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and opportunities of individuals worldwide on a global 
scale. The United Nations member countries adopted 17 
Goals in 2015 as part of the 2030 Agenda for Sustainable 
Development, thus outlining a 15-year timetable to accom-
plish them. SDG 2 aims to establish a hunger-free world 

Introduction

The Sustainable Development Goals (SDGs) are a group 
of suggestions and methods designed to eradicate poverty, 
safeguard the environment, and enhance the well-being 
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Abstract
Currently, strategies to achieve the Sustainable Development Goals (SDGs) are being sought worldwide. Accordingly, this 
study seeks to contribute to achieving SDGs 2 (Zero Hunger) and 3 (Good Health and Well-being) by addressing nutri-
tional deficiencies in pregnant women and children. These vulnerable populations worldwide have malnutrition problems 
associated with a lack of zinc and folic acid, causing them health problems. This research aimed to develop a blackberry 
powder fortified with zinc and folic acid obtained by spray drying as a nutritional alternative for children and pregnant 
women. The blackberry was characterized according to the AOAC, an optimization of the spray drying process with a 
central composite experimental design. The powder’s bulk and tapped density, solubility, and anthocyanin content were 
determined. The variation in zinc and folic acid content over a storage period was measured. The moisture content of 
the fresh blackberries was 89%. The solubility and anthocyanin content of blackberry powder were 86% and 0.263 mg 
cyanidin-3-glucose/g, respectively. The optimal spray drying conditions were: 23.6% solid content and an air inlet tem-
perature of 167.92  °C. The bulk density of the powder did not change with storage time (p > 0.05); the zinc and folic 
acid content in blackberry powder was 144 and 90 (µg/100 g), respectively. A blackberry powder fortified with zinc and 
folic acid was obtained by spray drying, guaranteeing 30% of the daily nutritional requirement for pregnant women and 
children, in a 50-gram portion of powder.
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by 2030, while SDG 3 works to ensure global well-being 
and health for all individuals. However, despite the exis-
tence of policies for the implementation and fulfillment of 
the SDGs, there remains a deficiency in resources, policies, 
research, and coverage to ensure their fulfillment by 2030.
Indeed currently, 30% of the world’s population, approxi-
mately 2.44 billion people, still suffers from food insecurity 
and malnutrition [1], with children and pregnant women the 
most vulnerable [2]. Approximately 149  million children 
globally experience nutrition-related problems, resulting in 
diseases like diabetes and cardiovascular, lung, and kidney 
ailments, as well as stunted growth and cognitive impair-
ments [3]. Additionally, around 20 million pregnant women 
worldwide suffer from malnutrition, impacting fetal growth 
and development and causing complications like anemia, 
hemorrhage, and hypertension during pregnancy [4]. Both 
pregnant women and children under five years old com-
monly experience deficiencies in vital nutrients, such as 
vitamin A [5], iron [6], zinc [7], and folic acid [8]. On a 
global scale, almost 17% of the population experiences zinc 
insufficiency [9], while 32.8% encounter problems associ-
ated with insufficient levels of folic acid, iron, and vitamin A 
[10]. These deficiencies lead to conditions such as anemia, 
cardiovascular diseases, neurological problems [11], diar-
rhea, and pneumonia [12].

It is well known that zinc and folic acid play a vital role 
in the growth and development of children and pregnant 
women [13]. Inadequate zinc intake during pregnancy can 
result in hypertensive problems, low birth weight, early 
birth, and gestational diabetes mellitus [14]. Zinc plays a 
vital role in cell division, the process of organ differentia-
tion, and the development of fetal organs [15]. Moreover, 
the intake of zinc in children below the age of 10 has a sig-
nificant impact on their growth and the development of their 
immune system [16]. On the other hand, folic acid is essen-
tial for the synthesis of nucleic acids, amino acids, and DNA 
[17]. Folic acid deficiency can cause neural tube defects, 
anemia, and congenital heart diseases in the fetus [18], as 
well as the development of preeclampsia [19] and prema-
ture births [20].

Given these concepts, it is recommended that both chil-
dren and pregnant women consume foods rich in folic acid 
and zinc. Asparagus [21], lettuce [22] and chard [23] are 
examples of food groups that contain these micronutrients. 
For instance, spinach, eggs, and legumes are significant 
sources of zinc [24]. However, many of these foods are chal-
lenging to access for vulnerable populations as they require 
preservation systems like refrigeration [25] or freezing [26]. 
Additionally, they have a short shelf life, typically lasting 
2 to 3 days [27] and come with acquisition costs [28]. A 
potential solution to these challenges lies in food fortifi-
cation, which, compared to supplementation, represents a 

lower cost and broader coverage [28]. Hence, it is impera-
tive to investigate alternative food choices that are readily 
available, easily consumed, and feasible substitutes for at-
risk groups, particularly children and pregnant women. Pre-
vious studies have shown that zinc and folic acid have been 
successfully added to different foods. For example, zinc has 
been added to Cheddar cheese [29], millet flour [30], kiwi 
puree and skimmed milk [31], while folic acid has been 
added to wheat flour [32], cape gooseberries [33], fruit juice 
powders [34], and different types of drinks [35].

Besides, blackberries have become one of the most 
desired fruits worldwide due to its nutritional qualities, 
which include antioxidants, phenolic compounds, tannins, 
flavonoids, and hypoglycemic activity [36]. In addition, 
blackberries are rich in vitamin C [37] ​and minerals such as 
potassium, calcium, and magnesium [38], and also possess 
sensory attributes such as sweet and acidic flavors, astrin-
gency, and a firm texture [39]. Moreover, under various 
temperature and moisture conditions, the shelf life of black-
berries can range from 1 to 15 days [40]; for example, under 
normal conditions in a fresh market, they typically have a 
shelf life of 2 to 3 days [41]. Since blackberries are gener-
ally prone to damage due to factors such as inadequate post-
harvest handling, high moisture content, and vulnerability to 
fungal attacks [42], it is important to explore transformation 
options for prolonging the shelf life of blackberries. Several 
techniques for preserving and transforming blackberries 
have been documented, such as cooling [43], freezing [44], 
drying [45], pasteurization [46], microwave, and ultrasonic 
treatments [47]. Moreover, blackberries are utilized in the 
manufacturing of ice creams [48], jams [49], pulps [50], jel-
lies [51], and juices [52].

