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Abstract
In this paper a commuting hierarchy of flows including the full Kostant-Toda equation is stud-
ied. A Mulase’s approach which uses the so-called Borel-Gauss decomposition leads to explicit
rational solutions of the full Kostant-Toda equation. Finally, we investigate how the solution
blows up in finite time in the case of matrices of order 2.
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1 Introduction

In [3] Ercolani, Flaschka and Singer introduced an extension of the Toda equation
which can be written in the Lax form

dL

dt
= [L,P ] (1)

where

L =
n−1∑

i=1

Ei,i+1 +
∑

1≤j≤i≤n
bijEi,j (2)

and

P = 2
∑

1≤j<i≤n
bijEi,j (3)

We have denoted by Ep,q the matrix with 1 in the (p, q) entry and 0 in all other
entries. The equation (1) with L and P expressed by (2) and (3) is called the “full
Kostant-Toda” equation. Kodama and Ye [5] have given an explicit formula for
the solution to the initial value problem. The Kodama-Ye solution is obtained by
a beautiful generalization of the orthogonalization procedure of Szegö.
Also, they studied the behaviors of the solutions and showed that the solutions,
found by them, are of two types, having either sorting property or blowing up to
infinity in finite time.
Bloch and Gekhtman has shown how the “full Kostant-Toda” equation may be
viewed as a gradient flow [2]. In that paper the relationship of this equation to
double bracket equations was discussed.
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On the other hand, in the work of Adler and van Moerbeke [1] one knows that t-
perturbed weights lead to moments, polynomials and a matrix evolving according
to the semi-infinite discrete KP-hierarchy. The relation of the Riemann-Hilbert
method to obtain asymptotics for orthogonal polynomials to a semi-infinite LU
factorization of the moment matrix was extensively studied by these authors.
Also Felipe and Ongay [4] adapted the algebraic approach due to Mulase [7], [8]
for the study of the KP hierarchy to the discrete KP hierarchy. In particular,
this approach allowed them to consider on an almost equal footing the cases of
semi-infinite and bi-infinite matrices.
In this work we show that “full Kostant-Toda” appear in a finite counterpart of
the discrete KP hierarchy, and that the results of [4] remain valid in this context
almost verbatim, then a large class of solutions is obtained. Despite the fact that
our method is quite different from that used by Kodama and Ye, in the cases of 2
by 2 matrices the solutions turn out to be of the same type. We conjecture that
all our solutions are of the type found by Kodama and Ye.

2 Algebraic approach for the finite discrete KP hierarchy

The goals of this section are:
1) To introduce a natural commuting hierarchy of flows including the “full Kostant-
Toda” equation as the first element of this hierarchy. We make three comments
of this hierarchy: first, it can be defined by a Lax type operator (matrix) with
respect to the shift matrix and its transpose; second, the Lax matrix introduced
admits a dressing matrix in terms of which the hierarchy can be rewritten and
third, the existence of a Sato-Wilson matrix. We mention that the situation is
similar to the Sato theory and his dressing technique (pseudodifferential theory).
2) To study the integrability in the sense of Frobenius for the hierarchy introduced.
The key point in our method is the so-called Gauss-Borel decomposition
3) To ilustrate the result obtained in the first part of this section by taking an
explicit form of the matrix L of order 2.
Now, let us observe how the “full Kostant-Toda” is included into the Sato’s frame-
work. This being, to the best of our knowledge, the first time that it is introduced
to a finite system of nonlinear ordinary differential equations.
Let Λ be the n by n matrix with ones on the first upper diagonal and zero in the
remaining entries

Λ =




0 1 0 · · · · · · 0

0 0 1
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 0 · · · · · · 0 1
0 0 · · · · · · · · · 0



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and ΛT its transpose. The matrix Λ is the shift operator of coordinates for vectors
in Rn. One can check that the components of Λk are zero except k − th upper
diagonal where it has ones. Note that Λn = ΛT

n is the zero matrix. Let L be the
matrix

L = Λ +D0 +
n−1∑

k=1

Di(ΛT )i (4)

where Di are diagonal matrices. We assume that the entries of L are functions
depending on parameters t = (t1, ..., tn−1).

