

Robust Classification of Parkinson's Speech: an Approximation to a Scenario with Non-Controlled Acoustic Conditions D. A. López-Santander, C. D. Rios-Urrego, C. Bergler, E. Nöth, J. R. Orozco-Arroyave

GITA research group, University of Antioquia Ostbayerische Technische Hochschule Amberg-Weiden Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg diego.lopez9@udea.edu.co December 9, 2024

Outline

Context and motivation

Objectives

Methods

Experiments and results

Conclusions

Context and motivation

Parkinson's Disease

h li /	
(S)	
X	

- Neurological disorder prevalent in old age.
- It affects around 1% of people aged 60 or older
- Caused by the loss of dopaminergic neurons.
- Symptoms include loss of muscle control, tremor, behavioural changes.
- Produces speech impairments.

Objectives

Objectives

- To imitate a scenario of pathological speech under noisy acoustic conditions.
- To test a denoising method with varying parameters for reducing the added noise.
- To classify the different signals obtained from the process of denoising in order to determine its effectiveness.

Methods

Spectrogram Representation

Figure: Comparison between Healthy Control Subject and Parkinson's disease Patient - Pataka

- Segment length: 1.28 s
- Linear frequency scale: 0-10 kHz
- STFS window size: 100 ms
- Hop length: 10 ms
- Spectrogram size: 256×128

Adding Noise

Denoising ORCA-CLEAN¹

¹Bergler, C., Schmitt, M., Maier, A., Smeele, S., Barth, V., & Noeth, E. (2020, October). ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication. In INTERSPEECH (pp. 1136-1140).

D. A. López-Santander, C. D. Rios-Urrego, C. Bergler, E. Nöth, J. R. Orozco-Arroyave | GITA-UdeA

Denoising ORCA-CLEAN¹

D. A. López-Santander, C. D. Rios-Urrego, C. Bergler, E. Nöth, J. R. Orozco-Arroyave | GITA-UdeA

¹Bergler, C., Schmitt, M., Maier, A., Smeele, S., Barth, V., & Noeth, E. (2020, October). ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication. In INTERSPEECH (pp. 1136-1140).

ORCA-CLEAN Binary Masking

Additive Noise Variants

Binary Masking

Figure: Binary masking and additive noise examples.

Binary Masking Percentage: 40 %

Methodology - Training Denoiser

Datasets for Training Denoiser

CIEMPIESS

- Spanish dataset
- 16717 audio recordings
- 45 Female, 96 Male
- Avg. duration 25 s.

Microsoft Scalable Noisy Speech Dataset (MS-SNSD)

- Clean Speech
- Environmental Noise

Methodology - Denoising PD Speech

Database - PC-GITA

Table: General information of the subjects in PC-GITA

	PD Patients F/M	HC Subjects F/M
Number of Subjects	25/25	25/25
Age [years]	60.7(7)/61.3(11)	61.4(7)/60.5(12)
Time Since Diagnosis [years]	12.6(12)/8.7(6)	
MDS-UPDRS-III	37.6(14)/37.8(22)	

PD patients: Parkinson's patients. HC subjects: Healthy Controls.Values are expressed as mean (standard deviation). F: female. M: male. The total MDS-UPDRS-III ranges from 0 to 132.

Diadochokinetic tasks: "pataka", "petaka", "pakata".

Methodology - Classification

PD Classification

ResNet Architecture

- 256x128 spectrogram input
- 3 Residual Blocks
- Main blocks with 16, 32, and 64 feature maps
- Fully connected layers: 32 and 2 neurons
- Trained from scratch

Signal Input

- Original
- Noisy
- Denoised
- Residual

Experiments and results

Experiments

- SNR levels:
 - a) $5 \ dB$
 - b) $10 \ dB$
 - c) 20 dB
- Binary Masking Percentages:
 - 10%, 30%, 40%, 50%, 70%, 90%
- Input Signal:
 - a) Baseline Clean Signals
 - b) Noisy Signals
 - c) Denoised Signals
 - d) Residual Signals
- Each experiment is trained and evaluated following a 10-fold speaker-independent stratified cross-validation strategy.

