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ABSTRACT

We introduce a three family extension of the Pati-Salam model which is anomaly-

free and contains in a single irreducible representation the known quarks and leptons

without mirror fermions. Assuming that the breaking of the symmetry admits the

implementation of the survival hypothesis, we calculate the mass scales using the

renormalization group equation. Finally we show that the proton remains pertur-

batively stable.

1

http://arxiv.org/abs/hep-ph/9502266v1


1 INTRODUCTION

The renormalizability of the Pati-Salam[1] (PS) model for unification of flavors and

forces rest on the existence of conjugate or mirror partners of ordinary fermions. Mir-

ror fermions are fermions with quantum numbers with respect to the Standard Model

(SM) gauge group SU(3)C⊗SU(2)L⊗U(1)Y identical to those of the known quarks

and leptons, except that they have opposite handedness from ordinary fermions.

Their existence vitiate the survival hypothesis[2] according to which chiral fermions

that can pair off while respecting a symmetry will do so, acquiring masses grater

than or equal to the mass scale of the respected symmetry.

These remarks are illustrated in one of the PS type models. The gauge group for

the three-family extension of the PS model is[3]

G′ ≡ SU(6)L⊗SU(6)R⊗SU(6)CL⊗SU(6)CR×Z4,

where ⊗ indicates a direct product, × a semidirect one, and Z4 ≡(1,P,P2,P3) is

the four-element cyclic group acting upon [SU(6)]4 such that if (A,B,C,D) is a rep-

resentation of [SU(6)]4 with A a representation of the first factor, B of the sec-

ond, C of the third, and D of the fourth, then P(A,B,C,D)=(B,C,D,A) and then

Z4(A,B,C,D)≡(A,B,C,D) ⊕ (B,C,D,A) ⊕ (C,D,A,B) ⊕ (D,A,B,C). The charge op-

erator in G′ is defined as[3]

QEM = TZL + TZR + Y(B−L)L + Y(B−L)R . (1)

The irreducible representation (irrep) of G′ which contains the known fermions is

ψ′(144) ≡ Z4ψ
′(6̄, 1, 6, 1) = ψ′(6̄, 1, 6, 1)⊕ ψ′(1, 6, 1, 6̄)⊕ ψ′(6, 1, 6̄, 1)⊕ ψ′(1, 6̄, 1, 6),

where ψ′(6̄, 1, 6, 1) includes the known left-handed weak doublets while ψ′(1, 6, 1, 6̄)

includes the known right-handed weak singlets of the three families. ψ′(6, 1, 6̄, 1)

and ψ′(1, 6̄, 1, 6) are the mirror fermions of ψ′(6̄, 1, 6, 1) and ψ′(1, 6, 1, 6̄) respectively.

With this particle content G′ is free of anomalies because the mirror multiplets cancel

the anomalies introduced by the multiplets which contain the known fermions. The

model defined with G′ and ψ′(144) does not have a symmetry that would forbid

mass terms of the form ψ′(6̄, 1, 6, 1)ψ′(6, 1, 6̄, 1) + ψ′(1, 6, 1, 6̄)ψ′(1, 6̄, 1, 6) at the G′

scale. The aim of the present work is to introduce a variation of this PS model.

A change in the definition of the permutation operator P induces a change in Z4

and therefore in the definition of G′. The new group, G, can be written also with the
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same Z4 as in G′ but interchanging the order of the factor groups. In this notation

we will consider the gauge group

G=SU(6)L⊗SU(6)R⊗SU(6)CR⊗SU(6)CL×Z4

with

ψ(144) =Z4ψ(6̄, 1, 1, 6) = ψ(6̄, 1, 1, 6)⊕ ψ(1, 1, 6, 6̄)⊕ ψ(1, 6, 6̄, 1)⊕ ψ(6, 6̄, 1, 1).

This gauge structure is also free of anomalies but has a different particle content.