Despite the importance of the methods mentioned above, 
a technology that effectively preserves the functional, sen-
sory, and nutritional qualities of foods is spray drying. Spray 
drying is a technology especially applied to products highly 
sensitive to heat, this method transforms a liquid or pasty 
food into a powder by disintegrating the liquid into small, 
atomized particles with high pressure in contact with contact 
hot air [53]. This continuous process operation involves sev-
eral stages, including atomization, mixing of the spray and 
air, evaporation, and product separation [54, 55]. Among the 
most important parameters in spray drying are the drying 
temperature and the carrier agent concentrations. The dryer’s 
inlet temperature is the temperature of the air when it enters 
the drying chamber of the equipment, which directly affects 
the heat and mass transfer phenomena in the food droplet. 
A high inlet temperature (> 120 °C) makes the drying pro-
cess go faster because more heat is transferred between the 
droplet and the drying air. This can cause an external layer 
to form quickly in the droplet, which can result in porous 
particles or particles with corrugations on their surface. In 
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this way, the inlet temperature mainly affects the shape and 
size of the particles as well as the final moisture content 
of the powdered products; a higher inlet temperature leads 
to lower humidity in the final product [56]. Besides, carrier 
or drying agents, also called drying adjuncts, encapsulating 
agents, or wall material, refer to biodegradable substances 
generally recognized as safe for food products. These agents 
are used during drying processes to increase yield and lower 
problems that come with heating food matrices [57].

Furthermore, spray drying is an excellent alternative to 
other drying methods because it is an easy process to scale 
up industrially as well as an economical technique that gen-
erates high-value products while preserving their quality 
attributes [58]. Spray drying has been used to produce pow-
ders from different fruits, including Passion Fruit [59], Noni 
[60], Jamun [61], Cagaita [62], Gac [63], and Guava [64].

Studies on the use of spray drying technology on black-
berries have been undertaken by [65–69]. These studies 
[66, 69] have successfully produced powders with moisture 
content below 6%, rendering them highly stable [65]. It has 
also been found that, although the spray drying tempera-
ture affects the anthocyanin content of the blackberry pow-
der due to the sensitivity of the pigment to temperature, the 
use of maltodextrin decreases the hygroscopicity and mois-
ture content of the blackberry powders obtained [66]. On 
the other hand, researchers have studied the effect of using 
mannitol as a thermoprotective agent for anthocyanins and 
polyphenols in the spray drying of blackberries; they found 
that without mannitol, the content of anthocyanins and poly-
phenols decreased by 30 and 24%, respectively. With the 
use of mannitol, the losses of anthocyanins and polyphenols 
were 13 and 6%, respectively. The above demonstrates the 
importance of using wall or thermoprotective materials to 
conserve bioactive compounds of interest [68]. Addition-
ally, it has been reported that the drying process of black-
berries can involve the use of carrier agents such as Arabic 
Gum, mannitol [68], and maltodextrins [65, 69]. Carrier 
agent is one of the most important factors in spray drying 
of sugar-rich materials, such as fruit and vegetable juices, 
because its use reduces the stickiness and hygroscopicity 
of powdered products, generating higher yield percentages 
[58]. For instance, a higher maltodextrin content decreases 
the moisture content of the products obtained [70]. Both 
mannitol and maltodextrin act as thermos protectors for bio-
active substances present in blackberries, such as polyphe-
nols [68]. Finally, the use of pigments such as flavonoids 
and cinnamic acids is recommended to improve the shelf 
stability of anthocyanins present in blackberries [69].

Besides, spray drying is also an appropriate method for 
encapsulating bioactive compounds, vitamins, and colo-
rants, among other substances. In this regard, encapsula-
tion of vitamins such as B12 and C [71], anthocyanins and 

phenolic compounds [72], antioxidants [73], and carot-
enoids [74] has been documented. Regarding blackberries, 
studies have produced powders enriched with iron [75], 
fiber [76], and β-Cyclodextrin [77]. However, the currently 
available research does not demonstrate the addition of both 
folic acid and zinc into spray-dried blackberries powders.

Hence, the main goal of this research was to develop 
a blackberry powder fortified with zinc and folic acid. To 
achieve this, a proximal analysis of the blackberry was ini-
tially carried out, and subsequently, the spray drying process 
was optimized through the response surface methodology. 
After that, some of the blackberry powder’s physical, bioac-
tive, and proximal properties were found. Over the next 45 
days, the zinc, folic acid, and antioxidant content were also 
measured. This study contributes to the accomplishment of 
the WHO’s and SDGs 2, 3, and 9.

Materials and methods

Reagents and Materials

The blackberries were purchased at Plaza Minorista, a farm-
ers’ market in the city of Medellin, Colombia, selecting 
fruits at maturity stages 4–6 according to NTC 4106 and 
NTC 410 standards. The blackberries were harvested on Mr. 
Javier Rios’s farm in the village of Pantanillo, located in the 
Santa Elena district of Medellin. For disinfection, a solu-
tion of Citrosan (Diken, Mexico) and water was used, with 
a ratio of 2.5 mL Citrosan/L water, in which the berries were 
immersed for 5 min​ [78].

The procedure to determine of antioxidants involved 
the use of DPPH (Merck Millopore, USA) and methanol 
(J.T. Baker, USA). For anthocyanins, KCl (Carlo Erba, 
Italy) at pH 1.0 and sodium acetate (PanReac AppliChem, 
Germany) at pH 4.5 were used. Acetone (PanReac Appli-
Chem, Germany), Folin-Ciocalteu reagent (Merck KGaA, 
Germany), Na2CO3 (EMSURE, Germany), and gallic acid 
(Merck KGaA, Germany) were used to measure the amount 
of polyphenols. To make the blackberry dispersion, 99.5% 
pure Smart Chemical brand folic acid batch 201,905,018 
and Quiminaturales brand zinc citrate batch MC 21,112,019 
were used. Additionally, Tween 60 surfactant from Bell 
Chem Internacional S.A. batch 161029J3152 and maltodex-
trin (DE: 18–20) from LLC Interstarch Ukraine batch 61 
were used.

Blackberry Proximal Analysis

The blackberry was characterized through the determination 
of moisture, ash, fat, total nitrogen, and total protein con-
tent (using the coefficient 6.25) [79]. Additionally, soluble, 
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of 2021 by the Ministry of Health and Social Protection of 
Colombia.

Spray Drying

For the spray drying process, the methodology, briefly mod-
ified, was based on Leyva-Porras et al. [84]and Gong et al. 
[85]. Samples were prepared with maltodextrin concentra-
tions ranging from 22.93 to 37.07%. A TP-S15 spray dryer 
(Xi’an Toption Instrument Co., China) was used for drying, 
with air inlet temperatures ranging from 168 to 182 °C and 
outlet air temperatures ranging from 82 to 98 °C. The pump 
power was set at 6%, equivalent to a flow rate of 1.26 ml/
min of the blackberry dispersion. Additionally, the air power 
operated at 100%, corresponding to an air flow rate of 5.5 
m3/min. At the end of the process, the samples were placed 
in separate containers and kept in darkness [66]. The deci-
sion to use maltodextrin concentration and drying tempera-
ture parameters for this investigation was determined based 
on the results of previous research. For instance, malto-
dextrin at levels of about 23–40% helps to keep polyphe-
nols, antioxidants, and anthocyanins safe, as well as giving 
spherical particles a smooth surface that makes them less 
likely to stick together in the end product [86]. Furthermore, 
temperatures in the range of 170–185 °C favor technologi-
cal properties, such as humidity, water activity, density, and 
flow properties, as well as the conservation of polyphenols 
and antioxidants [86].

