washed in PBS 0.005% Tween, blocked with 1 × PBS 
supplemented with 5% nonfat milk powder, washed, and 
incubated for 2 h at room temperature with 1:50, 1:250, and 
1:1,000 dilutions of plasma from patients and healthy con-
trols, or plasma from a patient with cryptococcal meningitis 
and a PAP patient previously shown to have high titers of 
anti-GM-CSF auto-Abs, as a positive control. The plates 
were washed and horseradish peroxidase (HRP)–conjugated 
Fc-specific IgG (polyclonal goat antiserum against human 
IgG, Nordic Immunological Laboratories) was added to a 
final concentration of 1 µg/mL. Plates were incubated for 
1 h at room temperature and washed. Substrate was added, 
and optical density was measured. The antibody specific-
ity controls were plasma samples from a patient with high 
titers of auto-Ab against IFN-γ, and a patient with APS-1 
and high titers of auto-Ab against IL-17A, IL-17F, IL-22, 
IFN-α, and IFN-ω.
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Plasma Inhibition of GM‑CSF‑induced STAT5 
Phosphorylation

Human peripheral blood mononuclear cells (PBMCs) from 
healthy controls were isolated from whole blood by Ficoll-
Hypaque density centrifugation (Amersham-Pharmacia-
Biotech, Sweden). The cells were counted and plated at 
2 × 106 cells/well in 96-well V-bottom plates (Thermo-
Fisher-Scientific), in 100 µL RPMI (GibcoBRL, Invitro-
gen), supplemented with 10% fetal bovine serum (FBS) 
(GibcoBRL, Invitrogen) or 100 µL RPMI supplemented 
with 10% plasma from patients or controls. PBMCs were 
left unstimulated or were stimulated with 5 to 80 ng/mL 
rhGM-CSF or 100 ng/mL rhIL-3 (Miltenyi-Biotec) for 
30 min at 37°C, and the cells were then fixed permeabi-
lized with a fixation/permeabilization kit (eBioscience). 
Extracellular labeling was performed with CD14-Pacific 
Blue and CD4-FITC (Sony-Biotechnology, clones M5E2 
and RPA-T4, respectively). Cell viability was determined 
with the Aqua Dead Cell Stain Kit (Thermo-Fisher-Sci-
entific), and STAT5 phosphorylation (p-STAT5 levels) 
was assessed by intracellular staining with Phospho-
Flow PE Mouse Anti-p-STAT5 (pY694) antibody (BD-
Biosciences). Data were collected with a Gallios flow 
cytometer (Beckman-Coulter) and analyzed with FlowJo 
software v.10.6.2 (Becton–Dickinson).

Neutralization Activity of Type I IFNs

The plasma blocking activity against type I IFNs (13 
IFN-α subtypes, IFN-β, and IFN-ω) was determined with 
a luciferase reporter assay. Briefly, HEK293T cells, cul-
tured  in DMEM (Thermo Fisher Scientific) with 10% 
FBS were transfected in the presence of X-tremeGene9 
transfection reagent (Sigma-Aldrich) for 24  h with a 
human ISRE-luciferase plasmid in the pGL4.45 back-
bone and a plasmid constitutively expressing Renilla 
luciferase for normalization (pRL-SV40). Then, cells 
were left unstimulated or were stimulated with IFNs 
(IFN-α subtypes (Miltenyi Biotec), IFN-ω (Peprotech), 
or IFN-β (Peprotech)) at 100 pg/mL (for IFN-α or IFN-ω) 
or at 1ng/mL (for IFN-β) for 16 h at 37°C in the pres-
ence of 10% of healthy control or patient plasma diluted 
in DMEM with 2% FBS. Luciferase activity was then 
assessed in the Dual-Luciferase® Reporter 1000 assay 
system, according to the manufacturer’s protocol (Pro-
mega). Raw luciferase induction was calculated as firefly 
luciferase activity normalized against Renilla luciferase 
activity, and this raw luciferase induction was normalized 
against the non-stimulated luciferase induction.

