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A B S T R A C T   

Antiphospholipid syndrome (APS) is an autoimmune disease driven by a wide group of autoantibodies primarily 
directed against phospholipid-binding proteins (antiphospholipid antibodies). APS is defined by two main kinds 
of clinical manifestations: vascular thrombosis and pregnancy-related morbidity. In recent years, in vitro and in 
vivo assays, as well as the study of large groups of patients with APS, have led some authors to suggest that 
obstetric and vascular manifestations of the disease are probably the result of different pathogenic mechanisms. 
According to this hypothesis, the disease could be differentiated into two parallel entities: Vascular APS and 
obstetric APS. Thus, vascular APS is understood as an acquired thrombophilia in which a generalised phe-
nomenon of endothelial activation and dysfunction (coupled with a triggering factor) causes thrombosis at any 
location. In contrast, obstetric APS seems to be due to an inflammatory phenomenon accompanied by trophoblast 
cell dysfunction. The recent approach to APS raises new issues; for instance, the mechanisms by which a single 
set of autoantibodies can lead to two different clinical entities are unclear. This review will address the mono-
cyte, a cell with well-known roles in haemostasis and pregnancy, as a potential participant in vascular thrombosis 
and pregnancy-related morbidity in APS. We will discuss how in a steady state the monocyte-endothelial 
interaction occurs via extracellular vesicles (EVs), and how antiphospholipid antibodies, by inducing endothe-
lial activation and dysfunction, may disturb this interaction to promote the release of monocyte-targeted pro-
coagulant and inflammatory messages.   

1. Introduction 

Antiphospholipid antibodies (aPL) are a wide and heterogeneous 
group of autoantibodies directed against anionic phospholipids [1], 
phospholipid-binding proteins, or protein-phospholipid complexes [2]. 
Experimentally, aPL have been confirmed to be a cause of vascular 
thrombosis and adverse pregnancy outcomes, although the pathogenic 
mechanisms, as well as the exact antigenic specificities of the autoan-
tibodies responsible for these phenomena, are still a subject of research. 

The classical approach to antiphospholipid syndrome (APS), a clin-
ical entity defined by the persistent presence of aPL along with the 

occurrence of vascular thrombosis and pregnancy-related morbidity [3], 
has been revisited in recent years. As the first insight into the patho-
physiology of the disease, thrombosis and placenta infarction were 
suggested as the direct causes of obstetric disturbances [4], and aPL 
were thought to trigger a non-inflammatory hypercoagulable state [3]. 
In opposite to this view of APS, other authors have concluded that: a) In 
fact, thrombosis is not a common finding among patients with obstetric 
APS [5], b) Foetal loss and foetal growth restriction in animal models of 
APS can be attributed to inflammatory causes [6], and c) the favourable 
effect of heparin in murine models of aPL-driven pregnancy-related 
morbidity does not rely on its anticoagulant function, rather than on its 
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Small extracellular vesicles; TF, Tissue factor. 
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capability to block the complement activation [7]. These findings, along 
with other research results from in vitro experiments [8], suggest that 
obstetric APS is not the direct consequence of a hypercoagulable state, 
but reflects other unrelated pathogenic mechanisms. 

Not only the understanding of obstetric APS has been revisited, but 
also the conception of vascular APS. It is accepted that aPL can lead to 
thrombophilia through direct interaction with platelets, plasma pro-
teins, and surface molecules such as heparan sulfate and annexin A5 
[9–13]. However, there is increasing evidence of the prominent role that 
the activation of endothelial cells, monocytes and neutrophils also play 
in the course of aPL-driven thrombosis [14–18]. Therefore, the non- 
inflammatory feature of vascular APS, as the classification criteria 
stated [3], should be reconsidered [19]. 

To explain the causes underlying both types of clinical manifesta-
tions of APS, different effects have been attributed to aPL. Among these 
effects, recently it has been described a relationship between the pres-
ence of aPL and an increased quantity of extracellular vesicles (EVs) 
from monocytes, platelets and endothelial cells, in the plasma of patients 
with APS and cell cultures stimulated with aPL [20–22]. EVs are lipid 
bilayer fragments derived from cells that cannot divide by definition 
[23]. These fragments, notably those released directly from the cell 
membrane and sized between 0.1 and 2 μm (here referred to as medium/ 
large EVs (m/lEVs)), exhibit a putative procoagulant activity [24]. 