Definition 2.1. The finite discrete KP hierarchy is the Lax system

∂L

∂tk
=
[
Lk≥, L

]
k = 1, ..., n− 1 (5)

where L≥ is the upper triangular part of the matrix L. Note that the “full Kostant-
Toda” equation is the first of this hierarchy after a change of scale.

From now we will use the notation L>, L< and L≤ for the strictly upper, strictly
lower and lower triangular parts of the matrix L. Let L be a matrix defined by
(4). If there exists the matrix S of the form

S = I + S1ΛT + S2(ΛT )2 + ...+ Sn−1(ΛT )n−1 (6)

such that

L = SΛS−1 (7)

where Si are diagonal matrices, we call L of (7) as Lax matrix.
The operator S is called dressing matrix and it is unique, up to right mul-
tiplication by an invertible matrix, taking the form of (6) that commutes with
Λ.
If there is a dressing matrix such that

∂S

∂tk
= −Lk<S k = 1, ..., n− 1 (8)

where L = SΛS−1 then L satisfies (5). Conversely, if L is a Lax matrix which is
a solution of (5) then exists a dressing matrix S of L which is a solution of (8),
operator S is called the Sato-Wilson matrix. It was shown in [4] that from (5) it
follows the following equations

∂Li≥
∂tj
−
∂Lj≥
∂ti

=
[
Li≥, L

j
≥
]

i 6= j, i, j = 1, ..., n− 1. (9)

Let us observe that for a given order, it is always possible to find matrices L of
the type (4), which are not Lax matrices. In fact, next we put the Lax matrices
as functions of their dressing operators for n = 2 and n = 3.
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n = 2 n = 3

S−1

(
1 0
a 1

) 


1 0 0
a 1 0
c b 1




S

(
1 0
−a 1

) 


1 0 0
−a 1 0

ab− c −b 1




L = SΛS−1

(
a 1
−a2 −a

) 


a 1 0
−a2 + c −a+ b 1

(a2 − c)b− ac (ab− c)− b2 −b




For L ∈ Λ +B− (B− is the algebra of lower triangular matrices), there exists U ∈
N− (N− is subgroup of lower triangular matrices where all of diagonal components
are 1) such that U−1LU = Λp where Λp = Λ − ∑n

k=1 pn−kEk,1. This is an
application of the sweeping out method. In general case, Kostant studied about
this normalization in [6].

Theorem 2.2. Suppose that L ∈ Λ + B− is normalized such as U−1LU = Λp by
U ∈ N−, then L is not a Lax matrix unless pn−1 = pn−2 = · · · = p1 = p0 = 0,
that is Λp = Λ.

Proof. Suppose that L is normalized such as U−1LU = Λp, that is L = UΛpU−1,
where U ∈ N−. By easy calculation one has

|λ− L| = |λ− Λp| = λn − pn−1λ
n−1 − · · · − p0.

Since L is a Lax matrix, the any eigenvalues of L are 0. This implies pn−1 =
pn−2 = · · · = p1 = p0 = 0.

Remark 2.3. In general, the eigenvalues of matrices L of the form (4) that are
solutions of the finite discrete KP hierarchy are the celebrated preserving quanti-
ties. If L is a Lax matrix then

|λI − L| =
∣∣λI − SΛS−1

∣∣ = |λI − Λ| = λn,

thus the eigenvalues are all 0.