Results

Case Reports

Patient 1 (P1) is an otherwise healthy 41-year-old man from 
Colombia (South America) who presented at the age of 
34 years with progressive precordial pain with dysphagia, 
dry cough, moderate dyspnea, and a weight loss of 26 kg. 
After a convulsive episode, he was admitted to the emer-
gency room, and physical examination revealed neck stiff-
ness, a grade 2 systolic pulmonary murmur, and purple skin 
papules on his nose (Fig. 1a). Lumbar puncture revealed 
intracranial hypertension (ICH) and cerebrospinal fluid 
(CSF) abnormalities; India ink staining of the CSF and a 
serum cryptococcal antigen lateral flow assay (CrAg-LFA) 
were positive for Cryptococcus spp. (Table 1). Contrast-
enhanced magnetic resonance imaging (CE-MRI) of the 
brain revealed multiple nodular lesions in the supratentorial 
areas and the basal ganglia that were consistent with cryp-
tococcosis (Fig. 1b). Gram and India ink staining of sputum 
samples revealed the presence of encapsulated yeasts con-
sistent with Cryptococcus spp. (Table 1). Contrast-enhanced 
computed tomography (CE-CT) of the chest revealed a 
peripheral nodule in the upper segment of the lower lobe of 
the left lung and a mediastinal mass (Fig. 1c). A biopsy of 
the mediastinal mass was performed by video-assisted thora-
coscopic surgery (VATS), and the specimen was stained with 
India ink, revealing the presence of encapsulated yeasts con-
sistent with Cryptococcus spp. (Fig. 1d). An echocardiogram 
revealed a mobile mass within the left atrium suggestive 
of mycotic endocarditis (not shown). Blood tests revealed 
leukocytosis with neutrophilia and high C-reactive protein 
(CRP) levels. An HIV test was negative, and flow cytometry 
analyses of lymphocyte subpopulations and serum immu-
noglobulins (Ig) were normal, with the exception of high 
IgE levels (Tables 1 and 2). An upper gastrointestinal (GI) 
tract endoscopy detected an esophageal ulcer positive for 
Cryptococcus spp., and cultures of CSF and the mediastinal 
mass on Sabouraud dextrose agar (SDA) grew C. neofor-
mans (Tables 1 and 2), confirming the diagnosis of dissemi-
nated cryptococcosis. The patient was treated with a 6-week 
course of IV liposomal amphotericin B (LAmB) (250 mg/
day), and 5 flucytosine (5-FC) (1 g qid), according to sus-
ceptibility test results, and esophageal and bronchial stents 
were implanted to close the fistula. However, serial lum-
bar punctures revealed persistent ICH after 4 weeks, lead-
ing to the insertion of a ventriculoperitoneal shunt (VPS). 
Finally, negative cultures of CSF, blood, and bronchial and 
esophageal tissues were obtained, and negative results were 
obtained for cytological analyses of bronchoalveolar lavage 
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(BAL), ruling out a diagnosis of PAP. A clinical improve-
ment was observed, and the patient was discharged on oral 
FLC (800 mg/day), on which he remains, and is doing well.

Patient 2 (P2) is a 46-year-old otherwise healthy woman 
from Colombia (South America) who presented at the age of 
40-year-old shoulder pain of four months’ duration radiating 
to the lower back, together with paresthesia of the lower abdo-
men and difficulty walking. Physical examination revealed a 
painful abdomen with bilateral positive Lasègue sign, sen-
sory and motor deficit, a decrease in the muscle strength of 
both lower limbs, right Achillean reflex clonus, and bilateral 
positive Babinski sign. The patient suffered from permanent 
bilateral vision loss of unknown cause that had started 4 years 
previously, with lens opacification in the left eye and a corneal 
leukoma in the right eye. CE-MRI revealed extensive fluid 
collections in the right shoulder and lumbar spine, extend-
ing to the retroperitoneal, dural, and posterior mediastinum, 
along with spinal cord compression and instability and bone 