Previously, we reviewed and discussed how EVs could explain the 
behaviour of vascular APS by means of procoagulant mechanisms 
involving direct activation of the coagulation cascade [25]. Neverthe-
less, our current results [26], and those of other authors [27–29], sug-
gest that m/lEVs released in the presence of aPL exhibit a dampened 
direct coagulation activity. Furthermore, as outlined above, the pro-
coagulant mechanisms by themselves are not suitable to explain the 
obstetric clinical manifestations of APS. In contrast, there is evidence 
describing that endothelial cell-derived EVs can pose a procoagulant and 
inflammatory message addressed to other cells, thereby performing as 
indirect mediators of vascular thrombosis and pregnancy-related 
morbidity. For instance, it has been shown that EVs released by endo-
thelial cells stimulated with anti-β2-glycoprotein-I (aβ2GPI) antibodies 
(one of the best-described aPL) act as amplifiers of dysfunction and 
activation among unstimulated endothelial cells [30]. 

Although different cells can be recipients of EVs released by acti-
vated endothelium in the presence of aPL, the monocytes are receiving 
particular interest. Monocytes are well-known for their roles in hae-
mostasis, clearance of apoptotic bodies, placentation, pregnancy and 
labour [31–35]. These characteristics make them essential for under-
standing the mechanisms by which aPL can lead to vascular thrombosis 
and pregnancy-related morbidity. The interaction between activated 
endothelium and monocytes via EVs, and its potential impacts on hae-
mostasis and pregnancy, will be addressed in the present review. 

2. Monocytes in haemostasis 

Monocytes are myeloid cells of the mononuclear phagocyte system. 
It was argued during the 1960s that the most relevant function of 
monocytes should be the renewal of tissue macrophage populations, 
given their known capability to migrate into tissues and differentiate 
into this cell type [36]. It is now known that resident, tissue-specific, 
embryonic-derived macrophages have the potential to self-renew their 
populations, so new functions have been explored for bone marrow- 
derived monocytes produced in postnatal life (recently reviewed by 
[37]). Thus, monocytes cannot be considered cells in a transient state 
that require differentiation into macrophages or dendritic-like cells to 
fulfil specific functions. While it is clear that classical monocytes are able 
to transmigrate through the endothelium and carry out this differenti-
ation, depending on the subpopulation to which they belong, these cells 
by themselves can fulfil other tasks. For instance, monocytes can 
perform as scavengers of apoptotic bodies [32], promoters of inflam-
mation through the secretion of cytokines such as tumour necrosis 

factor-alpha (TNFα), interleukin (IL) 1β (IL-1β) and IL-6 [38], or they 
may patrol the blood vessel lumina and support tissue repair through 
pro-angiogenic functions [39]. 

Besides their role in the innate immune response and tissue repair, 
monocytes are actively involved in haemostasis. The paradigm of the 
activation of the coagulation cascade in vivo states that only when the 
integrity of endothelium is lost, tissue factor (TF) in the vascular wall is 
exposed for its interaction with platelets and plasma proteins, leading to 
the onset of primary and secondary haemostasis [40]. According to this 
idea, the absence of TF in cells that are in direct contact with plasma 
proteins of the coagulation cascade would ensure that blood did not 
undergo spontaneous clot activation. However, in later years, when 
collagen-coated sheets completely devoid of TF were perfused with 
normal human blood to assess the platelet adhesion phenomenon, im-
munostaining analysis of the resulting aggregates revealed the presence 
of abundant TF. The only feasible source of this TF could be blood 
(“blood-borne TF” in the author’s words) [41]. Following the separation 
of various components of whole blood by centrifugation, density 
gradient, and immunoadsorption (platelets, granulocytes, mononuclear 
cells and monocytes), it was evident that the main sources of blood- 
borne TF are monocytes and m/lEVs [31]. 

Since monocytes are in direct contact with the plasma components of 
the coagulation cascade and express TF, there must be mechanisms to 
restrict these cells from spontaneously triggering clot formation. In fact, 
most of the TF present on the monocyte membrane is encrypted and 
inactive, and its activity increases several-fold after an inflammatory or 
mitogenic stimulus in whole blood [31]. The functional consequences of 
TF encryption and decryption are clear, yet the molecular details of this 
process are still a subject of research. While it is thought that decryption 
may be due to changes in the molecular structure of TF, also, following 
certain stimuli, there is a rapid increase in membrane exposure of this 
protein, which is independent of de novo synthesis [42,43] (Box 1). 