Powder recovery was determined according to the 
method indicated by Muzaffar and Kumar [87] by calculat-
ing the percentage ratio between the total mass of the recov-
ered product after the drying process and the total solids 
content in the feed material.

Determination of Antioxidants and Total 
Polyphenols

The antioxidant and total polyphenol content of the black-
berry powders were determined using the methodologies 
described as follows.

Preparation of Extract

Preparing an extract using the Contreras-Calderón ​ [88] ​
methodology was necessary to determine the antioxidant 
and polyphenol content. For this purpose, 0.5 g of the sam-
ple (pulp or dried material) was weighed and mixed with 
4 ml of methanol and water in a 50/50 ratio. The mixture 
was vortexed (BenchMixerTM, USA) for one minute and 
subsequently subjected to ultrasound treatment (Elmasonic 
EASY, Germany) for 15 min at a frequency of 50/60 Hz. 
Then, the mixture was centrifuged at 6000 rpm for 15 min 

insoluble, and total fiber were determined [79]. According 
to Vega-Castro et al. [80], Eq. 1 served as the basis for cal-
culating the total carbohydrate content (%CH).

%CH = 100%

−
∑

(%Moisture + %Ashe + %Fat + %Protein)� (1)

The soluble solids (°Brix) were measured using a digital 
refractometer from Bellingham + Stanley [79]. Finally, the 
water activity (aw) was determined using an Aqualab-Pre 
analyzer (Lab-Ferrer, Spain), following the methodology 
provided by Pui et al. [81].

Preparation of the Dispersion

Once the blackberries were disinfected as described by 
Betoret et al. [78], they were processed in a pulper with 
a standard No. 16 sieve with an opening of 1180 microns 
(Estructuras y Montajes, Colombia). The dispersion formu-
lations were prepared based on 300  g of blackberry pulp 
with 7.6 °Brix as a reference, which was mixed with 5% 
of Tween 60, and different concentrations of maltodextrin 
(Table 1); maltodextrin was chosen because it provides bet-
ter encapsulation and protection of bioactive compounds 
such as polyphenols and antioxidants than other carrier 
agents [58]. Then, quantities between 34 and 46 mg of zinc 
citrate and 1.2–1.6 mL of 0.2 mg/ml of folic acid solution 
were added. Finally, all components were homogenized at 
14,000  rpm in 2 cycles of 3  min using an Ultra-Turrax® 
MDT-G25 (Kinematica, Switzerland) and then refrigerated 
at 4 ± 0.5 °C [71, 82, 83].

The analytical balance (Radwag, Poland) was used to 
weigh all components of the dispersion, with a precision of 
0.1 mg. The zinc and folate levels were determined based on 
a serving size of 50 g of powder product and using a 30% 
allocation of the daily value, as stipulated in Resolution 810 

Table 1  Experimental conditions were applied to study the tempera-
ture and solid content concentration using an MSR-DCC 22 with 4 
axial and 3 central points
Treatment Temperature drying (°C) Solid Content (%MD)*
1 180.00 25.00
2 182.07 30.00
3 170.00 25.00
4 175.00 30.00
5 180.00 35.00
6 167.92 30.00
7 175.00 37.07
8 170.00 35.00
9 175.00 30.00
10 175.00 30.00
11 175.00 22.92
*Maltodextrin content in the dispersion (%w/w)
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Determination of Anthocyanins

For the determination of anthocyanins, the methodology of 
AOAC 2005 [79] was followed. This method is based on 
spectrophotometry and the color change of the anthocyanin 
pigment at different pH levels. Initially, dilutions of potas-
sium chloride at pH 1.0 and sodium acetate at pH 4.5 were 
prepared in 50-ml volumetric flasks. The blackberry extract 
previously prepared was brought to a ratio of 1:4 (1 part 
sample and 4 parts buffer). The two obtained solutions were 
used and allowed to rest for 20–50 min. Subsequently, mea-
surements for each solution were taken using a Varian Cary 
50 UV-Vis spectrophotometer at an absorbance of 520 nm 
and 700 nm. The samples were then read against a blank of 
distilled water with a 1 cm cell path length. For the calcula-
tion of anthocyanins, cyanidin-3-glucoside equivalence was 
obtained by following Eqs. 2 and 3:

A = (A520 − A700)pH1.0 − (A530 − A700)pH4.5� (2)

CAT =
(

mg cyanidin − 3 − glucoside

g

)

=
A ∗ MW ∗ DF ∗ 1000 ∗ EV

ε ∗ 1 ∗ SW

� (3)

Where: CAT: Anthocyanin pigment content (mg/g): A: 
Change in absorbance obtained in the spectrophotometer, 
MW: Molecular weight for cyanidin-3-glucoside 449.2  g/
mol. DF: Dilution factor. EV: Extract volume ε: Molar 
extinction coefficient for cyanidin-3-glucoside (26900  L/
mol.cm). SW: Sample weight.

Folic Acid Determination

The methods described by Lopera and Gallardo [91] and 
Khan et al. [92] were used to determine the amount of folic 
acid in the blackberry powder. Liquid-liquid extraction and 
quantification were performed by liquid chromatography 
coupled with mass spectrometry (LC-MS/MS). For the folic 
acid measurement, 0.2 mL of a 50% citric acid solution was 
added to adjust the pH to 4.3, followed by the addition of 
70 µL of dextrozyme GA enzyme at 60 °C in a water bath 
for 10 min. Then, 5 mL of citrate-phosphate buffer solution 
at pH 7.5, adjusted with 10% NaOH, was added to each 
sample. The mixture was shaken for 5 min in an ultrasonic 
bath, and a 2 mL aliquot was taken, filtered, and analyzed by 
HPLC. For the HPLC analysis, a Perkin Elmer HPLC with 
a 200 EP series diode array UV detector and a SORBAX 
SB-C18 LC column (150 × 3 mm x 3.5 μm) was used. The 
equipment conditions as follows: a temperature and wave-
length of 30 °C and 254 nm, respectively. The mobile phase 
consisted of 0.017  M potassium dihydrogen phosphate, a 

using a centrifuge (BOECO C-28 A, Germany). The super-
natant was then transferred to a 25-mL flask previously 
prepared with filter paper. This process was repeated three 
times with the methanol/water solution. Once the process 
was completed, the same ultrasound and centrifugation 
procedure was carried out with an acetone/water solution 
in a 70/30 ratio. After completing the procedure with the 
acetone/water solution, the volumetric flask was filled with 
distilled water. The samples were then stored in refrigera-
tors and protected from light.