destruction between T9 and T11 (Fig. 1e, f). P2 underwent 
intraoperative lavage and debridement with T9-T11 fixa-
tion, and the tissue samples excised were stained with silver 
methenamine and mucicarmine, indicating the presence of 
Cryptococcus spp.; C. neoformans grew in cultures of CSF 
and the mediastinal mass on SDA (Table 1). Brain CE-MRI 
showed hydrocephalus and acute meningitis (Fig. 1g), and 
CSF analysis after lumbar puncture revealed high total pro-
tein concentration, normal glucose concentration, high levels 
of leukocytes, and the CrAg assay was positive for Crypto-
coccus spp. (Table 1). Initial blood testing revealed a normal 
whole blood count (WBC), mild lymphopenia, and high CRP 
concentration; an HIV test was negative (Table 1). T-lympho-
cyte counts, CD4+/CD8+ T-cell ratio, and serum Ig levels 
were normal (Table 2). P2 was treated with IV deoxycholate 
AmB (DAmB) (42 mg/day) and oral 5-FC (1,500 mg qid) for 
14 days, followed by oral FLC (800 mg/day) for 12 weeks, 
and was discharged on oral FLC (200 mg/day) plus analgesics. 

a b c d
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Fig. 1   Clinical, microbiologic, and radiologic findings and tissue 
staining results for patients. Patient 1: a Papular skin lesions on the 
nasal ala (arrows); b Brain CE-MRI showing multiple nodular lesions 
affecting the supratentorial areas and the basal ganglia (arrows); c 
Chest CE-CT scan showing a mediastinal mass surrounding vessels 
(arrow) and a pulmonary nodule in the upper part of the left lower 
lobe (arrow); the fistula is not shown; d India ink staining of the 
mediastinal mass biopsy specimen, showing unstained thick muco-
polysaccharide capsules (arrow) from Cryptococcus (40X). Patient 
2: e Whole-body CE-MRI: coronal T2-weighted sequence show-
ing hyperintense right supraclavicular fluid collection in the right 
shoulder affecting the acromioclavicular joint, with infiltration of the 
bursa and bone (arrows); f Sagittal T2-weighted sequence showing 
fluid collection extending to the retroperitoneal, dural, and posterior 

mediastinum, together with spinal cord compression and instabil-
ity and bone destruction between T9 and T11, with 90% collapse of 
the space between T10 and T11 (arrows); g Brain CE-MRI showing 
acute hydrocephalus and basal meningitis with cranial nerve involve-
ment (arrow); h Chest CT-scan showing a mass protruding into the 
right mediastinal space and bilateral mild pleural effusion (arrow). 
Patient 3. i Brain MRI sagittal T2-plane showing pathological menin-
geal enhancement and vasogenic edema (arrow); j Chest CE-CT scan 
showing an irregular pulmonary nodule in the upper right lobe and a 
diffuse ground-glass pattern (arrow); k Chest CE-CT scan showing 
patchy bilateral ground-glass opacities with thickening of the inter-
lobular septa with a “crazy-paving” pattern, predominantly in the 
lower zone (arrow); l Abundant extracellular proteinaceous periodic 
acid-Schiff (PAS)-positive material on lung biopsy (100 ×)
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Seven months later, the patient was re-hospitalized due to 
severe back pain radiating to the left hypochondrium. The 
chest CT scan revealed a mediastinal mass and pleural effu-
sion (Fig. 1h), and P2 underwent VATS for lung pleurectomy, 
decortication, and biopsy of the mediastinal mass. Silver 
methenamine and mucicarmine staining of the mediastinal 
mass revealed Cryptococcus spp. The patient was placed on 
IV DAmB (42 mg/day) for 2 weeks but developed respiratory 
failure due to loculated pleural effusion of the right hemitho-
rax with secondary lung collapse, requiring a new pleurec-
tomy with decortication. Throughout P2’s disease, radiologi-
cal and BAL studies have consistently ruled out pulmonary 
alveolar proteinosis (not shown). The patient remains free of 

signs and symptoms of infection and is not currently receiving 
antifungal agents; she is, however, permanently paraplegic.