Indeed, the ordinary fermions in ψ(144) are included now in ψ(6̄, 1, 1, 6)⊕ψ(1, 6, 6̄, 1),

but ψ(6, 6̄, 1, 1)⊕ ψ(1, 1, 6, 6̄) does not contain the mirror fermions of the ordinary

fermion fields. To see this let us write the quantum numbers for ψ(144) with respect

to the SM group [our notation designates transformation behavior under (SU(3)C ,

SU(2)L, U(1)Y )]:

ψ(6̄, 1, 1, 6) ∼ 3(3, 2, 1/3)⊕ 6(1, 2,−1)⊕ 3(1, 2, 1)

ψ(1, 6, 6̄, 1) ∼ 3(3̄, 1,−4/3)⊕ 3(3̄, 1, 2/3)⊕ 6(1, 1, 2)⊕ 9(1, 1, 0)⊕ 3(1, 1,−2)

ψ(6, 6̄, 1, 1) ∼ 9(1, 2, 1)⊕ 9(1, 2,−1)

ψ(1, 1, 6, 6̄) ∼ (8 + 1, 1, 0)⊕ 2(3, 1, 4/3)⊕ 2(3̄, 1,−4/3)⊕ (3, 1,−2/3)⊕ (3̄, 1, 2/3)⊕

5(1, 1, 0)⊕ 2(1, 1, 2)⊕ 2(1, 1,−2),

where the ordinary left-handed quarks correspond to 3(3,2,1/3) in ψ(6̄, 1, 1, 6), the

ordinary right-handed quarks correspond to 3(3̄, 1,−4/3)⊕3(3̄, 1, 2/3) in ψ(1, 6, 6̄, 1),

the known left-handed leptons are in three of the six (1,2,−1) of ψ(6̄, 1, 1, 6), and

the known right-handed charged leptons are in three of the six (1,1,2) of ψ(1, 6, 6̄, 1).

The exotic leptons in ψ(6̄, 1, 1, 6) belong to the vectorlike representation 3(1, 2,−1)⊕

3(1, 2, 1) (vectorlike with respect to the SM quantum numbers) and the exotic lep-

tons in ψ(1, 6, 6̄, 1) belong to the vectorlike representation 3(1, 1, 2)⊕ 3(1, 1,−2)⊕

9(1, 1, 0), where three lineal combinations of the nine states with quantum numbers

(1,1,0) can be identified as the right-handed neutrinos.

Notice that the G symmetry and the representation content of ψ(144) forbid

mass terms for fermion fields at the unification scale, but according to the survival

hypothesis the vectorlike substructures pointed in the former and in the next para-

graphs should get masses one scale above MZ , the known weak interactions mass

scale.

ψ(6, 6̄, 1, 1) is formed by 36 exotic Weyl leptons, 9 with positive electric charges,

9 with negative (the charge conjugates to the positive ones), and 18 are neutrals; all

together constitute a vectorlike representation. Also all the particles in ψ(1, 1, 6, 6̄)

form a vectorlike representation, where 5(1, 1, 0)⊕ 2(1, 1, 2)⊕ 2(1, 1,−2) stand for
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nine exotic leptons (electric charges 0, ±1), 2(3, 1, 4/3)⊕ 2(3̄, 1,−4/3) refers to two

exotic UP type quarks (electric charge 2/3), (3, 1,−2/3) ⊕ (3̄, 1, 2/3) refers to one

exotic DOWN type quark (electric charge −1/3), and the nine states in (8+1,1,0)

are the most exotic, electrically neutral fermion fields in the model, whose origin

and meaning is discussed anon.

The model described by [G, ψ(144)] (or either by [G′, ψ′(144)]) unifies the three

family SM gauge group, and it unifies also the more general three family chiral color

extension of the SM, which has the gauge structure[4]

R≡SU(3)CR⊗SU(3)CL⊗SU(2)L⊗U(1)Y ,

where the unbroken color group SU(3)C of the SM is identified with the diagonal

subgroup of SU(3)CR⊗SU(3)CL. The model described by [G, ψ(144)] is an alter-

native to the PS model for three families and it is a unified theory of a new chiral

model with special features, different from the models presented in Refs.[4]. The

nine states (8+1,1,0) in ψ(1, 1, 6, 6̄) are related to the so-called dichromatic fermion

multiplets, belonging to the (3, 3̄) representation of the SU(3)CR⊗SU(3)CL subgroup

of R. Then, according to the nomenclature introduced in Ref.[4], (8+1,1,0) is formed

by the “queight” (8,1,0) and the color neutral “quone” (1,1,0).

Another feature of the model described by [G, ψ(144)] is that it is the chiral color

extension of the vector-color-like model described by GV ≡ SU(6)L⊗SU(6)C⊗SU(6)R×Z3

and ψV (108)=Z3ψ
V (6̄, 6, 1) = ψV (6̄, 6, 1)⊕ψV (6, 1, 6̄)⊕ψV (1, 6̄, 6). This vector like

model was sketched for the first time in Ref.[5] and studied in detail in Refs.[6].

