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1. Introduction

Recently, several efforts have been made in order to describe some
integer sequences as invariants of objects in some additive categories, such
an identification is said to be a categorification of the sequence. For instance,
Ringel and Fahr interpreted pairs of Fibonacci numbers as vector dimensions
of indecomposable objects in the preprojective, preinjective and regular
components of the category of representations of the 3-Kronecker quiver Q.
Such identification is a consequence of the Gabriel’s covering theory.

According to this theory, there exists an equivalence F :repQ — repQ
between the category of representations of the 3-Kronecker quiver and the
category of representations of its corresponding covering Q. The
relationship between Fibonacci numbers and vector dimensions of objects in
the Auslander-Reiten quiver can be obtained provided that F preserves
indecomposability and satisfies dimV =dimV for each object V e rep Q [6,
7,11].

Worth noting that Cafadas, Giraldo et al. found out a relationship
between the number of indecomposable of some posets of finite
representation type and elements of the sequence A002662 in OEIS (the On-
Line Encyclopedia of Integer Sequences) via the algorithm of differentiation
with respect to a maximal point introduced by Nazarova and Roiter in 1972
to classify different types of posets [5, 9]. We recall that the category whose
objects are k-linear representations of a given poset P is an additive
category. In this case, a morphism ¢:U — V between representations

U =Ug; Uy|xe?P) and V = (Vy; Vy|x € P) is a k-linear map such that
o(Uy) =V, forall x e P.

The algorithm of differentiation with respect to a maximal point allowed
to Kleiner establishes a criterion for posets of finite representation type in
1972. We quote that, classification problems for additive categories having
only finitely many isomorphism classes of indecomposable objects are called
problems of finite representation type. The problems admitting a
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classification of their indecomposable objects are called of tame
representation type. There are also problems for which the classification
seems to be impossible; they are called of wild representation type [2, 3, 9].

The algorithm with respect to a maximal point was the first tool to
classify posets in the ways described above. Such an algorithm can be
applied to posets P of the form P = N + b,, where the subset N consists of

all points incomparable with b has width w(N) < 2. The derived poset %,
with respect to the maximal point b is defined in such a way that

R = (P\b)UN

with a partial order induced by P\b and N =N U{x+ylx,yeN,
XLy, y£xh

In this case, a representation Up =(Ug;Uy|xeP) of a derived poset
By arises from a representation U = (Ug; Uy |x € P) of P by restricting

space Ug to Uy and defining spaces Uy, = (Uy +Uy)NUy, for points
x+yeN, U, =U, NU, forall points x € B\{N}.

In 1973, Gabriel proved the following relation between indecomposable
representations of posets P and %, [8, 9]:

[ IndP|=|Ind R |+| N |+1.

A k-linear representation U is said to be decomposable if there exist
not null representations U; and U, non-isomorphic to U such that U =
U; ®@U,. U is said to be indecomposable if U is not null and it is not
decomposable. Ind P denotes the complete set of representatives of all

classes of indecomposable representations of the poset P.

In this paper, we use again the algorithm of Nazarova and Roiter to prove
that sequence A002662 also gives the number of partitions of type H
(introduced by Cafadas et al. in [4]) of a positive integer n. In fact,
relationship between this sequence, the number of indecomposable of some
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posets introduced in [5] and its dimension vectors allows us to describe
variations of the so called partitions or compositions of type 3 in a very
simple way. We recall that these partitions are 3-dimensional partitions
whose parts are matrices. Entries in these parts satisfy some constraints
which make them a kind of mathematical objects with a very tricky
description. Regarding this problem, we quote that the problem of giving a
description of higher dimensional partitions and its generating functions is
a cumbersome problem in the theory of partitions [1]. In this work, we
shall prove that these kinds of problems can be tackled by using poset
representation theory.

This paper is organized as follows. Some of the basic definitions and
notations concerning partitions are included in Section 2. In Section 3, we
recall some recent results regarding the categorification of the sequence
A002662. Finally, in Section 4, we describe partitions of type H and prove
that elements in such sequence give the number of partitions of type H of
some positive numbers.