Patient 3 (P3) is a 44-year-old previously healthy woman 
from Colombia who developed progressive whole-head 
headaches with photophobia, nausea, and vomiting in 2014. 
Physical examination was unremarkable except for neck stiff-
ness with no neurologic focalization. Brain CE-MRI findings 
were consistent with meningitis (Fig. 1i), and lumbar puncture 
revealed a normal opening pressure and a CSF with a mild 
increase in protein levels, normal glucose concentration, and 
a high level of leukocytes (Table 1). A non-contrast chest CT-
scan revealed a right lung mass in contact with the pleura and 
a diffuse bilateral ground-glass pattern (Fig. 1j). VATS was 

Table 2   Flow cytometry 
of lymphocyte subsets in 
peripheral blood, serum 
immunoglobulins, and specific 
antibodies

Values in bold are outside the normal ranges for age
ND not done, NR not reported
*Flow cytometry of lymphocyte populations performed on peripheral blood lymphocytes (PBLs) stained 
with fluorochrome-labeled mAbs. Cells were collected on a FACS Canto II (BD Biosciences, San José, 
CA), and the data were analyzed with FlowJo v8.2 (TreeStar, Ashland, OR) by gating on CD45+ leuko-
cytes. Reference values for lymphocyte subsets from Schatorjé EJH, et al. Scand. J Immunol. 2012 vol. 75 
(4) pp. 436–44
**For patient 2, only results from the BD Tritest™ (BD Biosciences) were available and reference values 
are as indicated in the hospital records

Patient 1* Patient 2 Patient 3* Ref. values for age**

WBC (cells/µL) 7,645 NR 6,270 5,900 (4,600–7,100)
Lymphocytes (%) 20 NR 30.2 32 (28–39)
Lymphocytes (cells/ µ L) 1,529 NR 1,894 2,300 (1,200–4,100)
Lymphocyte subsets

  CD3+ (%) 56 NR 71.7 67 (50–91)
  CD3+(cells/µL) 856 876 (700–2,100) 1,358 1,500 (780–3,000)
  CD3+/CD4+ (%) 36.2 NR 44.3 42 (28–64)
  CD3+/CD4+ (cells/µL) 553 613 (300–1,400) 839 1,000 (500–2,000)
  CD3+/CD8+ (%) 18.7 NR 23.5 22 (12–40)
  CD3+/CD8+ (cells/µL) 286 265 (200–900) 445 500 (200–1,200)
  CD3+/CD4+/CD8+ (%) 0.4 NR 0.4 0.26 (0.08–0.94)
  CD3+/CD4+/CD8+ (cells/µL) 4 NR 6 12 (2–60)
  CD4/CD8 ratio 1.9 2.3 1.9 1.9 (1.0–3.6)
  CD19+ (%) 13.4 NR 8.5 10 (4–28)
  CD19+ (cells/µL) 205 NR 161 230 (64–820)
  CD3−CD16+/CD56+ (%) 24.1 NR 16.5 15 (5–49)
  CD3-CD16+/CD56+ 368 NR 312 340 (100–1,200)
  CD45+/CD14+ (%) 7.7 NR 5.7 3–8
  CD45+/CD14+ /µL 591 NR 359 100–8,000

Serum immunoglobulins
  IgG (mg/dL) 1467 (540–

1,822)
1098 ND (814–2,047)