SU(6)C in GV is the diagonal subgroup of SU(6)CR⊗SU(6)CL in G, and the particle

content of the two models is almost the same in the following sense: ψV (6̄, 6, 1) =

ψ(6̄, 1, 1, 6), ψV (1, 6̄, 6) = ψ(1, 6, 6̄, 1), and ψV (6, 1, 6̄) = ψ(6, 6̄, 1, 1). Hence, sev-

eral techniques used and some results obtained in the study[6] of the structure [GV ,

ψV (108)] can be translated to the study of [G, ψ(144)].

2 SYMMETRY BREAKING

Let us break G down to SU(3)C⊗U(1)EMby the introduction of appropriate elemen-

tary Higgs fields which trigger the spontaneous breaking of the symmetry and at

the same time produce masses for the fermion fields in ψ(144), in such a way that

the survival hypothesis[2] holds at each mass scale.

First let us consider the two mass scale symmetry breaking pattern

4



G
M
−→SU(3)C⊗SU(2)L⊗U(1)Y

MZ−→SU(3)C⊗U(1)EM ,

with M>>MZ . The running coupling constants of the SM satisfy the one loop

Renormalization Group Equations (RGEs)

α−1
i (MZ) = α−1

i (M)− biln(M/MZ), (2)

where αi = g2i /4π, i = 1, 2, 3 refers to U(1)Y , SU(2)L and SU(3)C respectively, and

bi = {
11

3
Ci(vectors)−

2

3
Ci(Weyl− fermions)−

1

6
Ci(scalars)}/4π, (3)

where Ci(...) is the index of the representation to which the (...) particles are

assigned (for a complex scalar field the values of Ci(scalars) should be doubled).

With the normalization of the generators in G such that α1(M) = α2(M) =

2α3(M) = αCL(M) = αCR(M) ≡ α (where αCL(CR) = g2CL(CR)/4π refers to the

gauge coupling constant for SU(3)CL(CR) in R), the relationship

αEM =
1

3
α2sin

2θW =
3

19
α1cos

2θW , (4)

where θW is the weak mixing angle, is valid at all energy scales. This last equation

implies also that at all energies

3α−1
EM = 19α−1

1 + α−1
2 . (5)

From the former equations we get

3

28
α−1
EM(MZ) =

α−1
3 (MZ)

2
+ (

b3
2
−

9b2
28

−
19b1
28

)ln(M/MZ) (6)

and

sin2θW (MZ) = 3αEM(MZ){
α−1
3 (MZ)

2
+ (

b3
2
− b2)ln(M/MZ)}. (7)

After decoupling the vector-like representations in ψ(144) according to the Appelquist-

Carazzone theorem[7] we get: 2πb3 = [7 − C3(s)/12], 2πb2 = [10/9− C2(s)/36] and

2πb1 = −[20/19 + C1(s)/76], where Ci(s), i = 1, 2, 3 are the indices for the Higgs

fields contributing to bi. Now, the set of Higgs fields needed to break G down

to SU(3)C⊗SU(2)L⊗U(1)Y and to give at the same time masses to the vectorlike

fermions in ψ(144) contribute negligible to Ci(s), because in the effective theory

their contribution is highly suppressed by powers of MZ/M. So the only Higgs
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fields in existence below M are those which break SU(3)C⊗SU(2)L⊗U(1)Y down to

SU(3)C⊗U(1)EM . The simplest set of Higgs fields and Vacuum Expectation Values

(VEVs) which do the last breaking and at the same time give rise to mass terms for

the known fermion fields is φ1(72) = φ1(6, 1, 6̄, 1)⊕ φ1(1, 6̄, 1, 6) = φa
∆ ⊕ φα

A (where

a,b,...;A,B,...α, β, ...∆,Ω, ... = 1,...6 label SU(6)L, SU(6)R, SU(6)CL and SU(6)CR

tensor indices respectively), with VEVs 〈φ1(72)〉 6= 0 in the directions (a,∆) = (2,4)

= (4,4) = (6,4) = (1,5) = (3,5) = (5,5) = (2,6) = (4,6) = (6,6), and (α,A) = (4,2)

= (4,4) = (4,6) = (5,1) = (5,3) = (5,5) = (6,2) = (6,4) = (6,6). It can be seen that

this set is inconsistent with the known quark mass spectrum because it generates

see-saw masses for the t and b quarks of the same order of magnitude and propor-

tional to M2
Z/M. The alternative is to look for a set of Higgs fields and VEVs which

breaks the symmetry and generates at the same time, what is called in Refs.[6] the