Total Polyphenols

The Folin-Ciocalteu assay was used to measure the total 
amount of polyphenols, using a method adapted from Oso-
rio-Arias et al. ​ [89] and the one described by Contreras-
Calderón ​ [88]. Here, 20 µL of the extract was diluted in 
1600 µL of distilled water and mixed with Folin-Ciocalteu 
reagent (100 µL) and 300 µL of sodium carbonate solution 
(20% w/v). After 60 min in the dark, the absorbance was 
measured at 725 nm using a Varian Cary 50 UV-Vis spectro-
photometer. Different gallic acid solutions (concentrations 
ranging from 0 to 1000 ppm) were used to create the cali-
bration curve. The results were expressed in milligrams of 
gallic acid equivalents per gram of solids (mg of GAEs/g). 
Measurements were performed in triplicate.

Antioxidants

For the determination of antioxidants, the FRAP and ABTS 
methods were employed, as described by Brand-Williams 
et al. [90]. A standard curve was constructed using a 10 ml 
volumetric flask filled with 5 ml of methanol and 5 ml of 
water for both methods, where 0.01 g of Trolox reagent was 
weighed. For the FRAP method, 30 µL of standard solution 
or sample extract was mixed with 90 µL of distilled water 
and 900 µL of FRAP reagent. The samples were then incu-
bated for 30 min and measured in the spectrophotometer at 
a wavelength of 595 nm, using acetate buffer as the blank. 
Trolox solutions (concentrations ranging from 0 to 500 
ppm) were used for the calibration curve. Measurements 
were performed in triplicate. For the ABTS method, 100 µL 
of the standard solution or sample extract was mixed with 
1000 µL of the ABTS + solution. The samples were then 
incubated for 30 min and measured in the spectrophotom-
eter at a wavelength of 730 nm, using ethanol as the blank. 
Trolox solutions (concentrations ranging from 0 to 500 
ppm) were used for the calibration curve. Measurements 
were performed in triplicate.
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Moisture Content and Water Activity (aw)

To determine the moisture content of the blackberry pow-
der, the method outlined by Melo-Guerrero et al. [96] was 
employed, using a thermobalance MA 210.X2 (Radwag, 
Poland), at a temperature of 70 °C, and weight stabilization 
at 120  s with a 1  mg difference. Then, 3  g of blackberry 
powder was placed in the pre-weighed tray, and analyzed 
until a constant weight was achieved. Water activity (aw) 
was measured following the methodology given by Pui et al. 
[81] and using an Aqualab-Pre analyzer (Lab-Ferrer, Spain).

Bulk Density and Tapped Density

For bulk density determination, a volume between 6 and 
8  ml of the blackberry powder was poured into a 10-mL 
graduated test tube, and then the powder mass was mea-
sured. For taped density, the test tube was dropped 50 times 
from a height of 10 cm, and the new volume of the com-
pacted powder was registered. The densities were calculated 
using Eq. 5a and 5b, following the methodology proposed 
by Tonon et al. [97].

ρb =
wp

V1
� (5a)

ρt =
wp

V2
� (5b)

Where: ρb: bulk density (g/cm3), wp: powder weight (g), V1: 
initial powder volume (cm3), ρt: tapped density (g/cm3), and 
V2: compacted powder volume (cm3).

Experimental Design

To find the best spray drying conditions for the bioactive, 
functional, and technological properties of blackberry pow-
der, a response surface methodology (RSM) was imple-
mented, involving with 11 experiments that used a rotatable 
central composite design (CCD) 22 with 4 axial points and 
3 central points. The independent variables were malto-
dextrin concentration (25–35%) and air inlet temperature 
(170–180  °C). The dependent variables were moisture, 
water activity (aw), color, antioxidant capacity, polyphenol 
content, and anthocyanin content (see Table 1).

The response variables were determined using RSM, and 
the experimental values were fitted to the following second-
order equation, as shown in Eq. 6.

Y = b0 +
∑

2
i=1bixi +

∑
2
i=1biiX

2
i +

∑
2
i<j=1bijXiXj � (6)

0.22% tetrabutylammonium hydroxide modifier, and meth-
anol in a ratio of 66:34.

Zinc Determination

The analysis of zinc in the blackberry powder was car-
ried out according to the technique suggested by Cherfi et 
al. [93], using an atomic absorption spectrometer Unicam 
model Solar-929 (Cambridge, UK). The measurements 
were conducted using an air-acetylene flame, with a band-
width of 0.5 nm, a lamp current of 10 mA, an air flow rate 
of 6 L/min, and an acetylene flow rate of 2.5 L/min. The 
wavelength used for measuring zinc was 217 nm.

Color Measurement

For the color measurement of both fresh blackberries and 
blackberry powder, the CIELAB methodology was used, 
with slight modifications based on Cuesta-Riaño [94] and 
adapted for smartphone use according to the study made by 
Sáez-Hernández [95]. The L*a*b parameters were deter-
mined using the “Colorimeter App”; the distance between 
the phone and the samples was approximately 10 cm. Mea-
surements were taken from an iPhone XR with a 12 MP 
camera. The obtained values were initially expressed in 
terms of RGB but were later converted using the “Colorlab” 
app to express them in terms of the Lab color space, also 
referred to as CIELAB.

Solubility Measurement

The solubility of blackberry powder was measured using 
the approach described by Santhalakshmy et al. [61]. One 
gram of the sample was mixed with 100 ml of distilled water 
using a vortex (BenchMixer™, USA) for 5 min. The solu-
tion was then centrifuged (BOECO C-28 A, Germany) at 
3000 rpm for 5 min and allowed to rest for a minimum of 
30  min. The supernatant was transferred to pre-weighed 
petri dishes and dried in an oven at 105 °C for 5 h. Solu-
bility was calculated based on the weight difference (%), 
according to Eq. 4:

%Solubility =
Wi − Wg

Wf − Wg
× 100� (4)

Where: Wi is the initial weight of the powder, Wf is the 
final weight of the powder, and Wg is the weight of the petri 
dishes.
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content (ABTS). The data were analyzed using a 95% 
ANOVA and a 95% LSD-Fisher multiple range analysis.

Results and Discussion

Proximate Analysis of Blackberries

The results of the proximate analysis of fresh blackber-
ries are shown in Table 2. Overall, the values for moisture 
(84.39%) and ash (0.42%) are like those found by Hassi-
motto et al. [99], who evaluated these parameters for black-
berries grown in Brazil. However, as shown in Table 2, the 
carbohydrate content (13.91%) was higher than the one 
reported by Hassimotto et al. [99]. Likewise, Monroy et 
al. [100] reported values for ash, protein, fat, and fiber that 
match those in Table  2. Although the values presented in 
Table  2 may vary from those found by other authors due 
to environmental conditions, cultivation practices, and fruit 
variety, they contribute to the characterization of fresh black-
berries, considering the scarcity of reports on this matter.

Spray Drying

The experimental design in Table  3 displays the results 
for different response variables of the blackberry powder, 
including moisture, water activity (aw), antioxidants, poly-
phenols, solubility, and color.