  IgA (mg/dL) 200 (63–484) 88 ND (81–538)
  IgM (mg/dL) 213 (22–240) 154 ND (42–600)
  IgE (IU/mL) 1,151 (0–100) ND ND
  HB IgG (mU/mL) 0.08 (< 10) ND ND
  Rubella IgG (mU/mL) 187 (< 10) ND ND
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performed to obtain samples of the lung mass and the affected 
pleura. Silver methenamine staining of the lung sample was 
consistent with the presence of Cryptococcus spp., and C. 
gattii grew in cultures of lung and pleura tissues on SDA, 
confirming the diagnosis of disseminated cryptococcosis 
(Table 1). Initial blood tests revealed moderate leukocytosis 
with neutrophilia and eosinophilia, thrombocytosis, and nor-
mal CRP levels; an HIV test was negative (Table 1). Flow 
cytometry analysis showed the proportions of the principal 
lymphocyte subpopulations to be within the range of normal 
values, and serum Ig levels were not evaluated (Table 2). The 
patient started a 6-week course of treatment with IV DAmB 
(1 mg/kg/day) plus oral FLC (600 mg/day). However, anti-
microbial susceptibility testing for FLC revealed a minimal 
inhibitory concentration (MIC) of 16 µg/mL (Table 1). P3 was 
therefore transferred onto suppressive therapy with voricona-
zole (VRC) at a dose of 200 mg/12 h for 9 months, leading to 
the resolution of meningitis. A few months later, she devel-
oped a progressive dry cough and severe dyspnea and lost 
7 kg in body weight. A new lumbar puncture and hemogram 
yielded values within the normal range. However, a CrAg 
assay on CSF was positive for Cryptococcus spp. High-reso-
lution CT (HRCT) of the lungs revealed an increase in inter-
stitial involvement, with a “crazy-paving” pattern (Fig. 1k). 
A right lung biopsy was therefore performed by VATS, and 
histological analysis demonstrated the presence of abundant 
foamy histiocytes with myxoid material and small oval trans-
parent structures consistent with blastoconidia (not shown). 
In addition, the alveolar spaces were occupied by amorphous 
eosinophilic material composed of histiocytes, cholesterol 
crystals, and a proteinaceous material positively stained with 
periodic acid-Schiff (PAS) staining, consistent with PAP 
(Fig. 1l). Ziehl–Neelsen (ZN) staining for mycobacteria was 
negative, and lung tissue cultures were negative for aerobic 
bacteria, fungi, and mycobacteria. The patient received sup-
pressive therapy with oral posaconazole (POS; 300 mg/day) 
for 3 years and remained clinically stable. Five years later, she 
consulted again for a persistent dry cough and weight loss. 
Chest HRCT showed a progression of pulmonary damage, 
with ground-glass and bilateral multilobar consolidations, 
solid nodules of up to 8 mm in diameter, and centrilobular 
nodules with a “budding tree” morphology. BAL and lumbar 
puncture were normal, and cultures were negative. VATS was 
performed on the right lower lobe, and histological analysis 
of the specimen revealed the presence of multiple giant epi-
thelioid cells with caseous necrosis. Methenamine silver and 
ZN staining was negative, but PCR (GeneXpert, Cepheid®) 
and cultures for mycobacteria were positive for multisus-
ceptible Mycobacterium tuberculosis. P3 received a directly 
observed treatment short (DOTS) regimen with rifampicin 
(R), isoniazid (H), pyrazinamide (Z), and ethambutol (E) 
for 2 months, followed by 4 months of R-H treatment with 

clinical improvement, but with dyspnea on exertion. P3 has 
not undergone whole-lung lavage or required oxygen supple-
mentation, and she remains stable.

Detection of High Titers of Neutralizing Auto‑Abs 
against GM‑CSF in Patients’ Plasma

The etiological nature and severity of the cryptococcal 
infections in these three previously healthy adult patients 
prompted us to evaluate the possibility that neutralizing 
anti-GM-CSF auto-Abs might underlie the infectious dis-
eases observed in these patients. We performed an ELISA 
for the detection of these auto-Abs in plasma samples from 
these three patients. As a control, we used plasma from a 
patient with PAP and high titers of neutralizing anti-GM-
CSF auto-Abs (positive control). We also included plasma 
from a patient with high titers of anti-IFN-γ neutralizing 
auto-Abs, an APS-1 patient with high titers of anti-IL-17A, 
IL-17F, and IL-22 auto-Abs and two healthy individuals. 
All three patients had high levels of anti-GM-CSF auto-
Abs (with P3 plasma showing the highest levels), in the 
range of the positive control, whereas none of the healthy 
individuals, the APS-1 patient, or the patient with auto-Abs 
against IFN-γ had auto-Abs against GM-CSF (Fig. 2a and 
Supplementary Fig. 1). We detected no neutralizing auto-
Abs against type I IFNs in the three patients in the testing 
conditions used (Supplementary Fig. 2). We then assessed 
the neutralizing activity of the plasma samples from the 
three patients by stimulating PBMCs from healthy individu-
als ex vivo with rhGM-CSF or IL-3 as a positive control 
to induce GM-CSF receptor-mediated or IL-3R-mediated 
phosphorylation of STAT5 (pSTAT5) in the presence of 
10% plasma from healthy individuals, or from the patients, 
evaluated by flow cytometry. Unlike plasma from healthy 
individuals, plasma from the three patients, incubated with 
increasing concentrations (5 - 80 ng/mL) of GM-CSF pre-
vented GM-CSF-induced STAT5 phosphorylation, whereas 
the level of IL-3-induced STAT5 phosphorylation was 
similar in cells incubated with controls’ or patients’ plasma 
(Fig. 2b, Supplementary Fig. 3). Last, we assessed the neu-
tralizing capacities of the patients’ plasmas, diluted 1:10, 
1:100, 1:1,000, in the presence of 5ng/mL GM-CSF. P3’s 
plasma exhibited the highest neutralizing capacity, able 
to block GM-CSF-induced STAT5 phosphorylation when 
diluted 1:100, whereas P1’s and P2’s plasmas were either 
no more neutralizing or partially neutralizing at the 1:100 
dilution, respectively. These results suggested a correlation 
between the auto-Ab titers, as assessed by ELISA, and their 
neutralizing capacity (Supplementary Fig. 4). Altogether, 
these results strongly suggest that the presence of circulating 
neutralizing auto-Abs against GM-CSF was responsible for 
the disseminated cryptococcosis of these patients.
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Discussion