As described above, stimuli leading to TF decryption must be pro-
vided to monocytes in whole blood. The explanation given for this 
requirement is that the decryption process is triggered by interaction 
with CD62P (also known as P-selectin), which is an adhesion molecule 
presented to monocytes mainly by platelets [43,44]. The interaction 
between platelets and monocytes is bidirectional and has been described 
to be related to hypercoagulable states [45]. Recently, Hottz et al. 
described that platelets from critically ill COVID-19 patients activate 
monocytes from healthy individuals through interaction with CD62P, 
then upregulating the expression of TF in the first 2 h of co-culture. 
Reciprocally, monocytes enhance the activation of platelets, leading to 
the secretion of platelet-derived growth factor and soluble CD62P [45]. 
Critically ill COVID-19 patients have higher amounts of platelet/ 
monocyte complexes in their blood compared to healthy volunteers, 
which is consistent with the increased risk of thrombosis that these 
patients exhibit [45]. Surprisingly, not only platelets, but also CD62P 
bound to 2 μm-sized polystyrene beads, is effective in increasing the TF 
exposed by monocytes [43], so it is feasible to hypothesise that EVs may 
perform a similar role. 

Analysis of a large group of patients with a history of thrombosis 
showed that an increased blood monocyte count is related to a high risk 
of venous thrombosis, as opposed to the number of other leukocytes 
[46]. Moreover, the significance of monocytes, and their interaction 
with the activated (but undamaged) endothelium, has been proven in 
animal models of thrombosis [47]. In a murine model attempting to 
recapitulate deep vein thrombosis induced by blood flow restriction, von 
Brühl et al. demonstrated that, even in the absence of endothelial 
disruption, leukocytes roll and adhere massively to the luminal surface 
of the affected blood vessel. This interaction between endothelium and 
leukocytes is mediated by CD62P and precedes the activation of the 
coagulation cascade in a TF-dependent manner [47]. Although it is 
known that activated endothelium also expresses TF and that, in fact, the 
largest proportion of endothelium-recruited leukocytes are neutrophils, 
using a bone marrow transplant-based chimeric model and a 
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recombinase-based conditional allele, it was found that TF from 
monocytes is the main contributor to the activation of the coagulation 
cascade in deep vein thrombosis [47] (Fig. 1). 

In addition to promoting thrombus formation under certain condi-
tions, monocytes also fulfil other functions in haemostasis. For example, 
it has been shown that, through a TF-dependent mechanism, activated 
monocytes participate in the contraction of the clot, once it has been 
formed, thereby reducing its volume [48]. Furthermore, monocytes can 
expose a dimeric form of factor XIII (FXIII) on their membrane upon 
stimulation with IL-10 and IL-4. This enzyme is a transglutaminase that 
provides stability to the clot and protects it from fibrinolytic degradation 
[49]. 

3. Monocytes in pregnancy 

Healthy pregnancy involves changes in the maternal immune 
response, comprising both inflammatory and tolerogenic effector 
mechanisms, adjusted according to a specific timing (reviewed by [50]). 
Not surprisingly, the monocyte population undergoes changes over the 
course of pregnancy: The percentage of classical monocytes decreases 
progressively, probably due to the recruitment of a substantial number 
of these cells to the foetoplacental barrier for their differentiation into 
macrophages. As compensation, intermediate monocytes increase in 
number, while the proportion of non-classical monocytes remains 

unchanged [51]. This gradual reorganisation of monocyte sub-
populations is accompanied by changes in their phenotype, denoting 
increased activation, differentiation, and adhesion potential. In this re-
gard, classical monocytes show an increased expression of the adhesion 
molecule CD54. In intermediate monocytes, expression of the lipo-
polysaccharide (LPS) co-receptor CD14 and the C–C chemokine re-
ceptor type 2 (CCR2) is up-regulated. Finally, the integrin CD11b, the 
fragment crystallizable-gamma receptor I (FcγRI/CD64), and the 
granulocyte-macrophage colony-stimulating factor receptor CD116 are 
expressed at increased levels on both classical and intermediate mono-
cytes [51]. Despite these changes, and probably due to a tolerance 
phenomenon upon a significant activation, the responsiveness of pe-
ripheral blood monocytes to toll-like receptor (TLR)-4, TLR7 and TLR8 
ligands is progressively reduced, which is reflected, for instance, in a 
dampened capacity of these cells to secrete TNFα and IL-6 upon stimu-
lation with LPS [51,52]. 

Besides the changes described above, there are several phenomena in 
early and late normal pregnancy that involve cytokine- and adhesion 
molecule-mediated communication between monocytes and other cells, 
such as trophoblast cells, stromal cells of the decidua, or smooth muscle 
cells of the myometrium. During early pregnancy, decidua becomes the 
environment for direct interaction between extravillous trophoblast 
cells and the maternal immune cells. First-trimester trophoblast cells 
express and secrete the chemokine C-X-C motif ligand 16 (CXCL16), 

Box 1 
Encryption and decryption of tissue factor. 