The results in Table  3 show that the moisture con-
tent obtained for blackberry powder ranged from 0.95 to 
3.19%, corresponding to experimental conditions 6 and 1, 
respectively. These moisture values for blackberry powder 
are comparable to those reported by Ferrari et al. (2012a) 
[66], who obtained moisture values for blackberry powder 
between 0.47 and 2.44% by spray drying. Furthermore, the 
moisture content of blackberry powder is comparable to that 
of other fruit powders, such as cupuassu powder [101], jack-
fruit powder [81], and Chinese plum powder [102], where 

Where: Y is the response variable, b0 is a constant, bi are 
coefficients of the model linked to a linear effect, bii are 
coefficients related to the quadratic effect, bij are constants 
for the interaction effect, and Xi and Xj are the variables.

Finally, to optimize the response variables, a multiple 
response methodology was carried out through the desir-
ability function. The aim is to convert each response yi into 
a desirability function di, which can range from 0 to 1. In 
general, the value of di is 1 when the response variable yi 
achieves the optimization goal. However, if the value of the 
response variable yi is not in the acceptability region, di = 0. 
According to Saavedra et al. [98], each response should be 
standardized in the desired function di, represented as di = 
hi(yi), following Eq. 7.

D = (d1d2... .dm)1/m � (7)

With the optimized drying conditions, additional drying was 
performed in triplicate. Time-dependent data were analyzed 
using a randomized experimental design, with time as the 
independent variable having four levels (day 0, day 15, day 
30, day 45). The dependent variables included moisture, 
bulk density, solubility, folic acid content, and antioxidant 

Table 2  Summary of the proximate analysis of fresh blackberries, har-
vested in Santa Elena, Medellin, Colombia
Analysis Value Units
Moisture 84.39 ± 7.310 g/100 g
Ash 0.42 ± 0.040 g/100 g
Fat < 0.33 g/100 g
Protein 1.28 ± 0.113 g/100 g
Carbohydrates 13.91 g/100 g
Calories 28.48 Kcal/100 g
Crude fiber 2.58 ± 0.485 g/100 g
Soluble dietary fiber 1.33 ± 0.403 g/100 g
Insoluble dietary fiber 6.74 ± 0.739 g/100 g
Total dietary fiber 8.07 g/100 g
Antioxidant Content (FRAP) 16.26 ± 0.79 µmolTrolox/g

Table 3  Blackberry powder properties measured for each run at the end of spray drying process
Treatment Moisture Aw FRAP ABTS Polyphenols Anthocyanin L a* Solubility

(%) (µmol Trolox/g) (µmol Trolox/g) (mg Gallic Acid equi/g) (mgcyanidin-3-glucoside/g) (%)
1 3.19 0.35 13.284 7.553 10.662 0.221 52.83 53.67 86.31
2 2.82 0.34 13.94 7.488 9.319 0.292 48.3 52.6 89.29
3 2.26 0.26 14.836 7.635 10.712 0.052 44.03 50.37 86.56
4 2.12 0.35 12.713 6.282 8.044 0.819 40.23 49.87 87.95
5 1.6 0.28 12.729 5.85 7.908 0.113 41.03 52 87.96
6 0.95 0.29 12.375 6.365 8.334 0.091 39.3 48.77 81.54
7 1.25 0.26 11.446 5.677 6.372 0.525 36.9 50.43 87.71
8 1.31 0.25 10.766 5.462 7.348 0.445 32.47 49.13 87.91
9 1.2 0.26 13.946 6.289 7.334 0.145 40.83 50.53 87.81
10 1.17 0.3 12.896 7.053 9.532 0.128 44.23 49.83 87.78
11 2.21 0.42 16.075 7.209 9.855 0.068 55.63 49.03 84.64
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maltodextrin addition results in a dilution of the antioxidant 
compounds. Mishra et al. [111]and Oberoi and Sogi [112] 
found similar results in the spray drying of amla juice and 
watermelon juice.

Table 3 also shows the anthocyanin content of blackberry 
powder. The values range from 0.052 mg cyanidin-3-gluco-
side per gram of sample to 0.818 mg cyanidin-3-glucoside 
per gram of sample, which is equal to 0.51–8.40 mg cyani-
din-3-glucoside per liter of extract. The highest anthocyanin 
content was achieved under drying conditions at 175  °C 
with a 30% maltodextrin content. These values are similar 
to those reported by Da Fonseca et al. [108], who found 
an anthocyanin content of 0.79 mg cyanidin-3-glucoside/g 
in blackberry powders obtained by spry drying. Anthocy-
anin values for other powder fruits obtained by spry-drying, 
such as pomegranates, vary between 5.980 and 8.015  mg 
cyanidin-3-glucoside/L [113], which are like those reported 
in this study. The amounts are also about the same or less 
than what was found in studies that dried blueberries (2.10 
to 17.41 mg cyanidin-3-glucoside/g)​ [114]​, black rosehips 
(0.91–2.47 mg cyanidin-3-glucoside/g) ​ [115],​ and maober-
ries (0.41–0.94  mg cyanidin-3-glucoside/g) using freeze-
drying, convective drying, and microwave drying ​ [116]​

With the values of antioxidants, polyphenols, and antho-
cyanins reported in Table  3, it can be concluded that the 
blackberry powder obtained in this research agrees with 
results found by different authors for this fruit and drying 
method, maintaining significant levels of these character-
istic components of blackberries. Therefore, this drying 
method allows for the preservation of these components in 
blackberries while enabling fortification.

Solubility percentages for blackberry powder varied 
between 84.642 and 89.289%, with the highest solubil-
ity achieved under experimental condition 2, as shown in 
Table 3. Rigon and Zapata (2016) [72] reported solubility 
values for blackberry powders that ranged between 88.2% 
and 97.4%. Similar solubility values for powders from vari-
ous fruits have been determined by previous studies, some 
of which are comparable to those shown in Table  3. The 
solubility of guava powder was 83.42% [109], Eugenia 
dysenterica was 94.4–97.8% [62], Morus was 87% [117], 
and Haematocarpus validus was 96.62% [118]. In terms 
of the relationship between solubility values and consumer 
perception, it is important to clarify that solubility is an 
important property of spray-dried food products that can 
directly influence quality and consumer acceptance [119]. 
High solubility is an essential aspect to achieve excellent 
product quality and excellent reconstitution behavior [111], 
as well as to promote the dissolution of organic and inor-
ganic substances such as sugars and salts [120] that directly 
affect consumer perception. The solubility values found 
in this work are mostly above 85%, which means that the 

the powder moisture ranged between 1.59 and 6.03%. 
Regarding the aw of blackberry powder, the values obtained 
ranged from 0.25 to 0.35. Similar aw values in blackberry 
powders were found by Farias-Cervantes et al. [103], who 
obtained values of 0.19–0.45 for spray-dried blackberry 
powder, other comparable values for tangerine powders 
were obtained [104]. Based on the values of aw and mois-
ture obtained for the blackberry powder in Table 3, it can be 
concluded that this product is suitable for marketing since 
fruit powders with low moisture content have good stabil-
ity and a longer shelf life [105]. Additionally, the moisture 
content of this powder falls within the acceptable range for 
industrial production of spray-dried fruit [106]. Finally, it 
can also be considered a stable product since foods with 
aw < 0.6 are generally regarded as microbiologically stable 
[107].