Human GM-CSF is produced by alveolar epithelial cells, 
monocytes/macrophages, activated T cells, B cells, NK cells, 
endothelial, epithelial, and fibroblast cells and promotes the 
development of bone marrow-derived macrophages and 
granulocytes [28, 29]. Alveolar macrophages (AM) serve as 
the first line of defense against inhaled microbial pathogens 
and toxins, removing inhaled debris, excess surfactant, and 
apoptotic cells [21]. GM-CSF promotes the differentiation 
and function of pulmonary AM, as shown by knockout mice, 
which develop PAP and AM abnormalities, including defects 
of migration, phagocytosis, microbicidal activity [30], and 
impaired recruitment and activation of other inflammatory 
cells, and decreased oxygen radical production [31]. A GM-
CSF knockout mouse model with progressive cryptococcal 
lung infection displayed low levels of leukocyte recruited 
and of Th2 and Th17 responses in the lung, and low total 
numbers, activation, and localization of dendritic cells and 

macrophages to the microanatomic sites of alveolar infection 
[32]. Collectively, these data suggest that GM-CSF is crucial 
for the local differentiation, accumulation, activation, and 
alveolar localization of lung dendritic cells and AM in mice 
with cryptococcal lung infection.

The three patients investigated here were otherwise 
healthy adults who developed disseminated cryptococcosis 
in association with high titers of anti-GM-CSF neutralizing 
auto-Abs. Anti-GM-CSF neutralizing auto-Abs block GM-
CSF receptor signaling, thereby affecting the terminal dif-
ferentiation of AM in the lungs and their ability to catabolize 
surfactant and to perform their host defense functions [33]. 
Anti-GM-CSF neutralizing auto-Abs are more frequently 
reported in adult patients infected with C. gattii than in those 
infected with C. neoformans [23–25]. Interestingly, two of 
the three patients described here developed adult-onset dis-
seminated disease due to C. neoformans. One of the three 
patients (P3) was diagnosed with PAP nine months after 
developing disseminated cryptococcosis due to C. gattii. 