Although the major proportion of the TF of monocytes is found on their surfaces, it represents less than a quarter of the total TF activity that can 
be reached from the cell lysate. From this fact arises the theory that TF remains encrypted on the surface of monocytes [44]. The latent TF 
activity can be unlocked by stimulating monocytes in the presence of platelets in a CD62P-dependent process. a) TF decryption may be the result 
of changes in the conformation or orientation of the extracellular domain of the protein upon exposure to anionic phospholipids on the surface of 
monocytes. These changes would enable the coupling of FX (the substrate of TF in the Xase complex). This hypothesis has been supported by the 
finding that the extracellular domain of TF remains bound to the cell membrane via anionic phospholipids, even in its soluble form (and in 
complex or not with FVII). The specific amino acid residues involved in this interaction are in close proximity to the exosite presumed to be 
responsible for the binding of FX [42]. b) Also, as soon as 5 min after platelet activation in whole blood, platelets enhance the exposure of 
membrane TF in monocytes. Rapid surface exposure of TF occurs even in cells in which de novo synthesis of proteins is blocked, demonstrating 
that TF comes from a pool that is ready to be mobilised upon cell stimulation [43].

D. Álvarez et al.                                                                                                                                                                                                                                 



Autoimmunity Reviews 22 (2023) 103274

4

whose receptor, C-X-C chemokine receptor type 6 (CXCR6), is expressed 
by monocytes, thereby attracting them to the decidua [33]. Dendritic 
cells derived from the recruited monocytes undergo functional reprog-
ramming by decidual stromal cells in a process mediated by IL-1β and 
granulocyte colony-stimulating factor. Accordingly, the cytokine profile 
secreted by monocyte-derived dendritic cells is modified, increasing 
their secretion of IL-1β, IL-6 and IL-10, and decreasing their secretion of 
IL-8 and TNFα. As a result of those changes, the capability of these cells 
to prime lymphocytes towards a Th2 profile is improved [53]. Another 
major site of interaction between peripheral blood monocytes and the 
placenta is the apical surface of the syncytiotrophoblast that composes 
the chorionic villi. Close physical contact between monocytes and 
villous trophoblast cells occurs through interaction between the 
membrane-bound form of the chemokine C-X3-C motif ligand 1 
(CX3CL1/fractalkine) (expressed by trophoblast cells), and its receptor, 
C-X3-C chemokine receptor type 1 (CX3CR1) (expressed by monocytes) 
[35]. More recently, the same interaction system was shown to work in 
extravillous trophoblast cells [54]. Finally, it has been described the 
capability of monocytes to induce contraction of myometrial myocytes 
through direct interaction, in a process involving IL-6 and IL-8 [34]. 

The implications of monocyte-specific changes during pregnancy, as 
well as the interactions between these and trophoblast cells, are not yet 
completely understood. However, the relevance of these processes is 
clear once they are disturbed in the context of diseases such as pre- 
eclampsia [55,56]. This scenario is of particular interest in the study 
of APS, as pre-eclampsia is one of the clinical manifestations involved in 
obstetric APS [3]. 

Monocytes from women with pre-eclampsia exhibit increased TLR4 
expression and increased endogenous activation of nuclear factor kappa- 
light-chain-enhancer of activated B cells (NF-κB) [57]. Consequently, 
these monocytes show enhanced gene expression of inflammasome- and 
TLR4 pathway-related proteins such as NOD-like receptor pyrin domain- 
containing-3 (NLRP3), caspase 1, IL-1β and TNFα [56]. In general, these 
features are in line with a systemic inflammatory response. Indeed, 

compared to monocytes from normotensive pregnant women, mono-
cytes from women with pre-eclampsia respond less vigorously to LPS ex 
vivo, demonstrating the development of a tolerance phenomenon to-
wards inflammatory stimuli [57]. Unfortunately, it is not possible to 
conclude whether the aforementioned monocyte activation is a cause or 
a consequence of pre-eclampsia based on the design of this research. 