As shown in Table 3, the antioxidant content determined 
using the FRAP methodology ranged from 107.661 to 
160.754 mol Trolox/g. The drying conditions with the high-
est antioxidant content were at 175 °C with 22.928% malto-
dextrin. The FRAP values for blackberry powder shown in 
Table 3 are lower than those reported by Da Fonseca et al. 
[108], who obtained values of 183.12 µmol Trolox/g for 
blackberry powders dried at 105  °C. However, they are 
higher than the values reported by Thaipong et al. ​ [109]​ 
for various guava powders, ranging from 15.5 to 33.3 mol 
Trolox/g.

The antioxidant content of blackberry powder is shown 
in Table 3, with values ranging from 54.622 to 76.351 µmol 
Trolox/g using the ABTS method. The highest antioxidant 
content was obtained with drying conditions at 170 °C and 
a maltodextrin content of 25%. This range of antioxidant 
values is similar to findings by Rigon and Zapata [72] and 
Hassimotto et al. [99], who obtained ABTS antioxidant 
contents of 67 µmol Trolox/g for blackberries processed 
by spray drying at 140 °C and 76 µmol Trolox/g for fresh 
blackberries, respectively.

The total polyphenol content varied between 6.372 and 
10.712  mg gallic acid/g (Table  3). The drying conditions 
at 170 °C and a 25% maltodextrin content resulted in the 
highest total polyphenol concentration in blackberry pow-
der. Rigon & Zapata (2016) [72] obtained comparable data, 
reporting a polyphenol concentration of 10.039  mg gallic 
acid/g for spray-dried blackberries. Antioxidants, includ-
ing polyphenols, are sensitive to high temperatures [110]; 
usually, the higher the temperature, the faster the antioxi-
dant degradation. That is why the samples dried at 170 °C 
exhibited the highest antioxidant and polyphenol content, 
as it was one of the lowest temperatures in the experimen-
tal design. Likewise, an increase in maltodextrin content 
reduces the antioxidant and polyphenol content, as malto-
dextrin itself has no antioxidant capacity or polyphenols. A 
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presented in Eq. 6, because the lack-of-fit test for moisture, 
aw, and polyphenol content produced a p-value greater than 
0.05. Additionally, the coefficient of determination (R²) for 
these variables explains the behavior of the responses by 
more than 70%, indicating that the data was well-collected, 
explains the responses and fits the design model [122]. In 
general, the polyphenol and anthocyanin content of black-
berry powder did not change significantly; instead, they 
remained constant, a behavior attributed to the quick drying 
time, consistent with [123].

Regarding the antioxidant content evaluated by the 
ABTS and FRAP methods, they were significantly affected 
(p < 0.05) by the solids content. As shown in Fig. 1a and b, 
higher solid content led to lower antioxidant content; how-
ever, maltodextrin was able to preserve 78% and 83% of 
the antioxidant content by ABTS and FRAP, respectively, 
in accordance with Santiago-Adame et al. [124]. This pres-
ervation effect of maltodextrin on antioxidants is attributed 
to the amorphous structure of maltodextrin, which main-
tains an amorphous state during the spray drying process. 
This state favors air expansion within the formed particles, 
increasing volume to preserve antioxidants [110].

Besides, considering these results, it can be said that 
sugar-rich materials, such as fruit juices, are difficult to 
directly spray dry without a carrier agent due to their sticki-
ness behavior and low glass transition temperature, which 
leads to wall deposition problems and drying difficulties 
[58]. Alternatively, carrier agents can be employed as an 
aid in the spray drying process, where the main function 
is to increase the Tg of the system since these agents are 
characterized by a high molecular weight, low viscosity, and 
Tg in a range of 100–188 °C [110]. Shishir and Chen [58] 
conducted an extensive review of trends in the spray drying 
of fruits and vegetables, in which they summarized several 
studies that employed various carrier agents, concluding 
that, in most of them, maltodextrins were the most efficient 
carriers to preserve heat-sensitive compounds during the 
spray drying process. The higher conservation capacity of 
maltodextrin is due to its physicochemical properties, which 

blackberry powders obtained have high solubility and con-
sequently good consumer acceptance [121]. It can be stated 
that the solubility values in Table 3 agree with those obtained 
by various authors, suggesting that blackberry powder can 
easily dissolve in water, facilitating its application at the 
household or industrial level.

Experimental Design Analysis

Table 4 presents the p-values for each of the studied response 
variables, based on the experimental design depicted in 
Table 1. Equations 8, 9, 10 and 11 show the relationships 
between independent factors and dependent variables for 
moisture, polyphenol content, ABTS antioxidant content, 
and the L color parameter, respectively. Figure  1A, B, C, 
D and E show the effect of drying air inlet temperature and 
solid content on the content of antioxidants (ABTS) and 
antioxidants (FRAP), as well as the solubility and color 
parameters L and a*, respectively.

Moisture : 285.032 − 3.418T + 0.573CS

+ 0.010T 2 − 0.0064T × CS + 0.007CS2� (8)

Polyphenoles : 574.055 − 6.203T − 1.528CS

+ 0.017T 2 − 0.0061T × CS + 0.0030CS2� (9)

ABTS : 242.772 − 2.580T − 0.819CS

+ 0.007T 2 + 0.0047T × CS − 0.0025CS2� (10)

L∗ : 493.398 − 4.883T − 4.762CS

+ 0.016T 2 − 0.0024T × CS + 0.065CS2 � (11)

Where: Drying air inlet temperature (T), Solid content (CS), 
Drying air inlet temperature squared (T2), and Solid content 
squared (CS2).

From Table  4, it can be observed that the moisture 
content, water activity (aw), and polyphenol content of 
blackberry powder were not significantly affected by the 
independent variables or their interactions (p > 0.05). The 
values in Table 4 are consistent with the mathematical model 

Table 4  Analysis of variance (ANOVA) of the DCC 22 with 4 axial points and 3 central point design
Source p value