Fig. 2   Anti-GM-CSF neutral-
izing auto-Abs. a Anti-GM-
CSF auto-Ab titers in plasma 
from the three patients diluted 
1:50, 1:250, and 1:1,000 (red), 
healthy individuals (black) 
and two patients previously 
shown to have anti-GM-CSF 
(grey) or anti-IFN-γ (black and 
white) auto-Abs, and an APS-1 
patient with auto-Abs against 
IL-17A, IL-17F, IL-22 IFN-α, 
and IFN-ω (black). b STAT5 
phosphorylation (p-STAT5), 
assessed by flow cytometry, 
upon the stimulation with GM-
CSF or IL-3 of control PBMCs, 
in the absence of plasma, or in 
the presence of a 1:10 dilution 
of plasma from a healthy indi-
vidual, or from the patients. NS 
non-stimulated
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PAP is characterized by an accumulation of alveolar sur-
factant, resulting in respiratory impairment, an increase in 
the risk of pulmonary fibrosis, and opportunistic infections 
[21]. Early-onset PAP (inherited PAP) results from inborn 
errors of immunity due to biallelic mutations of genes that 
disrupt GM-CSF signaling [12], or from inborn errors of 
surfactant metabolism due to mutations of genes involved in 
surfactant production and function in alveolar epithelial cells 
[21]. By contrast, autoimmune PAP has an essentially adult 
onset, with more than 90% of cases due to high serum levels 
of neutralizing anti-GM-CSF auto-Abs [34], whereas about 
5 to 10% of the remaining adult PAP cases may be secondary 
to underlying conditions, such as hematological disorders, 
cancers, chronic inflammatory syndrome, and chronic infec-
tions [21]. In adults, PAP may precede or follow infections, 
such as pulmonary or disseminated cryptococcosis with lung 
involvement [35]. Lung and disseminated infections with 
various fungi, including Cryptococcus spp., Nocardia spp., 
and Aspergillus spp., may therefore be an early sign of a risk 
of developing PAP in the future [22, 25, 36].

Only one adult patient with disseminated cryptococcosis 
and high serum levels of anti-GM-CSF auto-Abs has, to our 
knowledge, developed pulmonary tuberculosis within 1 year 
of the diagnosis of cryptococcosis [25]. P3 was diagnosed with 
pulmonary tuberculosis 6 years after the diagnosis of crypto-
coccosis and 5 years after the initial diagnosis of autoimmune 
PAP. Interestingly, P3, who displayed the most severe disease, 
presented with the highest titers and neutralizing activity of 
anti-GM-CSF auto-Abs. Immune responses to mycobacteria are 
controlled principally by IFN-γ, as demonstrated by findings 
for patients carrying mutations of any of the 20 genes leading 
to MSMD [9, 10]. In a single-cell model of M. tuberculosis 
killing by primary human monocyte-derived macrophages, 
Brison et al. recently demonstrated that GM-CSF enhances the 
control of M. tuberculosis, as GM-CSF blockade rendered mac-
rophages more permissive to M. tuberculosis growth, whereas 
the addition of GM-CSF increased bacterial control [37]. Fur-
thermore, GM-CSF-deficient mice are highly susceptible to 
infection by M. tuberculosis [38, 39]. Anti-GM-CSF neutral-
izing auto-Abs may, therefore, also potentially increase sus-
ceptibility to M. tuberculosis infection. In addition, GM-CSF 
promotes human macrophage differentiation in vitro and fine 
tunes macrophage inflammatory state, enhancing mycobacte-
rial control by activating antimicrobial pathways and amplify-
ing an inflammatory environment mediated by IL-1β [37, 40]. 
Therefore, it is possible that, in addition to the PAP, frequently 
associated with structural lung disease, the neutralizing auto-
Abs against GM-CSF have participated to P3’s susceptibility 
to M. tuberculosis infection. In PAP, the abolition of AM func-
tion affects the clearance of surfactant, leading to a structural 
lung disease that may increase susceptibility to M. tuberculosis. 
The endemic distribution of both pathogens (C. neoformans 

and M. tuberculosis) in Colombia may render patients with 
anti-GM-CSF neutralizing auto-Abs more susceptible to these 
diseases. Recent evidence suggests that additional host genetic 
factors, such as HLA haplotype, may result in the development 
of anti-cytokine auto-Abs and susceptibility to infections in 
the context of adult-onset autoimmune-induced immunode-
ficiency [41]. Sakaue et al. have shown that there may be a 
genetic contribution to the pathogenesis of autoimmune PAP. 
They conducted a genome-wide association study in patients 
of Japanese ancestry and demonstrated an association of the 
HLA-DRB1*08:03 allele with a risk of autoimmune PAP and 
high levels of anti-GM-CSF auto-Abs [42]. However, a study 
of 47 European patients with PAP found that no HLA allele 
was associated with these auto-Abs [43]. Pulmonary and dis-
seminated cryptococcosis in previously healthy HIV-negative 
adults, with or without PAP, should lead to investigations of a 
possible autoimmune etiology.
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