A potential mechanism of pregnancy-related morbidity in which 
monocytes have been involved is the production of anti-angiogenic 
factors such as the soluble vascular endothelial growth factor receptor 
1 (sVEGFR1/sFlt-1). This molecule has been specifically linked to the 
development of pre-eclampsia [58] and is suspected to impair the 
placentation process by suppressing uterine spiral artery remodelling 
[59] and reducing the number of foetal capillaries [60]. In a transgenic 
mouse model with an inducible tet-based allele encoding human sFlt-1, 
expression of this protein during early pregnancy (between 7.5 days- 
and 10.5 days-post coitum, corresponding to the placentation process) 
triggered foetal growth restriction [60]. This finding was accompanied 
by severe defects in the formed placenta (18.5 days post coitum). Hence, 
in the labyrinthine region (an area similar to the chorionic villi of the 
human placenta, responsible for nutrient exchange), isolated endothe-
lial cells were found instead of well-formed foetal capillaries [60]. Now, 
so far it has been described how the interaction between platelets and 
monocytes enhances the coagulation activity of monocytes. Also, the 
presence of aggregates between platelets and monocytes has been found 
in patients with pre-eclampsia. Unlike monocytes from pregnant con-
trols, these aggregates release sFlt-1. Ex vivo assays have confirmed that 
thrombin-activated platelets induce sFlt-1 production by monocytes 
[61]. 

Activation of complement is another trigger that has been involved 
in the production of sFlt-1 by monocytes in the context of pregnancy- 
related morbidity. As will be discussed below, this fact is promissory 
in the study of APS, as findings in animal models with obstetric mani-
festations induced by passive transfer of aPL suggest the participation of 
complement in the pathophysiology of the disease. In a model of 

Fig. 1. Mechanisms by which monocytes are involved in haemostasis. a) Monocytes can be activated by different stimuli such as immune complexes (through their 
interaction with Fc receptors), or endothelial cell-derived EVs that carry adhesion molecules (through their interaction with integrins). b) In response to these stimuli, 
monocytes increase their expression of TF. Although monocytes are a major source of blood-borne TF, the vast majority of this membrane protein remains encrypted 
and inactive. c) Interaction of CD162 with its ligand, CD62P, rapidly increase TF exposure and TF-dependent coagulation activity in monocytes, even in the absence 
of de novo protein expression (decryption). CD62P can be presented by platelets, synthetic particles (and probably EVs), or activated endothelium. In the latter case, 
monocytes roll across the vessel surface and are deposited along with other leukocytes to initiate thrombus formation. d) Increased TF activity leads to thrombin 
production, which in turn stimulates platelets via protease-activated receptors. IgG, Immunoglobulin G; FcγR, crystallisable fragment γ receptor; TF, tissue factor. 
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immune-mediated recurrent pregnancy loss arising from the mating of 
two inbred mouse strains, Girardi et al. found deposits of complement 
protein C3 and abundant monocyte infiltrates in the decidua [62]. These 
findings were overlaid with a reduction in free vascular endothelial 
growth factor during pregnancy. Ultimately, the authors found that 
anaphylatoxin C5a induces monocyte infiltration into the decidua and 
production of sFlt-1 by such cells, which triggers foetal resorption [62]. 
In earlier years, the same research group reported that pregnancy- 
related morbidity induced in mice by the infusion of immunoglobulin 
G (IgG) from aPL-positive patients is mediated by C5a and its receptor 
[6]. Furthermore, using the same animal model, they demonstrated that 
a synthetic molecule similar to low molecular weight heparins, which 
recapitulates the anticoagulant capacity of the pentasaccharide struc-
ture but lacks its other effects, fails to prevent foetal resorption, sug-
gesting that the protective capability of heparin in APS depends on its 
complement inhibitory properties rather than its antithrombotic prop-
erties [7]. 

Disruption of the CX3CL1/CX3CR1 system has also been implicated 

in the development of pregnancy-related morbidity. As mentioned 
earlier, this system mediates the interaction between monocytes and 
villous and extravillous trophoblast cells. Analysis of placentas from 
patients with early-onset pre-eclampsia shows increased gene expres-
sion and increased amount of CX3CL1 protein in trophoblast cells and 
endothelial cells [55]. In fact, the higher the expression of CX3CL1 in 
placental tissue at the time of delivery, the higher the proportion of 
adverse clinical findings related to pre-eclampsia [63]. Also, the villi of 
first-trimester placentas are known to upregulate CX3CL1 expression 
upon stimulation with TNFα [55]. Overexpression of CX3CL1 in extra-
villous trophoblast leads to increased adhesion of monocytes, as well as 
increased secretion of inflammatory cytokines such as IL-8, chemokine 
C–C motif ligand 19 (CCL19) and chemokine C–C motif ligand 13 
(CCL13) by the co-culture [54] (Fig. 2). 