Moisture Aw FRAP ABTS Polyphenols Anthocyanins L a* Solubility
A 0.1271 0.2735 0.2979 0.2698 0.6095 0.923 0.0387* 0.0091* 0.0092*
B 0.1253 0.1383 0.0272* 0.0404* 0.0735 0.493 0.0147* 0.4909 0.0013*
A2 0.3641 0.8242 0.6405 0.4413 0.4554 0.62 0.6973 0.0736 0.0398*
AB 0.6135 0.5743 0.1184 0.6489 0.812 0.592 0.9607 0.6393 0.2561
B2 0.4965 0.7239 0.6479 0.7638 0.8855 0.823 0.2125 0.6139 0.0022*
Lack of fit test 0.6443 0.5137 0.5043 0.5406 0.8134 0.956 0.5001 0.0799 0.0178*
R2 78.740 62.570 89.366 89.366 81.864 38.86 94.538 76.699 89.679
A: Temperature; B: Solid Content
*Values P < 0.05 indicate that there is a significant impact. The p-value > 0.05 of the lack-of-fit tests indicates that the values of the response 
variables fit a second-order model
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Fig. 1  Effects and surface response graphics of drying temperature and solids content on (A) Antioxidants (ABTS), (B) Antioxidants (FRAP), (C) 
Solubility, (D) L parameter and (E) a* parameter
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As for the color parameters, the analysis of variance 
shown in Table 4 indicates that both drying air inlet tempera-
ture and solid content significantly affected the color param-
eter L of the blackberry powder (p < 0.05). Figure 1d shows 
that while a higher drying air inlet temperature increased 
the L parameter, consistent with the results of Sarabandi et 
al. ​ [128], a higher solids content decreased it ​ [61]. Only 
the drying air inlet temperature (p < 0.05) had an impact on 
the color parameter a*, increasing it, as shown in Fig. 1e. In 
general, the color parameters of powders change depend-
ing on the drying parameters and the type of encapsulating 
agent [128]. This behavior is due to the fact that, accord-
ing to Santhalakshmy et al. [61], most encapsulating agents 
are white (such as Maltodextrin powder) [61]. The white-
ness of maltodextrin has an impact on the color properties 
of blackberry powders, leading to increased brightness and 
decreased redness, according to findings by Wei and Sulai-
man (2022) [129].

Optimization and Time Analysis

Table  5 shows the optimization criteria for the response 
variables in the spray drying process of the blackberry pow-
der. Equation 7 was applied to optimize the drying process 
and enhance the properties of the blackberry powder, mini-
mizing the moisture content and maximizing the antioxi-
dant content (by the FRAP and ABTS + methods), as well 
as the content of total polyphenols. In that sense, the optimal 
conditions of the process were a drying air inlet tempera-
ture of 167.92 °C and a solids content of 23.608% with a 
desirability of 85.5%, as seen in Fig. 2. The optimal dry-
ing conditions were done in triplicate. The established dry-
ing conditions yielded a powder recovery of 63.9%, in line 
with the findings of Muzaffar and Kumar [87] and Henao-
González et al. [86], who reported powder recovery percent-
ages of 68.4% for tamarind pulp and 71.4% for strawberry 
pulp, respectively. Differences in recovery percentages may 

keep the amorphous microstructure in all water activities ​ 
[110]​, thus avoiding the rubbery state, where most degrada-
tion reactions speed up because of its high molecular mobil-
ity. Finally, the lack-of-fit test for all variable response was 
higher than p > 0.05, which means that these variables fit 
the model of Eq. 6. Indeed, in Table 4, the R2 for ABTS and 
FRAP was 89% and 84%, respectively, which indicates that 
the data shown in Table 3 correctly explains the variation of 
these parameters.

Table 4 shows that both linear and quadratic effects had 
significant effects on the solubility of blackberry powder 
(p < 0.05). For instance, Fig. 1c indicates that the solubil-
ity of blackberry powder rises when the solid concentration 
of the dispersion increases and as the drying air inlet tem-
perature is increased. An increase in the air inlet tempera-
ture during the drying process leads to a higher solubility of 
powder since the heating of starch structures contained in 
maltodextrin prevents the organization of starch granules, 
facilitating water migration to the starch-like structure of 
maltodextrin [125]. Furthermore, lower powder moisture 
is associated with higher solubility [118]. The increase in 
powder solubility with higher solid content is attributed to 
the addition of maltodextrin to obtain more solids, improv-
ing the solubility properties of powders, as observed in 
sweet potato powders [126] and mango powders [127].

Table 5  Optimization criteria for response variables in the blackberry 
powder spray drying process
Response Variable Optimization criteria
Moisture content Minimized
aw Minimized
Antioxidants - FRAP Maximized
Antioxidants - ABTS Maximized
Polyphenols Maximized
Anthocyanins Maximized
Solubility Maximized
Zinc Content Maximized
Folic Acid Content Maximized

Fig. 2  Contour plot for the desir-
ability function for the optimiza-
tion of multiple responses of the 
spray drying process
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impacted by the storage time, as illustrated by Fig. 3F and G, 
and 3H (p < 0.05). Based on previous results for black carrot 
(Daucus carota L.) [132] and bayberry (Myrica gale) [133], 
which have indicated similar degradation in and over time, 
the observed phenomenon is likely caused by both kinetic 
degradation and light exposure. Several factors that could 
cause the anthocyanin content in the blackberry powder to 
drop over time, including light, temperature, oxygen, or 
enzyme action [134]. However, since the blackberry pow-
der was stored in a package whose atmosphere was mostly 
oxygen, it is likely that oxygen was the cause of the loss 
of anthocyanins. Due to the unsaturated chemical structure 
of anthocyanins, these compounds are susceptible to reac-
tion with molecular oxygen [135], causing their degradation 
either by a direct oxidative mechanism or by the action of 
oxidizing enzymes [136].

Figure  3b shows the analysis of variance, indicating 
that storage time did not significantly affect bulk density 
(p > 0.05), which could be explained by the fact that the 
blackberry powder did not absorb a high moisture content 
during storage [137]. As seen in Table 6, the moisture con-
tent only increased by 1% over the storage period. Although 
the change in water content in the powder was significant 
over time (p < 0.05), this increase in moisture content was 
not high enough to alter the bulk density of the product. As 

be due to factors such as inlet air humidity, carrier agent 
concentration, and feed flow rate [58].

Table 6 displays the changes in antioxidants (FRAP), total 
polyphenol content, anthocyanins, moisture, water activity, 
bulk and tapped density, folic acid, and zinc levels over time 
(0, 15, 30, and 45 days) for blackberry powder under the 
optimal conditions of the spray drying process. Figure 3A, 
B, C, D, E and F y 3 H show the mean graphs with a sig-
nificance of 95% for moisture, bulk density, solubility, folic 
acid, zinc, antioxidant-FRAP, antioxidant-ABTS, anthocy-
anin of the blackberry powder over time.

The moisture content of the blackberry powder was sig-
nificantly affected by the storage time (p < 0.05), as shown 
in Fig. 3a, where a longer storage time resulted in a higher 
moisture content of the product. This increase could be 
attributed to the sugar content of blackberries and the pres-
ence of maltodextrin in the formulation, which can enhance 
water adsorption by the powder [130]. Similar increases in 
moisture content have been observed for fruit powders such 
as tamarind powder [131] and black mulberry powder [117].