2. Preliminaries
In this section, some basic definitions regarding partitions are introduced.
We refer to the interested reader to [2-5] for more precise definitions.
2.1. Higher dimensional partitions
A partition of a positive integer n is a finite nonincreasing sequence of
positive integers Aq, A, ..., A, such that Zir:lki =n. The A; are called

the parts of the partition [1]. A composition is a partition in which the order
of the summands is considered.

Partitions of positive numbers may be treated as a linear array whose
sum is prescribed

S

n=n1+n2+---+nS=Zni, niZni+1,
i=1
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higher-dimensional partitions are arrays whose sum is n. In this case;
n= Z Migiy...ip» Where Ny, i = Njj js 1)
i, iy >0
whenever iy < jp, ip < jp, ... Ip < ¢ (all g, i nonnegative integers) [1].

In particular, the plane partitions of n are two-dimensional arrays of
nonnegative integers in the first quadrant subject to a nonincreasing
condition along rows and columns.

We note that, up to date, there are very few results regarding partitions of
dimension greater than 2. As an advance in the research of this topic, we use
poset representation theory to describe some 3-dimensional partitions.

3. Categorification of the Sequence A002662

In this section, we give a brief description of the results obtained by

Cafiadas et al. in [5], where posets MK, 1< j <k, k>1 fixed and its

corresponding derived posets (M 'J‘ Y =Y jk (see Figure 1 below) were used to

give a categorification of the sequence A002662 in the OEIS [10].

Ck—j+1.5)

C(k—j.3)

. C(2,5) , s .
My = eq) - M7)' = ea,
C(1,5)
ba.j)

Oaqaj Of

Figure 1
In this case, (M'J-‘) ={aq, j) <bg j) < e(l,j)}+C(J[(_j+1,j) +Clk-j+1, )
L<jsk and Cojy =00 j) <% < <Oy Clk-inp) 1

defined as C}

(k=j+1, j) for each j.
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In [5], k-linear representations of posets ij =(M'j‘)' are defined with

the following notation:
Xa =y e Ply <x}, x4 = xa\Mx},
xV ={yePix<y}, x¥=x"\{x],

rad Uy, = ZUy,

YEXa

rad” Uy, =U,/ Z Uy,
yeClk-j+1,j)

rad* Uy =Uy/ > Uy

+
YeClk-js1, j)

Oy =dim Z rad Uy,
yEXAﬂC(T(_j+11 J)
oy =dim Z rad*Uy,
YeXaNCic_jua, j)
k k ky
Aj:|lnde|—|Ind(Mj)|—1. (2)
A finite nonnegative lattice path in the plane (with unit steps to the right and
down) is a sequence L = (vi, Vo, ..., V), Where vj € N2 and Vigg -V =
(4 0) or (0, -2) [5].
Lattice paths in posets ij which link the point a, i) with the final
point of the subset D_j.1 = C¢_j.1 U {eq, j)} have been considered. We

let PYk_ denote such a set, i.e.,
j
k
Rr; = {P=ag j)ll x[x e {ok-ji e jih

R 1= 1Ly, ©

]



Categorification of Some Integer Sequences ... 139

For all j, we assume the notation L$k . (Ykk+1=a(1 i) <ba, j) <€ j)) for
+ 1 4 d

the number of lattice paths linking points a, j) and €y, j)- Note that

ko _
I_Yk+1 =L

—~~

For a given poset ij, 1< j<k+1 we let I“g(‘l i denote a collection
Ny

of sets of the form:

m _ m m m )
Nawp = (P Phys - phj)|2 <hy<hy <o <h;
=|C_jsa [+3 m=k+3},
m m - -
|k | and w (ka(l )) %phs denote the size and the weight of
S

AT e Arn , respectively. That is, A" s a partition of the positive
a1 j) a1 )

integer wT (A lCcd =0
g ( a(LJ.)) |Co |

We let dim U denote the dimension vector of a representation U of a
poset P which is a vector whose coordinates are nonnegative integers such
that dimU = (dg; dy|xeP), where dg =dimUq and d, =dimU,/ > U,,

y<X

for each x € P.
For k21 and 1< j <k +1 fixed, we define the following dimension

vector of a poset M 'Jf\{f} (MLl\{f} = a1, k+1) < B k+1) < €L k1)