4. Extracellular vesicles and monocytes 

A hallmark of aPL-stimulated animal models is the development of 

Fig. 2. Monocyte-mediated mechanisms of pregnancy-related morbidity. Activated monocytes, e.g., upon interaction with activated platelets, or with immune 
complexes formed by EVs and immunoglobulin G, express increased amounts of CX3CR1, and secrete inflammatory cytokines such as IL-1β, TNFα, and the anti- 
angiogenic factor sFlt-1. TNFα induces overexpression of CX3CL1 on the apical surface of chorionic villi resulting in enhanced adhesion of monocytes and the 
development of an inflammatory environment. sFlt-1 disrupts normal placentation by reducing foetal capillary formation and suppressing uterine spiral artery 
remodelling. IL-1β, interleukin 1β; TNFα, tumour necrosis factor-α; sFlt-1, soluble vascular endothelial growth factor receptor; CX3CL1, chemokine C-X3-C motif 
ligand 1; CX3CR1, C-X3-C motif chemokine receptor type 1. 
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widespread endothelial activation and dysfunction. After passive 
transfer of IgG from APS patients, murine blood vessels become less 
responsive to acetylcholine-mediated relaxation, endothelial nitric 
oxide synthase (eNOS) gene expression is downregulated, TF expression 
is upregulated, there is a drop in the ratio of phosphorylated to non- 
phosphorylated eNOS, plasma levels of soluble E-selectin/CD62E and 
sVCAM-1/CD54 increase, and endogenous thrombin potential rises 
[15]. If IgG infusion is coupled with a second stimulus (such as LPS or 
iron chloride), antibodies and complement protein C3 are deposited in 
the vascular beds within a few minutes. Consequently, thrombi become 
apparent in murine blood vessels, e.g., in mesenteric capillaries [2,64]. 

In addition to upregulating its expression of TF and adhesion mole-
cules such as CD106, CD54 and CD62E, aPL-activated endothelium re-
leases an increased number of m/lEVs [22]. As mentioned above, m/ 
lEVs are one of the main sources of TF [31,65]. Moreover, EVs increase 
the total surface area of anionic phospholipids available for the assembly 
of prothrombinase complexes and FX-activating complexes (Xase), so 
they are considered to be prothrombotic [66]. However, for reasons that 
will be discussed later, in the presence of aPL the direct coagulation 
activity of m/lEVs seems to be attenuated. Instead, m/lEVs released in 
the context of APS may provide a procoagulant and inflammatory 
message to other cells, namely monocytes. 

Quiescent endothelium constantly delivers signals to monocytes via 
EVs. When monocytes are co-cultured with endothelial cells in an 
experimental setting that prevents direct contact between the two cell 
types, after 24 h, the monocytes have taken up fragments of the endo-
thelial cell membrane [67]. The transfer of EVs-related material from 
endothelial cells to monocytes includes miRNAs that have the capability 
to polarise monocyte responses to LPS, preventing an inflammatory 
activation and favouring an immunomodulatory response [67]. Using an 
animal model of peritonitis in which leukocytes were challenged with 
LPS, Njock et al. described that EVs released by quiescent endothelium 
can reduce the gene expression of TNFα, IL-1β and inducible nitric oxide 
synthase (iNOS), and upregulate the expression of arginase 1, in peri-
toneal cells. These effects were attributed to the transfer of miRNA-10a, 
miRNA-126-3p and miRNA-181b, which are three components of 
quiescent endothelial cells that control NF-κB- and interferon regulatory 
factor 5 (IRF5)-related gene expression in monocytes [67]. 

Notably, the transfer of miRNA-126 may be involved in the regula-
tion of haemostasis, not only because it restricts leukocyte adhesion to 
the endothelium by controlling the expression of molecules such as 
CD106 [68,69], but also because it constrains TF gene expression by 
binding to the 3′ untranslated region of the transcript encoding for this 
protein [70]. Transfection of monocytes with miRNA-126 reduces their 
coagulation activity at baseline and under stimulation with LPS [70]. 
Remarkably, miRNA profiling of small EVs (sEVs) released by endo-
thelial cells upon stimulation with aβ2GPI antibodies in vitro shows a 
statistically significant decrease in the amount of loaded miRNA-126 
[30]. sEVs constitute a subpopulation of EVs smaller than 0.1 μm that 
is presumed to be produced in multivesicular bodies. 