“modified horizontal survival hypothesis”, according to which the t quark gets a mass

of order MZ via a flavor democratic mass matrix, with the hope that different see-

saw mechanisms[8] and radiative corrections[9] reproduce the hierarchy of masses

and mixing angles for quarks and leptons. This scenario can be achieved by using,

besides φ1(72), other set of Higgs fields φ2(1296) = φ2(6, 6̄, 6, 6̄) ≡ φa,∆
A,α with VEVs

such that (a,A) = (2,2) = (2,4) = (2,6) = (4,2) = (4,4) = (4,6) = (6,2) = (6,4) =

(6,6), and (∆, α) = (1,1) = (2,2) = (3,3) = (4,4) = (5,5) = (6,6). (φ2 with the VEVs

as stated here not only does the job as desired but it also breaks SU(3)CR⊗SU(3)CL

in R down to SU(3)C .)

But how many of the 72 Higgs fields in φ1 and of the 1296 Higgs fields in φ2

contribute to Ci(s)? Let us work with two hypothesis:

Hypothesis i. All the Higgs fields in φ1(72) ⊕ φ2(1296) contribute to Ci(s). It is

easy to show that in this case the Higgs field contribution to Eqs.(6) and (7) can-

cels out. (That the contribution of φ1 (and also of φ2 separately) cancels out in

Eqs.(6) and (7) can also be seen from general principles.) Substituting the exper-

imental values[10] sin2θW (MZ) = 0.2341 ± 0.0025, α−1
EM(MZ) = 127.6 ± 0.2 and

α3(MZ) = 0.122 ± 0.005, we get from Eq.(6) ln(M/MZ)=15.59±0.31 while from

Eq.(7) ln(M/MZ)=15.45±0.76. The compatibility of these results with each other

allows us to obtain M=5.5×106 GeVs and to claim that with this hypothesis and

with G breaking down to SU(3)C⊗U(1)EMwith the SM gauge group as the only

intermediate gauge structure, the four coupling constants meet together at a single

point M. Unfortunately for this scheme any new physics is at the mass scale M∼ 106

GeVs.
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Hypothesis ii. Only the Higgs fields which develop VEVs contribute to Ci(s)

(hypothesis known in the literature as the “extended survival hypothesis”[11]). Under

this assumption we get from Eq.(6) ln(M/MZ) = 12.48 ± 0.25 while from Eq.(7)

ln(M/MZ) = 10.89± 0.54 which are inconsistent solutions.

The other symmetry breaking pattern with only one intermediate mass scale,

consistent with present experiments[4] is

G
M
−→R=SU(3)CR⊗ SU(3)CL⊗SU(2)L⊗U(1)Y

MZ−→SU(3)C⊗U(1)EM ,

where again M>>MZ . To study this case let us write the quantum numbers for

ψ(144) with respect to R, [now our notation designates transformation behavior un-

der (SU(3)CR, SU(3)CL, SU(2)L, U(1)Y )]

ψ(6̄, 1, 1, 6) ∼ 3(1, 3, 2, 1/3)⊕ 6(1, 1, 2,−1)⊕ 3(1, 1, 2, 1)

ψ(1, 6, 6̄, 1) ∼ 3(3̄, 1, 1,−4/3)⊕3(3̄, 1, 1, 2/3)⊕6(1, 1, 1, 2)⊕3(1, 1, 1,−2)⊕9(1, 1, 1, 0)

ψ(6, 6̄, 1, 1) ∼ 9(2, 1, 1, 1)⊕ 9(2, 1, 1,−1)

ψ(1, 1, 6, 6̄) ∼ (3, 3̄, 1, 0)⊕2(1, 3̄, 1,−4/3)⊕(1, 3̄, 1, 2/3)⊕2(3, 1, 1, 4/3)⊕(3, 1, 1,−2/3)⊕

5(1, 1, 1, 0)⊕ 2(1, 1, 1, 2)⊕ 2(1, 1, 1,−2),

where the chiral representations in ψ(144) with respect to R are those including the

ordinary particles (without right-handed neutrinos) and the new exotic ones with

labels (3, 3̄, 1, 0)⊕ 2(1, 3̄, 1,−4/3)⊕ (1, 3̄, 1, 2/3)⊕ 2(3, 1, 1, 4/3)⊕ (3, 1, 1,−2/3), all

of them belonging to the sector ψ(1, 1, 6, 6̄).