H _ mgym m
dImUa(lyj) =W (k ) for some ka(l B Fa(l,j)’
dimUp, | = a(l ) Iph :
dimuU =| |p|+2’

<G, j) 41 j)
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dimu =(m—| A7 h,1<i<k,
CG,D ( | qu)|)pr+2
- _ m -
dim Ue(l,j) = mphj ,1<i<k (4)

Each lattice path P e PYk_ defines a k-linear representation of ij with a
j

vector dimension di_ijk given by the following formulae:

dy
wmom ), if x=ay i), A" rm o
) @) Fag ) < Cag )
m m meam H
ka(l,j) [Py, W (ka(l,j))’ Tx=ba.j)
8;’ if xe Pmc(_k—j-i-l,j)’
5;, If XE(Z+)V, (5)
= m m i +_ ot i +
(=[5 ;, DPis2: ifx=2"=c; jy=min(PNDy_j j)
(M= x5, ;) D P ifz=eq j).
: + +
0, if xez, andPﬂC(k_Hlyj) # J,
0, if xe(z7)Y, 27 =max(PNCk_ju, j)):

where D_j,1 = Ci_ju1 U {eg, j)h-

Support of each dimension vector of a poset Y jk defines a composition
(of type £) of (k+3)pki3.

Henceforth, we let ij denote the number of compositions of type £ of

(k +3) pk?3 induced by the set | J ij_j+1.
1< j<k+1

The following results regarding Ck-, k > 2 were obtained in [5].
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k+1
Theorem 1. Ekj = 2(2h —1)(k+2—-h) foreach k >2 and m =k + 3
h=1

fixed.

Corollary 2. For each k > 2, the following identity holds:
. k+1 A Ak
- h
-t a| %]
h=1

Remark 3. Note that ij =2(2k+2—1)—w2(k+5). Therefore,

Theorem 1 and Corollary 2 give a formula partition for elements ij €

{1, 5, 16, 42, 99, 219, 466, 968, ...} which is the sequence A002662 in OEIS
[10]. In this case,

16 = () +3)(2) + (7)),

42=0@#+E)E)+ @) +19)Q),

99 = 1)(5)+ (3)(4) + (1) (B) +15)(2) + BH (),

219 = (1)(6) + (3)(5) + (7)(4) + (15)(3) + (31) (2) + (63) 1),

968 = (1)(8) + (3)(7) + (15)(5) + (31)(4) + (63)(3) + (127) (2) + (255) (1),

=1 (6)
4. Main Results

In this section, for each 1< j <k +1, we consider completed derived

posets Z'j‘ =X'J-‘+Yjk (Xlk =) with a Hasse diagram as shown in the

following Figure 2.
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€(1,5-1)

€(1,5-2)

4(1,5-1)

a1,j-2)

Figure 2
Let us define posets T jk in such a way that

~  k+l _—

(Zf) =T =3z,
=1

ie., Tjk is a sum of k-copies of poset Zh-(. Each point X, s) in the jth copy

—~

k -
Zj isdenoted X j).

A vector dimension of a representation of Tjk is defined by vector
dimensions of copies z¥ 1< j <k +1. Moreover, for j fixed, a vector

dimension of le< is induced by the corresponding representation of ij.

That is, if dJ
X(r

Do dlmUX(r’ j)/radUX(lr’ ) (dx(r’ N is the dimension of the

quotient UX(r j)/radUX( in the jth copy Z'j‘), then:

r.j)



Categorification of Some Integer Sequences ... 143

d)
Xr.J)

Wj+4 ?»j+4 ’
( a(l,i))

| Xj+4 | pj+4 —Wj+4(X

aL,j) 'k

X, iy’

oy
Xr.J)

j+4 j+4
(m _l Xja(l’ i |) p|'{+2'

m— Kj+4 j+4’
( | a(l,j) Dphj

j+4 j+4
| xf’J‘(l, ) Lhes

j+4 j+4
(m _l xja(l’ i) |) pSJ+2 )

01

01

. e a4 j+4
if X(r.J)‘a(l-J)'ka(l,j) “lag )

X5 =ba j)

I X(r, ) € Py (1 Clk-jan, ).

if X, j) (2",

if X, j) = Zj = C(J;]’ )= min(P; N D(T(fj+1, j)),
If 2 =euj)

if X, j)=81s),1ss<j-1,

if X, ) =€qs)ylss<j-1

if x(r‘j)e(zj):andPﬂCa(_jﬂ‘j):t@,

if X, j) €(2)7, 27 = max(Pj NC(k_js1, j))-
()

Each dimension of a subspace U)i(, X in a representation of the ith copy of

ij is defined as in formulas (4).