Table  6 shows that, throughout the 45-day storage of 
blackberry powder, the average preservation percentages 
for the antioxidants FRAP, ABTS, and anthocyanins were 
41%, 32%, and 22%, respectively. The content of the anti-
oxidants FRAP, ABTS, and anthocyanins was significantly 

Table 6  Effect of storage time (0, 15, 30, and 45 days) on some properties of blackberry powder
Days Moisture Aw FRAP ABTS Anthocyanins Bulk 

Density
Tapped 
Density

Solubility Zinc Folic Acid

% (µmol 
Trolox/g)

(µmol 
Trolox/g)

(mgcyanidin-3-glucoside/g) (g/cm^3) (g/cm^3) % (µg/100 g) (µg/100 g)

0 2.071 a 0.298 
a

18.47 a 10.02 a 0.310 a 0.382 a 0.62 a 91.966 a 209.0 a 122.65 a

0 1.95 a 0.298 
a

17.98 a 9.91 a 0.570 a 0.373 a 0.624 a 92.409 a 211.0 a 122.63 a

0 1.978 a 0.306 
a

20.39 a 9.93 a 0.600 a 0.374 a 0.622 a 91.396 a 207.0 a 122.58 a

15 2.306 b 0.33 
b

13.21 b 6.78 b 0.230 a, b 0.392 a 0.633 a 90.816 a, b 195.0 b 105.28 b

15 2.306 b 0.341 
b

11.37 b 6.04 b 0.469 a, b 0.373 a 0.63 a 89.743 a, b 198.0 b 105.29 b

15 2.306 b 0.347 
b

12.65 b 6.07 b 0.356 a, b 0.366 a 0.622 a 91.199 a, b 192.0 b 105.27 b

30 2.889 c 0.338 
b

9.829 c 5.92 b 0.256 b, c 0.385 a 0.619 a 87.127 a, b 184.0 c 104.22 c

30 2.85 c 0.343 
b

8.957 c 5.99 b 0.159 b, c 0.367 a 0.629 a 90.663 a, b 186.0 c 104.19 c

30 2.931 c 0.349 
b

8.444 c 5.96 b 0.186 b, c 0.374 a 0.621 a 88.399 a, b 182.0 c 104.2 c

45 3.012 d 0.372 
c

6.087 d 4.31 c 0.110 c, d 0.384 a 0.629 a 81.67 b, c 144.6 d 90.93 d

45 2.963 d 0.372 
c

6.225 d 4.35 c 0.085 c, d 0.381 a 0.63 a 88.067 b, c 145.1 d 90.95 d

45 3.011 d 0.373 
c

6.362d 3.78 c 0.138 c, d 0.376 a 0.629 a 89.277 b, c 144.1 d 90.9 d

Different letters mean a significant difference (p < 0.05)
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Fig. 3  Fisher LSD interval graphs with 95% confidence of the different variables analyzed, where: (A) Moisture, (B) poured density, (C) Solubility, 
(D) Folic acid, (E) Zinc, (F) Antioxidant-FRAP, (G) Antioxidant-ABTS, (H) Anthocyanin
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provide nutritional support for both growing children and 
pregnant women.

In Fig. 3D, it can be observed that the folic acid content 
of blackberry powder decreased over time. The degrada-
tion of folic acid can be ascribed to multiple causes, includ-
ing the presence of oxygen in the packing, ultraviolet light 
exposure, and the pH level of the blackberry powder [151]. 
The folic acid content was significantly affected by time, 
with a statistically significant impact (p < 0.05). Neverthe-
less, the folic acid levels found in this study meet 30% of 
the recommended daily intake, as stated in Resolution 810 
of 2021 by the Ministry of Health and Social Protection of 
Colombia, for a serving size of 50 g.

Finally, the developed blackberry powder, shows proper-
ties like good water solubility that facilitate its consumption 
by dilution of 50 g in milk or water, or incorporated into 
healthy and protein shakes. The powdered product obtained 
also shows preserving of sensible compounds like antioxi-
dants and folic acid, which would provide a nutritional con-
tribution for both growing children and pregnant women.

Conclusion

This study could characterize the physicochemical proper-
ties of the blackberry grown in the town of Santa Elena, 
Medellín, Colombia, and obtain a blackberry powder 
enriched with zinc and folic acid by optimizing the spray 
drying process. The obtained blackberry powder guaran-
tees 30% of the daily nutritional requirement of zinc and 
folate in 45 days of storage, both for growing children and 
pregnant women as stated in Resolution 810 of 2021 by the 
Ministry of Health and Social Protection of Colombia. This 
helps reach SDGs 2, 3, and 9.
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reported by previous studies, high water absorption from the 
environment is necessary for significant changes in pow-
der bulk densities [138]. Overall, the bulk density data are 
lower than those reported for jujube powders, which ranged 
between 0.47 and 0.63 g/ml [139]. Table 6 shows that bulk 
density data, are similar to those found for blackberry pow-
ders obtained by spray dry [140], cape gooseberry powders 
[141] and probiotic finger millet milk powder [138].

Although the solubility of the blackberry powder 
decreased over time, the obtained values indicate that it is 
a stable product with good solubility in water ​ [142]​ and 
can be used for various food preparations ​ [143]​. Similar 
solubility changes over time have been seen in blackberry 
powders with Lacticaseibacillus casei ATCC393 [144] 
and in Amazonian fruit powders [143]. Figure 3C, shows 
that storage time significantly affected the solubility of the 
powder (p < 0.05), similar to findings by Chang et al. [145], 
who reported that storage time considerably decreased the 
solubility of guanabana powders. This behavior could be 
attributed to the tendency of blackberry powder to compact 
over time due to absorbed water, resulting in a decrease in 
solubility [145]. Additionally, Van der Waals forces lead to 
the formation of lumps that reduce the solubility of the pow-
der [146].

The zinc content of the blackberry powder in Table  6 
shows a significant time-dependent effect (p < 0.05), the 
zinc content decreases over time, Fig.  3E. This reduction 
can be explained by several reasons. First, spray drying 
using hot air can induce the formation of compounds such 
as ferric oxide [147], which is a zinc inhibitor. Second, zinc 
can also be lost due to its interactions with the moisture 
content of the powder or its reactions to food proteins and 
carbohydrates, which happens because zinc is a transition 
metal, deficient in electrons and forming stable complexes 
with the components of the food, whether proteins or carbo-
hydrates, that are rich in electrons ​ [148]​. The formation of 
these complex systems can be accelerated by the moisture 
content of the product (which increases over time) since the 
moisture content of the food tends to hydrolyze zinc, thus 
increasing the interaction with proteins and carbohydrates 
due to the availability of ions [149]. Finally, blackberries 
contain phytate, which can bind zinc ions and potentially 
inhibit their availability [150]. The above-described com-
plexes and reactions may precipitate zinc or form difficult-
to-assimilate species, leading to the loss of effective zinc 
during storage.

Besides, the zinc content of the blackberry powder, as 
indicated in Table 6, fulfills over 20% of the recommended 
daily requirement, equivalent to 2.2 milligrams, in a 50-gram 
portion, in accordance with Resolution 810 of 2021 adopted 
by the Ministry of Health and Social Protection of Colom-
bia. In this context, the powder product obtained here would 
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