We say that a matrixM admits a Gauss-Borel descomposition ifM can be written
in the form

M = M≤M≥ (10)

where M≤ has ones on the principal diagonal and M≥ has non-zero elements on
the principal diagonal. Descomposition (11) is equivalent to

M = (I +G<G
−1
0 )(G0 +G>)
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where G0 is a diagonal matrix with non-zero elements. It can be proved that the
Gauss-Borel descomposition is unique. A necessary and sufficient condition in
order to M admits the Gauss-Borel decomposition is that Mk 6= 0 , k = 1, ..., n
where Mk is the determinant of the principal order k submatrix [4].
Particular we are interested in the space M∗ of the matrices M depending on
t, admitting a Gauss-Borel decomposition and satisfying M≥ (0) = I. Note that
we dont consider the condition M≤ (0) = I because we would like to exclude the
trivial solution L = Λ.
Let Z be a 1-form associate to L given by

Z =
n−1∑

k=1

Lk≥dtk. (11)

If L satisfies (5) then Z satisfies

dZ =
1
2

[Z,Z] (12)

which is equivalent to the Zakharov-Shabat equations (9).
Let Ω be the 1-form such as

Ω =
n−1∑

k=1

Λkdtk (13)

which is a trivial solution of (12). The 1-form Ω is the heart of the Mulase
technique in the discrete case, in fact each solution of (5) yields a solution of

dM = ΩM (14)

in M∗ and conversely for a solution of (14) in M∗, we can build a matrix L that
is a solution of (5). The solutions of (14) take the form

M = e
∑n−1
k=1 ΛktkM0 .

Let us consider the Gauss-Borel factorization of M

M = S−1Y (15)

where S−1 is a lower triangular matrix with ones on the principal diagonal and
Y is an upper triangular matrix with non-zero elements on the principal diagonal.
For M ∈M∗, we have that

M0 = M(0) = S−1(0)Y (0) = S−1(0)I = S−1
0

then
M = e

∑n−1
k=1 ΛktkM0 = e

∑n−1
k=1 ΛktkS−1

0

where S−1
0 is a matrix takes the form of (6).
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3 Blows up to infinity of rational solutions

In order to obtain rational solutions that blows up to infinity, we present some
auxiliar results.

Lemma 3.1. The matrix

Mp(t) =
(

g (t) e (t)
f (t) g (t) f (t) e (t) + h (t)

)

belongs to M∗ if the conditions g (0) = h (0) = 1 and e (0) = 0 hold. We suppose
that the function g (t) is not identicaly zero.

Proof. The proof is straightforward.

Remark 3.2. If in the previous Lemma we assume that |Mp(t)| = 1, then h (t) =
1
g(t) .

Proposition 3.3. Let Lp = SpΛS−1
p such that Mp(t) = S−1

p · Y = (Mp(t))≤ ·
((Mp(t)))≥, then in order to the Lax matrix Lp can be a solution of the finite
discrete KP hierarchy is neccesary and sufficient that f ′ + f2 = 0.

Proof. As it was seen before

Lp =
(

f 1
−f2 −f

)
,

thus

∂Lp
∂t

=
(

f ′ 0
−2ff ′ −f ′

)
,

on the other hand, [
(Lp)≥ , Lp

]
=
(
−f2 0
2f3 f2

)
,

so, the Proposition is proved.

Next, we construct an explicit solution for the full Kostant-Toda equation in the
case of 2 by 2 matrices. As will be seen, the solution can blow up to infinity in
finite time.
Let

Mp(t) =
(

1 + at t
a 1

)

this case correspond to take

f (t) =
a

1 + at
, g (t) = 1 + at, e (t) = t, h (t) =

a

1 + at
,
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thus

Lp(t) =

(
a

1+at 1
− a2

(1+at)2
− a

1+at

)
. (16)

To see that this Lp(t) satisfies the equation, it is enough to observe that f (t) =
a

1+at is solution of the equation f ′ + f2 = 0, but it is evident. In particular, (16)
implies that if a < 0 then for t = − 1

a the solution blows up to infinity, it also
implies that the solution has the sorting property if a > 0.
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