P; eYjk is a fixed lattice path for all 1 < j <k +1. Therefore, as in the

case for posets YE, the support of vector dimension of representations of

posets Z'j‘ induces 3-dimensional partitions (of type H) of numbers

_n(n+H(n+ 2)).

tm = (M +2)[(Pm+1 — 1)(p%+1 =D+ (pms+2 — 4)m](pn 6
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Remark 4. We note that the sequence {mtT 2} ={12, 77, 264, 684, 1500,
2937, ...} does not appear in the OEIS.
Parts of partitions of type JH are defined as follows:

dl 1<h<ij-1,

ML= (Mb) =1 f&n 8
(Min) =1 . j<h<k+1 ®)
au j)
, [0 l<hs<j-1,
MZ=(Mh)=1gi | j<h<k+1 ©)
b, j)
é(lh), 1<h<j-1,
M3=(M3)=1 10
( |h) dl , J<h£k+1, ( )
]
0, 1<h<j-1,
M =Mt)=1._ 11
(Min) {ax(r’h), j<h<k+1 (1)
: : 0, 1<h<j-1
M= =(Mip) =15+ j<h<k+l (12)
Xrohy' 27T

We et zm‘j denote the number of partitions of the number

(k +2)[(Pks1 ~ D (PRs1 1) + (Pr2 — 4)K] into parts of type 9.

The relationship between partitions of type £ and partitions of type H
allows us to establish the following result:

Theorem 5. For k > 2, Ekj = sm‘j

Proof. Each partition of type JH is induced by a fixed lattice path

—~

R eYJ-k in a fixed copy of Z'j‘. O

The following is a consequence of Remark 4 and the definition of
partitions of type J.
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Corollary 6. The next identity holds for every m > 1:

i+4
Pj+2-

M=

[(Pmsz =D (Phea =1+ (pmaz = 4)m] = 37

i=1 j=1

As an example, the following are the 16 partitions of type H of 1320:

77 7 P>+p3 P3+P3 P+ 3
M=Mi=19 9 9f MZ=|pS+p§ p3+pd pS+ps,
11 11 11 pj+pi Pi+ps ph+pE
3p3  3p3  3p3 0 50 50+65
Mi=|3p 3p3 3p§| M;=0,1<i, <3, MZ=|0 65 65+85 |,
3pd 3pi 3pd 0 80 80+105
77 7 P>+p3 P3+P3 P>+ 3
Aa=1Mj =9 9 9| M§i=|pS+p§ pS+pd p5+psl,
11 11 11 pf+pi pi+pd pj+pd
3p3 3p; 3p; 0 20 20 0 0 65
M3 =|3p3 3p§ 3pf| Mif=|0 26 26|, Mi=|0 0 85|
3ps 3ps 3p4 0 32 32 0 0 105
77 71 P>+p3 P3+P3 P3+ D3
hg=iMi=[9 9 9| Mf=|p3+pl pS+p§ p5+pd|
11 11 11 pi+ps pl+pd ph+pd
3p3 3p; 3p2 0 20 20+26
Mi=|3p§ 3p§ 3pS| Mi=|0 26 26+34| MJ=0 1<i, j<3l,
3pd 3p] 3pd 0 32 32+42

2p3 17 17 P>+ p; P3+p;