Normalizing the generators in G as stated before we have that Eqs.(6) and (7)

still hold with b3 = b3L+b3R, where b3L and b3R are related to SU(3)CL and SU(3)CR

respectively. Then C3(s) = C3R(s) + C3L(s).

R is broken down to SU(3)C⊗U(1)EMby φ1(72)⊕φ2(1296) with the same VEVs as

stated before. Now under the hypothesis that all the Higgs fields in φ1⊕φ2 contribute

to the beta functions, we have again that the different Ci(s) contributions cancel

out. This time we get from Eq.(6) ln(M/MZ) = 7.73 ± 0.15 while from Eq.(7) we

obtain ln(M/MZ) = 6.27± 0.31, which are again incompatible.

On the other hand, the assumption that the extended survival hypothesis[11]

holds leads to ln(M/MZ) = 5.81± 0.11 from Eq.(6) and to ln(M/MZ) = 5.78± 0.28

from Eq.(7) which are consistent solutions. The unification mass scale predicted

now is M∼ 3.3 × 104 GeVs. It is evident that this version of the model is rich in

experimental consequences.

The following list of comments refers to the model described by G and ψ(144)

which breaks down to SU(3)C⊗U(1)EMwith R as the only intermediate gauge struc-

ture, properly implemented with the survival hypothesis[2], the extended survival
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hypothesis[11], and the modified horizontal survival hypothesis[6]:

• The evolution of the four gauge coupling constants in G meet

together in a single point at M∼ 104 GeVs, in good agreement

with precisions data test of the SM.

• The two mass scales M∼ 3.3× 104 GeVs and MZ ∼ 102 GeVs

are well within the reach of future experiments.

• The only ordinary fermion which gets a tree level mass of order

MZ is the t quark. It gets its mass via a flavor democratic mass

matrix.

• At the mass scale MZ the following exotic particles must exist:

8 “axigluons”, two Up type quarks and one Down type quark.

• The queight and the quone should get masses smaller than MZ .

• The gauge fields not related to R and all the other exotic leptons

should get masses of order M∼ 104 GeVs.

At first glance this version of the model could present the following undesirable

features:

• M∼ 104 GeVs could be a very small unification mass scale (per-

haps too close to the present limit for flavor changing neutral

currents).

• Since neither φ1(72) or φ2(1296) are able to produce a tree level

mass for the queight or the quone, those particles can pick up

only radiative or see-saw masses of a few GeVs (this should be

no problem if the queight is confined).

• There is not a sufficient large mass scale in the model able to

generate see-saw mechanisms[12] for the three neutrinos (most

probably νe remains massless in this scheme as a consequence

of the symmetries of the vacuum as in the case of the structure

[GV , ψV (108)] discussed in Ref.[6]).

The above mentioned three problems can be solved by the introduction of new

Higgs fields [for example φ3(1, 1, (15 + 21), (15 + 21))] which give tree level masses

of order MZ to the queight and the quone. Then we can look for solutions to the

RGEs for the symmetry breaking chain
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G
M
−→R

Mch−→ SU(3)C⊗SU(2)L⊗U(1)Y
MZ−→SU(3)C⊗U(1)EM ,

with the mass hierarchy M>Mch >MZ . With two mass scales to be fixed and a lot

of VEVs at our disposal it is possible to look for solutions spanning the range 107

GeVs ≥M > Mch ≥ 104 GeVs> MZ ∼ 102 GeVs.

Now, independently of the existence of the unifying group G, the set of fermion

fields in ψ(144) which is chiral with respect to R, constitutes an anomaly-free chiral

model with only three families, different from the five models (Marks I−V) intro-

duced in Ref. [4]. Such a model deserves a detailed study by its own sake.

3 STABILITY OF THE PROTON

In the subspace of the fundamental representation of SU(6)CR⊗SU(6)CL the baryon

number for G can be associated with the 12× 12 diagonal matrix

B=Dg.[(1/3, 1/3, 1/3, 0, 0, 0) ⊕ (1/3, 1/3, 1/3, 0, 0, 0)]. Since this matrix does not

correspond to a generator of G (neither of G′), then the baryon number is not

gauged in the context of the models discussed here.