In the same way that resting endothelium delivers immunomodula-
tory signals to monocytes, activated endothelium can deliver procoa-
gulant and inflammatory messages to the same cells. For instance, 
endothelial cells stimulated with TNFα release m/lEVs and sEVs that 
carry the adhesion molecules of their respective cells of origin [71]. 
Because of this, EVs are able to interact with monocytes in a process that 
does not require the fusion of membranes [72]. Thus, the binding of 
CD54 (present on the surface of endothelial cell-derived EVs) to integ-
rins (present on the surface of monocytes) has been shown to trigger an 
increment in TF gene expression and, finally, an enhancement of the TF- 
dependent coagulation activity of monocytes [72]. 

Endothelial cell-derived m/lEVs not only can perform as a procoa-
gulant message but also as an inflammatory message. When endothelial 
cells are placed under stress conditions of hypoxia and serum starvation, 
released m/lEVs upregulate the expression of IL-1β, TNFα, IL-6 and IL-8 
in monocytes [73]. Also, these vesicles promote in monocytes an 

improved adhesion potential to fibronectin surfaces and enhance their 
capacity to phagocytose oxidised lipoproteins, resulting in their differ-
entiation into foam cells [73]. Such interactions are probably mediated 
by adhesion molecules and may be important in explaining the patho-
physiology of thrombosis. For instance, patients with pulmonary 
thromboembolism, compared to healthy volunteers, exhibit a higher 
number of plasma endothelial cell-derived m/lEVs, CD62E-positive 
endothelial m/lEVs, and conjugates between m/lEVs and monocytes 
[74]. Endothelial cells stimulated in vitro with IgG from aPL-positive 
patients release a higher quantity of CD62E-positive m/lEVs compared 
to endothelial cells stimulated with IgG from healthy volunteers [22] 
(Fig. 3). 

5. The hypothesis of immune complexes and the lupus 
anticoagulant paradox 

A functional property of some aPL is their potential to extend clotting 
times in vitro. Autoantibodies that share this feature have been collec-
tively referred to as “lupus anticoagulant”. Although lupus anticoagu-
lant was originally thought to result from the capability of antibodies 
directed against β2GPI (in complex with its antigenic protein) to occupy 
and block the anionic phospholipid sites necessary for the assembly of 
the complexes of the coagulation cascade [75,76], this theory has been 
challenged in recent years [77]. For this reason, new mechanisms to 
explain the lupus anticoagulant phenomenon are currently being 
explored [78]. 

The “lupus anticoagulant paradox” (as it has been named by other 
authors [79]) arises from the finding that detection of lupus 
anticoagulant-like antibodies better predicts a potential first episode of 
thrombosis, or adverse pregnancy outcomes, than the isolated assess-
ment of any single aPL with a given antigenic specificity [80–82]. The 
reason why the functional properties of autoantibodies to behave as 
anticoagulants in vitro relate to their potential to trigger thrombosis and 
pregnancy-related morbidity in vivo remains unclear. The interaction 
between monocytes and endothelial cell-derived EVs may explain this 
phenomenon. 

Some authors have reported that aPL-positive patients exhibit a high 
proportion of phosphatidylserine-negative m/lEVs [21,83]. In fact, 
although patients with aPL have greater levels of plasma m/lEVs 
compared to healthy volunteers, this is not mirrored by a greater amount 
of anionic phospholipids available for thrombin formation [28], nor by 
an increased TF-like activity associated with m/lEVs [27]. Recently, we 
have shown that the coagulation activity of m/lEVs released in vitro by 
endothelial cells stimulated with IgG from aPL-positive patients is 
attenuated by direct interaction with lupus anticoagulant-like autoan-
tibodies [26]. In parallel, Mobarrez et al. identified that patients with 
systemic lupus erythematosus and the presence of aβ2GPI antibodies 
have a decreased number of β2GPI-positive m/lEVs [29]. These results 
suggest that m/lEVs in the presence of lupus anticoagulant-like anti-
bodies may probably form immune complexes in which both phospha-
tidylserine and β2GPI in the surface of vesicles are hidden. The 
relationship between such immune complexes, vascular thrombosis, and 
pregnancy-related morbidity could be explained by how immune com-
plexes interact with monocytes. 

One of the proposed roles of β2GPI is to facilitate EVs clearance by 
phagocytes [85]. β2GPI has a phosphatidylserine-binding domain 
(domain 5) that allows the protein to tag EVs [77], whilst its domain 1 is 
recognised by low-density lipoprotein receptors [86]. In this regard, 
aβ2GPI antibodies (especially the more pathogenic ones, i.e. those tar-
geting domain 1 [2]) would hinder the clearance of EVs. Beyond the 
consequent accumulation of EVs, it is known that recognition of immune 
complexes comprising IgG through Fc receptors (FcR) can induce 
monocyte activation, leading to the secretion of inflammatory cytokines 
and triggering the onset of the coagulation cascade [87,88]. 