0
Ay =1Mjj =|2p§ 22 22|, Mf=|0 p3+pf pS+ps|
2ps 27 27 0 i I

5

Ps + P4 Ph+ P4
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3p3 3p; 3p; 0 0 65
M3 =|3p§ 3p% 3pf| M{=01<i j<3aMi=|0 0 85|,
3p] 3p; 3p} 0 0 105
2p3 17 17 0 p3+p; P5+p3
As =M =[2ps 22 22|,M{§=|0 pS+pf p3+pdl,
2p5 21 21 0 pi+pi pl+p)
'3p3  3pf 3pd 0 0 26
Mi=|3pf 3p§ 3pS| Mf=|0 0 34| M=o 1<i j<3,
3p; 3p; 3pd 0 0 42
2p3 2p; 30 0 0 pi+pd
A = MiljZZP:? 2p§ 39,Mi12=0 0 pg+pg,
2p] 2p] 48 0 0 pj+pl

3p3 3p; 3p:

M3 =|3p5 3p§ 3pg| Mii=M=0 1<i, j<3

3p; 3pi 3pd
2p3 10 10 0 p3+p; P3+P3
A7 ={Mfi =|2p§ 13 13|, M{=|0 p3+ps p3+ps|
2pf 16 16 0 pd+pi ps+pi
3p3 3p; 3p2 0 0 26
M{=|3p3 3p§ 3p2| Mj=|0 0 34|, M?=01<i, j<3,
3pd 3p] 3pd 0 0 42

2p3 10 10 0O p3+p; P3+P3
hg=1Mf =|2p§ 13 13|, Mf=[0 pS+pf ps+pf|,
0 pi+pi pi+npi
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3p3 3p;
M3=|3p§ 3p§
30 3pd

2p3

ho = Mjj =|2p3
2pj

3p3 3p3
M3 =|3p$ 3p}
3pj 3p4
2p3

1

Mo = Mjj = 2p3
2p}

3p3 3p;3
M3=3p§ 3p§
30 3pd

3p3

M1 =1Mjj =| 3p
3pj

2p3  2p3
Mi=|2p§ 2pf
2p;  2pj

3p3

M= Mﬁ= 3p3

3ps

3p;
3pS
3p;

2p3
2p§
2p4

3ps
3pS
3pd

2p
2p
2p

3p:
3pS

3pd

27
35
43

2p3
2p§

2py

27
35
43

0 0 65
, M{j=01<i,j<3 Mj=|0 0 8
0 0 105
23 0 0 p3+pz
2 6 6
30, Mij:O 0 pP3 + Ps |,
37 0 0 pj+pd
. M =M =0, 1<i, j<3f,
b 13 0 0 p3+ps
§ 17|, MZ=|0 0 pS+pf|,
I 2 0 0 pj+pd
,Mi?zmi?:o, 1<i, j <3¢,
27 0 p3+p3+pi P3+p3+p;
35|, M{=[0 pg+ps+ps pS+pS+pd
43 O pi+pj+pi pi+pi+ps
0 0 65
. Mif =0, 1<i,j<3, MZ=|0 0 85|,
0 0 105
27 0 p3+p3+pi Pa+P3+pa
35, Mf=0 pS+p§+p§ p3+p§+pl |,
43 O po+pi+pi Py+p3+ps
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2p3

2p3
2p}

2pz
2p4
2p}

2py

3p}

2p4

Agustin Moreno Cafiadas et al.

2p2 00
2pe [, Mif=[0 0
2pd 0 0
3p; 53
3pf 69|, Mf =
3ps 85
2p2

6 4 5
2ps |, Mjj = Mjj =
2pl
3p; 43
3p; 56|, Mf =
3ps 69
2p2
2pg |, Mif =MP =0
2ps
3p; 36
3p; 47|, Mf =
3p, 58
2p2

6 4 5
2I057, » Mjj = Mjj =
2psg
4p; 101
4py 131], M{ =
4pi 161

39

51|, Mp =0, 1<i, j<3,

63

0 0 p3+p3+p2

0 0 p§+p§+ps

0 0 pj+pf+p

0, 1<i, j <3\,

0 0 p3+p3+p2

0 0 pS+p§+ps

0 0 pj+pi+pd
1<i, j <3¢,

0 O p3+p;+pe

0 0 p§+op§+ope

0 0 pj+opi+pd

0, 1<i, j<3b,

0 O p3+p3+p;+ps

0 0 pS+p§+pd+ps

0 0 pJ+pf+ps+pd
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P3 p; P2
=p§ pf;5 pg,Mi‘J}zMﬁ’:O, 1<i, j <3,
pi pi Pl
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