Now due to the stated directions of the VEVs for φ1 and φ2, it is clear that

B〈φ1(72)〉= B〈φ2(1296)〉=0. Therefore B is not broken spontaneously by the set of

Higgs fields used for the breaking of R down to SU(3)C⊗U(1)EM . But what about

the set of scalars fields used for the breaking of G down to R? It can be shown that

it is possible to break G→R using Higgs fields φi = Z4φi(nL, nR, nCR, nCL) such

that B〈φi(nL, nR, nCR, nCL)〉 = 0, as long as nK = 1, 6, 6, 15, 15, 21, 21, 35 (K =

L,R,CR,CL) and as long as the directions for the VEVs of SU(6)CR⊗SU(6)CL

are such that[13] α,∆ 6= 1, 2, 3. Examples of adequate Higgs fields and VEVs are

presented for example in Refs.[6]. Our conclusion is that it is possible to choose Higgs

fields and VEVs which break G→SU(3)C⊗U(1)EM , such that B is not spontaneously

broken.

To conclude that B is perturbatively conserved we follow t’Hooft[14] and write B

in the space of the fundamental representation for SU(6)CR⊗SU(6)CL as B=(BL+Θ)/2,

where BL=Dg.[(1, 1, 1,−1,−1,−1)⊗ (1, 1, 1,−1,−1,−1)] is a generator of the G al-

gebra which distinguishes baryon and lepton number, and Θ = Dg.[(1, 1, 1, 1, 1, 1)⊗

(1, 1, 1, 1, 1, 1)] generates a U(1)Θ global symmetry of the model. BL and Θ are

both spontaneously broken, but B is unbroken. A similar situation was analyzed in

Ref.[6] for the structure [GV , ψV (108)].
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4 CONCLUSIONS

The model described by G′ and ψ′(144) was studied originally in Ref.[3] for the

symmetry breaking pattern G→SU(3)C⊗SU(2)L⊗U(1)Y→SU(3)C⊗U(1)EM , under

the assumption that all the fermion fields (ordinary and mirrors) contribute to the

RGEs and neglecting the contribution of the Higgs fields. Substituting the experi-

mental values[10] of α3(MZ) and αEM(MZ) in the results of Refs.[3] we find that the

three gauge coupling constants αi, i = 1, 2, 3 of the SM do not meet at one point;

i.e. those results do not satisfy precision tests of the SM. Besides, as we showed in

the first section, it is impossible to implement the survival hypothesis in this model

due to the fact that ψ′(144) is vectorlike with respect to G′.

The new models we have studied here have the same gauge structure as the

model in Ref.[3], but a different particle content. As a matter of fact, ψ(144) does

not contain mirror fermion fields and it is not vectorlike with respect to G. Therefore,

the survival hypothesis can be properly implemented at each stage of the symmetry

breaking pattern, and the Appelquist-Carazzone[7] theorem can be properly used

for the decoupling of heavy fermion fields in the RGEs.

Numerical results were obtained here taking into account not only the decoupling

theorem and the survival hypothesis at each stage of the breaking, but also includ-

ing the effects of the scalar fields. These effects were calculated under two different

assumptions and the results were confronted with precision tests of the SM, with

the conclusion that under special circumstances the three gauge coupling constants

αi, i = 1, 2, 3 of the SM meet together at the unification scale M without any inter-

mediate mass scale above MZ [i.e. without supersymmetry or extra physics beyond

that contained in G and ψ(144)].

The low unification scales discussed here (107 GeVs≥ M ≥ 105 GeVs )do not

conflict with data on proton stability because baryon number is perturbatively con-

served. Also, lower energy unification makes these models free from problems of

grand unified monopoles[15] and the gauge hierarchy problem is also much less se-

vere (no fine tuning required?)

Finally let us see how the known mass spectrum for the elementary fermion fields

could be generated in the context of [G, ψ(144)]:

• The quark t acquire a tree level mass of order MZ by coupling

ψ(6̄, 1, 1, 6)ψ(1, 6, 6̄, 1) to φ2(6, 6̄, 6, 6̄) with the VEVs 〈φ2〉 as

stated in Section 2. The t quark (but not the b quark) gets its

10



mass via a flavor democratic mass matrix.

• The b quark and τ lepton acquire see-saw masses of order

M2
Z/Mch by coupling [ψ(6̄, 1, 1, 6) + ψ(1, 6, 6̄, 1)]ψ(1, 1, 6, 6̄) to

φ1(6, 1, 6̄, 1)+φ(1, 6̄, 1, 6) with the VEVs 〈φ1〉 as stated in Sec-

tion 2.

• Masses for the charged fermion fields in the second and first

families can be generated as radiative corrections.

These items are a novel realization of the horizontal survival hypothesis[16] according

to which only the heaviest family gets tree level masses from Yukawa couplings.

One aspect that the model does not clarify is the observed smallness of the neutrino

masses.
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