Besides APS, another disease in which antibody-mediated throm-
bosis occurs, and which exemplifies the relationship between immune 
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response and haemostasis, is heparin-induced thrombocytopenia. In this 
disease, heparin administration induces the production of antibodies 
that recognise complexes between platelet factor 4 and heparin or cell 
membrane glycosaminoglycans [89]. Clot activation in heparin-induced 
thrombocytopenia requires the presence of monocytes. Immune com-
plexes comprising platelet factor 4, heparin, and IgG, are recognised by 
the FcγRIIA on monocytes, then inducing thrombin generation via the TF 
pathway. Thrombin, in turn, activates platelets, which leads to their 
coating with FX and increases their clotting activity [87]. The case of 
heparin-induced thrombocytopenia may help to better understand APS 
and other diseases characterised by immuno-thrombosis. 

Specifically, the potential of immune complexes comprising m/lEVs 
and autoantibodies to activate monocytes in the context of autoimmune 
diseases has already been addressed by other authors. Burbano et al. 
isolated immune complexes composed of platelet-derived m/lEVs and 
IgG from patients with systemic lupus erythematosus. These complexes 
activated monocytes in vitro, as demonstrated by increased expression of 
CD64 and CD69 markers, and secretion of inflammatory cytokines such 
as IL-1β, TNFα, IL-6 and IL-8 [88]. The same research group in vitro 

opsonised m/lEVs from platelets by incubating them with IgG from 
patients with seropositive rheumatoid arthritis. The resulting complexes 
upregulated in monocytes the expression of CX3CR1 [38]. 

6. Conclusions 

New approaches to APS propose the existence of independent path-
ogenic mechanisms underlying the vascular and obstetric manifestations 
of the disease [90]. First, obstetric manifestations are not presumed to 
attend to placental infarction [5,6,8]. Secondly, although vascular APS 
has been explained by a non-inflammatory hypercoagulable state, 
emerging evidence demonstrates the involvement of leukocytes and 
endothelial cells in the development of thrombosis [16,18]. Amidst both 
clinical manifestations, the monocyte may constitute an important link. 

In haemostasis, monocytes are an important source of blood-borne 
TF [31], bidirectionally interacting with platelets to induce clot acti-
vation [45], and then participating in clot contraction and stabilisation 
[48,49]. In pregnancy, the monocyte population undergoes changes that 
denote increased activation, although its responsiveness to 

Fig. 3. Potential mechanisms of interaction between endothelial cell-derived EVs and monocytes in antiphospholipid syndrome. Antiphospholipid antibodies lead to 
a state of endothelial activation and dysfunction that is accompanied by the release of EVs. In this context, analysis of EVs has revealed increased expression of CD62E 
and decreased expression of β2GPI and phosphatidylserine. Also, endothelial cell-derived sEVs from aPL-stimulated endothelial cells carry a decreased amount of 
miRNA-126. Other adhesion molecules of endothelial origin such as CD106 and CD54 might be present in these structures. According to the described features, EVs 
would interact with monocytes by binding to integrins or Fc receptors, while their clearance mediated by low-density lipoprotein receptors would be impaired. IgG, 
immunoglobulin G; miRNA, micro-RNA; FcR, Fc receptors; β2GPI, β2-glycoprotein-I; LDL receptor, low-density lipoprotein receptor. 
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inflammatory stimuli decreases [51]. Employing cytokines or, in some 
cases, by direct contact, monocytes interact with villous and extravillous 
trophoblast cells [54,91], as well as with stromal cells of the decidua and 
myometrial myocytes [34,53]. Disturbances in these processes can un-
derlie pregnancy-related morbidity [61,63]. 

Monocytes are thought to continuously receive signals from quies-
cent endothelium via EVs, which modulate their functions [67]. When 
endothelial cells are activated, such signals are turned into procoagulant 
and inflammatory messages that modify the phenotype and coagulation 
activity of monocytes [72]. Specifically, in APS, aPL have been identi-
fied as inducing a state of widespread endothelial dysfunction and 
activation [15]. Thus, endothelial cell-derived EVs released upon stim-
ulation with aPL show features that suggest that they may activate 
monocytes, as the expression of adhesion molecules [22], the reduction 
in their cargo of key miRNAs involved in coagulation control [30], and 
the presumed formation of immune complexes with lupus 
anticoagulant-like autoantibodies [21,26,29]. Further research should 
address how the interaction between monocytes and EVs from aPL- 
activated endothelium links vascular thrombosis and pregnancy- 
related morbidity in APS. 
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