Binary Masking Percentage Variation

Figure: Classification accuracy of PD patients vs HC subjects for different levels of SNR and binary masking percentages.(A) Denoised Signal. (B) Residual Signals.

Best Results

Baseline						
SNR	Accuracy (%)	Sensitivity (%)	Specificity (%)	F1-Score(%)		
N/A	67.8 ± 16	62.0 ± 36	75.0 ± 30	64.6 ± 24		
	Noise Corrupted Signals					
SNR	Accuracy (%)	Sensitivity (%)	Specificity (%)	F1-Score(%)		
5 dB 10 dB 20 dB	$\begin{array}{c} 61.1 \pm 11 \\ 53.3 \pm 10 \\ 57.8 \pm 16 \end{array}$	$\begin{array}{c} 54.0 \pm 35 \\ 38.0 \pm 37 \\ 56.0 \pm 44 \end{array}$	$\begin{array}{c} 70.0 \pm 33 \\ 73.0 \pm 33 \\ 60.0 \pm 34 \end{array}$	$\begin{array}{c} 57.1 \pm 23 \\ 54.7 \pm 13 \\ 51.7 \pm 22 \end{array}$		
		Denoised Signa	als			
SNR	Accuracy (%)	Sensitivity (%)	Specificity (%)	F1-Score(%)		
5 dB 10 dB 20 dB	$\begin{array}{c} 70.0 \pm \ 8 \\ 72.6 \pm \ 5 \\ 63.1 \pm \ 7 \end{array}$	$\begin{array}{c} 62.0 \pm 12 \\ 64.0 \pm 8 \\ 42.0 \pm 19 \end{array}$	$\begin{array}{c} 77.8 \pm 10 \\ 82.2 \pm 15 \\ 84.4 \pm 17 \end{array}$	$\begin{array}{rrr} 70.7 \pm \ 7 \\ 73.4 \pm \ 7 \\ 67.4 \pm \ 7 \end{array}$		
	Residual Signals					
SNR	Accuracy (%)	Sensitivity (%)	Specificity (%)	F1-Score(%)		
5 dB 10 dB 20 dB	$\begin{array}{c} 68.5 \pm \ 9 \\ 67.4 \pm \ 9 \\ 57.9 \pm 13 \end{array}$	$58.0 \pm 26 \\ 48.0 \pm 13 \\ 24.0 \pm 26$	$\begin{array}{c} 82.2 \pm 15 \\ 88.9 \pm 7 \\ 95.6 \pm 5 \end{array}$	$\begin{array}{c} 71.9 \pm 5 \\ 72.3 \pm 7 \\ 68.9 \pm 7 \end{array}$		

Table: Classification results for 40% binary masking.

ROC

Figure: Receiver operating characteristics

Conclusions

_	
_	
_	
_	
_	

Conclusions

- The proposed approach approximates real-world scenarios where controlling acoustic conditions is not possible.
- Results showed robustness in classification accuracy, even in cases with high levels of noise (5dB)
- The best results of the denoiser were obtained for a binary masking percentage of 40%, with an increase in classification accuracy of around 10% for the three SNR levels w.r.t. the noise corrupted signals.
- The results obtained from the residuals evidence that the denoiser also removes some pathology specific information.

Ongoing work

- Varying input segment length.
- Further adaptation of ORCA-CLEAN model.
- Evaluating other Denoising methods.

Robust Classification of Parkinson's Speech: an Approximation to a Scenario with Non-Controlled Acoustic Conditions D. A. López-Santander, C. D. Rios-Urrego, C. Bergler, E. Nöth, J. R. Orozco-Arroyave

GITA research group, University of Antioquia Ostbayerische Technische Hochschule Amberg-Weiden Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg diego.lopez9@udea.edu.co December 9, 2024